1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/sort.h> 22 #include "ctree.h" 23 #include "delayed-ref.h" 24 #include "transaction.h" 25 26 /* 27 * delayed back reference update tracking. For subvolume trees 28 * we queue up extent allocations and backref maintenance for 29 * delayed processing. This avoids deep call chains where we 30 * add extents in the middle of btrfs_search_slot, and it allows 31 * us to buffer up frequently modified backrefs in an rb tree instead 32 * of hammering updates on the extent allocation tree. 33 */ 34 35 /* 36 * compare two delayed tree backrefs with same bytenr and type 37 */ 38 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2, 39 struct btrfs_delayed_tree_ref *ref1) 40 { 41 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) { 42 if (ref1->root < ref2->root) 43 return -1; 44 if (ref1->root > ref2->root) 45 return 1; 46 } else { 47 if (ref1->parent < ref2->parent) 48 return -1; 49 if (ref1->parent > ref2->parent) 50 return 1; 51 } 52 return 0; 53 } 54 55 /* 56 * compare two delayed data backrefs with same bytenr and type 57 */ 58 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2, 59 struct btrfs_delayed_data_ref *ref1) 60 { 61 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) { 62 if (ref1->root < ref2->root) 63 return -1; 64 if (ref1->root > ref2->root) 65 return 1; 66 if (ref1->objectid < ref2->objectid) 67 return -1; 68 if (ref1->objectid > ref2->objectid) 69 return 1; 70 if (ref1->offset < ref2->offset) 71 return -1; 72 if (ref1->offset > ref2->offset) 73 return 1; 74 } else { 75 if (ref1->parent < ref2->parent) 76 return -1; 77 if (ref1->parent > ref2->parent) 78 return 1; 79 } 80 return 0; 81 } 82 83 /* 84 * entries in the rb tree are ordered by the byte number of the extent, 85 * type of the delayed backrefs and content of delayed backrefs. 86 */ 87 static int comp_entry(struct btrfs_delayed_ref_node *ref2, 88 struct btrfs_delayed_ref_node *ref1) 89 { 90 if (ref1->bytenr < ref2->bytenr) 91 return -1; 92 if (ref1->bytenr > ref2->bytenr) 93 return 1; 94 if (ref1->is_head && ref2->is_head) 95 return 0; 96 if (ref2->is_head) 97 return -1; 98 if (ref1->is_head) 99 return 1; 100 if (ref1->type < ref2->type) 101 return -1; 102 if (ref1->type > ref2->type) 103 return 1; 104 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY || 105 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) { 106 return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2), 107 btrfs_delayed_node_to_tree_ref(ref1)); 108 } else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY || 109 ref1->type == BTRFS_SHARED_DATA_REF_KEY) { 110 return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2), 111 btrfs_delayed_node_to_data_ref(ref1)); 112 } 113 BUG(); 114 return 0; 115 } 116 117 /* 118 * insert a new ref into the rbtree. This returns any existing refs 119 * for the same (bytenr,parent) tuple, or NULL if the new node was properly 120 * inserted. 121 */ 122 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root, 123 struct rb_node *node) 124 { 125 struct rb_node **p = &root->rb_node; 126 struct rb_node *parent_node = NULL; 127 struct btrfs_delayed_ref_node *entry; 128 struct btrfs_delayed_ref_node *ins; 129 int cmp; 130 131 ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 132 while (*p) { 133 parent_node = *p; 134 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, 135 rb_node); 136 137 cmp = comp_entry(entry, ins); 138 if (cmp < 0) 139 p = &(*p)->rb_left; 140 else if (cmp > 0) 141 p = &(*p)->rb_right; 142 else 143 return entry; 144 } 145 146 rb_link_node(node, parent_node, p); 147 rb_insert_color(node, root); 148 return NULL; 149 } 150 151 /* 152 * find an head entry based on bytenr. This returns the delayed ref 153 * head if it was able to find one, or NULL if nothing was in that spot 154 */ 155 static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root, 156 u64 bytenr, 157 struct btrfs_delayed_ref_node **last) 158 { 159 struct rb_node *n = root->rb_node; 160 struct btrfs_delayed_ref_node *entry; 161 int cmp; 162 163 while (n) { 164 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 165 WARN_ON(!entry->in_tree); 166 if (last) 167 *last = entry; 168 169 if (bytenr < entry->bytenr) 170 cmp = -1; 171 else if (bytenr > entry->bytenr) 172 cmp = 1; 173 else if (!btrfs_delayed_ref_is_head(entry)) 174 cmp = 1; 175 else 176 cmp = 0; 177 178 if (cmp < 0) 179 n = n->rb_left; 180 else if (cmp > 0) 181 n = n->rb_right; 182 else 183 return entry; 184 } 185 return NULL; 186 } 187 188 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans, 189 struct btrfs_delayed_ref_head *head) 190 { 191 struct btrfs_delayed_ref_root *delayed_refs; 192 193 delayed_refs = &trans->transaction->delayed_refs; 194 assert_spin_locked(&delayed_refs->lock); 195 if (mutex_trylock(&head->mutex)) 196 return 0; 197 198 atomic_inc(&head->node.refs); 199 spin_unlock(&delayed_refs->lock); 200 201 mutex_lock(&head->mutex); 202 spin_lock(&delayed_refs->lock); 203 if (!head->node.in_tree) { 204 mutex_unlock(&head->mutex); 205 btrfs_put_delayed_ref(&head->node); 206 return -EAGAIN; 207 } 208 btrfs_put_delayed_ref(&head->node); 209 return 0; 210 } 211 212 int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans, 213 struct list_head *cluster, u64 start) 214 { 215 int count = 0; 216 struct btrfs_delayed_ref_root *delayed_refs; 217 struct rb_node *node; 218 struct btrfs_delayed_ref_node *ref; 219 struct btrfs_delayed_ref_head *head; 220 221 delayed_refs = &trans->transaction->delayed_refs; 222 if (start == 0) { 223 node = rb_first(&delayed_refs->root); 224 } else { 225 ref = NULL; 226 find_ref_head(&delayed_refs->root, start, &ref); 227 if (ref) { 228 struct btrfs_delayed_ref_node *tmp; 229 230 node = rb_prev(&ref->rb_node); 231 while (node) { 232 tmp = rb_entry(node, 233 struct btrfs_delayed_ref_node, 234 rb_node); 235 if (tmp->bytenr < start) 236 break; 237 ref = tmp; 238 node = rb_prev(&ref->rb_node); 239 } 240 node = &ref->rb_node; 241 } else 242 node = rb_first(&delayed_refs->root); 243 } 244 again: 245 while (node && count < 32) { 246 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 247 if (btrfs_delayed_ref_is_head(ref)) { 248 head = btrfs_delayed_node_to_head(ref); 249 if (list_empty(&head->cluster)) { 250 list_add_tail(&head->cluster, cluster); 251 delayed_refs->run_delayed_start = 252 head->node.bytenr; 253 count++; 254 255 WARN_ON(delayed_refs->num_heads_ready == 0); 256 delayed_refs->num_heads_ready--; 257 } else if (count) { 258 /* the goal of the clustering is to find extents 259 * that are likely to end up in the same extent 260 * leaf on disk. So, we don't want them spread 261 * all over the tree. Stop now if we've hit 262 * a head that was already in use 263 */ 264 break; 265 } 266 } 267 node = rb_next(node); 268 } 269 if (count) { 270 return 0; 271 } else if (start) { 272 /* 273 * we've gone to the end of the rbtree without finding any 274 * clusters. start from the beginning and try again 275 */ 276 start = 0; 277 node = rb_first(&delayed_refs->root); 278 goto again; 279 } 280 return 1; 281 } 282 283 /* 284 * This checks to see if there are any delayed refs in the 285 * btree for a given bytenr. It returns one if it finds any 286 * and zero otherwise. 287 * 288 * If it only finds a head node, it returns 0. 289 * 290 * The idea is to use this when deciding if you can safely delete an 291 * extent from the extent allocation tree. There may be a pending 292 * ref in the rbtree that adds or removes references, so as long as this 293 * returns one you need to leave the BTRFS_EXTENT_ITEM in the extent 294 * allocation tree. 295 */ 296 int btrfs_delayed_ref_pending(struct btrfs_trans_handle *trans, u64 bytenr) 297 { 298 struct btrfs_delayed_ref_node *ref; 299 struct btrfs_delayed_ref_root *delayed_refs; 300 struct rb_node *prev_node; 301 int ret = 0; 302 303 delayed_refs = &trans->transaction->delayed_refs; 304 spin_lock(&delayed_refs->lock); 305 306 ref = find_ref_head(&delayed_refs->root, bytenr, NULL); 307 if (ref) { 308 prev_node = rb_prev(&ref->rb_node); 309 if (!prev_node) 310 goto out; 311 ref = rb_entry(prev_node, struct btrfs_delayed_ref_node, 312 rb_node); 313 if (ref->bytenr == bytenr) 314 ret = 1; 315 } 316 out: 317 spin_unlock(&delayed_refs->lock); 318 return ret; 319 } 320 321 /* 322 * helper function to update an extent delayed ref in the 323 * rbtree. existing and update must both have the same 324 * bytenr and parent 325 * 326 * This may free existing if the update cancels out whatever 327 * operation it was doing. 328 */ 329 static noinline void 330 update_existing_ref(struct btrfs_trans_handle *trans, 331 struct btrfs_delayed_ref_root *delayed_refs, 332 struct btrfs_delayed_ref_node *existing, 333 struct btrfs_delayed_ref_node *update) 334 { 335 if (update->action != existing->action) { 336 /* 337 * this is effectively undoing either an add or a 338 * drop. We decrement the ref_mod, and if it goes 339 * down to zero we just delete the entry without 340 * every changing the extent allocation tree. 341 */ 342 existing->ref_mod--; 343 if (existing->ref_mod == 0) { 344 rb_erase(&existing->rb_node, 345 &delayed_refs->root); 346 existing->in_tree = 0; 347 btrfs_put_delayed_ref(existing); 348 delayed_refs->num_entries--; 349 if (trans->delayed_ref_updates) 350 trans->delayed_ref_updates--; 351 } else { 352 WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY || 353 existing->type == BTRFS_SHARED_BLOCK_REF_KEY); 354 } 355 } else { 356 WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY || 357 existing->type == BTRFS_SHARED_BLOCK_REF_KEY); 358 /* 359 * the action on the existing ref matches 360 * the action on the ref we're trying to add. 361 * Bump the ref_mod by one so the backref that 362 * is eventually added/removed has the correct 363 * reference count 364 */ 365 existing->ref_mod += update->ref_mod; 366 } 367 } 368 369 /* 370 * helper function to update the accounting in the head ref 371 * existing and update must have the same bytenr 372 */ 373 static noinline void 374 update_existing_head_ref(struct btrfs_delayed_ref_node *existing, 375 struct btrfs_delayed_ref_node *update) 376 { 377 struct btrfs_delayed_ref_head *existing_ref; 378 struct btrfs_delayed_ref_head *ref; 379 380 existing_ref = btrfs_delayed_node_to_head(existing); 381 ref = btrfs_delayed_node_to_head(update); 382 BUG_ON(existing_ref->is_data != ref->is_data); 383 384 if (ref->must_insert_reserved) { 385 /* if the extent was freed and then 386 * reallocated before the delayed ref 387 * entries were processed, we can end up 388 * with an existing head ref without 389 * the must_insert_reserved flag set. 390 * Set it again here 391 */ 392 existing_ref->must_insert_reserved = ref->must_insert_reserved; 393 394 /* 395 * update the num_bytes so we make sure the accounting 396 * is done correctly 397 */ 398 existing->num_bytes = update->num_bytes; 399 400 } 401 402 if (ref->extent_op) { 403 if (!existing_ref->extent_op) { 404 existing_ref->extent_op = ref->extent_op; 405 } else { 406 if (ref->extent_op->update_key) { 407 memcpy(&existing_ref->extent_op->key, 408 &ref->extent_op->key, 409 sizeof(ref->extent_op->key)); 410 existing_ref->extent_op->update_key = 1; 411 } 412 if (ref->extent_op->update_flags) { 413 existing_ref->extent_op->flags_to_set |= 414 ref->extent_op->flags_to_set; 415 existing_ref->extent_op->update_flags = 1; 416 } 417 kfree(ref->extent_op); 418 } 419 } 420 /* 421 * update the reference mod on the head to reflect this new operation 422 */ 423 existing->ref_mod += update->ref_mod; 424 } 425 426 /* 427 * helper function to actually insert a head node into the rbtree. 428 * this does all the dirty work in terms of maintaining the correct 429 * overall modification count. 430 */ 431 static noinline int add_delayed_ref_head(struct btrfs_trans_handle *trans, 432 struct btrfs_delayed_ref_node *ref, 433 u64 bytenr, u64 num_bytes, 434 int action, int is_data) 435 { 436 struct btrfs_delayed_ref_node *existing; 437 struct btrfs_delayed_ref_head *head_ref = NULL; 438 struct btrfs_delayed_ref_root *delayed_refs; 439 int count_mod = 1; 440 int must_insert_reserved = 0; 441 442 /* 443 * the head node stores the sum of all the mods, so dropping a ref 444 * should drop the sum in the head node by one. 445 */ 446 if (action == BTRFS_UPDATE_DELAYED_HEAD) 447 count_mod = 0; 448 else if (action == BTRFS_DROP_DELAYED_REF) 449 count_mod = -1; 450 451 /* 452 * BTRFS_ADD_DELAYED_EXTENT means that we need to update 453 * the reserved accounting when the extent is finally added, or 454 * if a later modification deletes the delayed ref without ever 455 * inserting the extent into the extent allocation tree. 456 * ref->must_insert_reserved is the flag used to record 457 * that accounting mods are required. 458 * 459 * Once we record must_insert_reserved, switch the action to 460 * BTRFS_ADD_DELAYED_REF because other special casing is not required. 461 */ 462 if (action == BTRFS_ADD_DELAYED_EXTENT) 463 must_insert_reserved = 1; 464 else 465 must_insert_reserved = 0; 466 467 delayed_refs = &trans->transaction->delayed_refs; 468 469 /* first set the basic ref node struct up */ 470 atomic_set(&ref->refs, 1); 471 ref->bytenr = bytenr; 472 ref->num_bytes = num_bytes; 473 ref->ref_mod = count_mod; 474 ref->type = 0; 475 ref->action = 0; 476 ref->is_head = 1; 477 ref->in_tree = 1; 478 479 head_ref = btrfs_delayed_node_to_head(ref); 480 head_ref->must_insert_reserved = must_insert_reserved; 481 head_ref->is_data = is_data; 482 483 INIT_LIST_HEAD(&head_ref->cluster); 484 mutex_init(&head_ref->mutex); 485 486 trace_btrfs_delayed_ref_head(ref, head_ref, action); 487 488 existing = tree_insert(&delayed_refs->root, &ref->rb_node); 489 490 if (existing) { 491 update_existing_head_ref(existing, ref); 492 /* 493 * we've updated the existing ref, free the newly 494 * allocated ref 495 */ 496 kfree(ref); 497 } else { 498 delayed_refs->num_heads++; 499 delayed_refs->num_heads_ready++; 500 delayed_refs->num_entries++; 501 trans->delayed_ref_updates++; 502 } 503 return 0; 504 } 505 506 /* 507 * helper to insert a delayed tree ref into the rbtree. 508 */ 509 static noinline int add_delayed_tree_ref(struct btrfs_trans_handle *trans, 510 struct btrfs_delayed_ref_node *ref, 511 u64 bytenr, u64 num_bytes, u64 parent, 512 u64 ref_root, int level, int action) 513 { 514 struct btrfs_delayed_ref_node *existing; 515 struct btrfs_delayed_tree_ref *full_ref; 516 struct btrfs_delayed_ref_root *delayed_refs; 517 518 if (action == BTRFS_ADD_DELAYED_EXTENT) 519 action = BTRFS_ADD_DELAYED_REF; 520 521 delayed_refs = &trans->transaction->delayed_refs; 522 523 /* first set the basic ref node struct up */ 524 atomic_set(&ref->refs, 1); 525 ref->bytenr = bytenr; 526 ref->num_bytes = num_bytes; 527 ref->ref_mod = 1; 528 ref->action = action; 529 ref->is_head = 0; 530 ref->in_tree = 1; 531 532 full_ref = btrfs_delayed_node_to_tree_ref(ref); 533 if (parent) { 534 full_ref->parent = parent; 535 ref->type = BTRFS_SHARED_BLOCK_REF_KEY; 536 } else { 537 full_ref->root = ref_root; 538 ref->type = BTRFS_TREE_BLOCK_REF_KEY; 539 } 540 full_ref->level = level; 541 542 trace_btrfs_delayed_tree_ref(ref, full_ref, action); 543 544 existing = tree_insert(&delayed_refs->root, &ref->rb_node); 545 546 if (existing) { 547 update_existing_ref(trans, delayed_refs, existing, ref); 548 /* 549 * we've updated the existing ref, free the newly 550 * allocated ref 551 */ 552 kfree(ref); 553 } else { 554 delayed_refs->num_entries++; 555 trans->delayed_ref_updates++; 556 } 557 return 0; 558 } 559 560 /* 561 * helper to insert a delayed data ref into the rbtree. 562 */ 563 static noinline int add_delayed_data_ref(struct btrfs_trans_handle *trans, 564 struct btrfs_delayed_ref_node *ref, 565 u64 bytenr, u64 num_bytes, u64 parent, 566 u64 ref_root, u64 owner, u64 offset, 567 int action) 568 { 569 struct btrfs_delayed_ref_node *existing; 570 struct btrfs_delayed_data_ref *full_ref; 571 struct btrfs_delayed_ref_root *delayed_refs; 572 573 if (action == BTRFS_ADD_DELAYED_EXTENT) 574 action = BTRFS_ADD_DELAYED_REF; 575 576 delayed_refs = &trans->transaction->delayed_refs; 577 578 /* first set the basic ref node struct up */ 579 atomic_set(&ref->refs, 1); 580 ref->bytenr = bytenr; 581 ref->num_bytes = num_bytes; 582 ref->ref_mod = 1; 583 ref->action = action; 584 ref->is_head = 0; 585 ref->in_tree = 1; 586 587 full_ref = btrfs_delayed_node_to_data_ref(ref); 588 if (parent) { 589 full_ref->parent = parent; 590 ref->type = BTRFS_SHARED_DATA_REF_KEY; 591 } else { 592 full_ref->root = ref_root; 593 ref->type = BTRFS_EXTENT_DATA_REF_KEY; 594 } 595 full_ref->objectid = owner; 596 full_ref->offset = offset; 597 598 trace_btrfs_delayed_data_ref(ref, full_ref, action); 599 600 existing = tree_insert(&delayed_refs->root, &ref->rb_node); 601 602 if (existing) { 603 update_existing_ref(trans, delayed_refs, existing, ref); 604 /* 605 * we've updated the existing ref, free the newly 606 * allocated ref 607 */ 608 kfree(ref); 609 } else { 610 delayed_refs->num_entries++; 611 trans->delayed_ref_updates++; 612 } 613 return 0; 614 } 615 616 /* 617 * add a delayed tree ref. This does all of the accounting required 618 * to make sure the delayed ref is eventually processed before this 619 * transaction commits. 620 */ 621 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 622 u64 bytenr, u64 num_bytes, u64 parent, 623 u64 ref_root, int level, int action, 624 struct btrfs_delayed_extent_op *extent_op) 625 { 626 struct btrfs_delayed_tree_ref *ref; 627 struct btrfs_delayed_ref_head *head_ref; 628 struct btrfs_delayed_ref_root *delayed_refs; 629 int ret; 630 631 BUG_ON(extent_op && extent_op->is_data); 632 ref = kmalloc(sizeof(*ref), GFP_NOFS); 633 if (!ref) 634 return -ENOMEM; 635 636 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); 637 if (!head_ref) { 638 kfree(ref); 639 return -ENOMEM; 640 } 641 642 head_ref->extent_op = extent_op; 643 644 delayed_refs = &trans->transaction->delayed_refs; 645 spin_lock(&delayed_refs->lock); 646 647 /* 648 * insert both the head node and the new ref without dropping 649 * the spin lock 650 */ 651 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes, 652 action, 0); 653 BUG_ON(ret); 654 655 ret = add_delayed_tree_ref(trans, &ref->node, bytenr, num_bytes, 656 parent, ref_root, level, action); 657 BUG_ON(ret); 658 spin_unlock(&delayed_refs->lock); 659 return 0; 660 } 661 662 /* 663 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 664 */ 665 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 666 u64 bytenr, u64 num_bytes, 667 u64 parent, u64 ref_root, 668 u64 owner, u64 offset, int action, 669 struct btrfs_delayed_extent_op *extent_op) 670 { 671 struct btrfs_delayed_data_ref *ref; 672 struct btrfs_delayed_ref_head *head_ref; 673 struct btrfs_delayed_ref_root *delayed_refs; 674 int ret; 675 676 BUG_ON(extent_op && !extent_op->is_data); 677 ref = kmalloc(sizeof(*ref), GFP_NOFS); 678 if (!ref) 679 return -ENOMEM; 680 681 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); 682 if (!head_ref) { 683 kfree(ref); 684 return -ENOMEM; 685 } 686 687 head_ref->extent_op = extent_op; 688 689 delayed_refs = &trans->transaction->delayed_refs; 690 spin_lock(&delayed_refs->lock); 691 692 /* 693 * insert both the head node and the new ref without dropping 694 * the spin lock 695 */ 696 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes, 697 action, 1); 698 BUG_ON(ret); 699 700 ret = add_delayed_data_ref(trans, &ref->node, bytenr, num_bytes, 701 parent, ref_root, owner, offset, action); 702 BUG_ON(ret); 703 spin_unlock(&delayed_refs->lock); 704 return 0; 705 } 706 707 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, 708 u64 bytenr, u64 num_bytes, 709 struct btrfs_delayed_extent_op *extent_op) 710 { 711 struct btrfs_delayed_ref_head *head_ref; 712 struct btrfs_delayed_ref_root *delayed_refs; 713 int ret; 714 715 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); 716 if (!head_ref) 717 return -ENOMEM; 718 719 head_ref->extent_op = extent_op; 720 721 delayed_refs = &trans->transaction->delayed_refs; 722 spin_lock(&delayed_refs->lock); 723 724 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, 725 num_bytes, BTRFS_UPDATE_DELAYED_HEAD, 726 extent_op->is_data); 727 BUG_ON(ret); 728 729 spin_unlock(&delayed_refs->lock); 730 return 0; 731 } 732 733 /* 734 * this does a simple search for the head node for a given extent. 735 * It must be called with the delayed ref spinlock held, and it returns 736 * the head node if any where found, or NULL if not. 737 */ 738 struct btrfs_delayed_ref_head * 739 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr) 740 { 741 struct btrfs_delayed_ref_node *ref; 742 struct btrfs_delayed_ref_root *delayed_refs; 743 744 delayed_refs = &trans->transaction->delayed_refs; 745 ref = find_ref_head(&delayed_refs->root, bytenr, NULL); 746 if (ref) 747 return btrfs_delayed_node_to_head(ref); 748 return NULL; 749 } 750 751 /* 752 * add a delayed ref to the tree. This does all of the accounting required 753 * to make sure the delayed ref is eventually processed before this 754 * transaction commits. 755 * 756 * The main point of this call is to add and remove a backreference in a single 757 * shot, taking the lock only once, and only searching for the head node once. 758 * 759 * It is the same as doing a ref add and delete in two separate calls. 760 */ 761 #if 0 762 int btrfs_update_delayed_ref(struct btrfs_trans_handle *trans, 763 u64 bytenr, u64 num_bytes, u64 orig_parent, 764 u64 parent, u64 orig_ref_root, u64 ref_root, 765 u64 orig_ref_generation, u64 ref_generation, 766 u64 owner_objectid, int pin) 767 { 768 struct btrfs_delayed_ref *ref; 769 struct btrfs_delayed_ref *old_ref; 770 struct btrfs_delayed_ref_head *head_ref; 771 struct btrfs_delayed_ref_root *delayed_refs; 772 int ret; 773 774 ref = kmalloc(sizeof(*ref), GFP_NOFS); 775 if (!ref) 776 return -ENOMEM; 777 778 old_ref = kmalloc(sizeof(*old_ref), GFP_NOFS); 779 if (!old_ref) { 780 kfree(ref); 781 return -ENOMEM; 782 } 783 784 /* 785 * the parent = 0 case comes from cases where we don't actually 786 * know the parent yet. It will get updated later via a add/drop 787 * pair. 788 */ 789 if (parent == 0) 790 parent = bytenr; 791 if (orig_parent == 0) 792 orig_parent = bytenr; 793 794 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS); 795 if (!head_ref) { 796 kfree(ref); 797 kfree(old_ref); 798 return -ENOMEM; 799 } 800 delayed_refs = &trans->transaction->delayed_refs; 801 spin_lock(&delayed_refs->lock); 802 803 /* 804 * insert both the head node and the new ref without dropping 805 * the spin lock 806 */ 807 ret = __btrfs_add_delayed_ref(trans, &head_ref->node, bytenr, num_bytes, 808 (u64)-1, 0, 0, 0, 809 BTRFS_UPDATE_DELAYED_HEAD, 0); 810 BUG_ON(ret); 811 812 ret = __btrfs_add_delayed_ref(trans, &ref->node, bytenr, num_bytes, 813 parent, ref_root, ref_generation, 814 owner_objectid, BTRFS_ADD_DELAYED_REF, 0); 815 BUG_ON(ret); 816 817 ret = __btrfs_add_delayed_ref(trans, &old_ref->node, bytenr, num_bytes, 818 orig_parent, orig_ref_root, 819 orig_ref_generation, owner_objectid, 820 BTRFS_DROP_DELAYED_REF, pin); 821 BUG_ON(ret); 822 spin_unlock(&delayed_refs->lock); 823 return 0; 824 } 825 #endif 826