xref: /linux/fs/btrfs/delayed-ref.h (revision f14aa5ea415b8add245e976bfab96a12986c6843)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_DELAYED_REF_H
7 #define BTRFS_DELAYED_REF_H
8 
9 #include <linux/types.h>
10 #include <linux/refcount.h>
11 #include <linux/list.h>
12 #include <linux/rbtree.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/slab.h>
16 #include <uapi/linux/btrfs_tree.h>
17 
18 struct btrfs_trans_handle;
19 struct btrfs_fs_info;
20 
21 /* these are the possible values of struct btrfs_delayed_ref_node->action */
22 enum btrfs_delayed_ref_action {
23 	/* Add one backref to the tree */
24 	BTRFS_ADD_DELAYED_REF = 1,
25 	/* Delete one backref from the tree */
26 	BTRFS_DROP_DELAYED_REF,
27 	/* Record a full extent allocation */
28 	BTRFS_ADD_DELAYED_EXTENT,
29 	/* Not changing ref count on head ref */
30 	BTRFS_UPDATE_DELAYED_HEAD,
31 } __packed;
32 
33 struct btrfs_data_ref {
34 	/* For EXTENT_DATA_REF */
35 
36 	/* Inode which refers to this data extent */
37 	u64 objectid;
38 
39 	/*
40 	 * file_offset - extent_offset
41 	 *
42 	 * file_offset is the key.offset of the EXTENT_DATA key.
43 	 * extent_offset is btrfs_file_extent_offset() of the EXTENT_DATA data.
44 	 */
45 	u64 offset;
46 };
47 
48 struct btrfs_tree_ref {
49 	/*
50 	 * Level of this tree block.
51 	 *
52 	 * Shared for skinny (TREE_BLOCK_REF) and normal tree ref.
53 	 */
54 	int level;
55 
56 	/* For non-skinny metadata, no special member needed */
57 };
58 
59 struct btrfs_delayed_ref_node {
60 	struct rb_node ref_node;
61 	/*
62 	 * If action is BTRFS_ADD_DELAYED_REF, also link this node to
63 	 * ref_head->ref_add_list, then we do not need to iterate the
64 	 * whole ref_head->ref_list to find BTRFS_ADD_DELAYED_REF nodes.
65 	 */
66 	struct list_head add_list;
67 
68 	/* the starting bytenr of the extent */
69 	u64 bytenr;
70 
71 	/* the size of the extent */
72 	u64 num_bytes;
73 
74 	/* seq number to keep track of insertion order */
75 	u64 seq;
76 
77 	/* The ref_root for this ref */
78 	u64 ref_root;
79 
80 	/*
81 	 * The parent for this ref, if this isn't set the ref_root is the
82 	 * reference owner.
83 	 */
84 	u64 parent;
85 
86 	/* ref count on this data structure */
87 	refcount_t refs;
88 
89 	/*
90 	 * how many refs is this entry adding or deleting.  For
91 	 * head refs, this may be a negative number because it is keeping
92 	 * track of the total mods done to the reference count.
93 	 * For individual refs, this will always be a positive number
94 	 *
95 	 * It may be more than one, since it is possible for a single
96 	 * parent to have more than one ref on an extent
97 	 */
98 	int ref_mod;
99 
100 	unsigned int action:8;
101 	unsigned int type:8;
102 
103 	union {
104 		struct btrfs_tree_ref tree_ref;
105 		struct btrfs_data_ref data_ref;
106 	};
107 };
108 
109 struct btrfs_delayed_extent_op {
110 	struct btrfs_disk_key key;
111 	u8 level;
112 	bool update_key;
113 	bool update_flags;
114 	u64 flags_to_set;
115 };
116 
117 /*
118  * the head refs are used to hold a lock on a given extent, which allows us
119  * to make sure that only one process is running the delayed refs
120  * at a time for a single extent.  They also store the sum of all the
121  * reference count modifications we've queued up.
122  */
123 struct btrfs_delayed_ref_head {
124 	u64 bytenr;
125 	u64 num_bytes;
126 	/*
127 	 * For insertion into struct btrfs_delayed_ref_root::href_root.
128 	 * Keep it in the same cache line as 'bytenr' for more efficient
129 	 * searches in the rbtree.
130 	 */
131 	struct rb_node href_node;
132 	/*
133 	 * the mutex is held while running the refs, and it is also
134 	 * held when checking the sum of reference modifications.
135 	 */
136 	struct mutex mutex;
137 
138 	refcount_t refs;
139 
140 	/* Protects 'ref_tree' and 'ref_add_list'. */
141 	spinlock_t lock;
142 	struct rb_root_cached ref_tree;
143 	/* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */
144 	struct list_head ref_add_list;
145 
146 	struct btrfs_delayed_extent_op *extent_op;
147 
148 	/*
149 	 * This is used to track the final ref_mod from all the refs associated
150 	 * with this head ref, this is not adjusted as delayed refs are run,
151 	 * this is meant to track if we need to do the csum accounting or not.
152 	 */
153 	int total_ref_mod;
154 
155 	/*
156 	 * This is the current outstanding mod references for this bytenr.  This
157 	 * is used with lookup_extent_info to get an accurate reference count
158 	 * for a bytenr, so it is adjusted as delayed refs are run so that any
159 	 * on disk reference count + ref_mod is accurate.
160 	 */
161 	int ref_mod;
162 
163 	/*
164 	 * The root that triggered the allocation when must_insert_reserved is
165 	 * set to true.
166 	 */
167 	u64 owning_root;
168 
169 	/*
170 	 * Track reserved bytes when setting must_insert_reserved.  On success
171 	 * or cleanup, we will need to free the reservation.
172 	 */
173 	u64 reserved_bytes;
174 
175 	/*
176 	 * when a new extent is allocated, it is just reserved in memory
177 	 * The actual extent isn't inserted into the extent allocation tree
178 	 * until the delayed ref is processed.  must_insert_reserved is
179 	 * used to flag a delayed ref so the accounting can be updated
180 	 * when a full insert is done.
181 	 *
182 	 * It is possible the extent will be freed before it is ever
183 	 * inserted into the extent allocation tree.  In this case
184 	 * we need to update the in ram accounting to properly reflect
185 	 * the free has happened.
186 	 */
187 	bool must_insert_reserved;
188 
189 	bool is_data;
190 	bool is_system;
191 	bool processing;
192 };
193 
194 enum btrfs_delayed_ref_flags {
195 	/* Indicate that we are flushing delayed refs for the commit */
196 	BTRFS_DELAYED_REFS_FLUSHING,
197 };
198 
199 struct btrfs_delayed_ref_root {
200 	/* head ref rbtree */
201 	struct rb_root_cached href_root;
202 
203 	/* dirty extent records */
204 	struct rb_root dirty_extent_root;
205 
206 	/* this spin lock protects the rbtree and the entries inside */
207 	spinlock_t lock;
208 
209 	/* how many delayed ref updates we've queued, used by the
210 	 * throttling code
211 	 */
212 	atomic_t num_entries;
213 
214 	/* total number of head nodes in tree */
215 	unsigned long num_heads;
216 
217 	/* total number of head nodes ready for processing */
218 	unsigned long num_heads_ready;
219 
220 	u64 pending_csums;
221 
222 	unsigned long flags;
223 
224 	u64 run_delayed_start;
225 
226 	/*
227 	 * To make qgroup to skip given root.
228 	 * This is for snapshot, as btrfs_qgroup_inherit() will manually
229 	 * modify counters for snapshot and its source, so we should skip
230 	 * the snapshot in new_root/old_roots or it will get calculated twice
231 	 */
232 	u64 qgroup_to_skip;
233 };
234 
235 enum btrfs_ref_type {
236 	BTRFS_REF_NOT_SET,
237 	BTRFS_REF_DATA,
238 	BTRFS_REF_METADATA,
239 	BTRFS_REF_LAST,
240 } __packed;
241 
242 struct btrfs_ref {
243 	enum btrfs_ref_type type;
244 	enum btrfs_delayed_ref_action action;
245 
246 	/*
247 	 * Whether this extent should go through qgroup record.
248 	 *
249 	 * Normally false, but for certain cases like delayed subtree scan,
250 	 * setting this flag can hugely reduce qgroup overhead.
251 	 */
252 	bool skip_qgroup;
253 
254 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
255 	/* Through which root is this modification. */
256 	u64 real_root;
257 #endif
258 	u64 bytenr;
259 	u64 num_bytes;
260 	u64 owning_root;
261 
262 	/*
263 	 * The root that owns the reference for this reference, this will be set
264 	 * or ->parent will be set, depending on what type of reference this is.
265 	 */
266 	u64 ref_root;
267 
268 	/* Bytenr of the parent tree block */
269 	u64 parent;
270 	union {
271 		struct btrfs_data_ref data_ref;
272 		struct btrfs_tree_ref tree_ref;
273 	};
274 };
275 
276 extern struct kmem_cache *btrfs_delayed_ref_head_cachep;
277 extern struct kmem_cache *btrfs_delayed_ref_node_cachep;
278 extern struct kmem_cache *btrfs_delayed_extent_op_cachep;
279 
280 int __init btrfs_delayed_ref_init(void);
281 void __cold btrfs_delayed_ref_exit(void);
282 
283 static inline u64 btrfs_calc_delayed_ref_bytes(const struct btrfs_fs_info *fs_info,
284 					       int num_delayed_refs)
285 {
286 	u64 num_bytes;
287 
288 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_delayed_refs);
289 
290 	/*
291 	 * We have to check the mount option here because we could be enabling
292 	 * the free space tree for the first time and don't have the compat_ro
293 	 * option set yet.
294 	 *
295 	 * We need extra reservations if we have the free space tree because
296 	 * we'll have to modify that tree as well.
297 	 */
298 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
299 		num_bytes *= 2;
300 
301 	return num_bytes;
302 }
303 
304 static inline u64 btrfs_calc_delayed_ref_csum_bytes(const struct btrfs_fs_info *fs_info,
305 						    int num_csum_items)
306 {
307 	/*
308 	 * Deleting csum items does not result in new nodes/leaves and does not
309 	 * require changing the free space tree, only the csum tree, so this is
310 	 * all we need.
311 	 */
312 	return btrfs_calc_metadata_size(fs_info, num_csum_items);
313 }
314 
315 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
316 			 bool skip_qgroup);
317 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
318 			 u64 mod_root, bool skip_qgroup);
319 
320 static inline struct btrfs_delayed_extent_op *
321 btrfs_alloc_delayed_extent_op(void)
322 {
323 	return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS);
324 }
325 
326 static inline void
327 btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
328 {
329 	if (op)
330 		kmem_cache_free(btrfs_delayed_extent_op_cachep, op);
331 }
332 
333 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref);
334 
335 static inline u64 btrfs_ref_head_to_space_flags(
336 				struct btrfs_delayed_ref_head *head_ref)
337 {
338 	if (head_ref->is_data)
339 		return BTRFS_BLOCK_GROUP_DATA;
340 	else if (head_ref->is_system)
341 		return BTRFS_BLOCK_GROUP_SYSTEM;
342 	return BTRFS_BLOCK_GROUP_METADATA;
343 }
344 
345 static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head)
346 {
347 	if (refcount_dec_and_test(&head->refs))
348 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head);
349 }
350 
351 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
352 			       struct btrfs_ref *generic_ref,
353 			       struct btrfs_delayed_extent_op *extent_op);
354 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
355 			       struct btrfs_ref *generic_ref,
356 			       u64 reserved);
357 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
358 				u64 bytenr, u64 num_bytes,
359 				struct btrfs_delayed_extent_op *extent_op);
360 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
361 			      struct btrfs_delayed_ref_root *delayed_refs,
362 			      struct btrfs_delayed_ref_head *head);
363 
364 struct btrfs_delayed_ref_head *
365 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
366 			    u64 bytenr);
367 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
368 			   struct btrfs_delayed_ref_head *head);
369 static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head)
370 {
371 	mutex_unlock(&head->mutex);
372 }
373 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
374 			   struct btrfs_delayed_ref_head *head);
375 
376 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
377 		struct btrfs_delayed_ref_root *delayed_refs);
378 
379 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq);
380 
381 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums);
382 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans);
383 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info);
384 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info);
385 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info);
386 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info);
387 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
388 				  enum btrfs_reserve_flush_enum flush);
389 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
390 				       u64 num_bytes);
391 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info);
392 
393 static inline u64 btrfs_delayed_ref_owner(struct btrfs_delayed_ref_node *node)
394 {
395 	if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
396 	    node->type == BTRFS_SHARED_DATA_REF_KEY)
397 		return node->data_ref.objectid;
398 	return node->tree_ref.level;
399 }
400 
401 static inline u64 btrfs_delayed_ref_offset(struct btrfs_delayed_ref_node *node)
402 {
403 	if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
404 	    node->type == BTRFS_SHARED_DATA_REF_KEY)
405 		return node->data_ref.offset;
406 	return 0;
407 }
408 
409 static inline u8 btrfs_ref_type(struct btrfs_ref *ref)
410 {
411 	ASSERT(ref->type == BTRFS_REF_DATA || ref->type == BTRFS_REF_METADATA);
412 
413 	if (ref->type == BTRFS_REF_DATA) {
414 		if (ref->parent)
415 			return BTRFS_SHARED_DATA_REF_KEY;
416 		else
417 			return BTRFS_EXTENT_DATA_REF_KEY;
418 	} else {
419 		if (ref->parent)
420 			return BTRFS_SHARED_BLOCK_REF_KEY;
421 		else
422 			return BTRFS_TREE_BLOCK_REF_KEY;
423 	}
424 
425 	return 0;
426 }
427 
428 #endif
429