1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_DELAYED_REF_H 7 #define BTRFS_DELAYED_REF_H 8 9 #include <linux/types.h> 10 #include <linux/refcount.h> 11 #include <linux/list.h> 12 #include <linux/rbtree.h> 13 #include <linux/mutex.h> 14 #include <linux/spinlock.h> 15 #include <linux/slab.h> 16 #include <uapi/linux/btrfs_tree.h> 17 18 struct btrfs_trans_handle; 19 struct btrfs_fs_info; 20 21 /* these are the possible values of struct btrfs_delayed_ref_node->action */ 22 enum btrfs_delayed_ref_action { 23 /* Add one backref to the tree */ 24 BTRFS_ADD_DELAYED_REF = 1, 25 /* Delete one backref from the tree */ 26 BTRFS_DROP_DELAYED_REF, 27 /* Record a full extent allocation */ 28 BTRFS_ADD_DELAYED_EXTENT, 29 /* Not changing ref count on head ref */ 30 BTRFS_UPDATE_DELAYED_HEAD, 31 } __packed; 32 33 struct btrfs_data_ref { 34 /* For EXTENT_DATA_REF */ 35 36 /* Inode which refers to this data extent */ 37 u64 objectid; 38 39 /* 40 * file_offset - extent_offset 41 * 42 * file_offset is the key.offset of the EXTENT_DATA key. 43 * extent_offset is btrfs_file_extent_offset() of the EXTENT_DATA data. 44 */ 45 u64 offset; 46 }; 47 48 struct btrfs_tree_ref { 49 /* 50 * Level of this tree block. 51 * 52 * Shared for skinny (TREE_BLOCK_REF) and normal tree ref. 53 */ 54 int level; 55 56 /* For non-skinny metadata, no special member needed */ 57 }; 58 59 struct btrfs_delayed_ref_node { 60 struct rb_node ref_node; 61 /* 62 * If action is BTRFS_ADD_DELAYED_REF, also link this node to 63 * ref_head->ref_add_list, then we do not need to iterate the 64 * whole ref_head->ref_list to find BTRFS_ADD_DELAYED_REF nodes. 65 */ 66 struct list_head add_list; 67 68 /* the starting bytenr of the extent */ 69 u64 bytenr; 70 71 /* the size of the extent */ 72 u64 num_bytes; 73 74 /* seq number to keep track of insertion order */ 75 u64 seq; 76 77 /* The ref_root for this ref */ 78 u64 ref_root; 79 80 /* 81 * The parent for this ref, if this isn't set the ref_root is the 82 * reference owner. 83 */ 84 u64 parent; 85 86 /* ref count on this data structure */ 87 refcount_t refs; 88 89 /* 90 * how many refs is this entry adding or deleting. For 91 * head refs, this may be a negative number because it is keeping 92 * track of the total mods done to the reference count. 93 * For individual refs, this will always be a positive number 94 * 95 * It may be more than one, since it is possible for a single 96 * parent to have more than one ref on an extent 97 */ 98 int ref_mod; 99 100 unsigned int action:8; 101 unsigned int type:8; 102 103 union { 104 struct btrfs_tree_ref tree_ref; 105 struct btrfs_data_ref data_ref; 106 }; 107 }; 108 109 struct btrfs_delayed_extent_op { 110 struct btrfs_disk_key key; 111 bool update_key; 112 bool update_flags; 113 u64 flags_to_set; 114 }; 115 116 /* 117 * the head refs are used to hold a lock on a given extent, which allows us 118 * to make sure that only one process is running the delayed refs 119 * at a time for a single extent. They also store the sum of all the 120 * reference count modifications we've queued up. 121 */ 122 struct btrfs_delayed_ref_head { 123 u64 bytenr; 124 u64 num_bytes; 125 /* 126 * For insertion into struct btrfs_delayed_ref_root::href_root. 127 * Keep it in the same cache line as 'bytenr' for more efficient 128 * searches in the rbtree. 129 */ 130 struct rb_node href_node; 131 /* 132 * the mutex is held while running the refs, and it is also 133 * held when checking the sum of reference modifications. 134 */ 135 struct mutex mutex; 136 137 refcount_t refs; 138 139 /* Protects 'ref_tree' and 'ref_add_list'. */ 140 spinlock_t lock; 141 struct rb_root_cached ref_tree; 142 /* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */ 143 struct list_head ref_add_list; 144 145 struct btrfs_delayed_extent_op *extent_op; 146 147 /* 148 * This is used to track the final ref_mod from all the refs associated 149 * with this head ref, this is not adjusted as delayed refs are run, 150 * this is meant to track if we need to do the csum accounting or not. 151 */ 152 int total_ref_mod; 153 154 /* 155 * This is the current outstanding mod references for this bytenr. This 156 * is used with lookup_extent_info to get an accurate reference count 157 * for a bytenr, so it is adjusted as delayed refs are run so that any 158 * on disk reference count + ref_mod is accurate. 159 */ 160 int ref_mod; 161 162 /* 163 * The root that triggered the allocation when must_insert_reserved is 164 * set to true. 165 */ 166 u64 owning_root; 167 168 /* 169 * Track reserved bytes when setting must_insert_reserved. On success 170 * or cleanup, we will need to free the reservation. 171 */ 172 u64 reserved_bytes; 173 174 /* Tree block level, for metadata only. */ 175 u8 level; 176 177 /* 178 * when a new extent is allocated, it is just reserved in memory 179 * The actual extent isn't inserted into the extent allocation tree 180 * until the delayed ref is processed. must_insert_reserved is 181 * used to flag a delayed ref so the accounting can be updated 182 * when a full insert is done. 183 * 184 * It is possible the extent will be freed before it is ever 185 * inserted into the extent allocation tree. In this case 186 * we need to update the in ram accounting to properly reflect 187 * the free has happened. 188 */ 189 bool must_insert_reserved; 190 191 bool is_data; 192 bool is_system; 193 bool processing; 194 }; 195 196 enum btrfs_delayed_ref_flags { 197 /* Indicate that we are flushing delayed refs for the commit */ 198 BTRFS_DELAYED_REFS_FLUSHING, 199 }; 200 201 struct btrfs_delayed_ref_root { 202 /* head ref rbtree */ 203 struct rb_root_cached href_root; 204 205 /* 206 * Track dirty extent records. 207 * The keys correspond to the logical address of the extent ("bytenr") 208 * right shifted by fs_info->sectorsize_bits. This is both to get a more 209 * dense index space (optimizes xarray structure) and because indexes in 210 * xarrays are of "unsigned long" type, meaning they are 32 bits wide on 211 * 32 bits platforms, limiting the extent range to 4G which is too low 212 * and makes it unusable (truncated index values) on 32 bits platforms. 213 */ 214 struct xarray dirty_extents; 215 216 /* this spin lock protects the rbtree and the entries inside */ 217 spinlock_t lock; 218 219 /* how many delayed ref updates we've queued, used by the 220 * throttling code 221 */ 222 atomic_t num_entries; 223 224 /* total number of head nodes in tree */ 225 unsigned long num_heads; 226 227 /* total number of head nodes ready for processing */ 228 unsigned long num_heads_ready; 229 230 u64 pending_csums; 231 232 unsigned long flags; 233 234 u64 run_delayed_start; 235 236 /* 237 * To make qgroup to skip given root. 238 * This is for snapshot, as btrfs_qgroup_inherit() will manually 239 * modify counters for snapshot and its source, so we should skip 240 * the snapshot in new_root/old_roots or it will get calculated twice 241 */ 242 u64 qgroup_to_skip; 243 }; 244 245 enum btrfs_ref_type { 246 BTRFS_REF_NOT_SET, 247 BTRFS_REF_DATA, 248 BTRFS_REF_METADATA, 249 BTRFS_REF_LAST, 250 } __packed; 251 252 struct btrfs_ref { 253 enum btrfs_ref_type type; 254 enum btrfs_delayed_ref_action action; 255 256 /* 257 * Whether this extent should go through qgroup record. 258 * 259 * Normally false, but for certain cases like delayed subtree scan, 260 * setting this flag can hugely reduce qgroup overhead. 261 */ 262 bool skip_qgroup; 263 264 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 265 /* Through which root is this modification. */ 266 u64 real_root; 267 #endif 268 u64 bytenr; 269 u64 num_bytes; 270 u64 owning_root; 271 272 /* 273 * The root that owns the reference for this reference, this will be set 274 * or ->parent will be set, depending on what type of reference this is. 275 */ 276 u64 ref_root; 277 278 /* Bytenr of the parent tree block */ 279 u64 parent; 280 union { 281 struct btrfs_data_ref data_ref; 282 struct btrfs_tree_ref tree_ref; 283 }; 284 }; 285 286 extern struct kmem_cache *btrfs_delayed_ref_head_cachep; 287 extern struct kmem_cache *btrfs_delayed_ref_node_cachep; 288 extern struct kmem_cache *btrfs_delayed_extent_op_cachep; 289 290 int __init btrfs_delayed_ref_init(void); 291 void __cold btrfs_delayed_ref_exit(void); 292 293 static inline u64 btrfs_calc_delayed_ref_bytes(const struct btrfs_fs_info *fs_info, 294 int num_delayed_refs) 295 { 296 u64 num_bytes; 297 298 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_delayed_refs); 299 300 /* 301 * We have to check the mount option here because we could be enabling 302 * the free space tree for the first time and don't have the compat_ro 303 * option set yet. 304 * 305 * We need extra reservations if we have the free space tree because 306 * we'll have to modify that tree as well. 307 */ 308 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 309 num_bytes *= 2; 310 311 return num_bytes; 312 } 313 314 static inline u64 btrfs_calc_delayed_ref_csum_bytes(const struct btrfs_fs_info *fs_info, 315 int num_csum_items) 316 { 317 /* 318 * Deleting csum items does not result in new nodes/leaves and does not 319 * require changing the free space tree, only the csum tree, so this is 320 * all we need. 321 */ 322 return btrfs_calc_metadata_size(fs_info, num_csum_items); 323 } 324 325 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root, 326 bool skip_qgroup); 327 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset, 328 u64 mod_root, bool skip_qgroup); 329 330 static inline struct btrfs_delayed_extent_op * 331 btrfs_alloc_delayed_extent_op(void) 332 { 333 return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS); 334 } 335 336 static inline void 337 btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op) 338 { 339 if (op) 340 kmem_cache_free(btrfs_delayed_extent_op_cachep, op); 341 } 342 343 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref); 344 345 static inline u64 btrfs_ref_head_to_space_flags( 346 struct btrfs_delayed_ref_head *head_ref) 347 { 348 if (head_ref->is_data) 349 return BTRFS_BLOCK_GROUP_DATA; 350 else if (head_ref->is_system) 351 return BTRFS_BLOCK_GROUP_SYSTEM; 352 return BTRFS_BLOCK_GROUP_METADATA; 353 } 354 355 static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head) 356 { 357 if (refcount_dec_and_test(&head->refs)) 358 kmem_cache_free(btrfs_delayed_ref_head_cachep, head); 359 } 360 361 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 362 struct btrfs_ref *generic_ref, 363 struct btrfs_delayed_extent_op *extent_op); 364 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 365 struct btrfs_ref *generic_ref, 366 u64 reserved); 367 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, 368 u64 bytenr, u64 num_bytes, u8 level, 369 struct btrfs_delayed_extent_op *extent_op); 370 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info, 371 struct btrfs_delayed_ref_root *delayed_refs, 372 struct btrfs_delayed_ref_head *head); 373 374 struct btrfs_delayed_ref_head * 375 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 376 u64 bytenr); 377 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs, 378 struct btrfs_delayed_ref_head *head); 379 static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head) 380 { 381 mutex_unlock(&head->mutex); 382 } 383 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 384 struct btrfs_delayed_ref_head *head); 385 386 struct btrfs_delayed_ref_head *btrfs_select_ref_head( 387 struct btrfs_delayed_ref_root *delayed_refs); 388 389 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq); 390 391 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums); 392 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans); 393 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info); 394 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info); 395 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info); 396 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info); 397 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info, 398 enum btrfs_reserve_flush_enum flush); 399 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info); 400 bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head, 401 u64 root, u64 parent); 402 403 static inline u64 btrfs_delayed_ref_owner(struct btrfs_delayed_ref_node *node) 404 { 405 if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 406 node->type == BTRFS_SHARED_DATA_REF_KEY) 407 return node->data_ref.objectid; 408 return node->tree_ref.level; 409 } 410 411 static inline u64 btrfs_delayed_ref_offset(struct btrfs_delayed_ref_node *node) 412 { 413 if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 414 node->type == BTRFS_SHARED_DATA_REF_KEY) 415 return node->data_ref.offset; 416 return 0; 417 } 418 419 static inline u8 btrfs_ref_type(struct btrfs_ref *ref) 420 { 421 ASSERT(ref->type == BTRFS_REF_DATA || ref->type == BTRFS_REF_METADATA); 422 423 if (ref->type == BTRFS_REF_DATA) { 424 if (ref->parent) 425 return BTRFS_SHARED_DATA_REF_KEY; 426 else 427 return BTRFS_EXTENT_DATA_REF_KEY; 428 } else { 429 if (ref->parent) 430 return BTRFS_SHARED_BLOCK_REF_KEY; 431 else 432 return BTRFS_TREE_BLOCK_REF_KEY; 433 } 434 435 return 0; 436 } 437 438 #endif 439