xref: /linux/fs/btrfs/delayed-ref.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include "ctree.h"
23 #include "delayed-ref.h"
24 #include "transaction.h"
25 
26 /*
27  * delayed back reference update tracking.  For subvolume trees
28  * we queue up extent allocations and backref maintenance for
29  * delayed processing.   This avoids deep call chains where we
30  * add extents in the middle of btrfs_search_slot, and it allows
31  * us to buffer up frequently modified backrefs in an rb tree instead
32  * of hammering updates on the extent allocation tree.
33  */
34 
35 /*
36  * compare two delayed tree backrefs with same bytenr and type
37  */
38 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
39 			  struct btrfs_delayed_tree_ref *ref1)
40 {
41 	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
42 		if (ref1->root < ref2->root)
43 			return -1;
44 		if (ref1->root > ref2->root)
45 			return 1;
46 	} else {
47 		if (ref1->parent < ref2->parent)
48 			return -1;
49 		if (ref1->parent > ref2->parent)
50 			return 1;
51 	}
52 	return 0;
53 }
54 
55 /*
56  * compare two delayed data backrefs with same bytenr and type
57  */
58 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
59 			  struct btrfs_delayed_data_ref *ref1)
60 {
61 	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
62 		if (ref1->root < ref2->root)
63 			return -1;
64 		if (ref1->root > ref2->root)
65 			return 1;
66 		if (ref1->objectid < ref2->objectid)
67 			return -1;
68 		if (ref1->objectid > ref2->objectid)
69 			return 1;
70 		if (ref1->offset < ref2->offset)
71 			return -1;
72 		if (ref1->offset > ref2->offset)
73 			return 1;
74 	} else {
75 		if (ref1->parent < ref2->parent)
76 			return -1;
77 		if (ref1->parent > ref2->parent)
78 			return 1;
79 	}
80 	return 0;
81 }
82 
83 /*
84  * entries in the rb tree are ordered by the byte number of the extent,
85  * type of the delayed backrefs and content of delayed backrefs.
86  */
87 static int comp_entry(struct btrfs_delayed_ref_node *ref2,
88 		      struct btrfs_delayed_ref_node *ref1)
89 {
90 	if (ref1->bytenr < ref2->bytenr)
91 		return -1;
92 	if (ref1->bytenr > ref2->bytenr)
93 		return 1;
94 	if (ref1->is_head && ref2->is_head)
95 		return 0;
96 	if (ref2->is_head)
97 		return -1;
98 	if (ref1->is_head)
99 		return 1;
100 	if (ref1->type < ref2->type)
101 		return -1;
102 	if (ref1->type > ref2->type)
103 		return 1;
104 	/* merging of sequenced refs is not allowed */
105 	if (ref1->seq < ref2->seq)
106 		return -1;
107 	if (ref1->seq > ref2->seq)
108 		return 1;
109 	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
110 	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
111 		return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
112 				      btrfs_delayed_node_to_tree_ref(ref1));
113 	} else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
114 		   ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
115 		return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
116 				      btrfs_delayed_node_to_data_ref(ref1));
117 	}
118 	BUG();
119 	return 0;
120 }
121 
122 /*
123  * insert a new ref into the rbtree.  This returns any existing refs
124  * for the same (bytenr,parent) tuple, or NULL if the new node was properly
125  * inserted.
126  */
127 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
128 						  struct rb_node *node)
129 {
130 	struct rb_node **p = &root->rb_node;
131 	struct rb_node *parent_node = NULL;
132 	struct btrfs_delayed_ref_node *entry;
133 	struct btrfs_delayed_ref_node *ins;
134 	int cmp;
135 
136 	ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
137 	while (*p) {
138 		parent_node = *p;
139 		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
140 				 rb_node);
141 
142 		cmp = comp_entry(entry, ins);
143 		if (cmp < 0)
144 			p = &(*p)->rb_left;
145 		else if (cmp > 0)
146 			p = &(*p)->rb_right;
147 		else
148 			return entry;
149 	}
150 
151 	rb_link_node(node, parent_node, p);
152 	rb_insert_color(node, root);
153 	return NULL;
154 }
155 
156 /*
157  * find an head entry based on bytenr. This returns the delayed ref
158  * head if it was able to find one, or NULL if nothing was in that spot.
159  * If return_bigger is given, the next bigger entry is returned if no exact
160  * match is found.
161  */
162 static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
163 				  u64 bytenr,
164 				  struct btrfs_delayed_ref_node **last,
165 				  int return_bigger)
166 {
167 	struct rb_node *n;
168 	struct btrfs_delayed_ref_node *entry;
169 	int cmp = 0;
170 
171 again:
172 	n = root->rb_node;
173 	entry = NULL;
174 	while (n) {
175 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
176 		WARN_ON(!entry->in_tree);
177 		if (last)
178 			*last = entry;
179 
180 		if (bytenr < entry->bytenr)
181 			cmp = -1;
182 		else if (bytenr > entry->bytenr)
183 			cmp = 1;
184 		else if (!btrfs_delayed_ref_is_head(entry))
185 			cmp = 1;
186 		else
187 			cmp = 0;
188 
189 		if (cmp < 0)
190 			n = n->rb_left;
191 		else if (cmp > 0)
192 			n = n->rb_right;
193 		else
194 			return entry;
195 	}
196 	if (entry && return_bigger) {
197 		if (cmp > 0) {
198 			n = rb_next(&entry->rb_node);
199 			if (!n)
200 				n = rb_first(root);
201 			entry = rb_entry(n, struct btrfs_delayed_ref_node,
202 					 rb_node);
203 			bytenr = entry->bytenr;
204 			return_bigger = 0;
205 			goto again;
206 		}
207 		return entry;
208 	}
209 	return NULL;
210 }
211 
212 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
213 			   struct btrfs_delayed_ref_head *head)
214 {
215 	struct btrfs_delayed_ref_root *delayed_refs;
216 
217 	delayed_refs = &trans->transaction->delayed_refs;
218 	assert_spin_locked(&delayed_refs->lock);
219 	if (mutex_trylock(&head->mutex))
220 		return 0;
221 
222 	atomic_inc(&head->node.refs);
223 	spin_unlock(&delayed_refs->lock);
224 
225 	mutex_lock(&head->mutex);
226 	spin_lock(&delayed_refs->lock);
227 	if (!head->node.in_tree) {
228 		mutex_unlock(&head->mutex);
229 		btrfs_put_delayed_ref(&head->node);
230 		return -EAGAIN;
231 	}
232 	btrfs_put_delayed_ref(&head->node);
233 	return 0;
234 }
235 
236 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
237 			    struct btrfs_delayed_ref_root *delayed_refs,
238 			    u64 seq)
239 {
240 	struct seq_list *elem;
241 	int ret = 0;
242 
243 	spin_lock(&fs_info->tree_mod_seq_lock);
244 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
245 		elem = list_first_entry(&fs_info->tree_mod_seq_list,
246 					struct seq_list, list);
247 		if (seq >= elem->seq) {
248 			pr_debug("holding back delayed_ref %llu, lowest is "
249 				 "%llu (%p)\n", seq, elem->seq, delayed_refs);
250 			ret = 1;
251 		}
252 	}
253 
254 	spin_unlock(&fs_info->tree_mod_seq_lock);
255 	return ret;
256 }
257 
258 int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
259 			   struct list_head *cluster, u64 start)
260 {
261 	int count = 0;
262 	struct btrfs_delayed_ref_root *delayed_refs;
263 	struct rb_node *node;
264 	struct btrfs_delayed_ref_node *ref;
265 	struct btrfs_delayed_ref_head *head;
266 
267 	delayed_refs = &trans->transaction->delayed_refs;
268 	if (start == 0) {
269 		node = rb_first(&delayed_refs->root);
270 	} else {
271 		ref = NULL;
272 		find_ref_head(&delayed_refs->root, start + 1, &ref, 1);
273 		if (ref) {
274 			node = &ref->rb_node;
275 		} else
276 			node = rb_first(&delayed_refs->root);
277 	}
278 again:
279 	while (node && count < 32) {
280 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
281 		if (btrfs_delayed_ref_is_head(ref)) {
282 			head = btrfs_delayed_node_to_head(ref);
283 			if (list_empty(&head->cluster)) {
284 				list_add_tail(&head->cluster, cluster);
285 				delayed_refs->run_delayed_start =
286 					head->node.bytenr;
287 				count++;
288 
289 				WARN_ON(delayed_refs->num_heads_ready == 0);
290 				delayed_refs->num_heads_ready--;
291 			} else if (count) {
292 				/* the goal of the clustering is to find extents
293 				 * that are likely to end up in the same extent
294 				 * leaf on disk.  So, we don't want them spread
295 				 * all over the tree.  Stop now if we've hit
296 				 * a head that was already in use
297 				 */
298 				break;
299 			}
300 		}
301 		node = rb_next(node);
302 	}
303 	if (count) {
304 		return 0;
305 	} else if (start) {
306 		/*
307 		 * we've gone to the end of the rbtree without finding any
308 		 * clusters.  start from the beginning and try again
309 		 */
310 		start = 0;
311 		node = rb_first(&delayed_refs->root);
312 		goto again;
313 	}
314 	return 1;
315 }
316 
317 /*
318  * helper function to update an extent delayed ref in the
319  * rbtree.  existing and update must both have the same
320  * bytenr and parent
321  *
322  * This may free existing if the update cancels out whatever
323  * operation it was doing.
324  */
325 static noinline void
326 update_existing_ref(struct btrfs_trans_handle *trans,
327 		    struct btrfs_delayed_ref_root *delayed_refs,
328 		    struct btrfs_delayed_ref_node *existing,
329 		    struct btrfs_delayed_ref_node *update)
330 {
331 	if (update->action != existing->action) {
332 		/*
333 		 * this is effectively undoing either an add or a
334 		 * drop.  We decrement the ref_mod, and if it goes
335 		 * down to zero we just delete the entry without
336 		 * every changing the extent allocation tree.
337 		 */
338 		existing->ref_mod--;
339 		if (existing->ref_mod == 0) {
340 			rb_erase(&existing->rb_node,
341 				 &delayed_refs->root);
342 			existing->in_tree = 0;
343 			btrfs_put_delayed_ref(existing);
344 			delayed_refs->num_entries--;
345 			if (trans->delayed_ref_updates)
346 				trans->delayed_ref_updates--;
347 		} else {
348 			WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
349 				existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
350 		}
351 	} else {
352 		WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
353 			existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
354 		/*
355 		 * the action on the existing ref matches
356 		 * the action on the ref we're trying to add.
357 		 * Bump the ref_mod by one so the backref that
358 		 * is eventually added/removed has the correct
359 		 * reference count
360 		 */
361 		existing->ref_mod += update->ref_mod;
362 	}
363 }
364 
365 /*
366  * helper function to update the accounting in the head ref
367  * existing and update must have the same bytenr
368  */
369 static noinline void
370 update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
371 			 struct btrfs_delayed_ref_node *update)
372 {
373 	struct btrfs_delayed_ref_head *existing_ref;
374 	struct btrfs_delayed_ref_head *ref;
375 
376 	existing_ref = btrfs_delayed_node_to_head(existing);
377 	ref = btrfs_delayed_node_to_head(update);
378 	BUG_ON(existing_ref->is_data != ref->is_data);
379 
380 	if (ref->must_insert_reserved) {
381 		/* if the extent was freed and then
382 		 * reallocated before the delayed ref
383 		 * entries were processed, we can end up
384 		 * with an existing head ref without
385 		 * the must_insert_reserved flag set.
386 		 * Set it again here
387 		 */
388 		existing_ref->must_insert_reserved = ref->must_insert_reserved;
389 
390 		/*
391 		 * update the num_bytes so we make sure the accounting
392 		 * is done correctly
393 		 */
394 		existing->num_bytes = update->num_bytes;
395 
396 	}
397 
398 	if (ref->extent_op) {
399 		if (!existing_ref->extent_op) {
400 			existing_ref->extent_op = ref->extent_op;
401 		} else {
402 			if (ref->extent_op->update_key) {
403 				memcpy(&existing_ref->extent_op->key,
404 				       &ref->extent_op->key,
405 				       sizeof(ref->extent_op->key));
406 				existing_ref->extent_op->update_key = 1;
407 			}
408 			if (ref->extent_op->update_flags) {
409 				existing_ref->extent_op->flags_to_set |=
410 					ref->extent_op->flags_to_set;
411 				existing_ref->extent_op->update_flags = 1;
412 			}
413 			kfree(ref->extent_op);
414 		}
415 	}
416 	/*
417 	 * update the reference mod on the head to reflect this new operation
418 	 */
419 	existing->ref_mod += update->ref_mod;
420 }
421 
422 /*
423  * helper function to actually insert a head node into the rbtree.
424  * this does all the dirty work in terms of maintaining the correct
425  * overall modification count.
426  */
427 static noinline void add_delayed_ref_head(struct btrfs_fs_info *fs_info,
428 					struct btrfs_trans_handle *trans,
429 					struct btrfs_delayed_ref_node *ref,
430 					u64 bytenr, u64 num_bytes,
431 					int action, int is_data)
432 {
433 	struct btrfs_delayed_ref_node *existing;
434 	struct btrfs_delayed_ref_head *head_ref = NULL;
435 	struct btrfs_delayed_ref_root *delayed_refs;
436 	int count_mod = 1;
437 	int must_insert_reserved = 0;
438 
439 	/*
440 	 * the head node stores the sum of all the mods, so dropping a ref
441 	 * should drop the sum in the head node by one.
442 	 */
443 	if (action == BTRFS_UPDATE_DELAYED_HEAD)
444 		count_mod = 0;
445 	else if (action == BTRFS_DROP_DELAYED_REF)
446 		count_mod = -1;
447 
448 	/*
449 	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
450 	 * the reserved accounting when the extent is finally added, or
451 	 * if a later modification deletes the delayed ref without ever
452 	 * inserting the extent into the extent allocation tree.
453 	 * ref->must_insert_reserved is the flag used to record
454 	 * that accounting mods are required.
455 	 *
456 	 * Once we record must_insert_reserved, switch the action to
457 	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
458 	 */
459 	if (action == BTRFS_ADD_DELAYED_EXTENT)
460 		must_insert_reserved = 1;
461 	else
462 		must_insert_reserved = 0;
463 
464 	delayed_refs = &trans->transaction->delayed_refs;
465 
466 	/* first set the basic ref node struct up */
467 	atomic_set(&ref->refs, 1);
468 	ref->bytenr = bytenr;
469 	ref->num_bytes = num_bytes;
470 	ref->ref_mod = count_mod;
471 	ref->type  = 0;
472 	ref->action  = 0;
473 	ref->is_head = 1;
474 	ref->in_tree = 1;
475 	ref->seq = 0;
476 
477 	head_ref = btrfs_delayed_node_to_head(ref);
478 	head_ref->must_insert_reserved = must_insert_reserved;
479 	head_ref->is_data = is_data;
480 
481 	INIT_LIST_HEAD(&head_ref->cluster);
482 	mutex_init(&head_ref->mutex);
483 
484 	trace_btrfs_delayed_ref_head(ref, head_ref, action);
485 
486 	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
487 
488 	if (existing) {
489 		update_existing_head_ref(existing, ref);
490 		/*
491 		 * we've updated the existing ref, free the newly
492 		 * allocated ref
493 		 */
494 		kfree(head_ref);
495 	} else {
496 		delayed_refs->num_heads++;
497 		delayed_refs->num_heads_ready++;
498 		delayed_refs->num_entries++;
499 		trans->delayed_ref_updates++;
500 	}
501 }
502 
503 /*
504  * helper to insert a delayed tree ref into the rbtree.
505  */
506 static noinline void add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
507 					 struct btrfs_trans_handle *trans,
508 					 struct btrfs_delayed_ref_node *ref,
509 					 u64 bytenr, u64 num_bytes, u64 parent,
510 					 u64 ref_root, int level, int action,
511 					 int for_cow)
512 {
513 	struct btrfs_delayed_ref_node *existing;
514 	struct btrfs_delayed_tree_ref *full_ref;
515 	struct btrfs_delayed_ref_root *delayed_refs;
516 	u64 seq = 0;
517 
518 	if (action == BTRFS_ADD_DELAYED_EXTENT)
519 		action = BTRFS_ADD_DELAYED_REF;
520 
521 	delayed_refs = &trans->transaction->delayed_refs;
522 
523 	/* first set the basic ref node struct up */
524 	atomic_set(&ref->refs, 1);
525 	ref->bytenr = bytenr;
526 	ref->num_bytes = num_bytes;
527 	ref->ref_mod = 1;
528 	ref->action = action;
529 	ref->is_head = 0;
530 	ref->in_tree = 1;
531 
532 	if (need_ref_seq(for_cow, ref_root))
533 		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
534 	ref->seq = seq;
535 
536 	full_ref = btrfs_delayed_node_to_tree_ref(ref);
537 	full_ref->parent = parent;
538 	full_ref->root = ref_root;
539 	if (parent)
540 		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
541 	else
542 		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
543 	full_ref->level = level;
544 
545 	trace_btrfs_delayed_tree_ref(ref, full_ref, action);
546 
547 	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
548 
549 	if (existing) {
550 		update_existing_ref(trans, delayed_refs, existing, ref);
551 		/*
552 		 * we've updated the existing ref, free the newly
553 		 * allocated ref
554 		 */
555 		kfree(full_ref);
556 	} else {
557 		delayed_refs->num_entries++;
558 		trans->delayed_ref_updates++;
559 	}
560 }
561 
562 /*
563  * helper to insert a delayed data ref into the rbtree.
564  */
565 static noinline void add_delayed_data_ref(struct btrfs_fs_info *fs_info,
566 					 struct btrfs_trans_handle *trans,
567 					 struct btrfs_delayed_ref_node *ref,
568 					 u64 bytenr, u64 num_bytes, u64 parent,
569 					 u64 ref_root, u64 owner, u64 offset,
570 					 int action, int for_cow)
571 {
572 	struct btrfs_delayed_ref_node *existing;
573 	struct btrfs_delayed_data_ref *full_ref;
574 	struct btrfs_delayed_ref_root *delayed_refs;
575 	u64 seq = 0;
576 
577 	if (action == BTRFS_ADD_DELAYED_EXTENT)
578 		action = BTRFS_ADD_DELAYED_REF;
579 
580 	delayed_refs = &trans->transaction->delayed_refs;
581 
582 	/* first set the basic ref node struct up */
583 	atomic_set(&ref->refs, 1);
584 	ref->bytenr = bytenr;
585 	ref->num_bytes = num_bytes;
586 	ref->ref_mod = 1;
587 	ref->action = action;
588 	ref->is_head = 0;
589 	ref->in_tree = 1;
590 
591 	if (need_ref_seq(for_cow, ref_root))
592 		seq = btrfs_get_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
593 	ref->seq = seq;
594 
595 	full_ref = btrfs_delayed_node_to_data_ref(ref);
596 	full_ref->parent = parent;
597 	full_ref->root = ref_root;
598 	if (parent)
599 		ref->type = BTRFS_SHARED_DATA_REF_KEY;
600 	else
601 		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
602 
603 	full_ref->objectid = owner;
604 	full_ref->offset = offset;
605 
606 	trace_btrfs_delayed_data_ref(ref, full_ref, action);
607 
608 	existing = tree_insert(&delayed_refs->root, &ref->rb_node);
609 
610 	if (existing) {
611 		update_existing_ref(trans, delayed_refs, existing, ref);
612 		/*
613 		 * we've updated the existing ref, free the newly
614 		 * allocated ref
615 		 */
616 		kfree(full_ref);
617 	} else {
618 		delayed_refs->num_entries++;
619 		trans->delayed_ref_updates++;
620 	}
621 }
622 
623 /*
624  * add a delayed tree ref.  This does all of the accounting required
625  * to make sure the delayed ref is eventually processed before this
626  * transaction commits.
627  */
628 int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
629 			       struct btrfs_trans_handle *trans,
630 			       u64 bytenr, u64 num_bytes, u64 parent,
631 			       u64 ref_root,  int level, int action,
632 			       struct btrfs_delayed_extent_op *extent_op,
633 			       int for_cow)
634 {
635 	struct btrfs_delayed_tree_ref *ref;
636 	struct btrfs_delayed_ref_head *head_ref;
637 	struct btrfs_delayed_ref_root *delayed_refs;
638 
639 	BUG_ON(extent_op && extent_op->is_data);
640 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
641 	if (!ref)
642 		return -ENOMEM;
643 
644 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
645 	if (!head_ref) {
646 		kfree(ref);
647 		return -ENOMEM;
648 	}
649 
650 	head_ref->extent_op = extent_op;
651 
652 	delayed_refs = &trans->transaction->delayed_refs;
653 	spin_lock(&delayed_refs->lock);
654 
655 	/*
656 	 * insert both the head node and the new ref without dropping
657 	 * the spin lock
658 	 */
659 	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
660 				   num_bytes, action, 0);
661 
662 	add_delayed_tree_ref(fs_info, trans, &ref->node, bytenr,
663 				   num_bytes, parent, ref_root, level, action,
664 				   for_cow);
665 	if (!need_ref_seq(for_cow, ref_root) &&
666 	    waitqueue_active(&fs_info->tree_mod_seq_wait))
667 		wake_up(&fs_info->tree_mod_seq_wait);
668 	spin_unlock(&delayed_refs->lock);
669 	if (need_ref_seq(for_cow, ref_root))
670 		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
671 
672 	return 0;
673 }
674 
675 /*
676  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
677  */
678 int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
679 			       struct btrfs_trans_handle *trans,
680 			       u64 bytenr, u64 num_bytes,
681 			       u64 parent, u64 ref_root,
682 			       u64 owner, u64 offset, int action,
683 			       struct btrfs_delayed_extent_op *extent_op,
684 			       int for_cow)
685 {
686 	struct btrfs_delayed_data_ref *ref;
687 	struct btrfs_delayed_ref_head *head_ref;
688 	struct btrfs_delayed_ref_root *delayed_refs;
689 
690 	BUG_ON(extent_op && !extent_op->is_data);
691 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
692 	if (!ref)
693 		return -ENOMEM;
694 
695 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
696 	if (!head_ref) {
697 		kfree(ref);
698 		return -ENOMEM;
699 	}
700 
701 	head_ref->extent_op = extent_op;
702 
703 	delayed_refs = &trans->transaction->delayed_refs;
704 	spin_lock(&delayed_refs->lock);
705 
706 	/*
707 	 * insert both the head node and the new ref without dropping
708 	 * the spin lock
709 	 */
710 	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
711 				   num_bytes, action, 1);
712 
713 	add_delayed_data_ref(fs_info, trans, &ref->node, bytenr,
714 				   num_bytes, parent, ref_root, owner, offset,
715 				   action, for_cow);
716 	if (!need_ref_seq(for_cow, ref_root) &&
717 	    waitqueue_active(&fs_info->tree_mod_seq_wait))
718 		wake_up(&fs_info->tree_mod_seq_wait);
719 	spin_unlock(&delayed_refs->lock);
720 	if (need_ref_seq(for_cow, ref_root))
721 		btrfs_qgroup_record_ref(trans, &ref->node, extent_op);
722 
723 	return 0;
724 }
725 
726 int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
727 				struct btrfs_trans_handle *trans,
728 				u64 bytenr, u64 num_bytes,
729 				struct btrfs_delayed_extent_op *extent_op)
730 {
731 	struct btrfs_delayed_ref_head *head_ref;
732 	struct btrfs_delayed_ref_root *delayed_refs;
733 
734 	head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
735 	if (!head_ref)
736 		return -ENOMEM;
737 
738 	head_ref->extent_op = extent_op;
739 
740 	delayed_refs = &trans->transaction->delayed_refs;
741 	spin_lock(&delayed_refs->lock);
742 
743 	add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
744 				   num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
745 				   extent_op->is_data);
746 
747 	if (waitqueue_active(&fs_info->tree_mod_seq_wait))
748 		wake_up(&fs_info->tree_mod_seq_wait);
749 	spin_unlock(&delayed_refs->lock);
750 	return 0;
751 }
752 
753 /*
754  * this does a simple search for the head node for a given extent.
755  * It must be called with the delayed ref spinlock held, and it returns
756  * the head node if any where found, or NULL if not.
757  */
758 struct btrfs_delayed_ref_head *
759 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
760 {
761 	struct btrfs_delayed_ref_node *ref;
762 	struct btrfs_delayed_ref_root *delayed_refs;
763 
764 	delayed_refs = &trans->transaction->delayed_refs;
765 	ref = find_ref_head(&delayed_refs->root, bytenr, NULL, 0);
766 	if (ref)
767 		return btrfs_delayed_node_to_head(ref);
768 	return NULL;
769 }
770