xref: /linux/fs/btrfs/delayed-ref.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "transaction.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "tree-mod-log.h"
16 #include "fs.h"
17 
18 struct kmem_cache *btrfs_delayed_ref_head_cachep;
19 struct kmem_cache *btrfs_delayed_ref_node_cachep;
20 struct kmem_cache *btrfs_delayed_extent_op_cachep;
21 /*
22  * delayed back reference update tracking.  For subvolume trees
23  * we queue up extent allocations and backref maintenance for
24  * delayed processing.   This avoids deep call chains where we
25  * add extents in the middle of btrfs_search_slot, and it allows
26  * us to buffer up frequently modified backrefs in an rb tree instead
27  * of hammering updates on the extent allocation tree.
28  */
29 
30 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
31 {
32 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
33 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
34 	bool ret = false;
35 	u64 reserved;
36 
37 	spin_lock(&global_rsv->lock);
38 	reserved = global_rsv->reserved;
39 	spin_unlock(&global_rsv->lock);
40 
41 	/*
42 	 * Since the global reserve is just kind of magic we don't really want
43 	 * to rely on it to save our bacon, so if our size is more than the
44 	 * delayed_refs_rsv and the global rsv then it's time to think about
45 	 * bailing.
46 	 */
47 	spin_lock(&delayed_refs_rsv->lock);
48 	reserved += delayed_refs_rsv->reserved;
49 	if (delayed_refs_rsv->size >= reserved)
50 		ret = true;
51 	spin_unlock(&delayed_refs_rsv->lock);
52 	return ret;
53 }
54 
55 /*
56  * Release a ref head's reservation.
57  *
58  * @fs_info:  the filesystem
59  * @nr_refs:  number of delayed refs to drop
60  * @nr_csums: number of csum items to drop
61  *
62  * Drops the delayed ref head's count from the delayed refs rsv and free any
63  * excess reservation we had.
64  */
65 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
66 {
67 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
68 	u64 num_bytes;
69 	u64 released;
70 
71 	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
72 	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
73 
74 	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
75 	if (released)
76 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
77 					      0, released, 0);
78 }
79 
80 /*
81  * Adjust the size of the delayed refs rsv.
82  *
83  * This is to be called anytime we may have adjusted trans->delayed_ref_updates
84  * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
85  * add it to the delayed_refs_rsv.
86  */
87 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
88 {
89 	struct btrfs_fs_info *fs_info = trans->fs_info;
90 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
91 	struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
92 	u64 num_bytes;
93 	u64 reserved_bytes;
94 
95 	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
96 	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
97 						       trans->delayed_ref_csum_deletions);
98 
99 	if (num_bytes == 0)
100 		return;
101 
102 	/*
103 	 * Try to take num_bytes from the transaction's local delayed reserve.
104 	 * If not possible, try to take as much as it's available. If the local
105 	 * reserve doesn't have enough reserved space, the delayed refs reserve
106 	 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
107 	 * by someone or if a transaction commit is triggered before that, the
108 	 * global block reserve will be used. We want to minimize using the
109 	 * global block reserve for cases we can account for in advance, to
110 	 * avoid exhausting it and reach -ENOSPC during a transaction commit.
111 	 */
112 	spin_lock(&local_rsv->lock);
113 	reserved_bytes = min(num_bytes, local_rsv->reserved);
114 	local_rsv->reserved -= reserved_bytes;
115 	local_rsv->full = (local_rsv->reserved >= local_rsv->size);
116 	spin_unlock(&local_rsv->lock);
117 
118 	spin_lock(&delayed_rsv->lock);
119 	delayed_rsv->size += num_bytes;
120 	delayed_rsv->reserved += reserved_bytes;
121 	delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
122 	spin_unlock(&delayed_rsv->lock);
123 	trans->delayed_ref_updates = 0;
124 	trans->delayed_ref_csum_deletions = 0;
125 }
126 
127 /*
128  * Adjust the size of the delayed refs block reserve for 1 block group item
129  * insertion, used after allocating a block group.
130  */
131 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
132 {
133 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
134 
135 	spin_lock(&delayed_rsv->lock);
136 	/*
137 	 * Inserting a block group item does not require changing the free space
138 	 * tree, only the extent tree or the block group tree, so this is all we
139 	 * need.
140 	 */
141 	delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
142 	delayed_rsv->full = false;
143 	spin_unlock(&delayed_rsv->lock);
144 }
145 
146 /*
147  * Adjust the size of the delayed refs block reserve to release space for 1
148  * block group item insertion.
149  */
150 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
151 {
152 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
153 	const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
154 	u64 released;
155 
156 	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
157 	if (released > 0)
158 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
159 					      0, released, 0);
160 }
161 
162 /*
163  * Adjust the size of the delayed refs block reserve for 1 block group item
164  * update.
165  */
166 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
167 {
168 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
169 
170 	spin_lock(&delayed_rsv->lock);
171 	/*
172 	 * Updating a block group item does not result in new nodes/leaves and
173 	 * does not require changing the free space tree, only the extent tree
174 	 * or the block group tree, so this is all we need.
175 	 */
176 	delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
177 	delayed_rsv->full = false;
178 	spin_unlock(&delayed_rsv->lock);
179 }
180 
181 /*
182  * Adjust the size of the delayed refs block reserve to release space for 1
183  * block group item update.
184  */
185 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
186 {
187 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
188 	const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
189 	u64 released;
190 
191 	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
192 	if (released > 0)
193 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
194 					      0, released, 0);
195 }
196 
197 /*
198  * Refill based on our delayed refs usage.
199  *
200  * @fs_info: the filesystem
201  * @flush:   control how we can flush for this reservation.
202  *
203  * This will refill the delayed block_rsv up to 1 items size worth of space and
204  * will return -ENOSPC if we can't make the reservation.
205  */
206 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
207 				  enum btrfs_reserve_flush_enum flush)
208 {
209 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
210 	struct btrfs_space_info *space_info = block_rsv->space_info;
211 	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
212 	u64 num_bytes = 0;
213 	u64 refilled_bytes;
214 	u64 to_free;
215 	int ret = -ENOSPC;
216 
217 	spin_lock(&block_rsv->lock);
218 	if (block_rsv->reserved < block_rsv->size) {
219 		num_bytes = block_rsv->size - block_rsv->reserved;
220 		num_bytes = min(num_bytes, limit);
221 	}
222 	spin_unlock(&block_rsv->lock);
223 
224 	if (!num_bytes)
225 		return 0;
226 
227 	ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
228 	if (ret)
229 		return ret;
230 
231 	/*
232 	 * We may have raced with someone else, so check again if we the block
233 	 * reserve is still not full and release any excess space.
234 	 */
235 	spin_lock(&block_rsv->lock);
236 	if (block_rsv->reserved < block_rsv->size) {
237 		u64 needed = block_rsv->size - block_rsv->reserved;
238 
239 		if (num_bytes >= needed) {
240 			block_rsv->reserved += needed;
241 			block_rsv->full = true;
242 			to_free = num_bytes - needed;
243 			refilled_bytes = needed;
244 		} else {
245 			block_rsv->reserved += num_bytes;
246 			to_free = 0;
247 			refilled_bytes = num_bytes;
248 		}
249 	} else {
250 		to_free = num_bytes;
251 		refilled_bytes = 0;
252 	}
253 	spin_unlock(&block_rsv->lock);
254 
255 	if (to_free > 0)
256 		btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
257 
258 	if (refilled_bytes > 0)
259 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
260 					      refilled_bytes, 1);
261 	return 0;
262 }
263 
264 /*
265  * compare two delayed data backrefs with same bytenr and type
266  */
267 static int comp_data_refs(struct btrfs_delayed_ref_node *ref1,
268 			  struct btrfs_delayed_ref_node *ref2)
269 {
270 	if (ref1->data_ref.objectid < ref2->data_ref.objectid)
271 		return -1;
272 	if (ref1->data_ref.objectid > ref2->data_ref.objectid)
273 		return 1;
274 	if (ref1->data_ref.offset < ref2->data_ref.offset)
275 		return -1;
276 	if (ref1->data_ref.offset > ref2->data_ref.offset)
277 		return 1;
278 	return 0;
279 }
280 
281 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
282 		     struct btrfs_delayed_ref_node *ref2,
283 		     bool check_seq)
284 {
285 	int ret = 0;
286 
287 	if (ref1->type < ref2->type)
288 		return -1;
289 	if (ref1->type > ref2->type)
290 		return 1;
291 	if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
292 	    ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
293 		if (ref1->parent < ref2->parent)
294 			return -1;
295 		if (ref1->parent > ref2->parent)
296 			return 1;
297 	} else {
298 		if (ref1->ref_root < ref2->ref_root)
299 			return -1;
300 		if (ref1->ref_root > ref2->ref_root)
301 			return -1;
302 		if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
303 			ret = comp_data_refs(ref1, ref2);
304 	}
305 	if (ret)
306 		return ret;
307 	if (check_seq) {
308 		if (ref1->seq < ref2->seq)
309 			return -1;
310 		if (ref1->seq > ref2->seq)
311 			return 1;
312 	}
313 	return 0;
314 }
315 
316 /* insert a new ref to head ref rbtree */
317 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
318 						   struct rb_node *node)
319 {
320 	struct rb_node **p = &root->rb_root.rb_node;
321 	struct rb_node *parent_node = NULL;
322 	struct btrfs_delayed_ref_head *entry;
323 	struct btrfs_delayed_ref_head *ins;
324 	u64 bytenr;
325 	bool leftmost = true;
326 
327 	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
328 	bytenr = ins->bytenr;
329 	while (*p) {
330 		parent_node = *p;
331 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
332 				 href_node);
333 
334 		if (bytenr < entry->bytenr) {
335 			p = &(*p)->rb_left;
336 		} else if (bytenr > entry->bytenr) {
337 			p = &(*p)->rb_right;
338 			leftmost = false;
339 		} else {
340 			return entry;
341 		}
342 	}
343 
344 	rb_link_node(node, parent_node, p);
345 	rb_insert_color_cached(node, root, leftmost);
346 	return NULL;
347 }
348 
349 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
350 		struct btrfs_delayed_ref_node *ins)
351 {
352 	struct rb_node **p = &root->rb_root.rb_node;
353 	struct rb_node *node = &ins->ref_node;
354 	struct rb_node *parent_node = NULL;
355 	struct btrfs_delayed_ref_node *entry;
356 	bool leftmost = true;
357 
358 	while (*p) {
359 		int comp;
360 
361 		parent_node = *p;
362 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
363 				 ref_node);
364 		comp = comp_refs(ins, entry, true);
365 		if (comp < 0) {
366 			p = &(*p)->rb_left;
367 		} else if (comp > 0) {
368 			p = &(*p)->rb_right;
369 			leftmost = false;
370 		} else {
371 			return entry;
372 		}
373 	}
374 
375 	rb_link_node(node, parent_node, p);
376 	rb_insert_color_cached(node, root, leftmost);
377 	return NULL;
378 }
379 
380 static struct btrfs_delayed_ref_head *find_first_ref_head(
381 		struct btrfs_delayed_ref_root *dr)
382 {
383 	struct rb_node *n;
384 	struct btrfs_delayed_ref_head *entry;
385 
386 	n = rb_first_cached(&dr->href_root);
387 	if (!n)
388 		return NULL;
389 
390 	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
391 
392 	return entry;
393 }
394 
395 /*
396  * Find a head entry based on bytenr. This returns the delayed ref head if it
397  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
398  * is given, the next bigger entry is returned if no exact match is found.
399  */
400 static struct btrfs_delayed_ref_head *find_ref_head(
401 		struct btrfs_delayed_ref_root *dr, u64 bytenr,
402 		bool return_bigger)
403 {
404 	struct rb_root *root = &dr->href_root.rb_root;
405 	struct rb_node *n;
406 	struct btrfs_delayed_ref_head *entry;
407 
408 	n = root->rb_node;
409 	entry = NULL;
410 	while (n) {
411 		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
412 
413 		if (bytenr < entry->bytenr)
414 			n = n->rb_left;
415 		else if (bytenr > entry->bytenr)
416 			n = n->rb_right;
417 		else
418 			return entry;
419 	}
420 	if (entry && return_bigger) {
421 		if (bytenr > entry->bytenr) {
422 			n = rb_next(&entry->href_node);
423 			if (!n)
424 				return NULL;
425 			entry = rb_entry(n, struct btrfs_delayed_ref_head,
426 					 href_node);
427 		}
428 		return entry;
429 	}
430 	return NULL;
431 }
432 
433 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
434 			   struct btrfs_delayed_ref_head *head)
435 {
436 	lockdep_assert_held(&delayed_refs->lock);
437 	if (mutex_trylock(&head->mutex))
438 		return 0;
439 
440 	refcount_inc(&head->refs);
441 	spin_unlock(&delayed_refs->lock);
442 
443 	mutex_lock(&head->mutex);
444 	spin_lock(&delayed_refs->lock);
445 	if (RB_EMPTY_NODE(&head->href_node)) {
446 		mutex_unlock(&head->mutex);
447 		btrfs_put_delayed_ref_head(head);
448 		return -EAGAIN;
449 	}
450 	btrfs_put_delayed_ref_head(head);
451 	return 0;
452 }
453 
454 static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
455 				    struct btrfs_delayed_ref_root *delayed_refs,
456 				    struct btrfs_delayed_ref_head *head,
457 				    struct btrfs_delayed_ref_node *ref)
458 {
459 	lockdep_assert_held(&head->lock);
460 	rb_erase_cached(&ref->ref_node, &head->ref_tree);
461 	RB_CLEAR_NODE(&ref->ref_node);
462 	if (!list_empty(&ref->add_list))
463 		list_del(&ref->add_list);
464 	btrfs_put_delayed_ref(ref);
465 	atomic_dec(&delayed_refs->num_entries);
466 	btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
467 }
468 
469 static bool merge_ref(struct btrfs_fs_info *fs_info,
470 		      struct btrfs_delayed_ref_root *delayed_refs,
471 		      struct btrfs_delayed_ref_head *head,
472 		      struct btrfs_delayed_ref_node *ref,
473 		      u64 seq)
474 {
475 	struct btrfs_delayed_ref_node *next;
476 	struct rb_node *node = rb_next(&ref->ref_node);
477 	bool done = false;
478 
479 	while (!done && node) {
480 		int mod;
481 
482 		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
483 		node = rb_next(node);
484 		if (seq && next->seq >= seq)
485 			break;
486 		if (comp_refs(ref, next, false))
487 			break;
488 
489 		if (ref->action == next->action) {
490 			mod = next->ref_mod;
491 		} else {
492 			if (ref->ref_mod < next->ref_mod) {
493 				swap(ref, next);
494 				done = true;
495 			}
496 			mod = -next->ref_mod;
497 		}
498 
499 		drop_delayed_ref(fs_info, delayed_refs, head, next);
500 		ref->ref_mod += mod;
501 		if (ref->ref_mod == 0) {
502 			drop_delayed_ref(fs_info, delayed_refs, head, ref);
503 			done = true;
504 		} else {
505 			/*
506 			 * Can't have multiples of the same ref on a tree block.
507 			 */
508 			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
509 				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
510 		}
511 	}
512 
513 	return done;
514 }
515 
516 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
517 			      struct btrfs_delayed_ref_root *delayed_refs,
518 			      struct btrfs_delayed_ref_head *head)
519 {
520 	struct btrfs_delayed_ref_node *ref;
521 	struct rb_node *node;
522 	u64 seq = 0;
523 
524 	lockdep_assert_held(&head->lock);
525 
526 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
527 		return;
528 
529 	/* We don't have too many refs to merge for data. */
530 	if (head->is_data)
531 		return;
532 
533 	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
534 again:
535 	for (node = rb_first_cached(&head->ref_tree); node;
536 	     node = rb_next(node)) {
537 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
538 		if (seq && ref->seq >= seq)
539 			continue;
540 		if (merge_ref(fs_info, delayed_refs, head, ref, seq))
541 			goto again;
542 	}
543 }
544 
545 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
546 {
547 	int ret = 0;
548 	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
549 
550 	if (min_seq != 0 && seq >= min_seq) {
551 		btrfs_debug(fs_info,
552 			    "holding back delayed_ref %llu, lowest is %llu",
553 			    seq, min_seq);
554 		ret = 1;
555 	}
556 
557 	return ret;
558 }
559 
560 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
561 		struct btrfs_delayed_ref_root *delayed_refs)
562 {
563 	struct btrfs_delayed_ref_head *head;
564 
565 	lockdep_assert_held(&delayed_refs->lock);
566 again:
567 	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
568 			     true);
569 	if (!head && delayed_refs->run_delayed_start != 0) {
570 		delayed_refs->run_delayed_start = 0;
571 		head = find_first_ref_head(delayed_refs);
572 	}
573 	if (!head)
574 		return NULL;
575 
576 	while (head->processing) {
577 		struct rb_node *node;
578 
579 		node = rb_next(&head->href_node);
580 		if (!node) {
581 			if (delayed_refs->run_delayed_start == 0)
582 				return NULL;
583 			delayed_refs->run_delayed_start = 0;
584 			goto again;
585 		}
586 		head = rb_entry(node, struct btrfs_delayed_ref_head,
587 				href_node);
588 	}
589 
590 	head->processing = true;
591 	WARN_ON(delayed_refs->num_heads_ready == 0);
592 	delayed_refs->num_heads_ready--;
593 	delayed_refs->run_delayed_start = head->bytenr +
594 		head->num_bytes;
595 	return head;
596 }
597 
598 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
599 			   struct btrfs_delayed_ref_head *head)
600 {
601 	lockdep_assert_held(&delayed_refs->lock);
602 	lockdep_assert_held(&head->lock);
603 
604 	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
605 	RB_CLEAR_NODE(&head->href_node);
606 	atomic_dec(&delayed_refs->num_entries);
607 	delayed_refs->num_heads--;
608 	if (!head->processing)
609 		delayed_refs->num_heads_ready--;
610 }
611 
612 /*
613  * Helper to insert the ref_node to the tail or merge with tail.
614  *
615  * Return false if the ref was inserted.
616  * Return true if the ref was merged into an existing one (and therefore can be
617  * freed by the caller).
618  */
619 static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
620 			       struct btrfs_delayed_ref_head *href,
621 			       struct btrfs_delayed_ref_node *ref)
622 {
623 	struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
624 	struct btrfs_delayed_ref_node *exist;
625 	int mod;
626 
627 	spin_lock(&href->lock);
628 	exist = tree_insert(&href->ref_tree, ref);
629 	if (!exist) {
630 		if (ref->action == BTRFS_ADD_DELAYED_REF)
631 			list_add_tail(&ref->add_list, &href->ref_add_list);
632 		atomic_inc(&root->num_entries);
633 		spin_unlock(&href->lock);
634 		trans->delayed_ref_updates++;
635 		return false;
636 	}
637 
638 	/* Now we are sure we can merge */
639 	if (exist->action == ref->action) {
640 		mod = ref->ref_mod;
641 	} else {
642 		/* Need to change action */
643 		if (exist->ref_mod < ref->ref_mod) {
644 			exist->action = ref->action;
645 			mod = -exist->ref_mod;
646 			exist->ref_mod = ref->ref_mod;
647 			if (ref->action == BTRFS_ADD_DELAYED_REF)
648 				list_add_tail(&exist->add_list,
649 					      &href->ref_add_list);
650 			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
651 				ASSERT(!list_empty(&exist->add_list));
652 				list_del_init(&exist->add_list);
653 			} else {
654 				ASSERT(0);
655 			}
656 		} else
657 			mod = -ref->ref_mod;
658 	}
659 	exist->ref_mod += mod;
660 
661 	/* remove existing tail if its ref_mod is zero */
662 	if (exist->ref_mod == 0)
663 		drop_delayed_ref(trans->fs_info, root, href, exist);
664 	spin_unlock(&href->lock);
665 	return true;
666 }
667 
668 /*
669  * helper function to update the accounting in the head ref
670  * existing and update must have the same bytenr
671  */
672 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
673 			 struct btrfs_delayed_ref_head *existing,
674 			 struct btrfs_delayed_ref_head *update)
675 {
676 	struct btrfs_delayed_ref_root *delayed_refs =
677 		&trans->transaction->delayed_refs;
678 	struct btrfs_fs_info *fs_info = trans->fs_info;
679 	int old_ref_mod;
680 
681 	BUG_ON(existing->is_data != update->is_data);
682 
683 	spin_lock(&existing->lock);
684 
685 	/*
686 	 * When freeing an extent, we may not know the owning root when we
687 	 * first create the head_ref. However, some deref before the last deref
688 	 * will know it, so we just need to update the head_ref accordingly.
689 	 */
690 	if (!existing->owning_root)
691 		existing->owning_root = update->owning_root;
692 
693 	if (update->must_insert_reserved) {
694 		/* if the extent was freed and then
695 		 * reallocated before the delayed ref
696 		 * entries were processed, we can end up
697 		 * with an existing head ref without
698 		 * the must_insert_reserved flag set.
699 		 * Set it again here
700 		 */
701 		existing->must_insert_reserved = update->must_insert_reserved;
702 		existing->owning_root = update->owning_root;
703 
704 		/*
705 		 * update the num_bytes so we make sure the accounting
706 		 * is done correctly
707 		 */
708 		existing->num_bytes = update->num_bytes;
709 
710 	}
711 
712 	if (update->extent_op) {
713 		if (!existing->extent_op) {
714 			existing->extent_op = update->extent_op;
715 		} else {
716 			if (update->extent_op->update_key) {
717 				memcpy(&existing->extent_op->key,
718 				       &update->extent_op->key,
719 				       sizeof(update->extent_op->key));
720 				existing->extent_op->update_key = true;
721 			}
722 			if (update->extent_op->update_flags) {
723 				existing->extent_op->flags_to_set |=
724 					update->extent_op->flags_to_set;
725 				existing->extent_op->update_flags = true;
726 			}
727 			btrfs_free_delayed_extent_op(update->extent_op);
728 		}
729 	}
730 	/*
731 	 * update the reference mod on the head to reflect this new operation,
732 	 * only need the lock for this case cause we could be processing it
733 	 * currently, for refs we just added we know we're a-ok.
734 	 */
735 	old_ref_mod = existing->total_ref_mod;
736 	existing->ref_mod += update->ref_mod;
737 	existing->total_ref_mod += update->ref_mod;
738 
739 	/*
740 	 * If we are going to from a positive ref mod to a negative or vice
741 	 * versa we need to make sure to adjust pending_csums accordingly.
742 	 * We reserve bytes for csum deletion when adding or updating a ref head
743 	 * see add_delayed_ref_head() for more details.
744 	 */
745 	if (existing->is_data) {
746 		u64 csum_leaves =
747 			btrfs_csum_bytes_to_leaves(fs_info,
748 						   existing->num_bytes);
749 
750 		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
751 			delayed_refs->pending_csums -= existing->num_bytes;
752 			btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
753 		}
754 		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
755 			delayed_refs->pending_csums += existing->num_bytes;
756 			trans->delayed_ref_csum_deletions += csum_leaves;
757 		}
758 	}
759 
760 	spin_unlock(&existing->lock);
761 }
762 
763 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
764 				  struct btrfs_ref *generic_ref,
765 				  struct btrfs_qgroup_extent_record *qrecord,
766 				  u64 reserved)
767 {
768 	int count_mod = 1;
769 	bool must_insert_reserved = false;
770 
771 	/* If reserved is provided, it must be a data extent. */
772 	BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
773 
774 	switch (generic_ref->action) {
775 	case BTRFS_ADD_DELAYED_REF:
776 		/* count_mod is already set to 1. */
777 		break;
778 	case BTRFS_UPDATE_DELAYED_HEAD:
779 		count_mod = 0;
780 		break;
781 	case BTRFS_DROP_DELAYED_REF:
782 		/*
783 		 * The head node stores the sum of all the mods, so dropping a ref
784 		 * should drop the sum in the head node by one.
785 		 */
786 		count_mod = -1;
787 		break;
788 	case BTRFS_ADD_DELAYED_EXTENT:
789 		/*
790 		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
791 		 * reserved accounting when the extent is finally added, or if a
792 		 * later modification deletes the delayed ref without ever
793 		 * inserting the extent into the extent allocation tree.
794 		 * ref->must_insert_reserved is the flag used to record that
795 		 * accounting mods are required.
796 		 *
797 		 * Once we record must_insert_reserved, switch the action to
798 		 * BTRFS_ADD_DELAYED_REF because other special casing is not
799 		 * required.
800 		 */
801 		must_insert_reserved = true;
802 		break;
803 	}
804 
805 	refcount_set(&head_ref->refs, 1);
806 	head_ref->bytenr = generic_ref->bytenr;
807 	head_ref->num_bytes = generic_ref->num_bytes;
808 	head_ref->ref_mod = count_mod;
809 	head_ref->reserved_bytes = reserved;
810 	head_ref->must_insert_reserved = must_insert_reserved;
811 	head_ref->owning_root = generic_ref->owning_root;
812 	head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
813 	head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
814 	head_ref->ref_tree = RB_ROOT_CACHED;
815 	INIT_LIST_HEAD(&head_ref->ref_add_list);
816 	RB_CLEAR_NODE(&head_ref->href_node);
817 	head_ref->processing = false;
818 	head_ref->total_ref_mod = count_mod;
819 	spin_lock_init(&head_ref->lock);
820 	mutex_init(&head_ref->mutex);
821 
822 	/* If not metadata set an impossible level to help debugging. */
823 	if (generic_ref->type == BTRFS_REF_METADATA)
824 		head_ref->level = generic_ref->tree_ref.level;
825 	else
826 		head_ref->level = U8_MAX;
827 
828 	if (qrecord) {
829 		if (generic_ref->ref_root && reserved) {
830 			qrecord->data_rsv = reserved;
831 			qrecord->data_rsv_refroot = generic_ref->ref_root;
832 		}
833 		qrecord->bytenr = generic_ref->bytenr;
834 		qrecord->num_bytes = generic_ref->num_bytes;
835 		qrecord->old_roots = NULL;
836 	}
837 }
838 
839 /*
840  * helper function to actually insert a head node into the rbtree.
841  * this does all the dirty work in terms of maintaining the correct
842  * overall modification count.
843  *
844  * Returns an error pointer in case of an error.
845  */
846 static noinline struct btrfs_delayed_ref_head *
847 add_delayed_ref_head(struct btrfs_trans_handle *trans,
848 		     struct btrfs_delayed_ref_head *head_ref,
849 		     struct btrfs_qgroup_extent_record *qrecord,
850 		     int action, bool *qrecord_inserted_ret)
851 {
852 	struct btrfs_fs_info *fs_info = trans->fs_info;
853 	struct btrfs_delayed_ref_head *existing;
854 	struct btrfs_delayed_ref_root *delayed_refs;
855 	bool qrecord_inserted = false;
856 
857 	delayed_refs = &trans->transaction->delayed_refs;
858 
859 	/* Record qgroup extent info if provided */
860 	if (qrecord) {
861 		int ret;
862 
863 		ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, qrecord);
864 		if (ret) {
865 			/* Clean up if insertion fails or item exists. */
866 			xa_release(&delayed_refs->dirty_extents,
867 				   qrecord->bytenr >> fs_info->sectorsize_bits);
868 			/* Caller responsible for freeing qrecord on error. */
869 			if (ret < 0)
870 				return ERR_PTR(ret);
871 			kfree(qrecord);
872 		} else {
873 			qrecord_inserted = true;
874 		}
875 	}
876 
877 	trace_add_delayed_ref_head(fs_info, head_ref, action);
878 
879 	existing = htree_insert(&delayed_refs->href_root,
880 				&head_ref->href_node);
881 	if (existing) {
882 		update_existing_head_ref(trans, existing, head_ref);
883 		/*
884 		 * we've updated the existing ref, free the newly
885 		 * allocated ref
886 		 */
887 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
888 		head_ref = existing;
889 	} else {
890 		/*
891 		 * We reserve the amount of bytes needed to delete csums when
892 		 * adding the ref head and not when adding individual drop refs
893 		 * since the csum items are deleted only after running the last
894 		 * delayed drop ref (the data extent's ref count drops to 0).
895 		 */
896 		if (head_ref->is_data && head_ref->ref_mod < 0) {
897 			delayed_refs->pending_csums += head_ref->num_bytes;
898 			trans->delayed_ref_csum_deletions +=
899 				btrfs_csum_bytes_to_leaves(fs_info, head_ref->num_bytes);
900 		}
901 		delayed_refs->num_heads++;
902 		delayed_refs->num_heads_ready++;
903 		atomic_inc(&delayed_refs->num_entries);
904 	}
905 	if (qrecord_inserted_ret)
906 		*qrecord_inserted_ret = qrecord_inserted;
907 
908 	return head_ref;
909 }
910 
911 /*
912  * Initialize the structure which represents a modification to a an extent.
913  *
914  * @fs_info:    Internal to the mounted filesystem mount structure.
915  *
916  * @ref:	The structure which is going to be initialized.
917  *
918  * @bytenr:	The logical address of the extent for which a modification is
919  *		going to be recorded.
920  *
921  * @num_bytes:  Size of the extent whose modification is being recorded.
922  *
923  * @ref_root:	The id of the root where this modification has originated, this
924  *		can be either one of the well-known metadata trees or the
925  *		subvolume id which references this extent.
926  *
927  * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
928  *		BTRFS_ADD_DELAYED_EXTENT
929  *
930  * @ref_type:	Holds the type of the extent which is being recorded, can be
931  *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
932  *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
933  *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
934  */
935 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
936 				    struct btrfs_delayed_ref_node *ref,
937 				    struct btrfs_ref *generic_ref)
938 {
939 	int action = generic_ref->action;
940 	u64 seq = 0;
941 
942 	if (action == BTRFS_ADD_DELAYED_EXTENT)
943 		action = BTRFS_ADD_DELAYED_REF;
944 
945 	if (is_fstree(generic_ref->ref_root))
946 		seq = atomic64_read(&fs_info->tree_mod_seq);
947 
948 	refcount_set(&ref->refs, 1);
949 	ref->bytenr = generic_ref->bytenr;
950 	ref->num_bytes = generic_ref->num_bytes;
951 	ref->ref_mod = 1;
952 	ref->action = action;
953 	ref->seq = seq;
954 	ref->type = btrfs_ref_type(generic_ref);
955 	ref->ref_root = generic_ref->ref_root;
956 	ref->parent = generic_ref->parent;
957 	RB_CLEAR_NODE(&ref->ref_node);
958 	INIT_LIST_HEAD(&ref->add_list);
959 
960 	if (generic_ref->type == BTRFS_REF_DATA)
961 		ref->data_ref = generic_ref->data_ref;
962 	else
963 		ref->tree_ref = generic_ref->tree_ref;
964 }
965 
966 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
967 			 bool skip_qgroup)
968 {
969 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
970 	/* If @real_root not set, use @root as fallback */
971 	generic_ref->real_root = mod_root ?: generic_ref->ref_root;
972 #endif
973 	generic_ref->tree_ref.level = level;
974 	generic_ref->type = BTRFS_REF_METADATA;
975 	if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
976 			     (!mod_root || is_fstree(mod_root))))
977 		generic_ref->skip_qgroup = true;
978 	else
979 		generic_ref->skip_qgroup = false;
980 
981 }
982 
983 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
984 			 u64 mod_root, bool skip_qgroup)
985 {
986 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
987 	/* If @real_root not set, use @root as fallback */
988 	generic_ref->real_root = mod_root ?: generic_ref->ref_root;
989 #endif
990 	generic_ref->data_ref.objectid = ino;
991 	generic_ref->data_ref.offset = offset;
992 	generic_ref->type = BTRFS_REF_DATA;
993 	if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
994 			     (!mod_root || is_fstree(mod_root))))
995 		generic_ref->skip_qgroup = true;
996 	else
997 		generic_ref->skip_qgroup = false;
998 }
999 
1000 static int add_delayed_ref(struct btrfs_trans_handle *trans,
1001 			   struct btrfs_ref *generic_ref,
1002 			   struct btrfs_delayed_extent_op *extent_op,
1003 			   u64 reserved)
1004 {
1005 	struct btrfs_fs_info *fs_info = trans->fs_info;
1006 	struct btrfs_delayed_ref_node *node;
1007 	struct btrfs_delayed_ref_head *head_ref;
1008 	struct btrfs_delayed_ref_head *new_head_ref;
1009 	struct btrfs_delayed_ref_root *delayed_refs;
1010 	struct btrfs_qgroup_extent_record *record = NULL;
1011 	bool qrecord_inserted;
1012 	int action = generic_ref->action;
1013 	bool merged;
1014 	int ret;
1015 
1016 	node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
1017 	if (!node)
1018 		return -ENOMEM;
1019 
1020 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1021 	if (!head_ref) {
1022 		ret = -ENOMEM;
1023 		goto free_node;
1024 	}
1025 
1026 	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1027 		record = kzalloc(sizeof(*record), GFP_NOFS);
1028 		if (!record) {
1029 			ret = -ENOMEM;
1030 			goto free_head_ref;
1031 		}
1032 		if (xa_reserve(&trans->transaction->delayed_refs.dirty_extents,
1033 			       generic_ref->bytenr >> fs_info->sectorsize_bits,
1034 			       GFP_NOFS)) {
1035 			ret = -ENOMEM;
1036 			goto free_record;
1037 		}
1038 	}
1039 
1040 	init_delayed_ref_common(fs_info, node, generic_ref);
1041 	init_delayed_ref_head(head_ref, generic_ref, record, reserved);
1042 	head_ref->extent_op = extent_op;
1043 
1044 	delayed_refs = &trans->transaction->delayed_refs;
1045 	spin_lock(&delayed_refs->lock);
1046 
1047 	/*
1048 	 * insert both the head node and the new ref without dropping
1049 	 * the spin lock
1050 	 */
1051 	new_head_ref = add_delayed_ref_head(trans, head_ref, record,
1052 					    action, &qrecord_inserted);
1053 	if (IS_ERR(new_head_ref)) {
1054 		spin_unlock(&delayed_refs->lock);
1055 		ret = PTR_ERR(new_head_ref);
1056 		goto free_record;
1057 	}
1058 	head_ref = new_head_ref;
1059 
1060 	merged = insert_delayed_ref(trans, head_ref, node);
1061 	spin_unlock(&delayed_refs->lock);
1062 
1063 	/*
1064 	 * Need to update the delayed_refs_rsv with any changes we may have
1065 	 * made.
1066 	 */
1067 	btrfs_update_delayed_refs_rsv(trans);
1068 
1069 	if (generic_ref->type == BTRFS_REF_DATA)
1070 		trace_add_delayed_data_ref(trans->fs_info, node);
1071 	else
1072 		trace_add_delayed_tree_ref(trans->fs_info, node);
1073 	if (merged)
1074 		kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1075 
1076 	if (qrecord_inserted)
1077 		return btrfs_qgroup_trace_extent_post(trans, record);
1078 	return 0;
1079 
1080 free_record:
1081 	kfree(record);
1082 free_head_ref:
1083 	kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1084 free_node:
1085 	kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1086 	return ret;
1087 }
1088 
1089 /*
1090  * Add a delayed tree ref. This does all of the accounting required to make sure
1091  * the delayed ref is eventually processed before this transaction commits.
1092  */
1093 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1094 			       struct btrfs_ref *generic_ref,
1095 			       struct btrfs_delayed_extent_op *extent_op)
1096 {
1097 	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1098 	return add_delayed_ref(trans, generic_ref, extent_op, 0);
1099 }
1100 
1101 /*
1102  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1103  */
1104 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1105 			       struct btrfs_ref *generic_ref,
1106 			       u64 reserved)
1107 {
1108 	ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
1109 	return add_delayed_ref(trans, generic_ref, NULL, reserved);
1110 }
1111 
1112 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1113 				u64 bytenr, u64 num_bytes, u8 level,
1114 				struct btrfs_delayed_extent_op *extent_op)
1115 {
1116 	struct btrfs_delayed_ref_head *head_ref;
1117 	struct btrfs_delayed_ref_head *head_ref_ret;
1118 	struct btrfs_delayed_ref_root *delayed_refs;
1119 	struct btrfs_ref generic_ref = {
1120 		.type = BTRFS_REF_METADATA,
1121 		.action = BTRFS_UPDATE_DELAYED_HEAD,
1122 		.bytenr = bytenr,
1123 		.num_bytes = num_bytes,
1124 		.tree_ref.level = level,
1125 	};
1126 
1127 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1128 	if (!head_ref)
1129 		return -ENOMEM;
1130 
1131 	init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
1132 	head_ref->extent_op = extent_op;
1133 
1134 	delayed_refs = &trans->transaction->delayed_refs;
1135 	spin_lock(&delayed_refs->lock);
1136 
1137 	head_ref_ret = add_delayed_ref_head(trans, head_ref, NULL,
1138 					    BTRFS_UPDATE_DELAYED_HEAD, NULL);
1139 	spin_unlock(&delayed_refs->lock);
1140 
1141 	if (IS_ERR(head_ref_ret)) {
1142 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1143 		return PTR_ERR(head_ref_ret);
1144 	}
1145 
1146 	/*
1147 	 * Need to update the delayed_refs_rsv with any changes we may have
1148 	 * made.
1149 	 */
1150 	btrfs_update_delayed_refs_rsv(trans);
1151 	return 0;
1152 }
1153 
1154 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1155 {
1156 	if (refcount_dec_and_test(&ref->refs)) {
1157 		WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1158 		kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
1159 	}
1160 }
1161 
1162 /*
1163  * This does a simple search for the head node for a given extent.  Returns the
1164  * head node if found, or NULL if not.
1165  */
1166 struct btrfs_delayed_ref_head *
1167 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1168 {
1169 	lockdep_assert_held(&delayed_refs->lock);
1170 
1171 	return find_ref_head(delayed_refs, bytenr, false);
1172 }
1173 
1174 static int find_comp(struct btrfs_delayed_ref_node *entry, u64 root, u64 parent)
1175 {
1176 	int type = parent ? BTRFS_SHARED_BLOCK_REF_KEY : BTRFS_TREE_BLOCK_REF_KEY;
1177 
1178 	if (type < entry->type)
1179 		return -1;
1180 	if (type > entry->type)
1181 		return 1;
1182 
1183 	if (type == BTRFS_TREE_BLOCK_REF_KEY) {
1184 		if (root < entry->ref_root)
1185 			return -1;
1186 		if (root > entry->ref_root)
1187 			return 1;
1188 	} else {
1189 		if (parent < entry->parent)
1190 			return -1;
1191 		if (parent > entry->parent)
1192 			return 1;
1193 	}
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Check to see if a given root/parent reference is attached to the head.  This
1199  * only checks for BTRFS_ADD_DELAYED_REF references that match, as that
1200  * indicates the reference exists for the given root or parent.  This is for
1201  * tree blocks only.
1202  *
1203  * @head: the head of the bytenr we're searching.
1204  * @root: the root objectid of the reference if it is a normal reference.
1205  * @parent: the parent if this is a shared backref.
1206  */
1207 bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
1208 				 u64 root, u64 parent)
1209 {
1210 	struct rb_node *node;
1211 	bool found = false;
1212 
1213 	lockdep_assert_held(&head->mutex);
1214 
1215 	spin_lock(&head->lock);
1216 	node = head->ref_tree.rb_root.rb_node;
1217 	while (node) {
1218 		struct btrfs_delayed_ref_node *entry;
1219 		int ret;
1220 
1221 		entry = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
1222 		ret = find_comp(entry, root, parent);
1223 		if (ret < 0) {
1224 			node = node->rb_left;
1225 		} else if (ret > 0) {
1226 			node = node->rb_right;
1227 		} else {
1228 			/*
1229 			 * We only want to count ADD actions, as drops mean the
1230 			 * ref doesn't exist.
1231 			 */
1232 			if (entry->action == BTRFS_ADD_DELAYED_REF)
1233 				found = true;
1234 			break;
1235 		}
1236 	}
1237 	spin_unlock(&head->lock);
1238 	return found;
1239 }
1240 
1241 void __cold btrfs_delayed_ref_exit(void)
1242 {
1243 	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1244 	kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
1245 	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1246 }
1247 
1248 int __init btrfs_delayed_ref_init(void)
1249 {
1250 	btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
1251 	if (!btrfs_delayed_ref_head_cachep)
1252 		goto fail;
1253 
1254 	btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
1255 	if (!btrfs_delayed_ref_node_cachep)
1256 		goto fail;
1257 
1258 	btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
1259 	if (!btrfs_delayed_extent_op_cachep)
1260 		goto fail;
1261 
1262 	return 0;
1263 fail:
1264 	btrfs_delayed_ref_exit();
1265 	return -ENOMEM;
1266 }
1267