1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/fsverity.h> 4 #include <linux/iomap.h> 5 #include "ctree.h" 6 #include "delalloc-space.h" 7 #include "direct-io.h" 8 #include "extent-tree.h" 9 #include "file.h" 10 #include "fs.h" 11 #include "transaction.h" 12 #include "volumes.h" 13 14 struct btrfs_dio_data { 15 ssize_t submitted; 16 struct extent_changeset *data_reserved; 17 struct btrfs_ordered_extent *ordered; 18 bool data_space_reserved; 19 bool nocow_done; 20 }; 21 22 struct btrfs_dio_private { 23 /* Range of I/O */ 24 u64 file_offset; 25 u32 bytes; 26 27 /* This must be last */ 28 struct btrfs_bio bbio; 29 }; 30 31 static struct bio_set btrfs_dio_bioset; 32 33 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 34 struct extent_state **cached_state, 35 unsigned int iomap_flags) 36 { 37 const bool writing = (iomap_flags & IOMAP_WRITE); 38 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 39 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 40 struct btrfs_ordered_extent *ordered; 41 int ret = 0; 42 43 /* Direct lock must be taken before the extent lock. */ 44 if (nowait) { 45 if (!try_lock_dio_extent(io_tree, lockstart, lockend, cached_state)) 46 return -EAGAIN; 47 } else { 48 lock_dio_extent(io_tree, lockstart, lockend, cached_state); 49 } 50 51 while (1) { 52 if (nowait) { 53 if (!try_lock_extent(io_tree, lockstart, lockend, 54 cached_state)) { 55 ret = -EAGAIN; 56 break; 57 } 58 } else { 59 lock_extent(io_tree, lockstart, lockend, cached_state); 60 } 61 /* 62 * We're concerned with the entire range that we're going to be 63 * doing DIO to, so we need to make sure there's no ordered 64 * extents in this range. 65 */ 66 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 67 lockend - lockstart + 1); 68 69 /* 70 * We need to make sure there are no buffered pages in this 71 * range either, we could have raced between the invalidate in 72 * generic_file_direct_write and locking the extent. The 73 * invalidate needs to happen so that reads after a write do not 74 * get stale data. 75 */ 76 if (!ordered && 77 (!writing || !filemap_range_has_page(inode->i_mapping, 78 lockstart, lockend))) 79 break; 80 81 unlock_extent(io_tree, lockstart, lockend, cached_state); 82 83 if (ordered) { 84 if (nowait) { 85 btrfs_put_ordered_extent(ordered); 86 ret = -EAGAIN; 87 break; 88 } 89 /* 90 * If we are doing a DIO read and the ordered extent we 91 * found is for a buffered write, we can not wait for it 92 * to complete and retry, because if we do so we can 93 * deadlock with concurrent buffered writes on page 94 * locks. This happens only if our DIO read covers more 95 * than one extent map, if at this point has already 96 * created an ordered extent for a previous extent map 97 * and locked its range in the inode's io tree, and a 98 * concurrent write against that previous extent map's 99 * range and this range started (we unlock the ranges 100 * in the io tree only when the bios complete and 101 * buffered writes always lock pages before attempting 102 * to lock range in the io tree). 103 */ 104 if (writing || 105 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 106 btrfs_start_ordered_extent(ordered); 107 else 108 ret = nowait ? -EAGAIN : -ENOTBLK; 109 btrfs_put_ordered_extent(ordered); 110 } else { 111 /* 112 * We could trigger writeback for this range (and wait 113 * for it to complete) and then invalidate the pages for 114 * this range (through invalidate_inode_pages2_range()), 115 * but that can lead us to a deadlock with a concurrent 116 * call to readahead (a buffered read or a defrag call 117 * triggered a readahead) on a page lock due to an 118 * ordered dio extent we created before but did not have 119 * yet a corresponding bio submitted (whence it can not 120 * complete), which makes readahead wait for that 121 * ordered extent to complete while holding a lock on 122 * that page. 123 */ 124 ret = nowait ? -EAGAIN : -ENOTBLK; 125 } 126 127 if (ret) 128 break; 129 130 cond_resched(); 131 } 132 133 if (ret) 134 unlock_dio_extent(io_tree, lockstart, lockend, cached_state); 135 return ret; 136 } 137 138 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 139 struct btrfs_dio_data *dio_data, 140 const u64 start, 141 const struct btrfs_file_extent *file_extent, 142 const int type) 143 { 144 struct extent_map *em = NULL; 145 struct btrfs_ordered_extent *ordered; 146 147 if (type != BTRFS_ORDERED_NOCOW) { 148 em = btrfs_create_io_em(inode, start, file_extent, type); 149 if (IS_ERR(em)) 150 goto out; 151 } 152 153 ordered = btrfs_alloc_ordered_extent(inode, start, file_extent, 154 (1 << type) | 155 (1 << BTRFS_ORDERED_DIRECT)); 156 if (IS_ERR(ordered)) { 157 if (em) { 158 free_extent_map(em); 159 btrfs_drop_extent_map_range(inode, start, 160 start + file_extent->num_bytes - 1, false); 161 } 162 em = ERR_CAST(ordered); 163 } else { 164 ASSERT(!dio_data->ordered); 165 dio_data->ordered = ordered; 166 } 167 out: 168 169 return em; 170 } 171 172 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 173 struct btrfs_dio_data *dio_data, 174 u64 start, u64 len) 175 { 176 struct btrfs_root *root = inode->root; 177 struct btrfs_fs_info *fs_info = root->fs_info; 178 struct btrfs_file_extent file_extent; 179 struct extent_map *em; 180 struct btrfs_key ins; 181 u64 alloc_hint; 182 int ret; 183 184 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, len); 185 again: 186 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 187 0, alloc_hint, &ins, 1, 1); 188 if (ret == -EAGAIN) { 189 ASSERT(btrfs_is_zoned(fs_info)); 190 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, 191 TASK_UNINTERRUPTIBLE); 192 goto again; 193 } 194 if (ret) 195 return ERR_PTR(ret); 196 197 file_extent.disk_bytenr = ins.objectid; 198 file_extent.disk_num_bytes = ins.offset; 199 file_extent.num_bytes = ins.offset; 200 file_extent.ram_bytes = ins.offset; 201 file_extent.offset = 0; 202 file_extent.compression = BTRFS_COMPRESS_NONE; 203 em = btrfs_create_dio_extent(inode, dio_data, start, &file_extent, 204 BTRFS_ORDERED_REGULAR); 205 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 206 if (IS_ERR(em)) 207 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 208 1); 209 210 return em; 211 } 212 213 static int btrfs_get_blocks_direct_write(struct extent_map **map, 214 struct inode *inode, 215 struct btrfs_dio_data *dio_data, 216 u64 start, u64 *lenp, 217 unsigned int iomap_flags) 218 { 219 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 220 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 221 struct btrfs_file_extent file_extent; 222 struct extent_map *em = *map; 223 int type; 224 u64 block_start; 225 struct btrfs_block_group *bg; 226 bool can_nocow = false; 227 bool space_reserved = false; 228 u64 len = *lenp; 229 u64 prev_len; 230 int ret = 0; 231 232 /* 233 * We don't allocate a new extent in the following cases 234 * 235 * 1) The inode is marked as NODATACOW. In this case we'll just use the 236 * existing extent. 237 * 2) The extent is marked as PREALLOC. We're good to go here and can 238 * just use the extent. 239 * 240 */ 241 if ((em->flags & EXTENT_FLAG_PREALLOC) || 242 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 243 em->disk_bytenr != EXTENT_MAP_HOLE)) { 244 if (em->flags & EXTENT_FLAG_PREALLOC) 245 type = BTRFS_ORDERED_PREALLOC; 246 else 247 type = BTRFS_ORDERED_NOCOW; 248 len = min(len, em->len - (start - em->start)); 249 block_start = extent_map_block_start(em) + (start - em->start); 250 251 if (can_nocow_extent(inode, start, &len, &file_extent, false) == 1) { 252 bg = btrfs_inc_nocow_writers(fs_info, block_start); 253 if (bg) 254 can_nocow = true; 255 } 256 } 257 258 prev_len = len; 259 if (can_nocow) { 260 struct extent_map *em2; 261 262 /* We can NOCOW, so only need to reserve metadata space. */ 263 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 264 nowait); 265 if (ret < 0) { 266 /* Our caller expects us to free the input extent map. */ 267 free_extent_map(em); 268 *map = NULL; 269 btrfs_dec_nocow_writers(bg); 270 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 271 ret = -EAGAIN; 272 goto out; 273 } 274 space_reserved = true; 275 276 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, 277 &file_extent, type); 278 btrfs_dec_nocow_writers(bg); 279 if (type == BTRFS_ORDERED_PREALLOC) { 280 free_extent_map(em); 281 *map = em2; 282 em = em2; 283 } 284 285 if (IS_ERR(em2)) { 286 ret = PTR_ERR(em2); 287 goto out; 288 } 289 290 dio_data->nocow_done = true; 291 } else { 292 /* Our caller expects us to free the input extent map. */ 293 free_extent_map(em); 294 *map = NULL; 295 296 if (nowait) { 297 ret = -EAGAIN; 298 goto out; 299 } 300 301 /* 302 * If we could not allocate data space before locking the file 303 * range and we can't do a NOCOW write, then we have to fail. 304 */ 305 if (!dio_data->data_space_reserved) { 306 ret = -ENOSPC; 307 goto out; 308 } 309 310 /* 311 * We have to COW and we have already reserved data space before, 312 * so now we reserve only metadata. 313 */ 314 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 315 false); 316 if (ret < 0) 317 goto out; 318 space_reserved = true; 319 320 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 321 if (IS_ERR(em)) { 322 ret = PTR_ERR(em); 323 goto out; 324 } 325 *map = em; 326 len = min(len, em->len - (start - em->start)); 327 if (len < prev_len) 328 btrfs_delalloc_release_metadata(BTRFS_I(inode), 329 prev_len - len, true); 330 } 331 332 /* 333 * We have created our ordered extent, so we can now release our reservation 334 * for an outstanding extent. 335 */ 336 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 337 338 /* 339 * Need to update the i_size under the extent lock so buffered 340 * readers will get the updated i_size when we unlock. 341 */ 342 if (start + len > i_size_read(inode)) 343 i_size_write(inode, start + len); 344 out: 345 if (ret && space_reserved) { 346 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 347 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 348 } 349 *lenp = len; 350 return ret; 351 } 352 353 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 354 loff_t length, unsigned int flags, struct iomap *iomap, 355 struct iomap *srcmap) 356 { 357 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 358 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 359 struct extent_map *em; 360 struct extent_state *cached_state = NULL; 361 struct btrfs_dio_data *dio_data = iter->private; 362 u64 lockstart, lockend; 363 const bool write = !!(flags & IOMAP_WRITE); 364 int ret = 0; 365 u64 len = length; 366 const u64 data_alloc_len = length; 367 u32 unlock_bits = EXTENT_LOCKED; 368 369 /* 370 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 371 * we're NOWAIT we may submit a bio for a partial range and return 372 * EIOCBQUEUED, which would result in an errant short read. 373 * 374 * The best way to handle this would be to allow for partial completions 375 * of iocb's, so we could submit the partial bio, return and fault in 376 * the rest of the pages, and then submit the io for the rest of the 377 * range. However we don't have that currently, so simply return 378 * -EAGAIN at this point so that the normal path is used. 379 */ 380 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 381 return -EAGAIN; 382 383 /* 384 * Cap the size of reads to that usually seen in buffered I/O as we need 385 * to allocate a contiguous array for the checksums. 386 */ 387 if (!write) 388 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 389 390 lockstart = start; 391 lockend = start + len - 1; 392 393 /* 394 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 395 * enough if we've written compressed pages to this area, so we need to 396 * flush the dirty pages again to make absolutely sure that any 397 * outstanding dirty pages are on disk - the first flush only starts 398 * compression on the data, while keeping the pages locked, so by the 399 * time the second flush returns we know bios for the compressed pages 400 * were submitted and finished, and the pages no longer under writeback. 401 * 402 * If we have a NOWAIT request and we have any pages in the range that 403 * are locked, likely due to compression still in progress, we don't want 404 * to block on page locks. We also don't want to block on pages marked as 405 * dirty or under writeback (same as for the non-compression case). 406 * iomap_dio_rw() did the same check, but after that and before we got 407 * here, mmap'ed writes may have happened or buffered reads started 408 * (readpage() and readahead(), which lock pages), as we haven't locked 409 * the file range yet. 410 */ 411 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 412 &BTRFS_I(inode)->runtime_flags)) { 413 if (flags & IOMAP_NOWAIT) { 414 if (filemap_range_needs_writeback(inode->i_mapping, 415 lockstart, lockend)) 416 return -EAGAIN; 417 } else { 418 ret = filemap_fdatawrite_range(inode->i_mapping, start, 419 start + length - 1); 420 if (ret) 421 return ret; 422 } 423 } 424 425 memset(dio_data, 0, sizeof(*dio_data)); 426 427 /* 428 * We always try to allocate data space and must do it before locking 429 * the file range, to avoid deadlocks with concurrent writes to the same 430 * range if the range has several extents and the writes don't expand the 431 * current i_size (the inode lock is taken in shared mode). If we fail to 432 * allocate data space here we continue and later, after locking the 433 * file range, we fail with ENOSPC only if we figure out we can not do a 434 * NOCOW write. 435 */ 436 if (write && !(flags & IOMAP_NOWAIT)) { 437 ret = btrfs_check_data_free_space(BTRFS_I(inode), 438 &dio_data->data_reserved, 439 start, data_alloc_len, false); 440 if (!ret) 441 dio_data->data_space_reserved = true; 442 else if (ret && !(BTRFS_I(inode)->flags & 443 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 444 goto err; 445 } 446 447 /* 448 * If this errors out it's because we couldn't invalidate pagecache for 449 * this range and we need to fallback to buffered IO, or we are doing a 450 * NOWAIT read/write and we need to block. 451 */ 452 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 453 if (ret < 0) 454 goto err; 455 456 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 457 if (IS_ERR(em)) { 458 ret = PTR_ERR(em); 459 goto unlock_err; 460 } 461 462 /* 463 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 464 * io. INLINE is special, and we could probably kludge it in here, but 465 * it's still buffered so for safety lets just fall back to the generic 466 * buffered path. 467 * 468 * For COMPRESSED we _have_ to read the entire extent in so we can 469 * decompress it, so there will be buffering required no matter what we 470 * do, so go ahead and fallback to buffered. 471 * 472 * We return -ENOTBLK because that's what makes DIO go ahead and go back 473 * to buffered IO. Don't blame me, this is the price we pay for using 474 * the generic code. 475 */ 476 if (extent_map_is_compressed(em) || em->disk_bytenr == EXTENT_MAP_INLINE) { 477 free_extent_map(em); 478 /* 479 * If we are in a NOWAIT context, return -EAGAIN in order to 480 * fallback to buffered IO. This is not only because we can 481 * block with buffered IO (no support for NOWAIT semantics at 482 * the moment) but also to avoid returning short reads to user 483 * space - this happens if we were able to read some data from 484 * previous non-compressed extents and then when we fallback to 485 * buffered IO, at btrfs_file_read_iter() by calling 486 * filemap_read(), we fail to fault in pages for the read buffer, 487 * in which case filemap_read() returns a short read (the number 488 * of bytes previously read is > 0, so it does not return -EFAULT). 489 */ 490 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 491 goto unlock_err; 492 } 493 494 len = min(len, em->len - (start - em->start)); 495 496 /* 497 * If we have a NOWAIT request and the range contains multiple extents 498 * (or a mix of extents and holes), then we return -EAGAIN to make the 499 * caller fallback to a context where it can do a blocking (without 500 * NOWAIT) request. This way we avoid doing partial IO and returning 501 * success to the caller, which is not optimal for writes and for reads 502 * it can result in unexpected behaviour for an application. 503 * 504 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 505 * iomap_dio_rw(), we can end up returning less data then what the caller 506 * asked for, resulting in an unexpected, and incorrect, short read. 507 * That is, the caller asked to read N bytes and we return less than that, 508 * which is wrong unless we are crossing EOF. This happens if we get a 509 * page fault error when trying to fault in pages for the buffer that is 510 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 511 * have previously submitted bios for other extents in the range, in 512 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 513 * those bios have completed by the time we get the page fault error, 514 * which we return back to our caller - we should only return EIOCBQUEUED 515 * after we have submitted bios for all the extents in the range. 516 */ 517 if ((flags & IOMAP_NOWAIT) && len < length) { 518 free_extent_map(em); 519 ret = -EAGAIN; 520 goto unlock_err; 521 } 522 523 if (write) { 524 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 525 start, &len, flags); 526 if (ret < 0) 527 goto unlock_err; 528 /* Recalc len in case the new em is smaller than requested */ 529 len = min(len, em->len - (start - em->start)); 530 if (dio_data->data_space_reserved) { 531 u64 release_offset; 532 u64 release_len = 0; 533 534 if (dio_data->nocow_done) { 535 release_offset = start; 536 release_len = data_alloc_len; 537 } else if (len < data_alloc_len) { 538 release_offset = start + len; 539 release_len = data_alloc_len - len; 540 } 541 542 if (release_len > 0) 543 btrfs_free_reserved_data_space(BTRFS_I(inode), 544 dio_data->data_reserved, 545 release_offset, 546 release_len); 547 } 548 } 549 550 /* 551 * Translate extent map information to iomap. 552 * We trim the extents (and move the addr) even though iomap code does 553 * that, since we have locked only the parts we are performing I/O in. 554 */ 555 if ((em->disk_bytenr == EXTENT_MAP_HOLE) || 556 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) { 557 iomap->addr = IOMAP_NULL_ADDR; 558 iomap->type = IOMAP_HOLE; 559 } else { 560 iomap->addr = extent_map_block_start(em) + (start - em->start); 561 iomap->type = IOMAP_MAPPED; 562 } 563 iomap->offset = start; 564 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 565 iomap->length = len; 566 free_extent_map(em); 567 568 /* 569 * Reads will hold the EXTENT_DIO_LOCKED bit until the io is completed, 570 * writes only hold it for this part. We hold the extent lock until 571 * we're completely done with the extent map to make sure it remains 572 * valid. 573 */ 574 if (write) 575 unlock_bits |= EXTENT_DIO_LOCKED; 576 577 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 578 unlock_bits, &cached_state); 579 580 /* We didn't use everything, unlock the dio extent for the remainder. */ 581 if (!write && (start + len) < lockend) 582 unlock_dio_extent(&BTRFS_I(inode)->io_tree, start + len, 583 lockend, NULL); 584 585 return 0; 586 587 unlock_err: 588 /* 589 * Don't use EXTENT_LOCK_BITS here in case we extend it later and forget 590 * to update this, be explicit that we expect EXTENT_LOCKED and 591 * EXTENT_DIO_LOCKED to be set here, and so that's what we're clearing. 592 */ 593 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 594 EXTENT_LOCKED | EXTENT_DIO_LOCKED, &cached_state); 595 err: 596 if (dio_data->data_space_reserved) { 597 btrfs_free_reserved_data_space(BTRFS_I(inode), 598 dio_data->data_reserved, 599 start, data_alloc_len); 600 extent_changeset_free(dio_data->data_reserved); 601 } 602 603 return ret; 604 } 605 606 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 607 ssize_t written, unsigned int flags, struct iomap *iomap) 608 { 609 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 610 struct btrfs_dio_data *dio_data = iter->private; 611 size_t submitted = dio_data->submitted; 612 const bool write = !!(flags & IOMAP_WRITE); 613 int ret = 0; 614 615 if (!write && (iomap->type == IOMAP_HOLE)) { 616 /* If reading from a hole, unlock and return */ 617 unlock_dio_extent(&BTRFS_I(inode)->io_tree, pos, 618 pos + length - 1, NULL); 619 return 0; 620 } 621 622 if (submitted < length) { 623 pos += submitted; 624 length -= submitted; 625 if (write) 626 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 627 pos, length, false); 628 else 629 unlock_dio_extent(&BTRFS_I(inode)->io_tree, pos, 630 pos + length - 1, NULL); 631 ret = -ENOTBLK; 632 } 633 if (write) { 634 btrfs_put_ordered_extent(dio_data->ordered); 635 dio_data->ordered = NULL; 636 } 637 638 if (write) 639 extent_changeset_free(dio_data->data_reserved); 640 return ret; 641 } 642 643 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 644 { 645 struct btrfs_dio_private *dip = 646 container_of(bbio, struct btrfs_dio_private, bbio); 647 struct btrfs_inode *inode = bbio->inode; 648 struct bio *bio = &bbio->bio; 649 650 if (bio->bi_status) { 651 btrfs_warn(inode->root->fs_info, 652 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 653 btrfs_ino(inode), bio->bi_opf, 654 dip->file_offset, dip->bytes, bio->bi_status); 655 } 656 657 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 658 btrfs_finish_ordered_extent(bbio->ordered, NULL, 659 dip->file_offset, dip->bytes, 660 !bio->bi_status); 661 } else { 662 unlock_dio_extent(&inode->io_tree, dip->file_offset, 663 dip->file_offset + dip->bytes - 1, NULL); 664 } 665 666 bbio->bio.bi_private = bbio->private; 667 iomap_dio_bio_end_io(bio); 668 } 669 670 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 671 struct btrfs_ordered_extent *ordered) 672 { 673 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 674 u64 len = bbio->bio.bi_iter.bi_size; 675 struct btrfs_ordered_extent *new; 676 int ret; 677 678 /* Must always be called for the beginning of an ordered extent. */ 679 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 680 return -EINVAL; 681 682 /* No need to split if the ordered extent covers the entire bio. */ 683 if (ordered->disk_num_bytes == len) { 684 refcount_inc(&ordered->refs); 685 bbio->ordered = ordered; 686 return 0; 687 } 688 689 /* 690 * Don't split the extent_map for NOCOW extents, as we're writing into 691 * a pre-existing one. 692 */ 693 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 694 ret = split_extent_map(bbio->inode, bbio->file_offset, 695 ordered->num_bytes, len, 696 ordered->disk_bytenr); 697 if (ret) 698 return ret; 699 } 700 701 new = btrfs_split_ordered_extent(ordered, len); 702 if (IS_ERR(new)) 703 return PTR_ERR(new); 704 bbio->ordered = new; 705 return 0; 706 } 707 708 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 709 loff_t file_offset) 710 { 711 struct btrfs_bio *bbio = btrfs_bio(bio); 712 struct btrfs_dio_private *dip = 713 container_of(bbio, struct btrfs_dio_private, bbio); 714 struct btrfs_dio_data *dio_data = iter->private; 715 716 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 717 btrfs_dio_end_io, bio->bi_private); 718 bbio->inode = BTRFS_I(iter->inode); 719 bbio->file_offset = file_offset; 720 721 dip->file_offset = file_offset; 722 dip->bytes = bio->bi_iter.bi_size; 723 724 dio_data->submitted += bio->bi_iter.bi_size; 725 726 /* 727 * Check if we are doing a partial write. If we are, we need to split 728 * the ordered extent to match the submitted bio. Hang on to the 729 * remaining unfinishable ordered_extent in dio_data so that it can be 730 * cancelled in iomap_end to avoid a deadlock wherein faulting the 731 * remaining pages is blocked on the outstanding ordered extent. 732 */ 733 if (iter->flags & IOMAP_WRITE) { 734 int ret; 735 736 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 737 if (ret) { 738 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 739 file_offset, dip->bytes, 740 !ret); 741 bio->bi_status = errno_to_blk_status(ret); 742 iomap_dio_bio_end_io(bio); 743 return; 744 } 745 } 746 747 btrfs_submit_bbio(bbio, 0); 748 } 749 750 static const struct iomap_ops btrfs_dio_iomap_ops = { 751 .iomap_begin = btrfs_dio_iomap_begin, 752 .iomap_end = btrfs_dio_iomap_end, 753 }; 754 755 static const struct iomap_dio_ops btrfs_dio_ops = { 756 .submit_io = btrfs_dio_submit_io, 757 .bio_set = &btrfs_dio_bioset, 758 }; 759 760 static ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, 761 size_t done_before) 762 { 763 struct btrfs_dio_data data = { 0 }; 764 765 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 766 IOMAP_DIO_PARTIAL, &data, done_before); 767 } 768 769 static struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 770 size_t done_before) 771 { 772 struct btrfs_dio_data data = { 0 }; 773 774 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 775 IOMAP_DIO_PARTIAL, &data, done_before); 776 } 777 778 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 779 const struct iov_iter *iter, loff_t offset) 780 { 781 const u32 blocksize_mask = fs_info->sectorsize - 1; 782 783 if (offset & blocksize_mask) 784 return -EINVAL; 785 786 if (iov_iter_alignment(iter) & blocksize_mask) 787 return -EINVAL; 788 789 return 0; 790 } 791 792 ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 793 { 794 struct file *file = iocb->ki_filp; 795 struct inode *inode = file_inode(file); 796 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 797 loff_t pos; 798 ssize_t written = 0; 799 ssize_t written_buffered; 800 size_t prev_left = 0; 801 loff_t endbyte; 802 ssize_t ret; 803 unsigned int ilock_flags = 0; 804 struct iomap_dio *dio; 805 806 if (iocb->ki_flags & IOCB_NOWAIT) 807 ilock_flags |= BTRFS_ILOCK_TRY; 808 809 /* 810 * If the write DIO is within EOF, use a shared lock and also only if 811 * security bits will likely not be dropped by file_remove_privs() called 812 * from btrfs_write_check(). Either will need to be rechecked after the 813 * lock was acquired. 814 */ 815 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) 816 ilock_flags |= BTRFS_ILOCK_SHARED; 817 818 relock: 819 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 820 if (ret < 0) 821 return ret; 822 823 /* Shared lock cannot be used with security bits set. */ 824 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { 825 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 826 ilock_flags &= ~BTRFS_ILOCK_SHARED; 827 goto relock; 828 } 829 830 ret = generic_write_checks(iocb, from); 831 if (ret <= 0) { 832 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 833 return ret; 834 } 835 836 ret = btrfs_write_check(iocb, ret); 837 if (ret < 0) { 838 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 839 goto out; 840 } 841 842 pos = iocb->ki_pos; 843 /* 844 * Re-check since file size may have changed just before taking the 845 * lock or pos may have changed because of O_APPEND in generic_write_check() 846 */ 847 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 848 pos + iov_iter_count(from) > i_size_read(inode)) { 849 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 850 ilock_flags &= ~BTRFS_ILOCK_SHARED; 851 goto relock; 852 } 853 854 if (check_direct_IO(fs_info, from, pos)) { 855 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 856 goto buffered; 857 } 858 859 /* 860 * The iov_iter can be mapped to the same file range we are writing to. 861 * If that's the case, then we will deadlock in the iomap code, because 862 * it first calls our callback btrfs_dio_iomap_begin(), which will create 863 * an ordered extent, and after that it will fault in the pages that the 864 * iov_iter refers to. During the fault in we end up in the readahead 865 * pages code (starting at btrfs_readahead()), which will lock the range, 866 * find that ordered extent and then wait for it to complete (at 867 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 868 * obviously the ordered extent can never complete as we didn't submit 869 * yet the respective bio(s). This always happens when the buffer is 870 * memory mapped to the same file range, since the iomap DIO code always 871 * invalidates pages in the target file range (after starting and waiting 872 * for any writeback). 873 * 874 * So here we disable page faults in the iov_iter and then retry if we 875 * got -EFAULT, faulting in the pages before the retry. 876 */ 877 again: 878 from->nofault = true; 879 dio = btrfs_dio_write(iocb, from, written); 880 from->nofault = false; 881 882 if (IS_ERR_OR_NULL(dio)) { 883 ret = PTR_ERR_OR_ZERO(dio); 884 } else { 885 /* 886 * If we have a synchronous write, we must make sure the fsync 887 * triggered by the iomap_dio_complete() call below doesn't 888 * deadlock on the inode lock - we are already holding it and we 889 * can't call it after unlocking because we may need to complete 890 * partial writes due to the input buffer (or parts of it) not 891 * being already faulted in. 892 */ 893 ASSERT(current->journal_info == NULL); 894 current->journal_info = BTRFS_TRANS_DIO_WRITE_STUB; 895 ret = iomap_dio_complete(dio); 896 current->journal_info = NULL; 897 } 898 899 /* No increment (+=) because iomap returns a cumulative value. */ 900 if (ret > 0) 901 written = ret; 902 903 if (iov_iter_count(from) > 0 && (ret == -EFAULT || ret > 0)) { 904 const size_t left = iov_iter_count(from); 905 /* 906 * We have more data left to write. Try to fault in as many as 907 * possible of the remainder pages and retry. We do this without 908 * releasing and locking again the inode, to prevent races with 909 * truncate. 910 * 911 * Also, in case the iov refers to pages in the file range of the 912 * file we want to write to (due to a mmap), we could enter an 913 * infinite loop if we retry after faulting the pages in, since 914 * iomap will invalidate any pages in the range early on, before 915 * it tries to fault in the pages of the iov. So we keep track of 916 * how much was left of iov in the previous EFAULT and fallback 917 * to buffered IO in case we haven't made any progress. 918 */ 919 if (left == prev_left) { 920 ret = -ENOTBLK; 921 } else { 922 fault_in_iov_iter_readable(from, left); 923 prev_left = left; 924 goto again; 925 } 926 } 927 928 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 929 930 /* 931 * If 'ret' is -ENOTBLK or we have not written all data, then it means 932 * we must fallback to buffered IO. 933 */ 934 if ((ret < 0 && ret != -ENOTBLK) || !iov_iter_count(from)) 935 goto out; 936 937 buffered: 938 /* 939 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 940 * it must retry the operation in a context where blocking is acceptable, 941 * because even if we end up not blocking during the buffered IO attempt 942 * below, we will block when flushing and waiting for the IO. 943 */ 944 if (iocb->ki_flags & IOCB_NOWAIT) { 945 ret = -EAGAIN; 946 goto out; 947 } 948 949 pos = iocb->ki_pos; 950 written_buffered = btrfs_buffered_write(iocb, from); 951 if (written_buffered < 0) { 952 ret = written_buffered; 953 goto out; 954 } 955 /* 956 * Ensure all data is persisted. We want the next direct IO read to be 957 * able to read what was just written. 958 */ 959 endbyte = pos + written_buffered - 1; 960 ret = btrfs_fdatawrite_range(BTRFS_I(inode), pos, endbyte); 961 if (ret) 962 goto out; 963 ret = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 964 if (ret) 965 goto out; 966 written += written_buffered; 967 iocb->ki_pos = pos + written_buffered; 968 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 969 endbyte >> PAGE_SHIFT); 970 out: 971 return ret < 0 ? ret : written; 972 } 973 974 static int check_direct_read(struct btrfs_fs_info *fs_info, 975 const struct iov_iter *iter, loff_t offset) 976 { 977 int ret; 978 int i, seg; 979 980 ret = check_direct_IO(fs_info, iter, offset); 981 if (ret < 0) 982 return ret; 983 984 if (!iter_is_iovec(iter)) 985 return 0; 986 987 for (seg = 0; seg < iter->nr_segs; seg++) { 988 for (i = seg + 1; i < iter->nr_segs; i++) { 989 const struct iovec *iov1 = iter_iov(iter) + seg; 990 const struct iovec *iov2 = iter_iov(iter) + i; 991 992 if (iov1->iov_base == iov2->iov_base) 993 return -EINVAL; 994 } 995 } 996 return 0; 997 } 998 999 ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 1000 { 1001 struct inode *inode = file_inode(iocb->ki_filp); 1002 size_t prev_left = 0; 1003 ssize_t read = 0; 1004 ssize_t ret; 1005 1006 if (fsverity_active(inode)) 1007 return 0; 1008 1009 if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos)) 1010 return 0; 1011 1012 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 1013 again: 1014 /* 1015 * This is similar to what we do for direct IO writes, see the comment 1016 * at btrfs_direct_write(), but we also disable page faults in addition 1017 * to disabling them only at the iov_iter level. This is because when 1018 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 1019 * which can still trigger page fault ins despite having set ->nofault 1020 * to true of our 'to' iov_iter. 1021 * 1022 * The difference to direct IO writes is that we deadlock when trying 1023 * to lock the extent range in the inode's tree during he page reads 1024 * triggered by the fault in (while for writes it is due to waiting for 1025 * our own ordered extent). This is because for direct IO reads, 1026 * btrfs_dio_iomap_begin() returns with the extent range locked, which 1027 * is only unlocked in the endio callback (end_bio_extent_readpage()). 1028 */ 1029 pagefault_disable(); 1030 to->nofault = true; 1031 ret = btrfs_dio_read(iocb, to, read); 1032 to->nofault = false; 1033 pagefault_enable(); 1034 1035 /* No increment (+=) because iomap returns a cumulative value. */ 1036 if (ret > 0) 1037 read = ret; 1038 1039 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 1040 const size_t left = iov_iter_count(to); 1041 1042 if (left == prev_left) { 1043 /* 1044 * We didn't make any progress since the last attempt, 1045 * fallback to a buffered read for the remainder of the 1046 * range. This is just to avoid any possibility of looping 1047 * for too long. 1048 */ 1049 ret = read; 1050 } else { 1051 /* 1052 * We made some progress since the last retry or this is 1053 * the first time we are retrying. Fault in as many pages 1054 * as possible and retry. 1055 */ 1056 fault_in_iov_iter_writeable(to, left); 1057 prev_left = left; 1058 goto again; 1059 } 1060 } 1061 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 1062 return ret < 0 ? ret : read; 1063 } 1064 1065 int __init btrfs_init_dio(void) 1066 { 1067 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 1068 offsetof(struct btrfs_dio_private, bbio.bio), 1069 BIOSET_NEED_BVECS)) 1070 return -ENOMEM; 1071 1072 return 0; 1073 } 1074 1075 void __cold btrfs_destroy_dio(void) 1076 { 1077 bioset_exit(&btrfs_dio_bioset); 1078 } 1079