xref: /linux/fs/btrfs/delayed-ref.h (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_DELAYED_REF_H
7 #define BTRFS_DELAYED_REF_H
8 
9 #include <linux/types.h>
10 #include <linux/refcount.h>
11 #include <linux/list.h>
12 #include <linux/rbtree.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/slab.h>
16 #include <uapi/linux/btrfs_tree.h>
17 
18 struct btrfs_trans_handle;
19 struct btrfs_fs_info;
20 
21 /* these are the possible values of struct btrfs_delayed_ref_node->action */
22 enum btrfs_delayed_ref_action {
23 	/* Add one backref to the tree */
24 	BTRFS_ADD_DELAYED_REF = 1,
25 	/* Delete one backref from the tree */
26 	BTRFS_DROP_DELAYED_REF,
27 	/* Record a full extent allocation */
28 	BTRFS_ADD_DELAYED_EXTENT,
29 	/* Not changing ref count on head ref */
30 	BTRFS_UPDATE_DELAYED_HEAD,
31 } __packed;
32 
33 struct btrfs_data_ref {
34 	/* For EXTENT_DATA_REF */
35 
36 	/* Inode which refers to this data extent */
37 	u64 objectid;
38 
39 	/*
40 	 * file_offset - extent_offset
41 	 *
42 	 * file_offset is the key.offset of the EXTENT_DATA key.
43 	 * extent_offset is btrfs_file_extent_offset() of the EXTENT_DATA data.
44 	 */
45 	u64 offset;
46 };
47 
48 struct btrfs_tree_ref {
49 	/*
50 	 * Level of this tree block.
51 	 *
52 	 * Shared for skinny (TREE_BLOCK_REF) and normal tree ref.
53 	 */
54 	int level;
55 
56 	/* For non-skinny metadata, no special member needed */
57 };
58 
59 struct btrfs_delayed_ref_node {
60 	struct rb_node ref_node;
61 	/*
62 	 * If action is BTRFS_ADD_DELAYED_REF, also link this node to
63 	 * ref_head->ref_add_list, then we do not need to iterate the
64 	 * whole ref_head->ref_list to find BTRFS_ADD_DELAYED_REF nodes.
65 	 */
66 	struct list_head add_list;
67 
68 	/* the starting bytenr of the extent */
69 	u64 bytenr;
70 
71 	/* the size of the extent */
72 	u64 num_bytes;
73 
74 	/* seq number to keep track of insertion order */
75 	u64 seq;
76 
77 	/* The ref_root for this ref */
78 	u64 ref_root;
79 
80 	/*
81 	 * The parent for this ref, if this isn't set the ref_root is the
82 	 * reference owner.
83 	 */
84 	u64 parent;
85 
86 	/* ref count on this data structure */
87 	refcount_t refs;
88 
89 	/*
90 	 * how many refs is this entry adding or deleting.  For
91 	 * head refs, this may be a negative number because it is keeping
92 	 * track of the total mods done to the reference count.
93 	 * For individual refs, this will always be a positive number
94 	 *
95 	 * It may be more than one, since it is possible for a single
96 	 * parent to have more than one ref on an extent
97 	 */
98 	int ref_mod;
99 
100 	unsigned int action:8;
101 	unsigned int type:8;
102 
103 	union {
104 		struct btrfs_tree_ref tree_ref;
105 		struct btrfs_data_ref data_ref;
106 	};
107 };
108 
109 struct btrfs_delayed_extent_op {
110 	struct btrfs_disk_key key;
111 	bool update_key;
112 	bool update_flags;
113 	u64 flags_to_set;
114 };
115 
116 /*
117  * the head refs are used to hold a lock on a given extent, which allows us
118  * to make sure that only one process is running the delayed refs
119  * at a time for a single extent.  They also store the sum of all the
120  * reference count modifications we've queued up.
121  */
122 struct btrfs_delayed_ref_head {
123 	u64 bytenr;
124 	u64 num_bytes;
125 	/*
126 	 * For insertion into struct btrfs_delayed_ref_root::href_root.
127 	 * Keep it in the same cache line as 'bytenr' for more efficient
128 	 * searches in the rbtree.
129 	 */
130 	struct rb_node href_node;
131 	/*
132 	 * the mutex is held while running the refs, and it is also
133 	 * held when checking the sum of reference modifications.
134 	 */
135 	struct mutex mutex;
136 
137 	refcount_t refs;
138 
139 	/* Protects 'ref_tree' and 'ref_add_list'. */
140 	spinlock_t lock;
141 	struct rb_root_cached ref_tree;
142 	/* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */
143 	struct list_head ref_add_list;
144 
145 	struct btrfs_delayed_extent_op *extent_op;
146 
147 	/*
148 	 * This is used to track the final ref_mod from all the refs associated
149 	 * with this head ref, this is not adjusted as delayed refs are run,
150 	 * this is meant to track if we need to do the csum accounting or not.
151 	 */
152 	int total_ref_mod;
153 
154 	/*
155 	 * This is the current outstanding mod references for this bytenr.  This
156 	 * is used with lookup_extent_info to get an accurate reference count
157 	 * for a bytenr, so it is adjusted as delayed refs are run so that any
158 	 * on disk reference count + ref_mod is accurate.
159 	 */
160 	int ref_mod;
161 
162 	/*
163 	 * The root that triggered the allocation when must_insert_reserved is
164 	 * set to true.
165 	 */
166 	u64 owning_root;
167 
168 	/*
169 	 * Track reserved bytes when setting must_insert_reserved.  On success
170 	 * or cleanup, we will need to free the reservation.
171 	 */
172 	u64 reserved_bytes;
173 
174 	/* Tree block level, for metadata only. */
175 	u8 level;
176 
177 	/*
178 	 * when a new extent is allocated, it is just reserved in memory
179 	 * The actual extent isn't inserted into the extent allocation tree
180 	 * until the delayed ref is processed.  must_insert_reserved is
181 	 * used to flag a delayed ref so the accounting can be updated
182 	 * when a full insert is done.
183 	 *
184 	 * It is possible the extent will be freed before it is ever
185 	 * inserted into the extent allocation tree.  In this case
186 	 * we need to update the in ram accounting to properly reflect
187 	 * the free has happened.
188 	 */
189 	bool must_insert_reserved;
190 
191 	bool is_data;
192 	bool is_system;
193 	bool processing;
194 };
195 
196 enum btrfs_delayed_ref_flags {
197 	/* Indicate that we are flushing delayed refs for the commit */
198 	BTRFS_DELAYED_REFS_FLUSHING,
199 };
200 
201 struct btrfs_delayed_ref_root {
202 	/* head ref rbtree */
203 	struct rb_root_cached href_root;
204 
205 	/* Track dirty extent records. */
206 	struct xarray dirty_extents;
207 
208 	/* this spin lock protects the rbtree and the entries inside */
209 	spinlock_t lock;
210 
211 	/* how many delayed ref updates we've queued, used by the
212 	 * throttling code
213 	 */
214 	atomic_t num_entries;
215 
216 	/* total number of head nodes in tree */
217 	unsigned long num_heads;
218 
219 	/* total number of head nodes ready for processing */
220 	unsigned long num_heads_ready;
221 
222 	u64 pending_csums;
223 
224 	unsigned long flags;
225 
226 	u64 run_delayed_start;
227 
228 	/*
229 	 * To make qgroup to skip given root.
230 	 * This is for snapshot, as btrfs_qgroup_inherit() will manually
231 	 * modify counters for snapshot and its source, so we should skip
232 	 * the snapshot in new_root/old_roots or it will get calculated twice
233 	 */
234 	u64 qgroup_to_skip;
235 };
236 
237 enum btrfs_ref_type {
238 	BTRFS_REF_NOT_SET,
239 	BTRFS_REF_DATA,
240 	BTRFS_REF_METADATA,
241 	BTRFS_REF_LAST,
242 } __packed;
243 
244 struct btrfs_ref {
245 	enum btrfs_ref_type type;
246 	enum btrfs_delayed_ref_action action;
247 
248 	/*
249 	 * Whether this extent should go through qgroup record.
250 	 *
251 	 * Normally false, but for certain cases like delayed subtree scan,
252 	 * setting this flag can hugely reduce qgroup overhead.
253 	 */
254 	bool skip_qgroup;
255 
256 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
257 	/* Through which root is this modification. */
258 	u64 real_root;
259 #endif
260 	u64 bytenr;
261 	u64 num_bytes;
262 	u64 owning_root;
263 
264 	/*
265 	 * The root that owns the reference for this reference, this will be set
266 	 * or ->parent will be set, depending on what type of reference this is.
267 	 */
268 	u64 ref_root;
269 
270 	/* Bytenr of the parent tree block */
271 	u64 parent;
272 	union {
273 		struct btrfs_data_ref data_ref;
274 		struct btrfs_tree_ref tree_ref;
275 	};
276 };
277 
278 extern struct kmem_cache *btrfs_delayed_ref_head_cachep;
279 extern struct kmem_cache *btrfs_delayed_ref_node_cachep;
280 extern struct kmem_cache *btrfs_delayed_extent_op_cachep;
281 
282 int __init btrfs_delayed_ref_init(void);
283 void __cold btrfs_delayed_ref_exit(void);
284 
285 static inline u64 btrfs_calc_delayed_ref_bytes(const struct btrfs_fs_info *fs_info,
286 					       int num_delayed_refs)
287 {
288 	u64 num_bytes;
289 
290 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_delayed_refs);
291 
292 	/*
293 	 * We have to check the mount option here because we could be enabling
294 	 * the free space tree for the first time and don't have the compat_ro
295 	 * option set yet.
296 	 *
297 	 * We need extra reservations if we have the free space tree because
298 	 * we'll have to modify that tree as well.
299 	 */
300 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
301 		num_bytes *= 2;
302 
303 	return num_bytes;
304 }
305 
306 static inline u64 btrfs_calc_delayed_ref_csum_bytes(const struct btrfs_fs_info *fs_info,
307 						    int num_csum_items)
308 {
309 	/*
310 	 * Deleting csum items does not result in new nodes/leaves and does not
311 	 * require changing the free space tree, only the csum tree, so this is
312 	 * all we need.
313 	 */
314 	return btrfs_calc_metadata_size(fs_info, num_csum_items);
315 }
316 
317 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
318 			 bool skip_qgroup);
319 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
320 			 u64 mod_root, bool skip_qgroup);
321 
322 static inline struct btrfs_delayed_extent_op *
323 btrfs_alloc_delayed_extent_op(void)
324 {
325 	return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS);
326 }
327 
328 static inline void
329 btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
330 {
331 	if (op)
332 		kmem_cache_free(btrfs_delayed_extent_op_cachep, op);
333 }
334 
335 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref);
336 
337 static inline u64 btrfs_ref_head_to_space_flags(
338 				struct btrfs_delayed_ref_head *head_ref)
339 {
340 	if (head_ref->is_data)
341 		return BTRFS_BLOCK_GROUP_DATA;
342 	else if (head_ref->is_system)
343 		return BTRFS_BLOCK_GROUP_SYSTEM;
344 	return BTRFS_BLOCK_GROUP_METADATA;
345 }
346 
347 static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head)
348 {
349 	if (refcount_dec_and_test(&head->refs))
350 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head);
351 }
352 
353 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
354 			       struct btrfs_ref *generic_ref,
355 			       struct btrfs_delayed_extent_op *extent_op);
356 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
357 			       struct btrfs_ref *generic_ref,
358 			       u64 reserved);
359 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
360 				u64 bytenr, u64 num_bytes, u8 level,
361 				struct btrfs_delayed_extent_op *extent_op);
362 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
363 			      struct btrfs_delayed_ref_root *delayed_refs,
364 			      struct btrfs_delayed_ref_head *head);
365 
366 struct btrfs_delayed_ref_head *
367 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
368 			    u64 bytenr);
369 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
370 			   struct btrfs_delayed_ref_head *head);
371 static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head)
372 {
373 	mutex_unlock(&head->mutex);
374 }
375 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
376 			   struct btrfs_delayed_ref_head *head);
377 
378 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
379 		struct btrfs_delayed_ref_root *delayed_refs);
380 
381 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq);
382 
383 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums);
384 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans);
385 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info);
386 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info);
387 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info);
388 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info);
389 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
390 				  enum btrfs_reserve_flush_enum flush);
391 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info);
392 bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
393 				 u64 root, u64 parent);
394 
395 static inline u64 btrfs_delayed_ref_owner(struct btrfs_delayed_ref_node *node)
396 {
397 	if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
398 	    node->type == BTRFS_SHARED_DATA_REF_KEY)
399 		return node->data_ref.objectid;
400 	return node->tree_ref.level;
401 }
402 
403 static inline u64 btrfs_delayed_ref_offset(struct btrfs_delayed_ref_node *node)
404 {
405 	if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
406 	    node->type == BTRFS_SHARED_DATA_REF_KEY)
407 		return node->data_ref.offset;
408 	return 0;
409 }
410 
411 static inline u8 btrfs_ref_type(struct btrfs_ref *ref)
412 {
413 	ASSERT(ref->type == BTRFS_REF_DATA || ref->type == BTRFS_REF_METADATA);
414 
415 	if (ref->type == BTRFS_REF_DATA) {
416 		if (ref->parent)
417 			return BTRFS_SHARED_DATA_REF_KEY;
418 		else
419 			return BTRFS_EXTENT_DATA_REF_KEY;
420 	} else {
421 		if (ref->parent)
422 			return BTRFS_SHARED_BLOCK_REF_KEY;
423 		else
424 			return BTRFS_TREE_BLOCK_REF_KEY;
425 	}
426 
427 	return 0;
428 }
429 
430 #endif
431