xref: /linux/fs/btrfs/delayed-ref.h (revision c98be0c96db00e9b6b02d31e0fa7590c54cdaaac)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #ifndef __DELAYED_REF__
19 #define __DELAYED_REF__
20 
21 /* these are the possible values of struct btrfs_delayed_ref_node->action */
22 #define BTRFS_ADD_DELAYED_REF    1 /* add one backref to the tree */
23 #define BTRFS_DROP_DELAYED_REF   2 /* delete one backref from the tree */
24 #define BTRFS_ADD_DELAYED_EXTENT 3 /* record a full extent allocation */
25 #define BTRFS_UPDATE_DELAYED_HEAD 4 /* not changing ref count on head ref */
26 
27 struct btrfs_delayed_ref_node {
28 	struct rb_node rb_node;
29 
30 	/* the starting bytenr of the extent */
31 	u64 bytenr;
32 
33 	/* the size of the extent */
34 	u64 num_bytes;
35 
36 	/* seq number to keep track of insertion order */
37 	u64 seq;
38 
39 	/* ref count on this data structure */
40 	atomic_t refs;
41 
42 	/*
43 	 * how many refs is this entry adding or deleting.  For
44 	 * head refs, this may be a negative number because it is keeping
45 	 * track of the total mods done to the reference count.
46 	 * For individual refs, this will always be a positive number
47 	 *
48 	 * It may be more than one, since it is possible for a single
49 	 * parent to have more than one ref on an extent
50 	 */
51 	int ref_mod;
52 
53 	unsigned int action:8;
54 	unsigned int type:8;
55 	/* is this node still in the rbtree? */
56 	unsigned int is_head:1;
57 	unsigned int in_tree:1;
58 };
59 
60 struct btrfs_delayed_extent_op {
61 	struct btrfs_disk_key key;
62 	u64 flags_to_set;
63 	int level;
64 	unsigned int update_key:1;
65 	unsigned int update_flags:1;
66 	unsigned int is_data:1;
67 };
68 
69 /*
70  * the head refs are used to hold a lock on a given extent, which allows us
71  * to make sure that only one process is running the delayed refs
72  * at a time for a single extent.  They also store the sum of all the
73  * reference count modifications we've queued up.
74  */
75 struct btrfs_delayed_ref_head {
76 	struct btrfs_delayed_ref_node node;
77 
78 	/*
79 	 * the mutex is held while running the refs, and it is also
80 	 * held when checking the sum of reference modifications.
81 	 */
82 	struct mutex mutex;
83 
84 	spinlock_t lock;
85 	struct rb_root ref_root;
86 
87 	struct rb_node href_node;
88 
89 	struct btrfs_delayed_extent_op *extent_op;
90 	/*
91 	 * when a new extent is allocated, it is just reserved in memory
92 	 * The actual extent isn't inserted into the extent allocation tree
93 	 * until the delayed ref is processed.  must_insert_reserved is
94 	 * used to flag a delayed ref so the accounting can be updated
95 	 * when a full insert is done.
96 	 *
97 	 * It is possible the extent will be freed before it is ever
98 	 * inserted into the extent allocation tree.  In this case
99 	 * we need to update the in ram accounting to properly reflect
100 	 * the free has happened.
101 	 */
102 	unsigned int must_insert_reserved:1;
103 	unsigned int is_data:1;
104 	unsigned int processing:1;
105 };
106 
107 struct btrfs_delayed_tree_ref {
108 	struct btrfs_delayed_ref_node node;
109 	u64 root;
110 	u64 parent;
111 	int level;
112 };
113 
114 struct btrfs_delayed_data_ref {
115 	struct btrfs_delayed_ref_node node;
116 	u64 root;
117 	u64 parent;
118 	u64 objectid;
119 	u64 offset;
120 };
121 
122 struct btrfs_delayed_ref_root {
123 	/* head ref rbtree */
124 	struct rb_root href_root;
125 
126 	/* this spin lock protects the rbtree and the entries inside */
127 	spinlock_t lock;
128 
129 	/* how many delayed ref updates we've queued, used by the
130 	 * throttling code
131 	 */
132 	atomic_t num_entries;
133 
134 	/* total number of head nodes in tree */
135 	unsigned long num_heads;
136 
137 	/* total number of head nodes ready for processing */
138 	unsigned long num_heads_ready;
139 
140 	/*
141 	 * set when the tree is flushing before a transaction commit,
142 	 * used by the throttling code to decide if new updates need
143 	 * to be run right away
144 	 */
145 	int flushing;
146 
147 	u64 run_delayed_start;
148 };
149 
150 extern struct kmem_cache *btrfs_delayed_ref_head_cachep;
151 extern struct kmem_cache *btrfs_delayed_tree_ref_cachep;
152 extern struct kmem_cache *btrfs_delayed_data_ref_cachep;
153 extern struct kmem_cache *btrfs_delayed_extent_op_cachep;
154 
155 int btrfs_delayed_ref_init(void);
156 void btrfs_delayed_ref_exit(void);
157 
158 static inline struct btrfs_delayed_extent_op *
159 btrfs_alloc_delayed_extent_op(void)
160 {
161 	return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS);
162 }
163 
164 static inline void
165 btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
166 {
167 	if (op)
168 		kmem_cache_free(btrfs_delayed_extent_op_cachep, op);
169 }
170 
171 static inline void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
172 {
173 	WARN_ON(atomic_read(&ref->refs) == 0);
174 	if (atomic_dec_and_test(&ref->refs)) {
175 		WARN_ON(ref->in_tree);
176 		switch (ref->type) {
177 		case BTRFS_TREE_BLOCK_REF_KEY:
178 		case BTRFS_SHARED_BLOCK_REF_KEY:
179 			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
180 			break;
181 		case BTRFS_EXTENT_DATA_REF_KEY:
182 		case BTRFS_SHARED_DATA_REF_KEY:
183 			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
184 			break;
185 		case 0:
186 			kmem_cache_free(btrfs_delayed_ref_head_cachep, ref);
187 			break;
188 		default:
189 			BUG();
190 		}
191 	}
192 }
193 
194 int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
195 			       struct btrfs_trans_handle *trans,
196 			       u64 bytenr, u64 num_bytes, u64 parent,
197 			       u64 ref_root, int level, int action,
198 			       struct btrfs_delayed_extent_op *extent_op,
199 			       int for_cow);
200 int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
201 			       struct btrfs_trans_handle *trans,
202 			       u64 bytenr, u64 num_bytes,
203 			       u64 parent, u64 ref_root,
204 			       u64 owner, u64 offset, int action,
205 			       struct btrfs_delayed_extent_op *extent_op,
206 			       int for_cow);
207 int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
208 				struct btrfs_trans_handle *trans,
209 				u64 bytenr, u64 num_bytes,
210 				struct btrfs_delayed_extent_op *extent_op);
211 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
212 			      struct btrfs_fs_info *fs_info,
213 			      struct btrfs_delayed_ref_root *delayed_refs,
214 			      struct btrfs_delayed_ref_head *head);
215 
216 struct btrfs_delayed_ref_head *
217 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr);
218 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
219 			   struct btrfs_delayed_ref_head *head);
220 static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head)
221 {
222 	mutex_unlock(&head->mutex);
223 }
224 
225 
226 struct btrfs_delayed_ref_head *
227 btrfs_select_ref_head(struct btrfs_trans_handle *trans);
228 
229 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
230 			    struct btrfs_delayed_ref_root *delayed_refs,
231 			    u64 seq);
232 
233 /*
234  * delayed refs with a ref_seq > 0 must be held back during backref walking.
235  * this only applies to items in one of the fs-trees. for_cow items never need
236  * to be held back, so they won't get a ref_seq number.
237  */
238 static inline int need_ref_seq(int for_cow, u64 rootid)
239 {
240 	if (for_cow)
241 		return 0;
242 
243 	if (rootid == BTRFS_FS_TREE_OBJECTID)
244 		return 1;
245 
246 	if ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
247 		return 1;
248 
249 	return 0;
250 }
251 
252 /*
253  * a node might live in a head or a regular ref, this lets you
254  * test for the proper type to use.
255  */
256 static int btrfs_delayed_ref_is_head(struct btrfs_delayed_ref_node *node)
257 {
258 	return node->is_head;
259 }
260 
261 /*
262  * helper functions to cast a node into its container
263  */
264 static inline struct btrfs_delayed_tree_ref *
265 btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node)
266 {
267 	WARN_ON(btrfs_delayed_ref_is_head(node));
268 	return container_of(node, struct btrfs_delayed_tree_ref, node);
269 }
270 
271 static inline struct btrfs_delayed_data_ref *
272 btrfs_delayed_node_to_data_ref(struct btrfs_delayed_ref_node *node)
273 {
274 	WARN_ON(btrfs_delayed_ref_is_head(node));
275 	return container_of(node, struct btrfs_delayed_data_ref, node);
276 }
277 
278 static inline struct btrfs_delayed_ref_head *
279 btrfs_delayed_node_to_head(struct btrfs_delayed_ref_node *node)
280 {
281 	WARN_ON(!btrfs_delayed_ref_is_head(node));
282 	return container_of(node, struct btrfs_delayed_ref_head, node);
283 }
284 #endif
285