xref: /linux/fs/btrfs/delayed-ref.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include "ctree.h"
23 #include "delayed-ref.h"
24 #include "transaction.h"
25 
26 /*
27  * delayed back reference update tracking.  For subvolume trees
28  * we queue up extent allocations and backref maintenance for
29  * delayed processing.   This avoids deep call chains where we
30  * add extents in the middle of btrfs_search_slot, and it allows
31  * us to buffer up frequently modified backrefs in an rb tree instead
32  * of hammering updates on the extent allocation tree.
33  */
34 
35 /*
36  * compare two delayed tree backrefs with same bytenr and type
37  */
38 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
39 			  struct btrfs_delayed_tree_ref *ref1)
40 {
41 	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
42 		if (ref1->root < ref2->root)
43 			return -1;
44 		if (ref1->root > ref2->root)
45 			return 1;
46 	} else {
47 		if (ref1->parent < ref2->parent)
48 			return -1;
49 		if (ref1->parent > ref2->parent)
50 			return 1;
51 	}
52 	return 0;
53 }
54 
55 /*
56  * compare two delayed data backrefs with same bytenr and type
57  */
58 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
59 			  struct btrfs_delayed_data_ref *ref1)
60 {
61 	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
62 		if (ref1->root < ref2->root)
63 			return -1;
64 		if (ref1->root > ref2->root)
65 			return 1;
66 		if (ref1->objectid < ref2->objectid)
67 			return -1;
68 		if (ref1->objectid > ref2->objectid)
69 			return 1;
70 		if (ref1->offset < ref2->offset)
71 			return -1;
72 		if (ref1->offset > ref2->offset)
73 			return 1;
74 	} else {
75 		if (ref1->parent < ref2->parent)
76 			return -1;
77 		if (ref1->parent > ref2->parent)
78 			return 1;
79 	}
80 	return 0;
81 }
82 
83 /*
84  * entries in the rb tree are ordered by the byte number of the extent,
85  * type of the delayed backrefs and content of delayed backrefs.
86  */
87 static int comp_entry(struct btrfs_delayed_ref_node *ref2,
88 		      struct btrfs_delayed_ref_node *ref1)
89 {
90 	if (ref1->bytenr < ref2->bytenr)
91 		return -1;
92 	if (ref1->bytenr > ref2->bytenr)
93 		return 1;
94 	if (ref1->is_head && ref2->is_head)
95 		return 0;
96 	if (ref2->is_head)
97 		return -1;
98 	if (ref1->is_head)
99 		return 1;
100 	if (ref1->type < ref2->type)
101 		return -1;
102 	if (ref1->type > ref2->type)
103 		return 1;
104 	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
105 	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
106 		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
107 				      btrfs_delayed_node_to_tree_ref(ref1));
108 	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
109 		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
110 		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
111 				      btrfs_delayed_node_to_data_ref(ref1));
112 	}
113 	BUG();
114 	return 0;
115 }
116 
117 /*
118  * insert a new ref into the rbtree.  This returns any existing refs
119  * for the same (bytenr,parent) tuple, or NULL if the new node was properly
120  * inserted.
121  */
122 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
123 						  struct rb_node *node)
124 {
125 	struct rb_node **p = &root->rb_node;
126 	struct rb_node *parent_node = NULL;
127 	struct btrfs_delayed_ref_node *entry;
128 	struct btrfs_delayed_ref_node *ins;
129 	int cmp;
130 
131 	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
132 	while (*p) {
133 		parent_node = *p;
134 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
135 				 rb_node);
136 
137 		cmp = comp_entry(entry, ins);
138 		if (cmp < 0)
139 			p = &(*p)->rb_left;
140 		else if (cmp > 0)
141 			p = &(*p)->rb_right;
142 		else
143 			return entry;
144 	}
145 
146 	rb_link_node(node, parent_node, p);
147 	rb_insert_color(node, root);
148 	return NULL;
149 }
150 
151 /*
152  * find an head entry based on bytenr. This returns the delayed ref
153  * head if it was able to find one, or NULL if nothing was in that spot
154  */
155 static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
156 				  u64 bytenr,
157 				  struct btrfs_delayed_ref_node **last)
158 {
159 	struct rb_node *n = root->rb_node;
160 	struct btrfs_delayed_ref_node *entry;
161 	int cmp;
162 
163 	while (n) {
164 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
165 		WARN_ON(!entry->in_tree);
166 		if (last)
167 			*last = entry;
168 
169 		if (bytenr < entry->bytenr)
170 			cmp = -1;
171 		else if (bytenr > entry->bytenr)
172 			cmp = 1;
173 		else if (!btrfs_delayed_ref_is_head(entry))
174 			cmp = 1;
175 		else
176 			cmp = 0;
177 
178 		if (cmp < 0)
179 			n = n->rb_left;
180 		else if (cmp > 0)
181 			n = n->rb_right;
182 		else
183 			return entry;
184 	}
185 	return NULL;
186 }
187 
188 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
189 			   struct btrfs_delayed_ref_head *head)
190 {
191 	struct btrfs_delayed_ref_root *delayed_refs;
192 
193 	delayed_refs = &trans->transaction->delayed_refs;
194 	assert_spin_locked(&delayed_refs->lock);
195 	if (mutex_trylock(&head->mutex))
196 		return 0;
197 
198 	atomic_inc(&head->node.refs);
199 	spin_unlock(&delayed_refs->lock);
200 
201 	mutex_lock(&head->mutex);
202 	spin_lock(&delayed_refs->lock);
203 	if (!head->node.in_tree) {
204 		mutex_unlock(&head->mutex);
205 		btrfs_put_delayed_ref(&head->node);
206 		return -EAGAIN;
207 	}
208 	btrfs_put_delayed_ref(&head->node);
209 	return 0;
210 }
211 
212 int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
213 			   struct list_head *cluster, u64 start)
214 {
215 	int count = 0;
216 	struct btrfs_delayed_ref_root *delayed_refs;
217 	struct rb_node *node;
218 	struct btrfs_delayed_ref_node *ref;
219 	struct btrfs_delayed_ref_head *head;
220 
221 	delayed_refs = &trans->transaction->delayed_refs;
222 	if (start == 0) {
223 		node = rb_first(&delayed_refs->root);
224 	} else {
225 		ref = NULL;
226 		find_ref_head(&delayed_refs->root, start, &ref);
227 		if (ref) {
228 			struct btrfs_delayed_ref_node *tmp;
229 
230 			node = rb_prev(&ref->rb_node);
231 			while (node) {
232 				tmp = rb_entry(node,
233 					       struct btrfs_delayed_ref_node,
234 					       rb_node);
235 				if (tmp->bytenr < start)
236 					break;
237 				ref = tmp;
238 				node = rb_prev(&ref->rb_node);
239 			}
240 			node = &ref->rb_node;
241 		} else
242 			node = rb_first(&delayed_refs->root);
243 	}
244 again:
245 	while (node && count < 32) {
246 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
247 		if (btrfs_delayed_ref_is_head(ref)) {
248 			head = btrfs_delayed_node_to_head(ref);
249 			if (list_empty(&head->cluster)) {
250 				list_add_tail(&head->cluster, cluster);
251 				delayed_refs->run_delayed_start =
252 					head->node.bytenr;
253 				count++;
254 
255 				WARN_ON(delayed_refs->num_heads_ready == 0);
256 				delayed_refs->num_heads_ready--;
257 			} else if (count) {
258 				/* the goal of the clustering is to find extents
259 				 * that are likely to end up in the same extent
260 				 * leaf on disk.  So, we don't want them spread
261 				 * all over the tree.  Stop now if we've hit
262 				 * a head that was already in use
263 				 */
264 				break;
265 			}
266 		}
267 		node = rb_next(node);
268 	}
269 	if (count) {
270 		return 0;
271 	} else if (start) {
272 		/*
273 		 * we've gone to the end of the rbtree without finding any
274 		 * clusters.  start from the beginning and try again
275 		 */
276 		start = 0;
277 		node = rb_first(&delayed_refs->root);
278 		goto again;
279 	}
280 	return 1;
281 }
282 
283 /*
284  * This checks to see if there are any delayed refs in the
285  * btree for a given bytenr.  It returns one if it finds any
286  * and zero otherwise.
287  *
288  * If it only finds a head node, it returns 0.
289  *
290  * The idea is to use this when deciding if you can safely delete an
291  * extent from the extent allocation tree.  There may be a pending
292  * ref in the rbtree that adds or removes references, so as long as this
293  * returns one you need to leave the BTRFS_EXTENT_ITEM in the extent
294  * allocation tree.
295  */
296 int btrfs_delayed_ref_pending(struct btrfs_trans_handle *trans, u64 bytenr)
297 {
298 	struct btrfs_delayed_ref_node *ref;
299 	struct btrfs_delayed_ref_root *delayed_refs;
300 	struct rb_node *prev_node;
301 	int ret = 0;
302 
303 	delayed_refs = &trans->transaction->delayed_refs;
304 	spin_lock(&delayed_refs->lock);
305 
306 	ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
307 	if (ref) {
308 		prev_node = rb_prev(&ref->rb_node);
309 		if (!prev_node)
310 			goto out;
311 		ref = rb_entry(prev_node, struct btrfs_delayed_ref_node,
312 			       rb_node);
313 		if (ref->bytenr == bytenr)
314 			ret = 1;
315 	}
316 out:
317 	spin_unlock(&delayed_refs->lock);
318 	return ret;
319 }
320 
321 /*
322  * helper function to lookup reference count and flags of extent.
323  *
324  * the head node for delayed ref is used to store the sum of all the
325  * reference count modifications queued up in the rbtree. the head
326  * node may also store the extent flags to set. This way you can check
327  * to see what the reference count and extent flags would be if all of
328  * the delayed refs are not processed.
329  */
330 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
331 			     struct btrfs_root *root, u64 bytenr,
332 			     u64 num_bytes, u64 *refs, u64 *flags)
333 {
334 	struct btrfs_delayed_ref_node *ref;
335 	struct btrfs_delayed_ref_head *head;
336 	struct btrfs_delayed_ref_root *delayed_refs;
337 	struct btrfs_path *path;
338 	struct btrfs_extent_item *ei;
339 	struct extent_buffer *leaf;
340 	struct btrfs_key key;
341 	u32 item_size;
342 	u64 num_refs;
343 	u64 extent_flags;
344 	int ret;
345 
346 	path = btrfs_alloc_path();
347 	if (!path)
348 		return -ENOMEM;
349 
350 	key.objectid = bytenr;
351 	key.type = BTRFS_EXTENT_ITEM_KEY;
352 	key.offset = num_bytes;
353 	delayed_refs = &trans->transaction->delayed_refs;
354 again:
355 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
356 				&key, path, 0, 0);
357 	if (ret < 0)
358 		goto out;
359 
360 	if (ret == 0) {
361 		leaf = path->nodes[0];
362 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
363 		if (item_size >= sizeof(*ei)) {
364 			ei = btrfs_item_ptr(leaf, path->slots[0],
365 					    struct btrfs_extent_item);
366 			num_refs = btrfs_extent_refs(leaf, ei);
367 			extent_flags = btrfs_extent_flags(leaf, ei);
368 		} else {
369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
370 			struct btrfs_extent_item_v0 *ei0;
371 			BUG_ON(item_size != sizeof(*ei0));
372 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
373 					     struct btrfs_extent_item_v0);
374 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
375 			/* FIXME: this isn't correct for data */
376 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
377 #else
378 			BUG();
379 #endif
380 		}
381 		BUG_ON(num_refs == 0);
382 	} else {
383 		num_refs = 0;
384 		extent_flags = 0;
385 		ret = 0;
386 	}
387 
388 	spin_lock(&delayed_refs->lock);
389 	ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
390 	if (ref) {
391 		head = btrfs_delayed_node_to_head(ref);
392 		if (!mutex_trylock(&head->mutex)) {
393 			atomic_inc(&ref->refs);
394 			spin_unlock(&delayed_refs->lock);
395 
396 			btrfs_release_path(root->fs_info->extent_root, path);
397 
398 			mutex_lock(&head->mutex);
399 			mutex_unlock(&head->mutex);
400 			btrfs_put_delayed_ref(ref);
401 			goto again;
402 		}
403 		if (head->extent_op && head->extent_op->update_flags)
404 			extent_flags |= head->extent_op->flags_to_set;
405 		else
406 			BUG_ON(num_refs == 0);
407 
408 		num_refs += ref->ref_mod;
409 		mutex_unlock(&head->mutex);
410 	}
411 	WARN_ON(num_refs == 0);
412 	if (refs)
413 		*refs = num_refs;
414 	if (flags)
415 		*flags = extent_flags;
416 out:
417 	spin_unlock(&delayed_refs->lock);
418 	btrfs_free_path(path);
419 	return ret;
420 }
421 
422 /*
423  * helper function to update an extent delayed ref in the
424  * rbtree.  existing and update must both have the same
425  * bytenr and parent
426  *
427  * This may free existing if the update cancels out whatever
428  * operation it was doing.
429  */
430 static noinline void
431 update_existing_ref(struct btrfs_trans_handle *trans,
432 		    struct btrfs_delayed_ref_root *delayed_refs,
433 		    struct btrfs_delayed_ref_node *existing,
434 		    struct btrfs_delayed_ref_node *update)
435 {
436 	if (update->action != existing->action) {
437 		/*
438 		 * this is effectively undoing either an add or a
439 		 * drop.  We decrement the ref_mod, and if it goes
440 		 * down to zero we just delete the entry without
441 		 * every changing the extent allocation tree.
442 		 */
443 		existing->ref_mod--;
444 		if (existing->ref_mod == 0) {
445 			rb_erase(&existing->rb_node,
446 				 &delayed_refs->root);
447 			existing->in_tree = 0;
448 			btrfs_put_delayed_ref(existing);
449 			delayed_refs->num_entries--;
450 			if (trans->delayed_ref_updates)
451 				trans->delayed_ref_updates--;
452 		} else {
453 			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
454 				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
455 		}
456 	} else {
457 		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
458 			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
459 		/*
460 		 * the action on the existing ref matches
461 		 * the action on the ref we're trying to add.
462 		 * Bump the ref_mod by one so the backref that
463 		 * is eventually added/removed has the correct
464 		 * reference count
465 		 */
466 		existing->ref_mod += update->ref_mod;
467 	}
468 }
469 
470 /*
471  * helper function to update the accounting in the head ref
472  * existing and update must have the same bytenr
473  */
474 static noinline void
475 update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
476 			 struct btrfs_delayed_ref_node *update)
477 {
478 	struct btrfs_delayed_ref_head *existing_ref;
479 	struct btrfs_delayed_ref_head *ref;
480 
481 	existing_ref = btrfs_delayed_node_to_head(existing);
482 	ref = btrfs_delayed_node_to_head(update);
483 	BUG_ON(existing_ref->is_data != ref->is_data);
484 
485 	if (ref->must_insert_reserved) {
486 		/* if the extent was freed and then
487 		 * reallocated before the delayed ref
488 		 * entries were processed, we can end up
489 		 * with an existing head ref without
490 		 * the must_insert_reserved flag set.
491 		 * Set it again here
492 		 */
493 		existing_ref->must_insert_reserved = ref->must_insert_reserved;
494 
495 		/*
496 		 * update the num_bytes so we make sure the accounting
497 		 * is done correctly
498 		 */
499 		existing->num_bytes = update->num_bytes;
500 
501 	}
502 
503 	if (ref->extent_op) {
504 		if (!existing_ref->extent_op) {
505 			existing_ref->extent_op = ref->extent_op;
506 		} else {
507 			if (ref->extent_op->update_key) {
508 				memcpy(&existing_ref->extent_op->key,
509 				       &ref->extent_op->key,
510 				       sizeof(ref->extent_op->key));
511 				existing_ref->extent_op->update_key = 1;
512 			}
513 			if (ref->extent_op->update_flags) {
514 				existing_ref->extent_op->flags_to_set |=
515 					ref->extent_op->flags_to_set;
516 				existing_ref->extent_op->update_flags = 1;
517 			}
518 			kfree(ref->extent_op);
519 		}
520 	}
521 	/*
522 	 * update the reference mod on the head to reflect this new operation
523 	 */
524 	existing->ref_mod += update->ref_mod;
525 }
526 
527 /*
528  * helper function to actually insert a head node into the rbtree.
529  * this does all the dirty work in terms of maintaining the correct
530  * overall modification count.
531  */
532 static noinline int add_delayed_ref_head(struct btrfs_trans_handle *trans,
533 					struct btrfs_delayed_ref_node *ref,
534 					u64 bytenr, u64 num_bytes,
535 					int action, int is_data)
536 {
537 	struct btrfs_delayed_ref_node *existing;
538 	struct btrfs_delayed_ref_head *head_ref = NULL;
539 	struct btrfs_delayed_ref_root *delayed_refs;
540 	int count_mod = 1;
541 	int must_insert_reserved = 0;
542 
543 	/*
544 	 * the head node stores the sum of all the mods, so dropping a ref
545 	 * should drop the sum in the head node by one.
546 	 */
547 	if (action == BTRFS_UPDATE_DELAYED_HEAD)
548 		count_mod = 0;
549 	else if (action == BTRFS_DROP_DELAYED_REF)
550 		count_mod = -1;
551 
552 	/*
553 	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
554 	 * the reserved accounting when the extent is finally added, or
555 	 * if a later modification deletes the delayed ref without ever
556 	 * inserting the extent into the extent allocation tree.
557 	 * ref->must_insert_reserved is the flag used to record
558 	 * that accounting mods are required.
559 	 *
560 	 * Once we record must_insert_reserved, switch the action to
561 	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
562 	 */
563 	if (action == BTRFS_ADD_DELAYED_EXTENT)
564 		must_insert_reserved = 1;
565 	else
566 		must_insert_reserved = 0;
567 
568 	delayed_refs = &trans->transaction->delayed_refs;
569 
570 	/* first set the basic ref node struct up */
571 	atomic_set(&ref->refs, 1);
572 	ref->bytenr = bytenr;
573 	ref->num_bytes = num_bytes;
574 	ref->ref_mod = count_mod;
575 	ref->type  = 0;
576 	ref->action  = 0;
577 	ref->is_head = 1;
578 	ref->in_tree = 1;
579 
580 	head_ref = btrfs_delayed_node_to_head(ref);
581 	head_ref->must_insert_reserved = must_insert_reserved;
582 	head_ref->is_data = is_data;
583 
584 	INIT_LIST_HEAD(&head_ref->cluster);
585 	mutex_init(&head_ref->mutex);
586 
587 	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
588 
589 	if (existing) {
590 		update_existing_head_ref(existing, ref);
591 		/*
592 		 * we've updated the existing ref, free the newly
593 		 * allocated ref
594 		 */
595 		kfree(ref);
596 	} else {
597 		delayed_refs->num_heads++;
598 		delayed_refs->num_heads_ready++;
599 		delayed_refs->num_entries++;
600 		trans->delayed_ref_updates++;
601 	}
602 	return 0;
603 }
604 
605 /*
606  * helper to insert a delayed tree ref into the rbtree.
607  */
608 static noinline int add_delayed_tree_ref(struct btrfs_trans_handle *trans,
609 					 struct btrfs_delayed_ref_node *ref,
610 					 u64 bytenr, u64 num_bytes, u64 parent,
611 					 u64 ref_root, int level, int action)
612 {
613 	struct btrfs_delayed_ref_node *existing;
614 	struct btrfs_delayed_tree_ref *full_ref;
615 	struct btrfs_delayed_ref_root *delayed_refs;
616 
617 	if (action == BTRFS_ADD_DELAYED_EXTENT)
618 		action = BTRFS_ADD_DELAYED_REF;
619 
620 	delayed_refs = &trans->transaction->delayed_refs;
621 
622 	/* first set the basic ref node struct up */
623 	atomic_set(&ref->refs, 1);
624 	ref->bytenr = bytenr;
625 	ref->num_bytes = num_bytes;
626 	ref->ref_mod = 1;
627 	ref->action = action;
628 	ref->is_head = 0;
629 	ref->in_tree = 1;
630 
631 	full_ref = btrfs_delayed_node_to_tree_ref(ref);
632 	if (parent) {
633 		full_ref->parent = parent;
634 		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
635 	} else {
636 		full_ref->root = ref_root;
637 		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
638 	}
639 	full_ref->level = level;
640 
641 	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
642 
643 	if (existing) {
644 		update_existing_ref(trans, delayed_refs, existing, ref);
645 		/*
646 		 * we've updated the existing ref, free the newly
647 		 * allocated ref
648 		 */
649 		kfree(ref);
650 	} else {
651 		delayed_refs->num_entries++;
652 		trans->delayed_ref_updates++;
653 	}
654 	return 0;
655 }
656 
657 /*
658  * helper to insert a delayed data ref into the rbtree.
659  */
660 static noinline int add_delayed_data_ref(struct btrfs_trans_handle *trans,
661 					 struct btrfs_delayed_ref_node *ref,
662 					 u64 bytenr, u64 num_bytes, u64 parent,
663 					 u64 ref_root, u64 owner, u64 offset,
664 					 int action)
665 {
666 	struct btrfs_delayed_ref_node *existing;
667 	struct btrfs_delayed_data_ref *full_ref;
668 	struct btrfs_delayed_ref_root *delayed_refs;
669 
670 	if (action == BTRFS_ADD_DELAYED_EXTENT)
671 		action = BTRFS_ADD_DELAYED_REF;
672 
673 	delayed_refs = &trans->transaction->delayed_refs;
674 
675 	/* first set the basic ref node struct up */
676 	atomic_set(&ref->refs, 1);
677 	ref->bytenr = bytenr;
678 	ref->num_bytes = num_bytes;
679 	ref->ref_mod = 1;
680 	ref->action = action;
681 	ref->is_head = 0;
682 	ref->in_tree = 1;
683 
684 	full_ref = btrfs_delayed_node_to_data_ref(ref);
685 	if (parent) {
686 		full_ref->parent = parent;
687 		ref->type = BTRFS_SHARED_DATA_REF_KEY;
688 	} else {
689 		full_ref->root = ref_root;
690 		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
691 	}
692 	full_ref->objectid = owner;
693 	full_ref->offset = offset;
694 
695 	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
696 
697 	if (existing) {
698 		update_existing_ref(trans, delayed_refs, existing, ref);
699 		/*
700 		 * we've updated the existing ref, free the newly
701 		 * allocated ref
702 		 */
703 		kfree(ref);
704 	} else {
705 		delayed_refs->num_entries++;
706 		trans->delayed_ref_updates++;
707 	}
708 	return 0;
709 }
710 
711 /*
712  * add a delayed tree ref.  This does all of the accounting required
713  * to make sure the delayed ref is eventually processed before this
714  * transaction commits.
715  */
716 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
717 			       u64 bytenr, u64 num_bytes, u64 parent,
718 			       u64 ref_root,  int level, int action,
719 			       struct btrfs_delayed_extent_op *extent_op)
720 {
721 	struct btrfs_delayed_tree_ref *ref;
722 	struct btrfs_delayed_ref_head *head_ref;
723 	struct btrfs_delayed_ref_root *delayed_refs;
724 	int ret;
725 
726 	BUG_ON(extent_op && extent_op->is_data);
727 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
728 	if (!ref)
729 		return -ENOMEM;
730 
731 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
732 	if (!head_ref) {
733 		kfree(ref);
734 		return -ENOMEM;
735 	}
736 
737 	head_ref->extent_op = extent_op;
738 
739 	delayed_refs = &trans->transaction->delayed_refs;
740 	spin_lock(&delayed_refs->lock);
741 
742 	/*
743 	 * insert both the head node and the new ref without dropping
744 	 * the spin lock
745 	 */
746 	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
747 				   action, 0);
748 	BUG_ON(ret);
749 
750 	ret = add_delayed_tree_ref(trans, &ref->node, bytenr, num_bytes,
751 				   parent, ref_root, level, action);
752 	BUG_ON(ret);
753 	spin_unlock(&delayed_refs->lock);
754 	return 0;
755 }
756 
757 /*
758  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
759  */
760 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
761 			       u64 bytenr, u64 num_bytes,
762 			       u64 parent, u64 ref_root,
763 			       u64 owner, u64 offset, int action,
764 			       struct btrfs_delayed_extent_op *extent_op)
765 {
766 	struct btrfs_delayed_data_ref *ref;
767 	struct btrfs_delayed_ref_head *head_ref;
768 	struct btrfs_delayed_ref_root *delayed_refs;
769 	int ret;
770 
771 	BUG_ON(extent_op && !extent_op->is_data);
772 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
773 	if (!ref)
774 		return -ENOMEM;
775 
776 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
777 	if (!head_ref) {
778 		kfree(ref);
779 		return -ENOMEM;
780 	}
781 
782 	head_ref->extent_op = extent_op;
783 
784 	delayed_refs = &trans->transaction->delayed_refs;
785 	spin_lock(&delayed_refs->lock);
786 
787 	/*
788 	 * insert both the head node and the new ref without dropping
789 	 * the spin lock
790 	 */
791 	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
792 				   action, 1);
793 	BUG_ON(ret);
794 
795 	ret = add_delayed_data_ref(trans, &ref->node, bytenr, num_bytes,
796 				   parent, ref_root, owner, offset, action);
797 	BUG_ON(ret);
798 	spin_unlock(&delayed_refs->lock);
799 	return 0;
800 }
801 
802 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
803 				u64 bytenr, u64 num_bytes,
804 				struct btrfs_delayed_extent_op *extent_op)
805 {
806 	struct btrfs_delayed_ref_head *head_ref;
807 	struct btrfs_delayed_ref_root *delayed_refs;
808 	int ret;
809 
810 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
811 	if (!head_ref)
812 		return -ENOMEM;
813 
814 	head_ref->extent_op = extent_op;
815 
816 	delayed_refs = &trans->transaction->delayed_refs;
817 	spin_lock(&delayed_refs->lock);
818 
819 	ret = add_delayed_ref_head(trans, &head_ref->node, bytenr,
820 				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
821 				   extent_op->is_data);
822 	BUG_ON(ret);
823 
824 	spin_unlock(&delayed_refs->lock);
825 	return 0;
826 }
827 
828 /*
829  * this does a simple search for the head node for a given extent.
830  * It must be called with the delayed ref spinlock held, and it returns
831  * the head node if any where found, or NULL if not.
832  */
833 struct btrfs_delayed_ref_head *
834 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
835 {
836 	struct btrfs_delayed_ref_node *ref;
837 	struct btrfs_delayed_ref_root *delayed_refs;
838 
839 	delayed_refs = &trans->transaction->delayed_refs;
840 	ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
841 	if (ref)
842 		return btrfs_delayed_node_to_head(ref);
843 	return NULL;
844 }
845 
846 /*
847  * add a delayed ref to the tree.  This does all of the accounting required
848  * to make sure the delayed ref is eventually processed before this
849  * transaction commits.
850  *
851  * The main point of this call is to add and remove a backreference in a single
852  * shot, taking the lock only once, and only searching for the head node once.
853  *
854  * It is the same as doing a ref add and delete in two separate calls.
855  */
856 #if 0
857 int btrfs_update_delayed_ref(struct btrfs_trans_handle *trans,
858 			  u64 bytenr, u64 num_bytes, u64 orig_parent,
859 			  u64 parent, u64 orig_ref_root, u64 ref_root,
860 			  u64 orig_ref_generation, u64 ref_generation,
861 			  u64 owner_objectid, int pin)
862 {
863 	struct btrfs_delayed_ref *ref;
864 	struct btrfs_delayed_ref *old_ref;
865 	struct btrfs_delayed_ref_head *head_ref;
866 	struct btrfs_delayed_ref_root *delayed_refs;
867 	int ret;
868 
869 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
870 	if (!ref)
871 		return -ENOMEM;
872 
873 	old_ref = kmalloc(sizeof(*old_ref), GFP_NOFS);
874 	if (!old_ref) {
875 		kfree(ref);
876 		return -ENOMEM;
877 	}
878 
879 	/*
880 	 * the parent = 0 case comes from cases where we don't actually
881 	 * know the parent yet.  It will get updated later via a add/drop
882 	 * pair.
883 	 */
884 	if (parent == 0)
885 		parent = bytenr;
886 	if (orig_parent == 0)
887 		orig_parent = bytenr;
888 
889 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
890 	if (!head_ref) {
891 		kfree(ref);
892 		kfree(old_ref);
893 		return -ENOMEM;
894 	}
895 	delayed_refs = &trans->transaction->delayed_refs;
896 	spin_lock(&delayed_refs->lock);
897 
898 	/*
899 	 * insert both the head node and the new ref without dropping
900 	 * the spin lock
901 	 */
902 	ret = __btrfs_add_delayed_ref(trans, &head_ref->node, bytenr, num_bytes,
903 				      (u64)-1, 0, 0, 0,
904 				      BTRFS_UPDATE_DELAYED_HEAD, 0);
905 	BUG_ON(ret);
906 
907 	ret = __btrfs_add_delayed_ref(trans, &ref->node, bytenr, num_bytes,
908 				      parent, ref_root, ref_generation,
909 				      owner_objectid, BTRFS_ADD_DELAYED_REF, 0);
910 	BUG_ON(ret);
911 
912 	ret = __btrfs_add_delayed_ref(trans, &old_ref->node, bytenr, num_bytes,
913 				      orig_parent, orig_ref_root,
914 				      orig_ref_generation, owner_objectid,
915 				      BTRFS_DROP_DELAYED_REF, pin);
916 	BUG_ON(ret);
917 	spin_unlock(&delayed_refs->lock);
918 	return 0;
919 }
920 #endif
921