1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/sort.h> 9 #include "messages.h" 10 #include "ctree.h" 11 #include "delayed-ref.h" 12 #include "extent-tree.h" 13 #include "transaction.h" 14 #include "qgroup.h" 15 #include "space-info.h" 16 #include "tree-mod-log.h" 17 #include "fs.h" 18 19 struct kmem_cache *btrfs_delayed_ref_head_cachep; 20 struct kmem_cache *btrfs_delayed_ref_node_cachep; 21 struct kmem_cache *btrfs_delayed_extent_op_cachep; 22 /* 23 * delayed back reference update tracking. For subvolume trees 24 * we queue up extent allocations and backref maintenance for 25 * delayed processing. This avoids deep call chains where we 26 * add extents in the middle of btrfs_search_slot, and it allows 27 * us to buffer up frequently modified backrefs in an rb tree instead 28 * of hammering updates on the extent allocation tree. 29 */ 30 31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info) 32 { 33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 35 bool ret = false; 36 u64 reserved; 37 38 spin_lock(&global_rsv->lock); 39 reserved = global_rsv->reserved; 40 spin_unlock(&global_rsv->lock); 41 42 /* 43 * Since the global reserve is just kind of magic we don't really want 44 * to rely on it to save our bacon, so if our size is more than the 45 * delayed_refs_rsv and the global rsv then it's time to think about 46 * bailing. 47 */ 48 spin_lock(&delayed_refs_rsv->lock); 49 reserved += delayed_refs_rsv->reserved; 50 if (delayed_refs_rsv->size >= reserved) 51 ret = true; 52 spin_unlock(&delayed_refs_rsv->lock); 53 return ret; 54 } 55 56 /* 57 * Release a ref head's reservation. 58 * 59 * @fs_info: the filesystem 60 * @nr_refs: number of delayed refs to drop 61 * @nr_csums: number of csum items to drop 62 * 63 * Drops the delayed ref head's count from the delayed refs rsv and free any 64 * excess reservation we had. 65 */ 66 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums) 67 { 68 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 69 u64 num_bytes; 70 u64 released; 71 72 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs); 73 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 74 75 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL); 76 if (released) 77 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 78 0, released, 0); 79 } 80 81 /* 82 * Adjust the size of the delayed refs rsv. 83 * 84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates 85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and 86 * add it to the delayed_refs_rsv. 87 */ 88 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans) 89 { 90 struct btrfs_fs_info *fs_info = trans->fs_info; 91 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 92 struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv; 93 u64 num_bytes; 94 u64 reserved_bytes; 95 96 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates); 97 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, 98 trans->delayed_ref_csum_deletions); 99 100 if (num_bytes == 0) 101 return; 102 103 /* 104 * Try to take num_bytes from the transaction's local delayed reserve. 105 * If not possible, try to take as much as it's available. If the local 106 * reserve doesn't have enough reserved space, the delayed refs reserve 107 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called 108 * by someone or if a transaction commit is triggered before that, the 109 * global block reserve will be used. We want to minimize using the 110 * global block reserve for cases we can account for in advance, to 111 * avoid exhausting it and reach -ENOSPC during a transaction commit. 112 */ 113 spin_lock(&local_rsv->lock); 114 reserved_bytes = min(num_bytes, local_rsv->reserved); 115 local_rsv->reserved -= reserved_bytes; 116 local_rsv->full = (local_rsv->reserved >= local_rsv->size); 117 spin_unlock(&local_rsv->lock); 118 119 spin_lock(&delayed_rsv->lock); 120 delayed_rsv->size += num_bytes; 121 delayed_rsv->reserved += reserved_bytes; 122 delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size); 123 spin_unlock(&delayed_rsv->lock); 124 trans->delayed_ref_updates = 0; 125 trans->delayed_ref_csum_deletions = 0; 126 } 127 128 /* 129 * Adjust the size of the delayed refs block reserve for 1 block group item 130 * insertion, used after allocating a block group. 131 */ 132 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info) 133 { 134 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 135 136 spin_lock(&delayed_rsv->lock); 137 /* 138 * Inserting a block group item does not require changing the free space 139 * tree, only the extent tree or the block group tree, so this is all we 140 * need. 141 */ 142 delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1); 143 delayed_rsv->full = false; 144 spin_unlock(&delayed_rsv->lock); 145 } 146 147 /* 148 * Adjust the size of the delayed refs block reserve to release space for 1 149 * block group item insertion. 150 */ 151 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info) 152 { 153 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 154 const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 155 u64 released; 156 157 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL); 158 if (released > 0) 159 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 160 0, released, 0); 161 } 162 163 /* 164 * Adjust the size of the delayed refs block reserve for 1 block group item 165 * update. 166 */ 167 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info) 168 { 169 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 170 171 spin_lock(&delayed_rsv->lock); 172 /* 173 * Updating a block group item does not result in new nodes/leaves and 174 * does not require changing the free space tree, only the extent tree 175 * or the block group tree, so this is all we need. 176 */ 177 delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1); 178 delayed_rsv->full = false; 179 spin_unlock(&delayed_rsv->lock); 180 } 181 182 /* 183 * Adjust the size of the delayed refs block reserve to release space for 1 184 * block group item update. 185 */ 186 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info) 187 { 188 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 189 const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 190 u64 released; 191 192 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL); 193 if (released > 0) 194 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 195 0, released, 0); 196 } 197 198 /* 199 * Refill based on our delayed refs usage. 200 * 201 * @fs_info: the filesystem 202 * @flush: control how we can flush for this reservation. 203 * 204 * This will refill the delayed block_rsv up to 1 items size worth of space and 205 * will return -ENOSPC if we can't make the reservation. 206 */ 207 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info, 208 enum btrfs_reserve_flush_enum flush) 209 { 210 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 211 struct btrfs_space_info *space_info = block_rsv->space_info; 212 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1); 213 u64 num_bytes = 0; 214 u64 refilled_bytes; 215 u64 to_free; 216 int ret = -ENOSPC; 217 218 spin_lock(&block_rsv->lock); 219 if (block_rsv->reserved < block_rsv->size) { 220 num_bytes = block_rsv->size - block_rsv->reserved; 221 num_bytes = min(num_bytes, limit); 222 } 223 spin_unlock(&block_rsv->lock); 224 225 if (!num_bytes) 226 return 0; 227 228 ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush); 229 if (ret) 230 return ret; 231 232 /* 233 * We may have raced with someone else, so check again if we the block 234 * reserve is still not full and release any excess space. 235 */ 236 spin_lock(&block_rsv->lock); 237 if (block_rsv->reserved < block_rsv->size) { 238 u64 needed = block_rsv->size - block_rsv->reserved; 239 240 if (num_bytes >= needed) { 241 block_rsv->reserved += needed; 242 block_rsv->full = true; 243 to_free = num_bytes - needed; 244 refilled_bytes = needed; 245 } else { 246 block_rsv->reserved += num_bytes; 247 to_free = 0; 248 refilled_bytes = num_bytes; 249 } 250 } else { 251 to_free = num_bytes; 252 refilled_bytes = 0; 253 } 254 spin_unlock(&block_rsv->lock); 255 256 if (to_free > 0) 257 btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free); 258 259 if (refilled_bytes > 0) 260 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0, 261 refilled_bytes, 1); 262 return 0; 263 } 264 265 /* 266 * compare two delayed data backrefs with same bytenr and type 267 */ 268 static int comp_data_refs(struct btrfs_delayed_ref_node *ref1, 269 struct btrfs_delayed_ref_node *ref2) 270 { 271 if (ref1->data_ref.objectid < ref2->data_ref.objectid) 272 return -1; 273 if (ref1->data_ref.objectid > ref2->data_ref.objectid) 274 return 1; 275 if (ref1->data_ref.offset < ref2->data_ref.offset) 276 return -1; 277 if (ref1->data_ref.offset > ref2->data_ref.offset) 278 return 1; 279 return 0; 280 } 281 282 static int comp_refs(struct btrfs_delayed_ref_node *ref1, 283 struct btrfs_delayed_ref_node *ref2, 284 bool check_seq) 285 { 286 int ret = 0; 287 288 if (ref1->type < ref2->type) 289 return -1; 290 if (ref1->type > ref2->type) 291 return 1; 292 if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY || 293 ref1->type == BTRFS_SHARED_DATA_REF_KEY) { 294 if (ref1->parent < ref2->parent) 295 return -1; 296 if (ref1->parent > ref2->parent) 297 return 1; 298 } else { 299 if (ref1->ref_root < ref2->ref_root) 300 return -1; 301 if (ref1->ref_root > ref2->ref_root) 302 return 1; 303 if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY) 304 ret = comp_data_refs(ref1, ref2); 305 } 306 if (ret) 307 return ret; 308 if (check_seq) { 309 if (ref1->seq < ref2->seq) 310 return -1; 311 if (ref1->seq > ref2->seq) 312 return 1; 313 } 314 return 0; 315 } 316 317 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root, 318 struct btrfs_delayed_ref_node *ins) 319 { 320 struct rb_node **p = &root->rb_root.rb_node; 321 struct rb_node *node = &ins->ref_node; 322 struct rb_node *parent_node = NULL; 323 struct btrfs_delayed_ref_node *entry; 324 bool leftmost = true; 325 326 while (*p) { 327 int comp; 328 329 parent_node = *p; 330 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, 331 ref_node); 332 comp = comp_refs(ins, entry, true); 333 if (comp < 0) { 334 p = &(*p)->rb_left; 335 } else if (comp > 0) { 336 p = &(*p)->rb_right; 337 leftmost = false; 338 } else { 339 return entry; 340 } 341 } 342 343 rb_link_node(node, parent_node, p); 344 rb_insert_color_cached(node, root, leftmost); 345 return NULL; 346 } 347 348 static struct btrfs_delayed_ref_head *find_first_ref_head( 349 struct btrfs_delayed_ref_root *dr) 350 { 351 unsigned long from = 0; 352 353 lockdep_assert_held(&dr->lock); 354 355 return xa_find(&dr->head_refs, &from, ULONG_MAX, XA_PRESENT); 356 } 357 358 static bool btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs, 359 struct btrfs_delayed_ref_head *head) 360 { 361 lockdep_assert_held(&delayed_refs->lock); 362 if (mutex_trylock(&head->mutex)) 363 return true; 364 365 refcount_inc(&head->refs); 366 spin_unlock(&delayed_refs->lock); 367 368 mutex_lock(&head->mutex); 369 spin_lock(&delayed_refs->lock); 370 if (!head->tracked) { 371 mutex_unlock(&head->mutex); 372 btrfs_put_delayed_ref_head(head); 373 return false; 374 } 375 btrfs_put_delayed_ref_head(head); 376 return true; 377 } 378 379 static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info, 380 struct btrfs_delayed_ref_root *delayed_refs, 381 struct btrfs_delayed_ref_head *head, 382 struct btrfs_delayed_ref_node *ref) 383 { 384 lockdep_assert_held(&head->lock); 385 rb_erase_cached(&ref->ref_node, &head->ref_tree); 386 RB_CLEAR_NODE(&ref->ref_node); 387 if (!list_empty(&ref->add_list)) 388 list_del(&ref->add_list); 389 btrfs_put_delayed_ref(ref); 390 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 391 } 392 393 static bool merge_ref(struct btrfs_fs_info *fs_info, 394 struct btrfs_delayed_ref_root *delayed_refs, 395 struct btrfs_delayed_ref_head *head, 396 struct btrfs_delayed_ref_node *ref, 397 u64 seq) 398 { 399 struct btrfs_delayed_ref_node *next; 400 struct rb_node *node = rb_next(&ref->ref_node); 401 bool done = false; 402 403 while (!done && node) { 404 int mod; 405 406 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 407 node = rb_next(node); 408 if (seq && next->seq >= seq) 409 break; 410 if (comp_refs(ref, next, false)) 411 break; 412 413 if (ref->action == next->action) { 414 mod = next->ref_mod; 415 } else { 416 if (ref->ref_mod < next->ref_mod) { 417 swap(ref, next); 418 done = true; 419 } 420 mod = -next->ref_mod; 421 } 422 423 drop_delayed_ref(fs_info, delayed_refs, head, next); 424 ref->ref_mod += mod; 425 if (ref->ref_mod == 0) { 426 drop_delayed_ref(fs_info, delayed_refs, head, ref); 427 done = true; 428 } else { 429 /* 430 * Can't have multiples of the same ref on a tree block. 431 */ 432 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY || 433 ref->type == BTRFS_SHARED_BLOCK_REF_KEY); 434 } 435 } 436 437 return done; 438 } 439 440 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info, 441 struct btrfs_delayed_ref_root *delayed_refs, 442 struct btrfs_delayed_ref_head *head) 443 { 444 struct btrfs_delayed_ref_node *ref; 445 struct rb_node *node; 446 u64 seq = 0; 447 448 lockdep_assert_held(&head->lock); 449 450 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 451 return; 452 453 /* We don't have too many refs to merge for data. */ 454 if (head->is_data) 455 return; 456 457 seq = btrfs_tree_mod_log_lowest_seq(fs_info); 458 again: 459 for (node = rb_first_cached(&head->ref_tree); node; 460 node = rb_next(node)) { 461 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 462 if (seq && ref->seq >= seq) 463 continue; 464 if (merge_ref(fs_info, delayed_refs, head, ref, seq)) 465 goto again; 466 } 467 } 468 469 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq) 470 { 471 int ret = 0; 472 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info); 473 474 if (min_seq != 0 && seq >= min_seq) { 475 btrfs_debug(fs_info, 476 "holding back delayed_ref %llu, lowest is %llu", 477 seq, min_seq); 478 ret = 1; 479 } 480 481 return ret; 482 } 483 484 struct btrfs_delayed_ref_head *btrfs_select_ref_head( 485 const struct btrfs_fs_info *fs_info, 486 struct btrfs_delayed_ref_root *delayed_refs) 487 { 488 struct btrfs_delayed_ref_head *head; 489 unsigned long start_index; 490 unsigned long found_index; 491 bool found_head = false; 492 bool locked; 493 494 spin_lock(&delayed_refs->lock); 495 again: 496 start_index = (delayed_refs->run_delayed_start >> fs_info->sectorsize_bits); 497 xa_for_each_start(&delayed_refs->head_refs, found_index, head, start_index) { 498 if (!head->processing) { 499 found_head = true; 500 break; 501 } 502 } 503 if (!found_head) { 504 if (delayed_refs->run_delayed_start == 0) { 505 spin_unlock(&delayed_refs->lock); 506 return NULL; 507 } 508 delayed_refs->run_delayed_start = 0; 509 goto again; 510 } 511 512 head->processing = true; 513 WARN_ON(delayed_refs->num_heads_ready == 0); 514 delayed_refs->num_heads_ready--; 515 delayed_refs->run_delayed_start = head->bytenr + 516 head->num_bytes; 517 518 locked = btrfs_delayed_ref_lock(delayed_refs, head); 519 spin_unlock(&delayed_refs->lock); 520 521 /* 522 * We may have dropped the spin lock to get the head mutex lock, and 523 * that might have given someone else time to free the head. If that's 524 * true, it has been removed from our list and we can move on. 525 */ 526 if (!locked) 527 return ERR_PTR(-EAGAIN); 528 529 return head; 530 } 531 532 void btrfs_unselect_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 533 struct btrfs_delayed_ref_head *head) 534 { 535 spin_lock(&delayed_refs->lock); 536 head->processing = false; 537 delayed_refs->num_heads_ready++; 538 spin_unlock(&delayed_refs->lock); 539 btrfs_delayed_ref_unlock(head); 540 } 541 542 void btrfs_delete_ref_head(const struct btrfs_fs_info *fs_info, 543 struct btrfs_delayed_ref_root *delayed_refs, 544 struct btrfs_delayed_ref_head *head) 545 { 546 const unsigned long index = (head->bytenr >> fs_info->sectorsize_bits); 547 548 lockdep_assert_held(&delayed_refs->lock); 549 lockdep_assert_held(&head->lock); 550 551 xa_erase(&delayed_refs->head_refs, index); 552 head->tracked = false; 553 delayed_refs->num_heads--; 554 if (!head->processing) 555 delayed_refs->num_heads_ready--; 556 } 557 558 /* 559 * Helper to insert the ref_node to the tail or merge with tail. 560 * 561 * Return false if the ref was inserted. 562 * Return true if the ref was merged into an existing one (and therefore can be 563 * freed by the caller). 564 */ 565 static bool insert_delayed_ref(struct btrfs_trans_handle *trans, 566 struct btrfs_delayed_ref_head *href, 567 struct btrfs_delayed_ref_node *ref) 568 { 569 struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs; 570 struct btrfs_delayed_ref_node *exist; 571 int mod; 572 573 spin_lock(&href->lock); 574 exist = tree_insert(&href->ref_tree, ref); 575 if (!exist) { 576 if (ref->action == BTRFS_ADD_DELAYED_REF) 577 list_add_tail(&ref->add_list, &href->ref_add_list); 578 spin_unlock(&href->lock); 579 trans->delayed_ref_updates++; 580 return false; 581 } 582 583 /* Now we are sure we can merge */ 584 if (exist->action == ref->action) { 585 mod = ref->ref_mod; 586 } else { 587 /* Need to change action */ 588 if (exist->ref_mod < ref->ref_mod) { 589 exist->action = ref->action; 590 mod = -exist->ref_mod; 591 exist->ref_mod = ref->ref_mod; 592 if (ref->action == BTRFS_ADD_DELAYED_REF) 593 list_add_tail(&exist->add_list, 594 &href->ref_add_list); 595 else if (ref->action == BTRFS_DROP_DELAYED_REF) { 596 ASSERT(!list_empty(&exist->add_list)); 597 list_del_init(&exist->add_list); 598 } else { 599 ASSERT(0); 600 } 601 } else 602 mod = -ref->ref_mod; 603 } 604 exist->ref_mod += mod; 605 606 /* remove existing tail if its ref_mod is zero */ 607 if (exist->ref_mod == 0) 608 drop_delayed_ref(trans->fs_info, root, href, exist); 609 spin_unlock(&href->lock); 610 return true; 611 } 612 613 /* 614 * helper function to update the accounting in the head ref 615 * existing and update must have the same bytenr 616 */ 617 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans, 618 struct btrfs_delayed_ref_head *existing, 619 struct btrfs_delayed_ref_head *update) 620 { 621 struct btrfs_delayed_ref_root *delayed_refs = 622 &trans->transaction->delayed_refs; 623 struct btrfs_fs_info *fs_info = trans->fs_info; 624 int old_ref_mod; 625 626 BUG_ON(existing->is_data != update->is_data); 627 628 spin_lock(&existing->lock); 629 630 /* 631 * When freeing an extent, we may not know the owning root when we 632 * first create the head_ref. However, some deref before the last deref 633 * will know it, so we just need to update the head_ref accordingly. 634 */ 635 if (!existing->owning_root) 636 existing->owning_root = update->owning_root; 637 638 if (update->must_insert_reserved) { 639 /* if the extent was freed and then 640 * reallocated before the delayed ref 641 * entries were processed, we can end up 642 * with an existing head ref without 643 * the must_insert_reserved flag set. 644 * Set it again here 645 */ 646 existing->must_insert_reserved = update->must_insert_reserved; 647 existing->owning_root = update->owning_root; 648 649 /* 650 * update the num_bytes so we make sure the accounting 651 * is done correctly 652 */ 653 existing->num_bytes = update->num_bytes; 654 655 } 656 657 if (update->extent_op) { 658 if (!existing->extent_op) { 659 existing->extent_op = update->extent_op; 660 } else { 661 if (update->extent_op->update_key) { 662 memcpy(&existing->extent_op->key, 663 &update->extent_op->key, 664 sizeof(update->extent_op->key)); 665 existing->extent_op->update_key = true; 666 } 667 if (update->extent_op->update_flags) { 668 existing->extent_op->flags_to_set |= 669 update->extent_op->flags_to_set; 670 existing->extent_op->update_flags = true; 671 } 672 btrfs_free_delayed_extent_op(update->extent_op); 673 } 674 } 675 /* 676 * update the reference mod on the head to reflect this new operation, 677 * only need the lock for this case cause we could be processing it 678 * currently, for refs we just added we know we're a-ok. 679 */ 680 old_ref_mod = existing->total_ref_mod; 681 existing->ref_mod += update->ref_mod; 682 existing->total_ref_mod += update->ref_mod; 683 684 /* 685 * If we are going to from a positive ref mod to a negative or vice 686 * versa we need to make sure to adjust pending_csums accordingly. 687 * We reserve bytes for csum deletion when adding or updating a ref head 688 * see add_delayed_ref_head() for more details. 689 */ 690 if (existing->is_data) { 691 u64 csum_leaves = 692 btrfs_csum_bytes_to_leaves(fs_info, 693 existing->num_bytes); 694 695 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) { 696 delayed_refs->pending_csums -= existing->num_bytes; 697 btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves); 698 } 699 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) { 700 delayed_refs->pending_csums += existing->num_bytes; 701 trans->delayed_ref_csum_deletions += csum_leaves; 702 } 703 } 704 705 spin_unlock(&existing->lock); 706 } 707 708 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref, 709 struct btrfs_ref *generic_ref, 710 struct btrfs_qgroup_extent_record *qrecord, 711 u64 reserved) 712 { 713 int count_mod = 1; 714 bool must_insert_reserved = false; 715 716 /* If reserved is provided, it must be a data extent. */ 717 BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved); 718 719 switch (generic_ref->action) { 720 case BTRFS_ADD_DELAYED_REF: 721 /* count_mod is already set to 1. */ 722 break; 723 case BTRFS_UPDATE_DELAYED_HEAD: 724 count_mod = 0; 725 break; 726 case BTRFS_DROP_DELAYED_REF: 727 /* 728 * The head node stores the sum of all the mods, so dropping a ref 729 * should drop the sum in the head node by one. 730 */ 731 count_mod = -1; 732 break; 733 case BTRFS_ADD_DELAYED_EXTENT: 734 /* 735 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the 736 * reserved accounting when the extent is finally added, or if a 737 * later modification deletes the delayed ref without ever 738 * inserting the extent into the extent allocation tree. 739 * ref->must_insert_reserved is the flag used to record that 740 * accounting mods are required. 741 * 742 * Once we record must_insert_reserved, switch the action to 743 * BTRFS_ADD_DELAYED_REF because other special casing is not 744 * required. 745 */ 746 must_insert_reserved = true; 747 break; 748 } 749 750 refcount_set(&head_ref->refs, 1); 751 head_ref->bytenr = generic_ref->bytenr; 752 head_ref->num_bytes = generic_ref->num_bytes; 753 head_ref->ref_mod = count_mod; 754 head_ref->reserved_bytes = reserved; 755 head_ref->must_insert_reserved = must_insert_reserved; 756 head_ref->owning_root = generic_ref->owning_root; 757 head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA); 758 head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID); 759 head_ref->ref_tree = RB_ROOT_CACHED; 760 INIT_LIST_HEAD(&head_ref->ref_add_list); 761 head_ref->tracked = false; 762 head_ref->processing = false; 763 head_ref->total_ref_mod = count_mod; 764 spin_lock_init(&head_ref->lock); 765 mutex_init(&head_ref->mutex); 766 767 /* If not metadata set an impossible level to help debugging. */ 768 if (generic_ref->type == BTRFS_REF_METADATA) 769 head_ref->level = generic_ref->tree_ref.level; 770 else 771 head_ref->level = U8_MAX; 772 773 if (qrecord) { 774 if (generic_ref->ref_root && reserved) { 775 qrecord->data_rsv = reserved; 776 qrecord->data_rsv_refroot = generic_ref->ref_root; 777 } 778 qrecord->num_bytes = generic_ref->num_bytes; 779 qrecord->old_roots = NULL; 780 } 781 } 782 783 /* 784 * helper function to actually insert a head node into the rbtree. 785 * this does all the dirty work in terms of maintaining the correct 786 * overall modification count. 787 * 788 * Returns an error pointer in case of an error. 789 */ 790 static noinline struct btrfs_delayed_ref_head * 791 add_delayed_ref_head(struct btrfs_trans_handle *trans, 792 struct btrfs_delayed_ref_head *head_ref, 793 struct btrfs_qgroup_extent_record *qrecord, 794 int action, bool *qrecord_inserted_ret) 795 { 796 struct btrfs_fs_info *fs_info = trans->fs_info; 797 struct btrfs_delayed_ref_head *existing; 798 struct btrfs_delayed_ref_root *delayed_refs; 799 const unsigned long index = (head_ref->bytenr >> fs_info->sectorsize_bits); 800 bool qrecord_inserted = false; 801 802 delayed_refs = &trans->transaction->delayed_refs; 803 lockdep_assert_held(&delayed_refs->lock); 804 805 #if BITS_PER_LONG == 32 806 if (head_ref->bytenr >= MAX_LFS_FILESIZE) { 807 if (qrecord) 808 xa_release(&delayed_refs->dirty_extents, index); 809 btrfs_err_rl(fs_info, 810 "delayed ref head %llu is beyond 32bit page cache and xarray index limit", 811 head_ref->bytenr); 812 btrfs_err_32bit_limit(fs_info); 813 return ERR_PTR(-EOVERFLOW); 814 } 815 #endif 816 817 /* Record qgroup extent info if provided */ 818 if (qrecord) { 819 int ret; 820 821 ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, qrecord, 822 head_ref->bytenr); 823 if (ret) { 824 /* Clean up if insertion fails or item exists. */ 825 xa_release(&delayed_refs->dirty_extents, index); 826 /* Caller responsible for freeing qrecord on error. */ 827 if (ret < 0) 828 return ERR_PTR(ret); 829 kfree(qrecord); 830 } else { 831 qrecord_inserted = true; 832 } 833 } 834 835 trace_add_delayed_ref_head(fs_info, head_ref, action); 836 837 existing = xa_load(&delayed_refs->head_refs, index); 838 if (existing) { 839 update_existing_head_ref(trans, existing, head_ref); 840 /* 841 * we've updated the existing ref, free the newly 842 * allocated ref 843 */ 844 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 845 head_ref = existing; 846 } else { 847 existing = xa_store(&delayed_refs->head_refs, index, head_ref, GFP_ATOMIC); 848 if (xa_is_err(existing)) { 849 /* Memory was preallocated by the caller. */ 850 ASSERT(xa_err(existing) != -ENOMEM); 851 return ERR_PTR(xa_err(existing)); 852 } else if (WARN_ON(existing)) { 853 /* 854 * Shouldn't happen we just did a lookup before under 855 * delayed_refs->lock. 856 */ 857 return ERR_PTR(-EEXIST); 858 } 859 head_ref->tracked = true; 860 /* 861 * We reserve the amount of bytes needed to delete csums when 862 * adding the ref head and not when adding individual drop refs 863 * since the csum items are deleted only after running the last 864 * delayed drop ref (the data extent's ref count drops to 0). 865 */ 866 if (head_ref->is_data && head_ref->ref_mod < 0) { 867 delayed_refs->pending_csums += head_ref->num_bytes; 868 trans->delayed_ref_csum_deletions += 869 btrfs_csum_bytes_to_leaves(fs_info, head_ref->num_bytes); 870 } 871 delayed_refs->num_heads++; 872 delayed_refs->num_heads_ready++; 873 } 874 if (qrecord_inserted_ret) 875 *qrecord_inserted_ret = qrecord_inserted; 876 877 return head_ref; 878 } 879 880 /* 881 * Initialize the structure which represents a modification to a an extent. 882 * 883 * @fs_info: Internal to the mounted filesystem mount structure. 884 * 885 * @ref: The structure which is going to be initialized. 886 * 887 * @bytenr: The logical address of the extent for which a modification is 888 * going to be recorded. 889 * 890 * @num_bytes: Size of the extent whose modification is being recorded. 891 * 892 * @ref_root: The id of the root where this modification has originated, this 893 * can be either one of the well-known metadata trees or the 894 * subvolume id which references this extent. 895 * 896 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or 897 * BTRFS_ADD_DELAYED_EXTENT 898 * 899 * @ref_type: Holds the type of the extent which is being recorded, can be 900 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY 901 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/ 902 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent 903 */ 904 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info, 905 struct btrfs_delayed_ref_node *ref, 906 struct btrfs_ref *generic_ref) 907 { 908 int action = generic_ref->action; 909 u64 seq = 0; 910 911 if (action == BTRFS_ADD_DELAYED_EXTENT) 912 action = BTRFS_ADD_DELAYED_REF; 913 914 if (is_fstree(generic_ref->ref_root)) 915 seq = atomic64_read(&fs_info->tree_mod_seq); 916 917 refcount_set(&ref->refs, 1); 918 ref->bytenr = generic_ref->bytenr; 919 ref->num_bytes = generic_ref->num_bytes; 920 ref->ref_mod = 1; 921 ref->action = action; 922 ref->seq = seq; 923 ref->type = btrfs_ref_type(generic_ref); 924 ref->ref_root = generic_ref->ref_root; 925 ref->parent = generic_ref->parent; 926 RB_CLEAR_NODE(&ref->ref_node); 927 INIT_LIST_HEAD(&ref->add_list); 928 929 if (generic_ref->type == BTRFS_REF_DATA) 930 ref->data_ref = generic_ref->data_ref; 931 else 932 ref->tree_ref = generic_ref->tree_ref; 933 } 934 935 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root, 936 bool skip_qgroup) 937 { 938 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 939 /* If @real_root not set, use @root as fallback */ 940 generic_ref->real_root = mod_root ?: generic_ref->ref_root; 941 #endif 942 generic_ref->tree_ref.level = level; 943 generic_ref->type = BTRFS_REF_METADATA; 944 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) && 945 (!mod_root || is_fstree(mod_root)))) 946 generic_ref->skip_qgroup = true; 947 else 948 generic_ref->skip_qgroup = false; 949 950 } 951 952 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset, 953 u64 mod_root, bool skip_qgroup) 954 { 955 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 956 /* If @real_root not set, use @root as fallback */ 957 generic_ref->real_root = mod_root ?: generic_ref->ref_root; 958 #endif 959 generic_ref->data_ref.objectid = ino; 960 generic_ref->data_ref.offset = offset; 961 generic_ref->type = BTRFS_REF_DATA; 962 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) && 963 (!mod_root || is_fstree(mod_root)))) 964 generic_ref->skip_qgroup = true; 965 else 966 generic_ref->skip_qgroup = false; 967 } 968 969 static int add_delayed_ref(struct btrfs_trans_handle *trans, 970 struct btrfs_ref *generic_ref, 971 struct btrfs_delayed_extent_op *extent_op, 972 u64 reserved) 973 { 974 struct btrfs_fs_info *fs_info = trans->fs_info; 975 struct btrfs_delayed_ref_node *node; 976 struct btrfs_delayed_ref_head *head_ref; 977 struct btrfs_delayed_ref_head *new_head_ref; 978 struct btrfs_delayed_ref_root *delayed_refs; 979 struct btrfs_qgroup_extent_record *record = NULL; 980 const unsigned long index = (generic_ref->bytenr >> fs_info->sectorsize_bits); 981 bool qrecord_reserved = false; 982 bool qrecord_inserted; 983 int action = generic_ref->action; 984 bool merged; 985 int ret; 986 987 node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS); 988 if (!node) 989 return -ENOMEM; 990 991 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 992 if (!head_ref) { 993 ret = -ENOMEM; 994 goto free_node; 995 } 996 997 delayed_refs = &trans->transaction->delayed_refs; 998 999 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) { 1000 record = kzalloc(sizeof(*record), GFP_NOFS); 1001 if (!record) { 1002 ret = -ENOMEM; 1003 goto free_head_ref; 1004 } 1005 if (xa_reserve(&delayed_refs->dirty_extents, index, GFP_NOFS)) { 1006 ret = -ENOMEM; 1007 goto free_record; 1008 } 1009 qrecord_reserved = true; 1010 } 1011 1012 ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS); 1013 if (ret) { 1014 if (qrecord_reserved) 1015 xa_release(&delayed_refs->dirty_extents, index); 1016 goto free_record; 1017 } 1018 1019 init_delayed_ref_common(fs_info, node, generic_ref); 1020 init_delayed_ref_head(head_ref, generic_ref, record, reserved); 1021 head_ref->extent_op = extent_op; 1022 1023 spin_lock(&delayed_refs->lock); 1024 1025 /* 1026 * insert both the head node and the new ref without dropping 1027 * the spin lock 1028 */ 1029 new_head_ref = add_delayed_ref_head(trans, head_ref, record, 1030 action, &qrecord_inserted); 1031 if (IS_ERR(new_head_ref)) { 1032 xa_release(&delayed_refs->head_refs, index); 1033 spin_unlock(&delayed_refs->lock); 1034 ret = PTR_ERR(new_head_ref); 1035 goto free_record; 1036 } 1037 head_ref = new_head_ref; 1038 1039 merged = insert_delayed_ref(trans, head_ref, node); 1040 spin_unlock(&delayed_refs->lock); 1041 1042 /* 1043 * Need to update the delayed_refs_rsv with any changes we may have 1044 * made. 1045 */ 1046 btrfs_update_delayed_refs_rsv(trans); 1047 1048 if (generic_ref->type == BTRFS_REF_DATA) 1049 trace_add_delayed_data_ref(trans->fs_info, node); 1050 else 1051 trace_add_delayed_tree_ref(trans->fs_info, node); 1052 if (merged) 1053 kmem_cache_free(btrfs_delayed_ref_node_cachep, node); 1054 1055 if (qrecord_inserted) 1056 return btrfs_qgroup_trace_extent_post(trans, record, generic_ref->bytenr); 1057 return 0; 1058 1059 free_record: 1060 kfree(record); 1061 free_head_ref: 1062 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 1063 free_node: 1064 kmem_cache_free(btrfs_delayed_ref_node_cachep, node); 1065 return ret; 1066 } 1067 1068 /* 1069 * Add a delayed tree ref. This does all of the accounting required to make sure 1070 * the delayed ref is eventually processed before this transaction commits. 1071 */ 1072 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 1073 struct btrfs_ref *generic_ref, 1074 struct btrfs_delayed_extent_op *extent_op) 1075 { 1076 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action); 1077 return add_delayed_ref(trans, generic_ref, extent_op, 0); 1078 } 1079 1080 /* 1081 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 1082 */ 1083 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 1084 struct btrfs_ref *generic_ref, 1085 u64 reserved) 1086 { 1087 ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action); 1088 return add_delayed_ref(trans, generic_ref, NULL, reserved); 1089 } 1090 1091 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, 1092 u64 bytenr, u64 num_bytes, u8 level, 1093 struct btrfs_delayed_extent_op *extent_op) 1094 { 1095 const unsigned long index = (bytenr >> trans->fs_info->sectorsize_bits); 1096 struct btrfs_delayed_ref_head *head_ref; 1097 struct btrfs_delayed_ref_head *head_ref_ret; 1098 struct btrfs_delayed_ref_root *delayed_refs; 1099 struct btrfs_ref generic_ref = { 1100 .type = BTRFS_REF_METADATA, 1101 .action = BTRFS_UPDATE_DELAYED_HEAD, 1102 .bytenr = bytenr, 1103 .num_bytes = num_bytes, 1104 .tree_ref.level = level, 1105 }; 1106 int ret; 1107 1108 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1109 if (!head_ref) 1110 return -ENOMEM; 1111 1112 init_delayed_ref_head(head_ref, &generic_ref, NULL, 0); 1113 head_ref->extent_op = extent_op; 1114 1115 delayed_refs = &trans->transaction->delayed_refs; 1116 1117 ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS); 1118 if (ret) { 1119 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 1120 return ret; 1121 } 1122 1123 spin_lock(&delayed_refs->lock); 1124 head_ref_ret = add_delayed_ref_head(trans, head_ref, NULL, 1125 BTRFS_UPDATE_DELAYED_HEAD, NULL); 1126 if (IS_ERR(head_ref_ret)) { 1127 xa_release(&delayed_refs->head_refs, index); 1128 spin_unlock(&delayed_refs->lock); 1129 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 1130 return PTR_ERR(head_ref_ret); 1131 } 1132 spin_unlock(&delayed_refs->lock); 1133 1134 /* 1135 * Need to update the delayed_refs_rsv with any changes we may have 1136 * made. 1137 */ 1138 btrfs_update_delayed_refs_rsv(trans); 1139 return 0; 1140 } 1141 1142 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref) 1143 { 1144 if (refcount_dec_and_test(&ref->refs)) { 1145 WARN_ON(!RB_EMPTY_NODE(&ref->ref_node)); 1146 kmem_cache_free(btrfs_delayed_ref_node_cachep, ref); 1147 } 1148 } 1149 1150 /* 1151 * This does a simple search for the head node for a given extent. Returns the 1152 * head node if found, or NULL if not. 1153 */ 1154 struct btrfs_delayed_ref_head * 1155 btrfs_find_delayed_ref_head(const struct btrfs_fs_info *fs_info, 1156 struct btrfs_delayed_ref_root *delayed_refs, 1157 u64 bytenr) 1158 { 1159 const unsigned long index = (bytenr >> fs_info->sectorsize_bits); 1160 1161 lockdep_assert_held(&delayed_refs->lock); 1162 1163 return xa_load(&delayed_refs->head_refs, index); 1164 } 1165 1166 static int find_comp(struct btrfs_delayed_ref_node *entry, u64 root, u64 parent) 1167 { 1168 int type = parent ? BTRFS_SHARED_BLOCK_REF_KEY : BTRFS_TREE_BLOCK_REF_KEY; 1169 1170 if (type < entry->type) 1171 return -1; 1172 if (type > entry->type) 1173 return 1; 1174 1175 if (type == BTRFS_TREE_BLOCK_REF_KEY) { 1176 if (root < entry->ref_root) 1177 return -1; 1178 if (root > entry->ref_root) 1179 return 1; 1180 } else { 1181 if (parent < entry->parent) 1182 return -1; 1183 if (parent > entry->parent) 1184 return 1; 1185 } 1186 return 0; 1187 } 1188 1189 /* 1190 * Check to see if a given root/parent reference is attached to the head. This 1191 * only checks for BTRFS_ADD_DELAYED_REF references that match, as that 1192 * indicates the reference exists for the given root or parent. This is for 1193 * tree blocks only. 1194 * 1195 * @head: the head of the bytenr we're searching. 1196 * @root: the root objectid of the reference if it is a normal reference. 1197 * @parent: the parent if this is a shared backref. 1198 */ 1199 bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head, 1200 u64 root, u64 parent) 1201 { 1202 struct rb_node *node; 1203 bool found = false; 1204 1205 lockdep_assert_held(&head->mutex); 1206 1207 spin_lock(&head->lock); 1208 node = head->ref_tree.rb_root.rb_node; 1209 while (node) { 1210 struct btrfs_delayed_ref_node *entry; 1211 int ret; 1212 1213 entry = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 1214 ret = find_comp(entry, root, parent); 1215 if (ret < 0) { 1216 node = node->rb_left; 1217 } else if (ret > 0) { 1218 node = node->rb_right; 1219 } else { 1220 /* 1221 * We only want to count ADD actions, as drops mean the 1222 * ref doesn't exist. 1223 */ 1224 if (entry->action == BTRFS_ADD_DELAYED_REF) 1225 found = true; 1226 break; 1227 } 1228 } 1229 spin_unlock(&head->lock); 1230 return found; 1231 } 1232 1233 void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans) 1234 { 1235 struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs; 1236 struct btrfs_fs_info *fs_info = trans->fs_info; 1237 1238 spin_lock(&delayed_refs->lock); 1239 while (true) { 1240 struct btrfs_delayed_ref_head *head; 1241 struct rb_node *n; 1242 bool pin_bytes = false; 1243 1244 head = find_first_ref_head(delayed_refs); 1245 if (!head) 1246 break; 1247 1248 if (!btrfs_delayed_ref_lock(delayed_refs, head)) 1249 continue; 1250 1251 spin_lock(&head->lock); 1252 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 1253 struct btrfs_delayed_ref_node *ref; 1254 1255 ref = rb_entry(n, struct btrfs_delayed_ref_node, ref_node); 1256 drop_delayed_ref(fs_info, delayed_refs, head, ref); 1257 } 1258 if (head->must_insert_reserved) 1259 pin_bytes = true; 1260 btrfs_free_delayed_extent_op(head->extent_op); 1261 btrfs_delete_ref_head(fs_info, delayed_refs, head); 1262 spin_unlock(&head->lock); 1263 spin_unlock(&delayed_refs->lock); 1264 mutex_unlock(&head->mutex); 1265 1266 if (pin_bytes) { 1267 struct btrfs_block_group *bg; 1268 1269 bg = btrfs_lookup_block_group(fs_info, head->bytenr); 1270 if (WARN_ON_ONCE(bg == NULL)) { 1271 /* 1272 * Unexpected and there's nothing we can do here 1273 * because we are in a transaction abort path, 1274 * so any errors can only be ignored or reported 1275 * while attempting to cleanup all resources. 1276 */ 1277 btrfs_err(fs_info, 1278 "block group for delayed ref at %llu was not found while destroying ref head", 1279 head->bytenr); 1280 } else { 1281 spin_lock(&bg->space_info->lock); 1282 spin_lock(&bg->lock); 1283 bg->pinned += head->num_bytes; 1284 btrfs_space_info_update_bytes_pinned(fs_info, 1285 bg->space_info, 1286 head->num_bytes); 1287 bg->reserved -= head->num_bytes; 1288 bg->space_info->bytes_reserved -= head->num_bytes; 1289 spin_unlock(&bg->lock); 1290 spin_unlock(&bg->space_info->lock); 1291 1292 btrfs_put_block_group(bg); 1293 } 1294 1295 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 1296 head->bytenr + head->num_bytes - 1); 1297 } 1298 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1299 btrfs_put_delayed_ref_head(head); 1300 cond_resched(); 1301 spin_lock(&delayed_refs->lock); 1302 } 1303 btrfs_qgroup_destroy_extent_records(trans); 1304 1305 spin_unlock(&delayed_refs->lock); 1306 } 1307 1308 void __cold btrfs_delayed_ref_exit(void) 1309 { 1310 kmem_cache_destroy(btrfs_delayed_ref_head_cachep); 1311 kmem_cache_destroy(btrfs_delayed_ref_node_cachep); 1312 kmem_cache_destroy(btrfs_delayed_extent_op_cachep); 1313 } 1314 1315 int __init btrfs_delayed_ref_init(void) 1316 { 1317 btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0); 1318 if (!btrfs_delayed_ref_head_cachep) 1319 goto fail; 1320 1321 btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0); 1322 if (!btrfs_delayed_ref_node_cachep) 1323 goto fail; 1324 1325 btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0); 1326 if (!btrfs_delayed_extent_op_cachep) 1327 goto fail; 1328 1329 return 0; 1330 fail: 1331 btrfs_delayed_ref_exit(); 1332 return -ENOMEM; 1333 } 1334