xref: /linux/fs/btrfs/delayed-ref.c (revision 95444b9eeb8c5c0330563931d70c61ca3b101548)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "transaction.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "tree-mod-log.h"
16 #include "fs.h"
17 
18 struct kmem_cache *btrfs_delayed_ref_head_cachep;
19 struct kmem_cache *btrfs_delayed_ref_node_cachep;
20 struct kmem_cache *btrfs_delayed_extent_op_cachep;
21 /*
22  * delayed back reference update tracking.  For subvolume trees
23  * we queue up extent allocations and backref maintenance for
24  * delayed processing.   This avoids deep call chains where we
25  * add extents in the middle of btrfs_search_slot, and it allows
26  * us to buffer up frequently modified backrefs in an rb tree instead
27  * of hammering updates on the extent allocation tree.
28  */
29 
30 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
31 {
32 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
33 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
34 	bool ret = false;
35 	u64 reserved;
36 
37 	spin_lock(&global_rsv->lock);
38 	reserved = global_rsv->reserved;
39 	spin_unlock(&global_rsv->lock);
40 
41 	/*
42 	 * Since the global reserve is just kind of magic we don't really want
43 	 * to rely on it to save our bacon, so if our size is more than the
44 	 * delayed_refs_rsv and the global rsv then it's time to think about
45 	 * bailing.
46 	 */
47 	spin_lock(&delayed_refs_rsv->lock);
48 	reserved += delayed_refs_rsv->reserved;
49 	if (delayed_refs_rsv->size >= reserved)
50 		ret = true;
51 	spin_unlock(&delayed_refs_rsv->lock);
52 	return ret;
53 }
54 
55 /*
56  * Release a ref head's reservation.
57  *
58  * @fs_info:  the filesystem
59  * @nr_refs:  number of delayed refs to drop
60  * @nr_csums: number of csum items to drop
61  *
62  * Drops the delayed ref head's count from the delayed refs rsv and free any
63  * excess reservation we had.
64  */
65 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
66 {
67 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
68 	u64 num_bytes;
69 	u64 released;
70 
71 	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
72 	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
73 
74 	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
75 	if (released)
76 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
77 					      0, released, 0);
78 }
79 
80 /*
81  * Adjust the size of the delayed refs rsv.
82  *
83  * This is to be called anytime we may have adjusted trans->delayed_ref_updates
84  * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
85  * add it to the delayed_refs_rsv.
86  */
87 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
88 {
89 	struct btrfs_fs_info *fs_info = trans->fs_info;
90 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
91 	struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
92 	u64 num_bytes;
93 	u64 reserved_bytes;
94 
95 	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
96 	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
97 						       trans->delayed_ref_csum_deletions);
98 
99 	if (num_bytes == 0)
100 		return;
101 
102 	/*
103 	 * Try to take num_bytes from the transaction's local delayed reserve.
104 	 * If not possible, try to take as much as it's available. If the local
105 	 * reserve doesn't have enough reserved space, the delayed refs reserve
106 	 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
107 	 * by someone or if a transaction commit is triggered before that, the
108 	 * global block reserve will be used. We want to minimize using the
109 	 * global block reserve for cases we can account for in advance, to
110 	 * avoid exhausting it and reach -ENOSPC during a transaction commit.
111 	 */
112 	spin_lock(&local_rsv->lock);
113 	reserved_bytes = min(num_bytes, local_rsv->reserved);
114 	local_rsv->reserved -= reserved_bytes;
115 	local_rsv->full = (local_rsv->reserved >= local_rsv->size);
116 	spin_unlock(&local_rsv->lock);
117 
118 	spin_lock(&delayed_rsv->lock);
119 	delayed_rsv->size += num_bytes;
120 	delayed_rsv->reserved += reserved_bytes;
121 	delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
122 	spin_unlock(&delayed_rsv->lock);
123 	trans->delayed_ref_updates = 0;
124 	trans->delayed_ref_csum_deletions = 0;
125 }
126 
127 /*
128  * Adjust the size of the delayed refs block reserve for 1 block group item
129  * insertion, used after allocating a block group.
130  */
131 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
132 {
133 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
134 
135 	spin_lock(&delayed_rsv->lock);
136 	/*
137 	 * Inserting a block group item does not require changing the free space
138 	 * tree, only the extent tree or the block group tree, so this is all we
139 	 * need.
140 	 */
141 	delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
142 	delayed_rsv->full = false;
143 	spin_unlock(&delayed_rsv->lock);
144 }
145 
146 /*
147  * Adjust the size of the delayed refs block reserve to release space for 1
148  * block group item insertion.
149  */
150 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
151 {
152 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
153 	const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
154 	u64 released;
155 
156 	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
157 	if (released > 0)
158 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
159 					      0, released, 0);
160 }
161 
162 /*
163  * Adjust the size of the delayed refs block reserve for 1 block group item
164  * update.
165  */
166 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
167 {
168 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
169 
170 	spin_lock(&delayed_rsv->lock);
171 	/*
172 	 * Updating a block group item does not result in new nodes/leaves and
173 	 * does not require changing the free space tree, only the extent tree
174 	 * or the block group tree, so this is all we need.
175 	 */
176 	delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
177 	delayed_rsv->full = false;
178 	spin_unlock(&delayed_rsv->lock);
179 }
180 
181 /*
182  * Adjust the size of the delayed refs block reserve to release space for 1
183  * block group item update.
184  */
185 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
186 {
187 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
188 	const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
189 	u64 released;
190 
191 	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
192 	if (released > 0)
193 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
194 					      0, released, 0);
195 }
196 
197 /*
198  * Transfer bytes to our delayed refs rsv.
199  *
200  * @fs_info:   the filesystem
201  * @num_bytes: number of bytes to transfer
202  *
203  * This transfers up to the num_bytes amount, previously reserved, to the
204  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
205  */
206 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
207 				       u64 num_bytes)
208 {
209 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
210 	u64 to_free = 0;
211 
212 	spin_lock(&delayed_refs_rsv->lock);
213 	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
214 		u64 delta = delayed_refs_rsv->size -
215 			delayed_refs_rsv->reserved;
216 		if (num_bytes > delta) {
217 			to_free = num_bytes - delta;
218 			num_bytes = delta;
219 		}
220 	} else {
221 		to_free = num_bytes;
222 		num_bytes = 0;
223 	}
224 
225 	if (num_bytes)
226 		delayed_refs_rsv->reserved += num_bytes;
227 	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
228 		delayed_refs_rsv->full = true;
229 	spin_unlock(&delayed_refs_rsv->lock);
230 
231 	if (num_bytes)
232 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
233 					      0, num_bytes, 1);
234 	if (to_free)
235 		btrfs_space_info_free_bytes_may_use(fs_info,
236 				delayed_refs_rsv->space_info, to_free);
237 }
238 
239 /*
240  * Refill based on our delayed refs usage.
241  *
242  * @fs_info: the filesystem
243  * @flush:   control how we can flush for this reservation.
244  *
245  * This will refill the delayed block_rsv up to 1 items size worth of space and
246  * will return -ENOSPC if we can't make the reservation.
247  */
248 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
249 				  enum btrfs_reserve_flush_enum flush)
250 {
251 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
252 	struct btrfs_space_info *space_info = block_rsv->space_info;
253 	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
254 	u64 num_bytes = 0;
255 	u64 refilled_bytes;
256 	u64 to_free;
257 	int ret = -ENOSPC;
258 
259 	spin_lock(&block_rsv->lock);
260 	if (block_rsv->reserved < block_rsv->size) {
261 		num_bytes = block_rsv->size - block_rsv->reserved;
262 		num_bytes = min(num_bytes, limit);
263 	}
264 	spin_unlock(&block_rsv->lock);
265 
266 	if (!num_bytes)
267 		return 0;
268 
269 	ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
270 	if (ret)
271 		return ret;
272 
273 	/*
274 	 * We may have raced with someone else, so check again if we the block
275 	 * reserve is still not full and release any excess space.
276 	 */
277 	spin_lock(&block_rsv->lock);
278 	if (block_rsv->reserved < block_rsv->size) {
279 		u64 needed = block_rsv->size - block_rsv->reserved;
280 
281 		if (num_bytes >= needed) {
282 			block_rsv->reserved += needed;
283 			block_rsv->full = true;
284 			to_free = num_bytes - needed;
285 			refilled_bytes = needed;
286 		} else {
287 			block_rsv->reserved += num_bytes;
288 			to_free = 0;
289 			refilled_bytes = num_bytes;
290 		}
291 	} else {
292 		to_free = num_bytes;
293 		refilled_bytes = 0;
294 	}
295 	spin_unlock(&block_rsv->lock);
296 
297 	if (to_free > 0)
298 		btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
299 
300 	if (refilled_bytes > 0)
301 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
302 					      refilled_bytes, 1);
303 	return 0;
304 }
305 
306 /*
307  * compare two delayed data backrefs with same bytenr and type
308  */
309 static int comp_data_refs(struct btrfs_delayed_ref_node *ref1,
310 			  struct btrfs_delayed_ref_node *ref2)
311 {
312 	if (ref1->data_ref.objectid < ref2->data_ref.objectid)
313 		return -1;
314 	if (ref1->data_ref.objectid > ref2->data_ref.objectid)
315 		return 1;
316 	if (ref1->data_ref.offset < ref2->data_ref.offset)
317 		return -1;
318 	if (ref1->data_ref.offset > ref2->data_ref.offset)
319 		return 1;
320 	return 0;
321 }
322 
323 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
324 		     struct btrfs_delayed_ref_node *ref2,
325 		     bool check_seq)
326 {
327 	int ret = 0;
328 
329 	if (ref1->type < ref2->type)
330 		return -1;
331 	if (ref1->type > ref2->type)
332 		return 1;
333 	if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
334 	    ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
335 		if (ref1->parent < ref2->parent)
336 			return -1;
337 		if (ref1->parent > ref2->parent)
338 			return 1;
339 	} else {
340 		if (ref1->ref_root < ref2->ref_root)
341 			return -1;
342 		if (ref1->ref_root > ref2->ref_root)
343 			return -1;
344 		if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
345 			ret = comp_data_refs(ref1, ref2);
346 	}
347 	if (ret)
348 		return ret;
349 	if (check_seq) {
350 		if (ref1->seq < ref2->seq)
351 			return -1;
352 		if (ref1->seq > ref2->seq)
353 			return 1;
354 	}
355 	return 0;
356 }
357 
358 /* insert a new ref to head ref rbtree */
359 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
360 						   struct rb_node *node)
361 {
362 	struct rb_node **p = &root->rb_root.rb_node;
363 	struct rb_node *parent_node = NULL;
364 	struct btrfs_delayed_ref_head *entry;
365 	struct btrfs_delayed_ref_head *ins;
366 	u64 bytenr;
367 	bool leftmost = true;
368 
369 	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
370 	bytenr = ins->bytenr;
371 	while (*p) {
372 		parent_node = *p;
373 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
374 				 href_node);
375 
376 		if (bytenr < entry->bytenr) {
377 			p = &(*p)->rb_left;
378 		} else if (bytenr > entry->bytenr) {
379 			p = &(*p)->rb_right;
380 			leftmost = false;
381 		} else {
382 			return entry;
383 		}
384 	}
385 
386 	rb_link_node(node, parent_node, p);
387 	rb_insert_color_cached(node, root, leftmost);
388 	return NULL;
389 }
390 
391 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
392 		struct btrfs_delayed_ref_node *ins)
393 {
394 	struct rb_node **p = &root->rb_root.rb_node;
395 	struct rb_node *node = &ins->ref_node;
396 	struct rb_node *parent_node = NULL;
397 	struct btrfs_delayed_ref_node *entry;
398 	bool leftmost = true;
399 
400 	while (*p) {
401 		int comp;
402 
403 		parent_node = *p;
404 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
405 				 ref_node);
406 		comp = comp_refs(ins, entry, true);
407 		if (comp < 0) {
408 			p = &(*p)->rb_left;
409 		} else if (comp > 0) {
410 			p = &(*p)->rb_right;
411 			leftmost = false;
412 		} else {
413 			return entry;
414 		}
415 	}
416 
417 	rb_link_node(node, parent_node, p);
418 	rb_insert_color_cached(node, root, leftmost);
419 	return NULL;
420 }
421 
422 static struct btrfs_delayed_ref_head *find_first_ref_head(
423 		struct btrfs_delayed_ref_root *dr)
424 {
425 	struct rb_node *n;
426 	struct btrfs_delayed_ref_head *entry;
427 
428 	n = rb_first_cached(&dr->href_root);
429 	if (!n)
430 		return NULL;
431 
432 	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
433 
434 	return entry;
435 }
436 
437 /*
438  * Find a head entry based on bytenr. This returns the delayed ref head if it
439  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
440  * is given, the next bigger entry is returned if no exact match is found.
441  */
442 static struct btrfs_delayed_ref_head *find_ref_head(
443 		struct btrfs_delayed_ref_root *dr, u64 bytenr,
444 		bool return_bigger)
445 {
446 	struct rb_root *root = &dr->href_root.rb_root;
447 	struct rb_node *n;
448 	struct btrfs_delayed_ref_head *entry;
449 
450 	n = root->rb_node;
451 	entry = NULL;
452 	while (n) {
453 		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
454 
455 		if (bytenr < entry->bytenr)
456 			n = n->rb_left;
457 		else if (bytenr > entry->bytenr)
458 			n = n->rb_right;
459 		else
460 			return entry;
461 	}
462 	if (entry && return_bigger) {
463 		if (bytenr > entry->bytenr) {
464 			n = rb_next(&entry->href_node);
465 			if (!n)
466 				return NULL;
467 			entry = rb_entry(n, struct btrfs_delayed_ref_head,
468 					 href_node);
469 		}
470 		return entry;
471 	}
472 	return NULL;
473 }
474 
475 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
476 			   struct btrfs_delayed_ref_head *head)
477 {
478 	lockdep_assert_held(&delayed_refs->lock);
479 	if (mutex_trylock(&head->mutex))
480 		return 0;
481 
482 	refcount_inc(&head->refs);
483 	spin_unlock(&delayed_refs->lock);
484 
485 	mutex_lock(&head->mutex);
486 	spin_lock(&delayed_refs->lock);
487 	if (RB_EMPTY_NODE(&head->href_node)) {
488 		mutex_unlock(&head->mutex);
489 		btrfs_put_delayed_ref_head(head);
490 		return -EAGAIN;
491 	}
492 	btrfs_put_delayed_ref_head(head);
493 	return 0;
494 }
495 
496 static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
497 				    struct btrfs_delayed_ref_root *delayed_refs,
498 				    struct btrfs_delayed_ref_head *head,
499 				    struct btrfs_delayed_ref_node *ref)
500 {
501 	lockdep_assert_held(&head->lock);
502 	rb_erase_cached(&ref->ref_node, &head->ref_tree);
503 	RB_CLEAR_NODE(&ref->ref_node);
504 	if (!list_empty(&ref->add_list))
505 		list_del(&ref->add_list);
506 	btrfs_put_delayed_ref(ref);
507 	atomic_dec(&delayed_refs->num_entries);
508 	btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
509 }
510 
511 static bool merge_ref(struct btrfs_fs_info *fs_info,
512 		      struct btrfs_delayed_ref_root *delayed_refs,
513 		      struct btrfs_delayed_ref_head *head,
514 		      struct btrfs_delayed_ref_node *ref,
515 		      u64 seq)
516 {
517 	struct btrfs_delayed_ref_node *next;
518 	struct rb_node *node = rb_next(&ref->ref_node);
519 	bool done = false;
520 
521 	while (!done && node) {
522 		int mod;
523 
524 		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
525 		node = rb_next(node);
526 		if (seq && next->seq >= seq)
527 			break;
528 		if (comp_refs(ref, next, false))
529 			break;
530 
531 		if (ref->action == next->action) {
532 			mod = next->ref_mod;
533 		} else {
534 			if (ref->ref_mod < next->ref_mod) {
535 				swap(ref, next);
536 				done = true;
537 			}
538 			mod = -next->ref_mod;
539 		}
540 
541 		drop_delayed_ref(fs_info, delayed_refs, head, next);
542 		ref->ref_mod += mod;
543 		if (ref->ref_mod == 0) {
544 			drop_delayed_ref(fs_info, delayed_refs, head, ref);
545 			done = true;
546 		} else {
547 			/*
548 			 * Can't have multiples of the same ref on a tree block.
549 			 */
550 			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
551 				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
552 		}
553 	}
554 
555 	return done;
556 }
557 
558 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
559 			      struct btrfs_delayed_ref_root *delayed_refs,
560 			      struct btrfs_delayed_ref_head *head)
561 {
562 	struct btrfs_delayed_ref_node *ref;
563 	struct rb_node *node;
564 	u64 seq = 0;
565 
566 	lockdep_assert_held(&head->lock);
567 
568 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
569 		return;
570 
571 	/* We don't have too many refs to merge for data. */
572 	if (head->is_data)
573 		return;
574 
575 	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
576 again:
577 	for (node = rb_first_cached(&head->ref_tree); node;
578 	     node = rb_next(node)) {
579 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
580 		if (seq && ref->seq >= seq)
581 			continue;
582 		if (merge_ref(fs_info, delayed_refs, head, ref, seq))
583 			goto again;
584 	}
585 }
586 
587 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
588 {
589 	int ret = 0;
590 	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
591 
592 	if (min_seq != 0 && seq >= min_seq) {
593 		btrfs_debug(fs_info,
594 			    "holding back delayed_ref %llu, lowest is %llu",
595 			    seq, min_seq);
596 		ret = 1;
597 	}
598 
599 	return ret;
600 }
601 
602 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
603 		struct btrfs_delayed_ref_root *delayed_refs)
604 {
605 	struct btrfs_delayed_ref_head *head;
606 
607 	lockdep_assert_held(&delayed_refs->lock);
608 again:
609 	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
610 			     true);
611 	if (!head && delayed_refs->run_delayed_start != 0) {
612 		delayed_refs->run_delayed_start = 0;
613 		head = find_first_ref_head(delayed_refs);
614 	}
615 	if (!head)
616 		return NULL;
617 
618 	while (head->processing) {
619 		struct rb_node *node;
620 
621 		node = rb_next(&head->href_node);
622 		if (!node) {
623 			if (delayed_refs->run_delayed_start == 0)
624 				return NULL;
625 			delayed_refs->run_delayed_start = 0;
626 			goto again;
627 		}
628 		head = rb_entry(node, struct btrfs_delayed_ref_head,
629 				href_node);
630 	}
631 
632 	head->processing = true;
633 	WARN_ON(delayed_refs->num_heads_ready == 0);
634 	delayed_refs->num_heads_ready--;
635 	delayed_refs->run_delayed_start = head->bytenr +
636 		head->num_bytes;
637 	return head;
638 }
639 
640 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
641 			   struct btrfs_delayed_ref_head *head)
642 {
643 	lockdep_assert_held(&delayed_refs->lock);
644 	lockdep_assert_held(&head->lock);
645 
646 	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
647 	RB_CLEAR_NODE(&head->href_node);
648 	atomic_dec(&delayed_refs->num_entries);
649 	delayed_refs->num_heads--;
650 	if (!head->processing)
651 		delayed_refs->num_heads_ready--;
652 }
653 
654 /*
655  * Helper to insert the ref_node to the tail or merge with tail.
656  *
657  * Return false if the ref was inserted.
658  * Return true if the ref was merged into an existing one (and therefore can be
659  * freed by the caller).
660  */
661 static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
662 			       struct btrfs_delayed_ref_head *href,
663 			       struct btrfs_delayed_ref_node *ref)
664 {
665 	struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
666 	struct btrfs_delayed_ref_node *exist;
667 	int mod;
668 
669 	spin_lock(&href->lock);
670 	exist = tree_insert(&href->ref_tree, ref);
671 	if (!exist) {
672 		if (ref->action == BTRFS_ADD_DELAYED_REF)
673 			list_add_tail(&ref->add_list, &href->ref_add_list);
674 		atomic_inc(&root->num_entries);
675 		spin_unlock(&href->lock);
676 		trans->delayed_ref_updates++;
677 		return false;
678 	}
679 
680 	/* Now we are sure we can merge */
681 	if (exist->action == ref->action) {
682 		mod = ref->ref_mod;
683 	} else {
684 		/* Need to change action */
685 		if (exist->ref_mod < ref->ref_mod) {
686 			exist->action = ref->action;
687 			mod = -exist->ref_mod;
688 			exist->ref_mod = ref->ref_mod;
689 			if (ref->action == BTRFS_ADD_DELAYED_REF)
690 				list_add_tail(&exist->add_list,
691 					      &href->ref_add_list);
692 			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
693 				ASSERT(!list_empty(&exist->add_list));
694 				list_del(&exist->add_list);
695 			} else {
696 				ASSERT(0);
697 			}
698 		} else
699 			mod = -ref->ref_mod;
700 	}
701 	exist->ref_mod += mod;
702 
703 	/* remove existing tail if its ref_mod is zero */
704 	if (exist->ref_mod == 0)
705 		drop_delayed_ref(trans->fs_info, root, href, exist);
706 	spin_unlock(&href->lock);
707 	return true;
708 }
709 
710 /*
711  * helper function to update the accounting in the head ref
712  * existing and update must have the same bytenr
713  */
714 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
715 			 struct btrfs_delayed_ref_head *existing,
716 			 struct btrfs_delayed_ref_head *update)
717 {
718 	struct btrfs_delayed_ref_root *delayed_refs =
719 		&trans->transaction->delayed_refs;
720 	struct btrfs_fs_info *fs_info = trans->fs_info;
721 	int old_ref_mod;
722 
723 	BUG_ON(existing->is_data != update->is_data);
724 
725 	spin_lock(&existing->lock);
726 
727 	/*
728 	 * When freeing an extent, we may not know the owning root when we
729 	 * first create the head_ref. However, some deref before the last deref
730 	 * will know it, so we just need to update the head_ref accordingly.
731 	 */
732 	if (!existing->owning_root)
733 		existing->owning_root = update->owning_root;
734 
735 	if (update->must_insert_reserved) {
736 		/* if the extent was freed and then
737 		 * reallocated before the delayed ref
738 		 * entries were processed, we can end up
739 		 * with an existing head ref without
740 		 * the must_insert_reserved flag set.
741 		 * Set it again here
742 		 */
743 		existing->must_insert_reserved = update->must_insert_reserved;
744 		existing->owning_root = update->owning_root;
745 
746 		/*
747 		 * update the num_bytes so we make sure the accounting
748 		 * is done correctly
749 		 */
750 		existing->num_bytes = update->num_bytes;
751 
752 	}
753 
754 	if (update->extent_op) {
755 		if (!existing->extent_op) {
756 			existing->extent_op = update->extent_op;
757 		} else {
758 			if (update->extent_op->update_key) {
759 				memcpy(&existing->extent_op->key,
760 				       &update->extent_op->key,
761 				       sizeof(update->extent_op->key));
762 				existing->extent_op->update_key = true;
763 			}
764 			if (update->extent_op->update_flags) {
765 				existing->extent_op->flags_to_set |=
766 					update->extent_op->flags_to_set;
767 				existing->extent_op->update_flags = true;
768 			}
769 			btrfs_free_delayed_extent_op(update->extent_op);
770 		}
771 	}
772 	/*
773 	 * update the reference mod on the head to reflect this new operation,
774 	 * only need the lock for this case cause we could be processing it
775 	 * currently, for refs we just added we know we're a-ok.
776 	 */
777 	old_ref_mod = existing->total_ref_mod;
778 	existing->ref_mod += update->ref_mod;
779 	existing->total_ref_mod += update->ref_mod;
780 
781 	/*
782 	 * If we are going to from a positive ref mod to a negative or vice
783 	 * versa we need to make sure to adjust pending_csums accordingly.
784 	 * We reserve bytes for csum deletion when adding or updating a ref head
785 	 * see add_delayed_ref_head() for more details.
786 	 */
787 	if (existing->is_data) {
788 		u64 csum_leaves =
789 			btrfs_csum_bytes_to_leaves(fs_info,
790 						   existing->num_bytes);
791 
792 		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
793 			delayed_refs->pending_csums -= existing->num_bytes;
794 			btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
795 		}
796 		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
797 			delayed_refs->pending_csums += existing->num_bytes;
798 			trans->delayed_ref_csum_deletions += csum_leaves;
799 		}
800 	}
801 
802 	spin_unlock(&existing->lock);
803 }
804 
805 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
806 				  struct btrfs_ref *generic_ref,
807 				  struct btrfs_qgroup_extent_record *qrecord,
808 				  u64 reserved)
809 {
810 	int count_mod = 1;
811 	bool must_insert_reserved = false;
812 
813 	/* If reserved is provided, it must be a data extent. */
814 	BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
815 
816 	switch (generic_ref->action) {
817 	case BTRFS_ADD_DELAYED_REF:
818 		/* count_mod is already set to 1. */
819 		break;
820 	case BTRFS_UPDATE_DELAYED_HEAD:
821 		count_mod = 0;
822 		break;
823 	case BTRFS_DROP_DELAYED_REF:
824 		/*
825 		 * The head node stores the sum of all the mods, so dropping a ref
826 		 * should drop the sum in the head node by one.
827 		 */
828 		count_mod = -1;
829 		break;
830 	case BTRFS_ADD_DELAYED_EXTENT:
831 		/*
832 		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
833 		 * reserved accounting when the extent is finally added, or if a
834 		 * later modification deletes the delayed ref without ever
835 		 * inserting the extent into the extent allocation tree.
836 		 * ref->must_insert_reserved is the flag used to record that
837 		 * accounting mods are required.
838 		 *
839 		 * Once we record must_insert_reserved, switch the action to
840 		 * BTRFS_ADD_DELAYED_REF because other special casing is not
841 		 * required.
842 		 */
843 		must_insert_reserved = true;
844 		break;
845 	}
846 
847 	refcount_set(&head_ref->refs, 1);
848 	head_ref->bytenr = generic_ref->bytenr;
849 	head_ref->num_bytes = generic_ref->num_bytes;
850 	head_ref->ref_mod = count_mod;
851 	head_ref->reserved_bytes = reserved;
852 	head_ref->must_insert_reserved = must_insert_reserved;
853 	head_ref->owning_root = generic_ref->owning_root;
854 	head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
855 	head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
856 	head_ref->ref_tree = RB_ROOT_CACHED;
857 	INIT_LIST_HEAD(&head_ref->ref_add_list);
858 	RB_CLEAR_NODE(&head_ref->href_node);
859 	head_ref->processing = false;
860 	head_ref->total_ref_mod = count_mod;
861 	spin_lock_init(&head_ref->lock);
862 	mutex_init(&head_ref->mutex);
863 
864 	if (qrecord) {
865 		if (generic_ref->ref_root && reserved) {
866 			qrecord->data_rsv = reserved;
867 			qrecord->data_rsv_refroot = generic_ref->ref_root;
868 		}
869 		qrecord->bytenr = generic_ref->bytenr;
870 		qrecord->num_bytes = generic_ref->num_bytes;
871 		qrecord->old_roots = NULL;
872 	}
873 }
874 
875 /*
876  * helper function to actually insert a head node into the rbtree.
877  * this does all the dirty work in terms of maintaining the correct
878  * overall modification count.
879  */
880 static noinline struct btrfs_delayed_ref_head *
881 add_delayed_ref_head(struct btrfs_trans_handle *trans,
882 		     struct btrfs_delayed_ref_head *head_ref,
883 		     struct btrfs_qgroup_extent_record *qrecord,
884 		     int action, bool *qrecord_inserted_ret)
885 {
886 	struct btrfs_delayed_ref_head *existing;
887 	struct btrfs_delayed_ref_root *delayed_refs;
888 	bool qrecord_inserted = false;
889 
890 	delayed_refs = &trans->transaction->delayed_refs;
891 
892 	/* Record qgroup extent info if provided */
893 	if (qrecord) {
894 		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
895 					delayed_refs, qrecord))
896 			kfree(qrecord);
897 		else
898 			qrecord_inserted = true;
899 	}
900 
901 	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
902 
903 	existing = htree_insert(&delayed_refs->href_root,
904 				&head_ref->href_node);
905 	if (existing) {
906 		update_existing_head_ref(trans, existing, head_ref);
907 		/*
908 		 * we've updated the existing ref, free the newly
909 		 * allocated ref
910 		 */
911 		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
912 		head_ref = existing;
913 	} else {
914 		/*
915 		 * We reserve the amount of bytes needed to delete csums when
916 		 * adding the ref head and not when adding individual drop refs
917 		 * since the csum items are deleted only after running the last
918 		 * delayed drop ref (the data extent's ref count drops to 0).
919 		 */
920 		if (head_ref->is_data && head_ref->ref_mod < 0) {
921 			delayed_refs->pending_csums += head_ref->num_bytes;
922 			trans->delayed_ref_csum_deletions +=
923 				btrfs_csum_bytes_to_leaves(trans->fs_info,
924 							   head_ref->num_bytes);
925 		}
926 		delayed_refs->num_heads++;
927 		delayed_refs->num_heads_ready++;
928 		atomic_inc(&delayed_refs->num_entries);
929 	}
930 	if (qrecord_inserted_ret)
931 		*qrecord_inserted_ret = qrecord_inserted;
932 
933 	return head_ref;
934 }
935 
936 /*
937  * Initialize the structure which represents a modification to a an extent.
938  *
939  * @fs_info:    Internal to the mounted filesystem mount structure.
940  *
941  * @ref:	The structure which is going to be initialized.
942  *
943  * @bytenr:	The logical address of the extent for which a modification is
944  *		going to be recorded.
945  *
946  * @num_bytes:  Size of the extent whose modification is being recorded.
947  *
948  * @ref_root:	The id of the root where this modification has originated, this
949  *		can be either one of the well-known metadata trees or the
950  *		subvolume id which references this extent.
951  *
952  * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
953  *		BTRFS_ADD_DELAYED_EXTENT
954  *
955  * @ref_type:	Holds the type of the extent which is being recorded, can be
956  *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
957  *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
958  *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
959  */
960 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
961 				    struct btrfs_delayed_ref_node *ref,
962 				    struct btrfs_ref *generic_ref)
963 {
964 	int action = generic_ref->action;
965 	u64 seq = 0;
966 
967 	if (action == BTRFS_ADD_DELAYED_EXTENT)
968 		action = BTRFS_ADD_DELAYED_REF;
969 
970 	if (is_fstree(generic_ref->ref_root))
971 		seq = atomic64_read(&fs_info->tree_mod_seq);
972 
973 	refcount_set(&ref->refs, 1);
974 	ref->bytenr = generic_ref->bytenr;
975 	ref->num_bytes = generic_ref->num_bytes;
976 	ref->ref_mod = 1;
977 	ref->action = action;
978 	ref->seq = seq;
979 	ref->type = btrfs_ref_type(generic_ref);
980 	ref->ref_root = generic_ref->ref_root;
981 	ref->parent = generic_ref->parent;
982 	RB_CLEAR_NODE(&ref->ref_node);
983 	INIT_LIST_HEAD(&ref->add_list);
984 
985 	if (generic_ref->type == BTRFS_REF_DATA)
986 		ref->data_ref = generic_ref->data_ref;
987 	else
988 		ref->tree_ref = generic_ref->tree_ref;
989 }
990 
991 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
992 			 bool skip_qgroup)
993 {
994 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
995 	/* If @real_root not set, use @root as fallback */
996 	generic_ref->real_root = mod_root ?: generic_ref->ref_root;
997 #endif
998 	generic_ref->tree_ref.level = level;
999 	generic_ref->type = BTRFS_REF_METADATA;
1000 	if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
1001 			     (!mod_root || is_fstree(mod_root))))
1002 		generic_ref->skip_qgroup = true;
1003 	else
1004 		generic_ref->skip_qgroup = false;
1005 
1006 }
1007 
1008 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
1009 			 u64 mod_root, bool skip_qgroup)
1010 {
1011 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1012 	/* If @real_root not set, use @root as fallback */
1013 	generic_ref->real_root = mod_root ?: generic_ref->ref_root;
1014 #endif
1015 	generic_ref->data_ref.objectid = ino;
1016 	generic_ref->data_ref.offset = offset;
1017 	generic_ref->type = BTRFS_REF_DATA;
1018 	if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
1019 			     (!mod_root || is_fstree(mod_root))))
1020 		generic_ref->skip_qgroup = true;
1021 	else
1022 		generic_ref->skip_qgroup = false;
1023 }
1024 
1025 static int add_delayed_ref(struct btrfs_trans_handle *trans,
1026 			   struct btrfs_ref *generic_ref,
1027 			   struct btrfs_delayed_extent_op *extent_op,
1028 			   u64 reserved)
1029 {
1030 	struct btrfs_fs_info *fs_info = trans->fs_info;
1031 	struct btrfs_delayed_ref_node *node;
1032 	struct btrfs_delayed_ref_head *head_ref;
1033 	struct btrfs_delayed_ref_root *delayed_refs;
1034 	struct btrfs_qgroup_extent_record *record = NULL;
1035 	bool qrecord_inserted;
1036 	int action = generic_ref->action;
1037 	bool merged;
1038 
1039 	node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
1040 	if (!node)
1041 		return -ENOMEM;
1042 
1043 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1044 	if (!head_ref) {
1045 		kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1046 		return -ENOMEM;
1047 	}
1048 
1049 	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1050 		record = kzalloc(sizeof(*record), GFP_NOFS);
1051 		if (!record) {
1052 			kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1053 			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1054 			return -ENOMEM;
1055 		}
1056 	}
1057 
1058 	init_delayed_ref_common(fs_info, node, generic_ref);
1059 	init_delayed_ref_head(head_ref, generic_ref, record, reserved);
1060 	head_ref->extent_op = extent_op;
1061 
1062 	delayed_refs = &trans->transaction->delayed_refs;
1063 	spin_lock(&delayed_refs->lock);
1064 
1065 	/*
1066 	 * insert both the head node and the new ref without dropping
1067 	 * the spin lock
1068 	 */
1069 	head_ref = add_delayed_ref_head(trans, head_ref, record,
1070 					action, &qrecord_inserted);
1071 
1072 	merged = insert_delayed_ref(trans, head_ref, node);
1073 	spin_unlock(&delayed_refs->lock);
1074 
1075 	/*
1076 	 * Need to update the delayed_refs_rsv with any changes we may have
1077 	 * made.
1078 	 */
1079 	btrfs_update_delayed_refs_rsv(trans);
1080 
1081 	if (generic_ref->type == BTRFS_REF_DATA)
1082 		trace_add_delayed_data_ref(trans->fs_info, node);
1083 	else
1084 		trace_add_delayed_tree_ref(trans->fs_info, node);
1085 	if (merged)
1086 		kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1087 
1088 	if (qrecord_inserted)
1089 		return btrfs_qgroup_trace_extent_post(trans, record);
1090 	return 0;
1091 }
1092 
1093 /*
1094  * Add a delayed tree ref. This does all of the accounting required to make sure
1095  * the delayed ref is eventually processed before this transaction commits.
1096  */
1097 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1098 			       struct btrfs_ref *generic_ref,
1099 			       struct btrfs_delayed_extent_op *extent_op)
1100 {
1101 	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1102 	return add_delayed_ref(trans, generic_ref, extent_op, 0);
1103 }
1104 
1105 /*
1106  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1107  */
1108 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1109 			       struct btrfs_ref *generic_ref,
1110 			       u64 reserved)
1111 {
1112 	ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
1113 	return add_delayed_ref(trans, generic_ref, NULL, reserved);
1114 }
1115 
1116 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1117 				u64 bytenr, u64 num_bytes,
1118 				struct btrfs_delayed_extent_op *extent_op)
1119 {
1120 	struct btrfs_delayed_ref_head *head_ref;
1121 	struct btrfs_delayed_ref_root *delayed_refs;
1122 	struct btrfs_ref generic_ref = {
1123 		.type = BTRFS_REF_METADATA,
1124 		.action = BTRFS_UPDATE_DELAYED_HEAD,
1125 		.bytenr = bytenr,
1126 		.num_bytes = num_bytes,
1127 	};
1128 
1129 	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1130 	if (!head_ref)
1131 		return -ENOMEM;
1132 
1133 	init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
1134 	head_ref->extent_op = extent_op;
1135 
1136 	delayed_refs = &trans->transaction->delayed_refs;
1137 	spin_lock(&delayed_refs->lock);
1138 
1139 	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1140 			     NULL);
1141 
1142 	spin_unlock(&delayed_refs->lock);
1143 
1144 	/*
1145 	 * Need to update the delayed_refs_rsv with any changes we may have
1146 	 * made.
1147 	 */
1148 	btrfs_update_delayed_refs_rsv(trans);
1149 	return 0;
1150 }
1151 
1152 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1153 {
1154 	if (refcount_dec_and_test(&ref->refs)) {
1155 		WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1156 		kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
1157 	}
1158 }
1159 
1160 /*
1161  * This does a simple search for the head node for a given extent.  Returns the
1162  * head node if found, or NULL if not.
1163  */
1164 struct btrfs_delayed_ref_head *
1165 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1166 {
1167 	lockdep_assert_held(&delayed_refs->lock);
1168 
1169 	return find_ref_head(delayed_refs, bytenr, false);
1170 }
1171 
1172 void __cold btrfs_delayed_ref_exit(void)
1173 {
1174 	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1175 	kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
1176 	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1177 }
1178 
1179 int __init btrfs_delayed_ref_init(void)
1180 {
1181 	btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
1182 	if (!btrfs_delayed_ref_head_cachep)
1183 		goto fail;
1184 
1185 	btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
1186 	if (!btrfs_delayed_ref_node_cachep)
1187 		goto fail;
1188 
1189 	btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
1190 	if (!btrfs_delayed_extent_op_cachep)
1191 		goto fail;
1192 
1193 	return 0;
1194 fail:
1195 	btrfs_delayed_ref_exit();
1196 	return -ENOMEM;
1197 }
1198