1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/sort.h> 9 #include "ctree.h" 10 #include "delayed-ref.h" 11 #include "transaction.h" 12 #include "qgroup.h" 13 #include "space-info.h" 14 #include "tree-mod-log.h" 15 16 struct kmem_cache *btrfs_delayed_ref_head_cachep; 17 struct kmem_cache *btrfs_delayed_tree_ref_cachep; 18 struct kmem_cache *btrfs_delayed_data_ref_cachep; 19 struct kmem_cache *btrfs_delayed_extent_op_cachep; 20 /* 21 * delayed back reference update tracking. For subvolume trees 22 * we queue up extent allocations and backref maintenance for 23 * delayed processing. This avoids deep call chains where we 24 * add extents in the middle of btrfs_search_slot, and it allows 25 * us to buffer up frequently modified backrefs in an rb tree instead 26 * of hammering updates on the extent allocation tree. 27 */ 28 29 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info) 30 { 31 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 32 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 33 bool ret = false; 34 u64 reserved; 35 36 spin_lock(&global_rsv->lock); 37 reserved = global_rsv->reserved; 38 spin_unlock(&global_rsv->lock); 39 40 /* 41 * Since the global reserve is just kind of magic we don't really want 42 * to rely on it to save our bacon, so if our size is more than the 43 * delayed_refs_rsv and the global rsv then it's time to think about 44 * bailing. 45 */ 46 spin_lock(&delayed_refs_rsv->lock); 47 reserved += delayed_refs_rsv->reserved; 48 if (delayed_refs_rsv->size >= reserved) 49 ret = true; 50 spin_unlock(&delayed_refs_rsv->lock); 51 return ret; 52 } 53 54 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans) 55 { 56 u64 num_entries = 57 atomic_read(&trans->transaction->delayed_refs.num_entries); 58 u64 avg_runtime; 59 u64 val; 60 61 smp_mb(); 62 avg_runtime = trans->fs_info->avg_delayed_ref_runtime; 63 val = num_entries * avg_runtime; 64 if (val >= NSEC_PER_SEC) 65 return 1; 66 if (val >= NSEC_PER_SEC / 2) 67 return 2; 68 69 return btrfs_check_space_for_delayed_refs(trans->fs_info); 70 } 71 72 /** 73 * Release a ref head's reservation 74 * 75 * @fs_info: the filesystem 76 * @nr: number of items to drop 77 * 78 * This drops the delayed ref head's count from the delayed refs rsv and frees 79 * any excess reservation we had. 80 */ 81 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr) 82 { 83 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 84 u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr); 85 u64 released = 0; 86 87 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL); 88 if (released) 89 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 90 0, released, 0); 91 } 92 93 /* 94 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv 95 * @trans - the trans that may have generated delayed refs 96 * 97 * This is to be called anytime we may have adjusted trans->delayed_ref_updates, 98 * it'll calculate the additional size and add it to the delayed_refs_rsv. 99 */ 100 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans) 101 { 102 struct btrfs_fs_info *fs_info = trans->fs_info; 103 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 104 u64 num_bytes; 105 106 if (!trans->delayed_ref_updates) 107 return; 108 109 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 110 trans->delayed_ref_updates); 111 spin_lock(&delayed_rsv->lock); 112 delayed_rsv->size += num_bytes; 113 delayed_rsv->full = 0; 114 spin_unlock(&delayed_rsv->lock); 115 trans->delayed_ref_updates = 0; 116 } 117 118 /** 119 * Transfer bytes to our delayed refs rsv 120 * 121 * @fs_info: the filesystem 122 * @src: source block rsv to transfer from 123 * @num_bytes: number of bytes to transfer 124 * 125 * This transfers up to the num_bytes amount from the src rsv to the 126 * delayed_refs_rsv. Any extra bytes are returned to the space info. 127 */ 128 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info, 129 struct btrfs_block_rsv *src, 130 u64 num_bytes) 131 { 132 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 133 u64 to_free = 0; 134 135 spin_lock(&src->lock); 136 src->reserved -= num_bytes; 137 src->size -= num_bytes; 138 spin_unlock(&src->lock); 139 140 spin_lock(&delayed_refs_rsv->lock); 141 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) { 142 u64 delta = delayed_refs_rsv->size - 143 delayed_refs_rsv->reserved; 144 if (num_bytes > delta) { 145 to_free = num_bytes - delta; 146 num_bytes = delta; 147 } 148 } else { 149 to_free = num_bytes; 150 num_bytes = 0; 151 } 152 153 if (num_bytes) 154 delayed_refs_rsv->reserved += num_bytes; 155 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size) 156 delayed_refs_rsv->full = 1; 157 spin_unlock(&delayed_refs_rsv->lock); 158 159 if (num_bytes) 160 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 161 0, num_bytes, 1); 162 if (to_free) 163 btrfs_space_info_free_bytes_may_use(fs_info, 164 delayed_refs_rsv->space_info, to_free); 165 } 166 167 /** 168 * Refill based on our delayed refs usage 169 * 170 * @fs_info: the filesystem 171 * @flush: control how we can flush for this reservation. 172 * 173 * This will refill the delayed block_rsv up to 1 items size worth of space and 174 * will return -ENOSPC if we can't make the reservation. 175 */ 176 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info, 177 enum btrfs_reserve_flush_enum flush) 178 { 179 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 180 u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1); 181 u64 num_bytes = 0; 182 int ret = -ENOSPC; 183 184 spin_lock(&block_rsv->lock); 185 if (block_rsv->reserved < block_rsv->size) { 186 num_bytes = block_rsv->size - block_rsv->reserved; 187 num_bytes = min(num_bytes, limit); 188 } 189 spin_unlock(&block_rsv->lock); 190 191 if (!num_bytes) 192 return 0; 193 194 ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv, 195 num_bytes, flush); 196 if (ret) 197 return ret; 198 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0); 199 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 200 0, num_bytes, 1); 201 return 0; 202 } 203 204 /* 205 * compare two delayed tree backrefs with same bytenr and type 206 */ 207 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1, 208 struct btrfs_delayed_tree_ref *ref2) 209 { 210 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) { 211 if (ref1->root < ref2->root) 212 return -1; 213 if (ref1->root > ref2->root) 214 return 1; 215 } else { 216 if (ref1->parent < ref2->parent) 217 return -1; 218 if (ref1->parent > ref2->parent) 219 return 1; 220 } 221 return 0; 222 } 223 224 /* 225 * compare two delayed data backrefs with same bytenr and type 226 */ 227 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1, 228 struct btrfs_delayed_data_ref *ref2) 229 { 230 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) { 231 if (ref1->root < ref2->root) 232 return -1; 233 if (ref1->root > ref2->root) 234 return 1; 235 if (ref1->objectid < ref2->objectid) 236 return -1; 237 if (ref1->objectid > ref2->objectid) 238 return 1; 239 if (ref1->offset < ref2->offset) 240 return -1; 241 if (ref1->offset > ref2->offset) 242 return 1; 243 } else { 244 if (ref1->parent < ref2->parent) 245 return -1; 246 if (ref1->parent > ref2->parent) 247 return 1; 248 } 249 return 0; 250 } 251 252 static int comp_refs(struct btrfs_delayed_ref_node *ref1, 253 struct btrfs_delayed_ref_node *ref2, 254 bool check_seq) 255 { 256 int ret = 0; 257 258 if (ref1->type < ref2->type) 259 return -1; 260 if (ref1->type > ref2->type) 261 return 1; 262 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY || 263 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) 264 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1), 265 btrfs_delayed_node_to_tree_ref(ref2)); 266 else 267 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1), 268 btrfs_delayed_node_to_data_ref(ref2)); 269 if (ret) 270 return ret; 271 if (check_seq) { 272 if (ref1->seq < ref2->seq) 273 return -1; 274 if (ref1->seq > ref2->seq) 275 return 1; 276 } 277 return 0; 278 } 279 280 /* insert a new ref to head ref rbtree */ 281 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root, 282 struct rb_node *node) 283 { 284 struct rb_node **p = &root->rb_root.rb_node; 285 struct rb_node *parent_node = NULL; 286 struct btrfs_delayed_ref_head *entry; 287 struct btrfs_delayed_ref_head *ins; 288 u64 bytenr; 289 bool leftmost = true; 290 291 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node); 292 bytenr = ins->bytenr; 293 while (*p) { 294 parent_node = *p; 295 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head, 296 href_node); 297 298 if (bytenr < entry->bytenr) { 299 p = &(*p)->rb_left; 300 } else if (bytenr > entry->bytenr) { 301 p = &(*p)->rb_right; 302 leftmost = false; 303 } else { 304 return entry; 305 } 306 } 307 308 rb_link_node(node, parent_node, p); 309 rb_insert_color_cached(node, root, leftmost); 310 return NULL; 311 } 312 313 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root, 314 struct btrfs_delayed_ref_node *ins) 315 { 316 struct rb_node **p = &root->rb_root.rb_node; 317 struct rb_node *node = &ins->ref_node; 318 struct rb_node *parent_node = NULL; 319 struct btrfs_delayed_ref_node *entry; 320 bool leftmost = true; 321 322 while (*p) { 323 int comp; 324 325 parent_node = *p; 326 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, 327 ref_node); 328 comp = comp_refs(ins, entry, true); 329 if (comp < 0) { 330 p = &(*p)->rb_left; 331 } else if (comp > 0) { 332 p = &(*p)->rb_right; 333 leftmost = false; 334 } else { 335 return entry; 336 } 337 } 338 339 rb_link_node(node, parent_node, p); 340 rb_insert_color_cached(node, root, leftmost); 341 return NULL; 342 } 343 344 static struct btrfs_delayed_ref_head *find_first_ref_head( 345 struct btrfs_delayed_ref_root *dr) 346 { 347 struct rb_node *n; 348 struct btrfs_delayed_ref_head *entry; 349 350 n = rb_first_cached(&dr->href_root); 351 if (!n) 352 return NULL; 353 354 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 355 356 return entry; 357 } 358 359 /* 360 * Find a head entry based on bytenr. This returns the delayed ref head if it 361 * was able to find one, or NULL if nothing was in that spot. If return_bigger 362 * is given, the next bigger entry is returned if no exact match is found. 363 */ 364 static struct btrfs_delayed_ref_head *find_ref_head( 365 struct btrfs_delayed_ref_root *dr, u64 bytenr, 366 bool return_bigger) 367 { 368 struct rb_root *root = &dr->href_root.rb_root; 369 struct rb_node *n; 370 struct btrfs_delayed_ref_head *entry; 371 372 n = root->rb_node; 373 entry = NULL; 374 while (n) { 375 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 376 377 if (bytenr < entry->bytenr) 378 n = n->rb_left; 379 else if (bytenr > entry->bytenr) 380 n = n->rb_right; 381 else 382 return entry; 383 } 384 if (entry && return_bigger) { 385 if (bytenr > entry->bytenr) { 386 n = rb_next(&entry->href_node); 387 if (!n) 388 return NULL; 389 entry = rb_entry(n, struct btrfs_delayed_ref_head, 390 href_node); 391 } 392 return entry; 393 } 394 return NULL; 395 } 396 397 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs, 398 struct btrfs_delayed_ref_head *head) 399 { 400 lockdep_assert_held(&delayed_refs->lock); 401 if (mutex_trylock(&head->mutex)) 402 return 0; 403 404 refcount_inc(&head->refs); 405 spin_unlock(&delayed_refs->lock); 406 407 mutex_lock(&head->mutex); 408 spin_lock(&delayed_refs->lock); 409 if (RB_EMPTY_NODE(&head->href_node)) { 410 mutex_unlock(&head->mutex); 411 btrfs_put_delayed_ref_head(head); 412 return -EAGAIN; 413 } 414 btrfs_put_delayed_ref_head(head); 415 return 0; 416 } 417 418 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans, 419 struct btrfs_delayed_ref_root *delayed_refs, 420 struct btrfs_delayed_ref_head *head, 421 struct btrfs_delayed_ref_node *ref) 422 { 423 lockdep_assert_held(&head->lock); 424 rb_erase_cached(&ref->ref_node, &head->ref_tree); 425 RB_CLEAR_NODE(&ref->ref_node); 426 if (!list_empty(&ref->add_list)) 427 list_del(&ref->add_list); 428 ref->in_tree = 0; 429 btrfs_put_delayed_ref(ref); 430 atomic_dec(&delayed_refs->num_entries); 431 } 432 433 static bool merge_ref(struct btrfs_trans_handle *trans, 434 struct btrfs_delayed_ref_root *delayed_refs, 435 struct btrfs_delayed_ref_head *head, 436 struct btrfs_delayed_ref_node *ref, 437 u64 seq) 438 { 439 struct btrfs_delayed_ref_node *next; 440 struct rb_node *node = rb_next(&ref->ref_node); 441 bool done = false; 442 443 while (!done && node) { 444 int mod; 445 446 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 447 node = rb_next(node); 448 if (seq && next->seq >= seq) 449 break; 450 if (comp_refs(ref, next, false)) 451 break; 452 453 if (ref->action == next->action) { 454 mod = next->ref_mod; 455 } else { 456 if (ref->ref_mod < next->ref_mod) { 457 swap(ref, next); 458 done = true; 459 } 460 mod = -next->ref_mod; 461 } 462 463 drop_delayed_ref(trans, delayed_refs, head, next); 464 ref->ref_mod += mod; 465 if (ref->ref_mod == 0) { 466 drop_delayed_ref(trans, delayed_refs, head, ref); 467 done = true; 468 } else { 469 /* 470 * Can't have multiples of the same ref on a tree block. 471 */ 472 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY || 473 ref->type == BTRFS_SHARED_BLOCK_REF_KEY); 474 } 475 } 476 477 return done; 478 } 479 480 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans, 481 struct btrfs_delayed_ref_root *delayed_refs, 482 struct btrfs_delayed_ref_head *head) 483 { 484 struct btrfs_fs_info *fs_info = trans->fs_info; 485 struct btrfs_delayed_ref_node *ref; 486 struct rb_node *node; 487 u64 seq = 0; 488 489 lockdep_assert_held(&head->lock); 490 491 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 492 return; 493 494 /* We don't have too many refs to merge for data. */ 495 if (head->is_data) 496 return; 497 498 seq = btrfs_tree_mod_log_lowest_seq(fs_info); 499 again: 500 for (node = rb_first_cached(&head->ref_tree); node; 501 node = rb_next(node)) { 502 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 503 if (seq && ref->seq >= seq) 504 continue; 505 if (merge_ref(trans, delayed_refs, head, ref, seq)) 506 goto again; 507 } 508 } 509 510 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq) 511 { 512 int ret = 0; 513 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info); 514 515 if (min_seq != 0 && seq >= min_seq) { 516 btrfs_debug(fs_info, 517 "holding back delayed_ref %llu, lowest is %llu", 518 seq, min_seq); 519 ret = 1; 520 } 521 522 return ret; 523 } 524 525 struct btrfs_delayed_ref_head *btrfs_select_ref_head( 526 struct btrfs_delayed_ref_root *delayed_refs) 527 { 528 struct btrfs_delayed_ref_head *head; 529 530 again: 531 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start, 532 true); 533 if (!head && delayed_refs->run_delayed_start != 0) { 534 delayed_refs->run_delayed_start = 0; 535 head = find_first_ref_head(delayed_refs); 536 } 537 if (!head) 538 return NULL; 539 540 while (head->processing) { 541 struct rb_node *node; 542 543 node = rb_next(&head->href_node); 544 if (!node) { 545 if (delayed_refs->run_delayed_start == 0) 546 return NULL; 547 delayed_refs->run_delayed_start = 0; 548 goto again; 549 } 550 head = rb_entry(node, struct btrfs_delayed_ref_head, 551 href_node); 552 } 553 554 head->processing = 1; 555 WARN_ON(delayed_refs->num_heads_ready == 0); 556 delayed_refs->num_heads_ready--; 557 delayed_refs->run_delayed_start = head->bytenr + 558 head->num_bytes; 559 return head; 560 } 561 562 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 563 struct btrfs_delayed_ref_head *head) 564 { 565 lockdep_assert_held(&delayed_refs->lock); 566 lockdep_assert_held(&head->lock); 567 568 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 569 RB_CLEAR_NODE(&head->href_node); 570 atomic_dec(&delayed_refs->num_entries); 571 delayed_refs->num_heads--; 572 if (head->processing == 0) 573 delayed_refs->num_heads_ready--; 574 } 575 576 /* 577 * Helper to insert the ref_node to the tail or merge with tail. 578 * 579 * Return 0 for insert. 580 * Return >0 for merge. 581 */ 582 static int insert_delayed_ref(struct btrfs_trans_handle *trans, 583 struct btrfs_delayed_ref_root *root, 584 struct btrfs_delayed_ref_head *href, 585 struct btrfs_delayed_ref_node *ref) 586 { 587 struct btrfs_delayed_ref_node *exist; 588 int mod; 589 int ret = 0; 590 591 spin_lock(&href->lock); 592 exist = tree_insert(&href->ref_tree, ref); 593 if (!exist) 594 goto inserted; 595 596 /* Now we are sure we can merge */ 597 ret = 1; 598 if (exist->action == ref->action) { 599 mod = ref->ref_mod; 600 } else { 601 /* Need to change action */ 602 if (exist->ref_mod < ref->ref_mod) { 603 exist->action = ref->action; 604 mod = -exist->ref_mod; 605 exist->ref_mod = ref->ref_mod; 606 if (ref->action == BTRFS_ADD_DELAYED_REF) 607 list_add_tail(&exist->add_list, 608 &href->ref_add_list); 609 else if (ref->action == BTRFS_DROP_DELAYED_REF) { 610 ASSERT(!list_empty(&exist->add_list)); 611 list_del(&exist->add_list); 612 } else { 613 ASSERT(0); 614 } 615 } else 616 mod = -ref->ref_mod; 617 } 618 exist->ref_mod += mod; 619 620 /* remove existing tail if its ref_mod is zero */ 621 if (exist->ref_mod == 0) 622 drop_delayed_ref(trans, root, href, exist); 623 spin_unlock(&href->lock); 624 return ret; 625 inserted: 626 if (ref->action == BTRFS_ADD_DELAYED_REF) 627 list_add_tail(&ref->add_list, &href->ref_add_list); 628 atomic_inc(&root->num_entries); 629 spin_unlock(&href->lock); 630 return ret; 631 } 632 633 /* 634 * helper function to update the accounting in the head ref 635 * existing and update must have the same bytenr 636 */ 637 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans, 638 struct btrfs_delayed_ref_head *existing, 639 struct btrfs_delayed_ref_head *update) 640 { 641 struct btrfs_delayed_ref_root *delayed_refs = 642 &trans->transaction->delayed_refs; 643 struct btrfs_fs_info *fs_info = trans->fs_info; 644 u64 flags = btrfs_ref_head_to_space_flags(existing); 645 int old_ref_mod; 646 647 BUG_ON(existing->is_data != update->is_data); 648 649 spin_lock(&existing->lock); 650 if (update->must_insert_reserved) { 651 /* if the extent was freed and then 652 * reallocated before the delayed ref 653 * entries were processed, we can end up 654 * with an existing head ref without 655 * the must_insert_reserved flag set. 656 * Set it again here 657 */ 658 existing->must_insert_reserved = update->must_insert_reserved; 659 660 /* 661 * update the num_bytes so we make sure the accounting 662 * is done correctly 663 */ 664 existing->num_bytes = update->num_bytes; 665 666 } 667 668 if (update->extent_op) { 669 if (!existing->extent_op) { 670 existing->extent_op = update->extent_op; 671 } else { 672 if (update->extent_op->update_key) { 673 memcpy(&existing->extent_op->key, 674 &update->extent_op->key, 675 sizeof(update->extent_op->key)); 676 existing->extent_op->update_key = true; 677 } 678 if (update->extent_op->update_flags) { 679 existing->extent_op->flags_to_set |= 680 update->extent_op->flags_to_set; 681 existing->extent_op->update_flags = true; 682 } 683 btrfs_free_delayed_extent_op(update->extent_op); 684 } 685 } 686 /* 687 * update the reference mod on the head to reflect this new operation, 688 * only need the lock for this case cause we could be processing it 689 * currently, for refs we just added we know we're a-ok. 690 */ 691 old_ref_mod = existing->total_ref_mod; 692 existing->ref_mod += update->ref_mod; 693 existing->total_ref_mod += update->ref_mod; 694 695 /* 696 * If we are going to from a positive ref mod to a negative or vice 697 * versa we need to make sure to adjust pending_csums accordingly. 698 */ 699 if (existing->is_data) { 700 u64 csum_leaves = 701 btrfs_csum_bytes_to_leaves(fs_info, 702 existing->num_bytes); 703 704 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) { 705 delayed_refs->pending_csums -= existing->num_bytes; 706 btrfs_delayed_refs_rsv_release(fs_info, csum_leaves); 707 } 708 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) { 709 delayed_refs->pending_csums += existing->num_bytes; 710 trans->delayed_ref_updates += csum_leaves; 711 } 712 } 713 714 /* 715 * This handles the following conditions: 716 * 717 * 1. We had a ref mod of 0 or more and went negative, indicating that 718 * we may be freeing space, so add our space to the 719 * total_bytes_pinned counter. 720 * 2. We were negative and went to 0 or positive, so no longer can say 721 * that the space would be pinned, decrement our counter from the 722 * total_bytes_pinned counter. 723 * 3. We are now at 0 and have ->must_insert_reserved set, which means 724 * this was a new allocation and then we dropped it, and thus must 725 * add our space to the total_bytes_pinned counter. 726 */ 727 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) 728 btrfs_mod_total_bytes_pinned(fs_info, flags, existing->num_bytes); 729 else if (existing->total_ref_mod >= 0 && old_ref_mod < 0) 730 btrfs_mod_total_bytes_pinned(fs_info, flags, -existing->num_bytes); 731 else if (existing->total_ref_mod == 0 && existing->must_insert_reserved) 732 btrfs_mod_total_bytes_pinned(fs_info, flags, existing->num_bytes); 733 734 spin_unlock(&existing->lock); 735 } 736 737 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref, 738 struct btrfs_qgroup_extent_record *qrecord, 739 u64 bytenr, u64 num_bytes, u64 ref_root, 740 u64 reserved, int action, bool is_data, 741 bool is_system) 742 { 743 int count_mod = 1; 744 int must_insert_reserved = 0; 745 746 /* If reserved is provided, it must be a data extent. */ 747 BUG_ON(!is_data && reserved); 748 749 /* 750 * The head node stores the sum of all the mods, so dropping a ref 751 * should drop the sum in the head node by one. 752 */ 753 if (action == BTRFS_UPDATE_DELAYED_HEAD) 754 count_mod = 0; 755 else if (action == BTRFS_DROP_DELAYED_REF) 756 count_mod = -1; 757 758 /* 759 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved 760 * accounting when the extent is finally added, or if a later 761 * modification deletes the delayed ref without ever inserting the 762 * extent into the extent allocation tree. ref->must_insert_reserved 763 * is the flag used to record that accounting mods are required. 764 * 765 * Once we record must_insert_reserved, switch the action to 766 * BTRFS_ADD_DELAYED_REF because other special casing is not required. 767 */ 768 if (action == BTRFS_ADD_DELAYED_EXTENT) 769 must_insert_reserved = 1; 770 else 771 must_insert_reserved = 0; 772 773 refcount_set(&head_ref->refs, 1); 774 head_ref->bytenr = bytenr; 775 head_ref->num_bytes = num_bytes; 776 head_ref->ref_mod = count_mod; 777 head_ref->must_insert_reserved = must_insert_reserved; 778 head_ref->is_data = is_data; 779 head_ref->is_system = is_system; 780 head_ref->ref_tree = RB_ROOT_CACHED; 781 INIT_LIST_HEAD(&head_ref->ref_add_list); 782 RB_CLEAR_NODE(&head_ref->href_node); 783 head_ref->processing = 0; 784 head_ref->total_ref_mod = count_mod; 785 spin_lock_init(&head_ref->lock); 786 mutex_init(&head_ref->mutex); 787 788 if (qrecord) { 789 if (ref_root && reserved) { 790 qrecord->data_rsv = reserved; 791 qrecord->data_rsv_refroot = ref_root; 792 } 793 qrecord->bytenr = bytenr; 794 qrecord->num_bytes = num_bytes; 795 qrecord->old_roots = NULL; 796 } 797 } 798 799 /* 800 * helper function to actually insert a head node into the rbtree. 801 * this does all the dirty work in terms of maintaining the correct 802 * overall modification count. 803 */ 804 static noinline struct btrfs_delayed_ref_head * 805 add_delayed_ref_head(struct btrfs_trans_handle *trans, 806 struct btrfs_delayed_ref_head *head_ref, 807 struct btrfs_qgroup_extent_record *qrecord, 808 int action, int *qrecord_inserted_ret) 809 { 810 struct btrfs_delayed_ref_head *existing; 811 struct btrfs_delayed_ref_root *delayed_refs; 812 int qrecord_inserted = 0; 813 814 delayed_refs = &trans->transaction->delayed_refs; 815 816 /* Record qgroup extent info if provided */ 817 if (qrecord) { 818 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info, 819 delayed_refs, qrecord)) 820 kfree(qrecord); 821 else 822 qrecord_inserted = 1; 823 } 824 825 trace_add_delayed_ref_head(trans->fs_info, head_ref, action); 826 827 existing = htree_insert(&delayed_refs->href_root, 828 &head_ref->href_node); 829 if (existing) { 830 update_existing_head_ref(trans, existing, head_ref); 831 /* 832 * we've updated the existing ref, free the newly 833 * allocated ref 834 */ 835 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 836 head_ref = existing; 837 } else { 838 u64 flags = btrfs_ref_head_to_space_flags(head_ref); 839 840 if (head_ref->is_data && head_ref->ref_mod < 0) { 841 delayed_refs->pending_csums += head_ref->num_bytes; 842 trans->delayed_ref_updates += 843 btrfs_csum_bytes_to_leaves(trans->fs_info, 844 head_ref->num_bytes); 845 } 846 if (head_ref->ref_mod < 0) 847 btrfs_mod_total_bytes_pinned(trans->fs_info, flags, 848 head_ref->num_bytes); 849 delayed_refs->num_heads++; 850 delayed_refs->num_heads_ready++; 851 atomic_inc(&delayed_refs->num_entries); 852 trans->delayed_ref_updates++; 853 } 854 if (qrecord_inserted_ret) 855 *qrecord_inserted_ret = qrecord_inserted; 856 857 return head_ref; 858 } 859 860 /* 861 * init_delayed_ref_common - Initialize the structure which represents a 862 * modification to a an extent. 863 * 864 * @fs_info: Internal to the mounted filesystem mount structure. 865 * 866 * @ref: The structure which is going to be initialized. 867 * 868 * @bytenr: The logical address of the extent for which a modification is 869 * going to be recorded. 870 * 871 * @num_bytes: Size of the extent whose modification is being recorded. 872 * 873 * @ref_root: The id of the root where this modification has originated, this 874 * can be either one of the well-known metadata trees or the 875 * subvolume id which references this extent. 876 * 877 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or 878 * BTRFS_ADD_DELAYED_EXTENT 879 * 880 * @ref_type: Holds the type of the extent which is being recorded, can be 881 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY 882 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/ 883 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent 884 */ 885 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info, 886 struct btrfs_delayed_ref_node *ref, 887 u64 bytenr, u64 num_bytes, u64 ref_root, 888 int action, u8 ref_type) 889 { 890 u64 seq = 0; 891 892 if (action == BTRFS_ADD_DELAYED_EXTENT) 893 action = BTRFS_ADD_DELAYED_REF; 894 895 if (is_fstree(ref_root)) 896 seq = atomic64_read(&fs_info->tree_mod_seq); 897 898 refcount_set(&ref->refs, 1); 899 ref->bytenr = bytenr; 900 ref->num_bytes = num_bytes; 901 ref->ref_mod = 1; 902 ref->action = action; 903 ref->is_head = 0; 904 ref->in_tree = 1; 905 ref->seq = seq; 906 ref->type = ref_type; 907 RB_CLEAR_NODE(&ref->ref_node); 908 INIT_LIST_HEAD(&ref->add_list); 909 } 910 911 /* 912 * add a delayed tree ref. This does all of the accounting required 913 * to make sure the delayed ref is eventually processed before this 914 * transaction commits. 915 */ 916 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 917 struct btrfs_ref *generic_ref, 918 struct btrfs_delayed_extent_op *extent_op) 919 { 920 struct btrfs_fs_info *fs_info = trans->fs_info; 921 struct btrfs_delayed_tree_ref *ref; 922 struct btrfs_delayed_ref_head *head_ref; 923 struct btrfs_delayed_ref_root *delayed_refs; 924 struct btrfs_qgroup_extent_record *record = NULL; 925 int qrecord_inserted; 926 bool is_system; 927 int action = generic_ref->action; 928 int level = generic_ref->tree_ref.level; 929 int ret; 930 u64 bytenr = generic_ref->bytenr; 931 u64 num_bytes = generic_ref->len; 932 u64 parent = generic_ref->parent; 933 u8 ref_type; 934 935 is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID); 936 937 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action); 938 BUG_ON(extent_op && extent_op->is_data); 939 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS); 940 if (!ref) 941 return -ENOMEM; 942 943 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 944 if (!head_ref) { 945 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 946 return -ENOMEM; 947 } 948 949 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 950 is_fstree(generic_ref->real_root) && 951 is_fstree(generic_ref->tree_ref.root) && 952 !generic_ref->skip_qgroup) { 953 record = kzalloc(sizeof(*record), GFP_NOFS); 954 if (!record) { 955 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 956 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 957 return -ENOMEM; 958 } 959 } 960 961 if (parent) 962 ref_type = BTRFS_SHARED_BLOCK_REF_KEY; 963 else 964 ref_type = BTRFS_TREE_BLOCK_REF_KEY; 965 966 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 967 generic_ref->tree_ref.root, action, ref_type); 968 ref->root = generic_ref->tree_ref.root; 969 ref->parent = parent; 970 ref->level = level; 971 972 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, 973 generic_ref->tree_ref.root, 0, action, false, 974 is_system); 975 head_ref->extent_op = extent_op; 976 977 delayed_refs = &trans->transaction->delayed_refs; 978 spin_lock(&delayed_refs->lock); 979 980 /* 981 * insert both the head node and the new ref without dropping 982 * the spin lock 983 */ 984 head_ref = add_delayed_ref_head(trans, head_ref, record, 985 action, &qrecord_inserted); 986 987 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node); 988 spin_unlock(&delayed_refs->lock); 989 990 /* 991 * Need to update the delayed_refs_rsv with any changes we may have 992 * made. 993 */ 994 btrfs_update_delayed_refs_rsv(trans); 995 996 trace_add_delayed_tree_ref(fs_info, &ref->node, ref, 997 action == BTRFS_ADD_DELAYED_EXTENT ? 998 BTRFS_ADD_DELAYED_REF : action); 999 if (ret > 0) 1000 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 1001 1002 if (qrecord_inserted) 1003 btrfs_qgroup_trace_extent_post(fs_info, record); 1004 1005 return 0; 1006 } 1007 1008 /* 1009 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 1010 */ 1011 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 1012 struct btrfs_ref *generic_ref, 1013 u64 reserved) 1014 { 1015 struct btrfs_fs_info *fs_info = trans->fs_info; 1016 struct btrfs_delayed_data_ref *ref; 1017 struct btrfs_delayed_ref_head *head_ref; 1018 struct btrfs_delayed_ref_root *delayed_refs; 1019 struct btrfs_qgroup_extent_record *record = NULL; 1020 int qrecord_inserted; 1021 int action = generic_ref->action; 1022 int ret; 1023 u64 bytenr = generic_ref->bytenr; 1024 u64 num_bytes = generic_ref->len; 1025 u64 parent = generic_ref->parent; 1026 u64 ref_root = generic_ref->data_ref.ref_root; 1027 u64 owner = generic_ref->data_ref.ino; 1028 u64 offset = generic_ref->data_ref.offset; 1029 u8 ref_type; 1030 1031 ASSERT(generic_ref->type == BTRFS_REF_DATA && action); 1032 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS); 1033 if (!ref) 1034 return -ENOMEM; 1035 1036 if (parent) 1037 ref_type = BTRFS_SHARED_DATA_REF_KEY; 1038 else 1039 ref_type = BTRFS_EXTENT_DATA_REF_KEY; 1040 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 1041 ref_root, action, ref_type); 1042 ref->root = ref_root; 1043 ref->parent = parent; 1044 ref->objectid = owner; 1045 ref->offset = offset; 1046 1047 1048 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1049 if (!head_ref) { 1050 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1051 return -ENOMEM; 1052 } 1053 1054 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 1055 is_fstree(ref_root) && 1056 is_fstree(generic_ref->real_root) && 1057 !generic_ref->skip_qgroup) { 1058 record = kzalloc(sizeof(*record), GFP_NOFS); 1059 if (!record) { 1060 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1061 kmem_cache_free(btrfs_delayed_ref_head_cachep, 1062 head_ref); 1063 return -ENOMEM; 1064 } 1065 } 1066 1067 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root, 1068 reserved, action, true, false); 1069 head_ref->extent_op = NULL; 1070 1071 delayed_refs = &trans->transaction->delayed_refs; 1072 spin_lock(&delayed_refs->lock); 1073 1074 /* 1075 * insert both the head node and the new ref without dropping 1076 * the spin lock 1077 */ 1078 head_ref = add_delayed_ref_head(trans, head_ref, record, 1079 action, &qrecord_inserted); 1080 1081 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node); 1082 spin_unlock(&delayed_refs->lock); 1083 1084 /* 1085 * Need to update the delayed_refs_rsv with any changes we may have 1086 * made. 1087 */ 1088 btrfs_update_delayed_refs_rsv(trans); 1089 1090 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref, 1091 action == BTRFS_ADD_DELAYED_EXTENT ? 1092 BTRFS_ADD_DELAYED_REF : action); 1093 if (ret > 0) 1094 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1095 1096 1097 if (qrecord_inserted) 1098 return btrfs_qgroup_trace_extent_post(fs_info, record); 1099 return 0; 1100 } 1101 1102 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, 1103 u64 bytenr, u64 num_bytes, 1104 struct btrfs_delayed_extent_op *extent_op) 1105 { 1106 struct btrfs_delayed_ref_head *head_ref; 1107 struct btrfs_delayed_ref_root *delayed_refs; 1108 1109 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1110 if (!head_ref) 1111 return -ENOMEM; 1112 1113 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0, 1114 BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data, 1115 false); 1116 head_ref->extent_op = extent_op; 1117 1118 delayed_refs = &trans->transaction->delayed_refs; 1119 spin_lock(&delayed_refs->lock); 1120 1121 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD, 1122 NULL); 1123 1124 spin_unlock(&delayed_refs->lock); 1125 1126 /* 1127 * Need to update the delayed_refs_rsv with any changes we may have 1128 * made. 1129 */ 1130 btrfs_update_delayed_refs_rsv(trans); 1131 return 0; 1132 } 1133 1134 /* 1135 * This does a simple search for the head node for a given extent. Returns the 1136 * head node if found, or NULL if not. 1137 */ 1138 struct btrfs_delayed_ref_head * 1139 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr) 1140 { 1141 lockdep_assert_held(&delayed_refs->lock); 1142 1143 return find_ref_head(delayed_refs, bytenr, false); 1144 } 1145 1146 void __cold btrfs_delayed_ref_exit(void) 1147 { 1148 kmem_cache_destroy(btrfs_delayed_ref_head_cachep); 1149 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep); 1150 kmem_cache_destroy(btrfs_delayed_data_ref_cachep); 1151 kmem_cache_destroy(btrfs_delayed_extent_op_cachep); 1152 } 1153 1154 int __init btrfs_delayed_ref_init(void) 1155 { 1156 btrfs_delayed_ref_head_cachep = kmem_cache_create( 1157 "btrfs_delayed_ref_head", 1158 sizeof(struct btrfs_delayed_ref_head), 0, 1159 SLAB_MEM_SPREAD, NULL); 1160 if (!btrfs_delayed_ref_head_cachep) 1161 goto fail; 1162 1163 btrfs_delayed_tree_ref_cachep = kmem_cache_create( 1164 "btrfs_delayed_tree_ref", 1165 sizeof(struct btrfs_delayed_tree_ref), 0, 1166 SLAB_MEM_SPREAD, NULL); 1167 if (!btrfs_delayed_tree_ref_cachep) 1168 goto fail; 1169 1170 btrfs_delayed_data_ref_cachep = kmem_cache_create( 1171 "btrfs_delayed_data_ref", 1172 sizeof(struct btrfs_delayed_data_ref), 0, 1173 SLAB_MEM_SPREAD, NULL); 1174 if (!btrfs_delayed_data_ref_cachep) 1175 goto fail; 1176 1177 btrfs_delayed_extent_op_cachep = kmem_cache_create( 1178 "btrfs_delayed_extent_op", 1179 sizeof(struct btrfs_delayed_extent_op), 0, 1180 SLAB_MEM_SPREAD, NULL); 1181 if (!btrfs_delayed_extent_op_cachep) 1182 goto fail; 1183 1184 return 0; 1185 fail: 1186 btrfs_delayed_ref_exit(); 1187 return -ENOMEM; 1188 } 1189