1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/sort.h> 9 #include "messages.h" 10 #include "ctree.h" 11 #include "delayed-ref.h" 12 #include "transaction.h" 13 #include "qgroup.h" 14 #include "space-info.h" 15 #include "tree-mod-log.h" 16 #include "fs.h" 17 18 struct kmem_cache *btrfs_delayed_ref_head_cachep; 19 struct kmem_cache *btrfs_delayed_tree_ref_cachep; 20 struct kmem_cache *btrfs_delayed_data_ref_cachep; 21 struct kmem_cache *btrfs_delayed_extent_op_cachep; 22 /* 23 * delayed back reference update tracking. For subvolume trees 24 * we queue up extent allocations and backref maintenance for 25 * delayed processing. This avoids deep call chains where we 26 * add extents in the middle of btrfs_search_slot, and it allows 27 * us to buffer up frequently modified backrefs in an rb tree instead 28 * of hammering updates on the extent allocation tree. 29 */ 30 31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info) 32 { 33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 35 bool ret = false; 36 u64 reserved; 37 38 spin_lock(&global_rsv->lock); 39 reserved = global_rsv->reserved; 40 spin_unlock(&global_rsv->lock); 41 42 /* 43 * Since the global reserve is just kind of magic we don't really want 44 * to rely on it to save our bacon, so if our size is more than the 45 * delayed_refs_rsv and the global rsv then it's time to think about 46 * bailing. 47 */ 48 spin_lock(&delayed_refs_rsv->lock); 49 reserved += delayed_refs_rsv->reserved; 50 if (delayed_refs_rsv->size >= reserved) 51 ret = true; 52 spin_unlock(&delayed_refs_rsv->lock); 53 return ret; 54 } 55 56 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans) 57 { 58 u64 num_entries = 59 atomic_read(&trans->transaction->delayed_refs.num_entries); 60 u64 avg_runtime; 61 u64 val; 62 63 smp_mb(); 64 avg_runtime = trans->fs_info->avg_delayed_ref_runtime; 65 val = num_entries * avg_runtime; 66 if (val >= NSEC_PER_SEC) 67 return 1; 68 if (val >= NSEC_PER_SEC / 2) 69 return 2; 70 71 return btrfs_check_space_for_delayed_refs(trans->fs_info); 72 } 73 74 /* 75 * Release a ref head's reservation. 76 * 77 * @fs_info: the filesystem 78 * @nr: number of items to drop 79 * 80 * Drops the delayed ref head's count from the delayed refs rsv and free any 81 * excess reservation we had. 82 */ 83 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr) 84 { 85 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 86 u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr); 87 u64 released = 0; 88 89 /* 90 * We have to check the mount option here because we could be enabling 91 * the free space tree for the first time and don't have the compat_ro 92 * option set yet. 93 * 94 * We need extra reservations if we have the free space tree because 95 * we'll have to modify that tree as well. 96 */ 97 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 98 num_bytes *= 2; 99 100 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL); 101 if (released) 102 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 103 0, released, 0); 104 } 105 106 /* 107 * Adjust the size of the delayed refs rsv. 108 * 109 * This is to be called anytime we may have adjusted trans->delayed_ref_updates, 110 * it'll calculate the additional size and add it to the delayed_refs_rsv. 111 */ 112 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans) 113 { 114 struct btrfs_fs_info *fs_info = trans->fs_info; 115 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 116 u64 num_bytes; 117 118 if (!trans->delayed_ref_updates) 119 return; 120 121 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 122 trans->delayed_ref_updates); 123 /* 124 * We have to check the mount option here because we could be enabling 125 * the free space tree for the first time and don't have the compat_ro 126 * option set yet. 127 * 128 * We need extra reservations if we have the free space tree because 129 * we'll have to modify that tree as well. 130 */ 131 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 132 num_bytes *= 2; 133 134 spin_lock(&delayed_rsv->lock); 135 delayed_rsv->size += num_bytes; 136 delayed_rsv->full = false; 137 spin_unlock(&delayed_rsv->lock); 138 trans->delayed_ref_updates = 0; 139 } 140 141 /* 142 * Transfer bytes to our delayed refs rsv. 143 * 144 * @fs_info: the filesystem 145 * @src: source block rsv to transfer from 146 * @num_bytes: number of bytes to transfer 147 * 148 * This transfers up to the num_bytes amount from the src rsv to the 149 * delayed_refs_rsv. Any extra bytes are returned to the space info. 150 */ 151 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info, 152 struct btrfs_block_rsv *src, 153 u64 num_bytes) 154 { 155 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 156 u64 to_free = 0; 157 158 spin_lock(&src->lock); 159 src->reserved -= num_bytes; 160 src->size -= num_bytes; 161 spin_unlock(&src->lock); 162 163 spin_lock(&delayed_refs_rsv->lock); 164 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) { 165 u64 delta = delayed_refs_rsv->size - 166 delayed_refs_rsv->reserved; 167 if (num_bytes > delta) { 168 to_free = num_bytes - delta; 169 num_bytes = delta; 170 } 171 } else { 172 to_free = num_bytes; 173 num_bytes = 0; 174 } 175 176 if (num_bytes) 177 delayed_refs_rsv->reserved += num_bytes; 178 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size) 179 delayed_refs_rsv->full = true; 180 spin_unlock(&delayed_refs_rsv->lock); 181 182 if (num_bytes) 183 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 184 0, num_bytes, 1); 185 if (to_free) 186 btrfs_space_info_free_bytes_may_use(fs_info, 187 delayed_refs_rsv->space_info, to_free); 188 } 189 190 /* 191 * Refill based on our delayed refs usage. 192 * 193 * @fs_info: the filesystem 194 * @flush: control how we can flush for this reservation. 195 * 196 * This will refill the delayed block_rsv up to 1 items size worth of space and 197 * will return -ENOSPC if we can't make the reservation. 198 */ 199 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info, 200 enum btrfs_reserve_flush_enum flush) 201 { 202 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv; 203 u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1); 204 u64 num_bytes = 0; 205 int ret = -ENOSPC; 206 207 spin_lock(&block_rsv->lock); 208 if (block_rsv->reserved < block_rsv->size) { 209 num_bytes = block_rsv->size - block_rsv->reserved; 210 num_bytes = min(num_bytes, limit); 211 } 212 spin_unlock(&block_rsv->lock); 213 214 if (!num_bytes) 215 return 0; 216 217 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); 218 if (ret) 219 return ret; 220 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0); 221 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 222 0, num_bytes, 1); 223 return 0; 224 } 225 226 /* 227 * compare two delayed tree backrefs with same bytenr and type 228 */ 229 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1, 230 struct btrfs_delayed_tree_ref *ref2) 231 { 232 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) { 233 if (ref1->root < ref2->root) 234 return -1; 235 if (ref1->root > ref2->root) 236 return 1; 237 } else { 238 if (ref1->parent < ref2->parent) 239 return -1; 240 if (ref1->parent > ref2->parent) 241 return 1; 242 } 243 return 0; 244 } 245 246 /* 247 * compare two delayed data backrefs with same bytenr and type 248 */ 249 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1, 250 struct btrfs_delayed_data_ref *ref2) 251 { 252 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) { 253 if (ref1->root < ref2->root) 254 return -1; 255 if (ref1->root > ref2->root) 256 return 1; 257 if (ref1->objectid < ref2->objectid) 258 return -1; 259 if (ref1->objectid > ref2->objectid) 260 return 1; 261 if (ref1->offset < ref2->offset) 262 return -1; 263 if (ref1->offset > ref2->offset) 264 return 1; 265 } else { 266 if (ref1->parent < ref2->parent) 267 return -1; 268 if (ref1->parent > ref2->parent) 269 return 1; 270 } 271 return 0; 272 } 273 274 static int comp_refs(struct btrfs_delayed_ref_node *ref1, 275 struct btrfs_delayed_ref_node *ref2, 276 bool check_seq) 277 { 278 int ret = 0; 279 280 if (ref1->type < ref2->type) 281 return -1; 282 if (ref1->type > ref2->type) 283 return 1; 284 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY || 285 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) 286 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1), 287 btrfs_delayed_node_to_tree_ref(ref2)); 288 else 289 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1), 290 btrfs_delayed_node_to_data_ref(ref2)); 291 if (ret) 292 return ret; 293 if (check_seq) { 294 if (ref1->seq < ref2->seq) 295 return -1; 296 if (ref1->seq > ref2->seq) 297 return 1; 298 } 299 return 0; 300 } 301 302 /* insert a new ref to head ref rbtree */ 303 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root, 304 struct rb_node *node) 305 { 306 struct rb_node **p = &root->rb_root.rb_node; 307 struct rb_node *parent_node = NULL; 308 struct btrfs_delayed_ref_head *entry; 309 struct btrfs_delayed_ref_head *ins; 310 u64 bytenr; 311 bool leftmost = true; 312 313 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node); 314 bytenr = ins->bytenr; 315 while (*p) { 316 parent_node = *p; 317 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head, 318 href_node); 319 320 if (bytenr < entry->bytenr) { 321 p = &(*p)->rb_left; 322 } else if (bytenr > entry->bytenr) { 323 p = &(*p)->rb_right; 324 leftmost = false; 325 } else { 326 return entry; 327 } 328 } 329 330 rb_link_node(node, parent_node, p); 331 rb_insert_color_cached(node, root, leftmost); 332 return NULL; 333 } 334 335 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root, 336 struct btrfs_delayed_ref_node *ins) 337 { 338 struct rb_node **p = &root->rb_root.rb_node; 339 struct rb_node *node = &ins->ref_node; 340 struct rb_node *parent_node = NULL; 341 struct btrfs_delayed_ref_node *entry; 342 bool leftmost = true; 343 344 while (*p) { 345 int comp; 346 347 parent_node = *p; 348 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node, 349 ref_node); 350 comp = comp_refs(ins, entry, true); 351 if (comp < 0) { 352 p = &(*p)->rb_left; 353 } else if (comp > 0) { 354 p = &(*p)->rb_right; 355 leftmost = false; 356 } else { 357 return entry; 358 } 359 } 360 361 rb_link_node(node, parent_node, p); 362 rb_insert_color_cached(node, root, leftmost); 363 return NULL; 364 } 365 366 static struct btrfs_delayed_ref_head *find_first_ref_head( 367 struct btrfs_delayed_ref_root *dr) 368 { 369 struct rb_node *n; 370 struct btrfs_delayed_ref_head *entry; 371 372 n = rb_first_cached(&dr->href_root); 373 if (!n) 374 return NULL; 375 376 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 377 378 return entry; 379 } 380 381 /* 382 * Find a head entry based on bytenr. This returns the delayed ref head if it 383 * was able to find one, or NULL if nothing was in that spot. If return_bigger 384 * is given, the next bigger entry is returned if no exact match is found. 385 */ 386 static struct btrfs_delayed_ref_head *find_ref_head( 387 struct btrfs_delayed_ref_root *dr, u64 bytenr, 388 bool return_bigger) 389 { 390 struct rb_root *root = &dr->href_root.rb_root; 391 struct rb_node *n; 392 struct btrfs_delayed_ref_head *entry; 393 394 n = root->rb_node; 395 entry = NULL; 396 while (n) { 397 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node); 398 399 if (bytenr < entry->bytenr) 400 n = n->rb_left; 401 else if (bytenr > entry->bytenr) 402 n = n->rb_right; 403 else 404 return entry; 405 } 406 if (entry && return_bigger) { 407 if (bytenr > entry->bytenr) { 408 n = rb_next(&entry->href_node); 409 if (!n) 410 return NULL; 411 entry = rb_entry(n, struct btrfs_delayed_ref_head, 412 href_node); 413 } 414 return entry; 415 } 416 return NULL; 417 } 418 419 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs, 420 struct btrfs_delayed_ref_head *head) 421 { 422 lockdep_assert_held(&delayed_refs->lock); 423 if (mutex_trylock(&head->mutex)) 424 return 0; 425 426 refcount_inc(&head->refs); 427 spin_unlock(&delayed_refs->lock); 428 429 mutex_lock(&head->mutex); 430 spin_lock(&delayed_refs->lock); 431 if (RB_EMPTY_NODE(&head->href_node)) { 432 mutex_unlock(&head->mutex); 433 btrfs_put_delayed_ref_head(head); 434 return -EAGAIN; 435 } 436 btrfs_put_delayed_ref_head(head); 437 return 0; 438 } 439 440 static inline void drop_delayed_ref(struct btrfs_delayed_ref_root *delayed_refs, 441 struct btrfs_delayed_ref_head *head, 442 struct btrfs_delayed_ref_node *ref) 443 { 444 lockdep_assert_held(&head->lock); 445 rb_erase_cached(&ref->ref_node, &head->ref_tree); 446 RB_CLEAR_NODE(&ref->ref_node); 447 if (!list_empty(&ref->add_list)) 448 list_del(&ref->add_list); 449 ref->in_tree = 0; 450 btrfs_put_delayed_ref(ref); 451 atomic_dec(&delayed_refs->num_entries); 452 } 453 454 static bool merge_ref(struct btrfs_delayed_ref_root *delayed_refs, 455 struct btrfs_delayed_ref_head *head, 456 struct btrfs_delayed_ref_node *ref, 457 u64 seq) 458 { 459 struct btrfs_delayed_ref_node *next; 460 struct rb_node *node = rb_next(&ref->ref_node); 461 bool done = false; 462 463 while (!done && node) { 464 int mod; 465 466 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 467 node = rb_next(node); 468 if (seq && next->seq >= seq) 469 break; 470 if (comp_refs(ref, next, false)) 471 break; 472 473 if (ref->action == next->action) { 474 mod = next->ref_mod; 475 } else { 476 if (ref->ref_mod < next->ref_mod) { 477 swap(ref, next); 478 done = true; 479 } 480 mod = -next->ref_mod; 481 } 482 483 drop_delayed_ref(delayed_refs, head, next); 484 ref->ref_mod += mod; 485 if (ref->ref_mod == 0) { 486 drop_delayed_ref(delayed_refs, head, ref); 487 done = true; 488 } else { 489 /* 490 * Can't have multiples of the same ref on a tree block. 491 */ 492 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY || 493 ref->type == BTRFS_SHARED_BLOCK_REF_KEY); 494 } 495 } 496 497 return done; 498 } 499 500 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info, 501 struct btrfs_delayed_ref_root *delayed_refs, 502 struct btrfs_delayed_ref_head *head) 503 { 504 struct btrfs_delayed_ref_node *ref; 505 struct rb_node *node; 506 u64 seq = 0; 507 508 lockdep_assert_held(&head->lock); 509 510 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 511 return; 512 513 /* We don't have too many refs to merge for data. */ 514 if (head->is_data) 515 return; 516 517 seq = btrfs_tree_mod_log_lowest_seq(fs_info); 518 again: 519 for (node = rb_first_cached(&head->ref_tree); node; 520 node = rb_next(node)) { 521 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 522 if (seq && ref->seq >= seq) 523 continue; 524 if (merge_ref(delayed_refs, head, ref, seq)) 525 goto again; 526 } 527 } 528 529 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq) 530 { 531 int ret = 0; 532 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info); 533 534 if (min_seq != 0 && seq >= min_seq) { 535 btrfs_debug(fs_info, 536 "holding back delayed_ref %llu, lowest is %llu", 537 seq, min_seq); 538 ret = 1; 539 } 540 541 return ret; 542 } 543 544 struct btrfs_delayed_ref_head *btrfs_select_ref_head( 545 struct btrfs_delayed_ref_root *delayed_refs) 546 { 547 struct btrfs_delayed_ref_head *head; 548 549 again: 550 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start, 551 true); 552 if (!head && delayed_refs->run_delayed_start != 0) { 553 delayed_refs->run_delayed_start = 0; 554 head = find_first_ref_head(delayed_refs); 555 } 556 if (!head) 557 return NULL; 558 559 while (head->processing) { 560 struct rb_node *node; 561 562 node = rb_next(&head->href_node); 563 if (!node) { 564 if (delayed_refs->run_delayed_start == 0) 565 return NULL; 566 delayed_refs->run_delayed_start = 0; 567 goto again; 568 } 569 head = rb_entry(node, struct btrfs_delayed_ref_head, 570 href_node); 571 } 572 573 head->processing = 1; 574 WARN_ON(delayed_refs->num_heads_ready == 0); 575 delayed_refs->num_heads_ready--; 576 delayed_refs->run_delayed_start = head->bytenr + 577 head->num_bytes; 578 return head; 579 } 580 581 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 582 struct btrfs_delayed_ref_head *head) 583 { 584 lockdep_assert_held(&delayed_refs->lock); 585 lockdep_assert_held(&head->lock); 586 587 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 588 RB_CLEAR_NODE(&head->href_node); 589 atomic_dec(&delayed_refs->num_entries); 590 delayed_refs->num_heads--; 591 if (head->processing == 0) 592 delayed_refs->num_heads_ready--; 593 } 594 595 /* 596 * Helper to insert the ref_node to the tail or merge with tail. 597 * 598 * Return 0 for insert. 599 * Return >0 for merge. 600 */ 601 static int insert_delayed_ref(struct btrfs_delayed_ref_root *root, 602 struct btrfs_delayed_ref_head *href, 603 struct btrfs_delayed_ref_node *ref) 604 { 605 struct btrfs_delayed_ref_node *exist; 606 int mod; 607 int ret = 0; 608 609 spin_lock(&href->lock); 610 exist = tree_insert(&href->ref_tree, ref); 611 if (!exist) 612 goto inserted; 613 614 /* Now we are sure we can merge */ 615 ret = 1; 616 if (exist->action == ref->action) { 617 mod = ref->ref_mod; 618 } else { 619 /* Need to change action */ 620 if (exist->ref_mod < ref->ref_mod) { 621 exist->action = ref->action; 622 mod = -exist->ref_mod; 623 exist->ref_mod = ref->ref_mod; 624 if (ref->action == BTRFS_ADD_DELAYED_REF) 625 list_add_tail(&exist->add_list, 626 &href->ref_add_list); 627 else if (ref->action == BTRFS_DROP_DELAYED_REF) { 628 ASSERT(!list_empty(&exist->add_list)); 629 list_del(&exist->add_list); 630 } else { 631 ASSERT(0); 632 } 633 } else 634 mod = -ref->ref_mod; 635 } 636 exist->ref_mod += mod; 637 638 /* remove existing tail if its ref_mod is zero */ 639 if (exist->ref_mod == 0) 640 drop_delayed_ref(root, href, exist); 641 spin_unlock(&href->lock); 642 return ret; 643 inserted: 644 if (ref->action == BTRFS_ADD_DELAYED_REF) 645 list_add_tail(&ref->add_list, &href->ref_add_list); 646 atomic_inc(&root->num_entries); 647 spin_unlock(&href->lock); 648 return ret; 649 } 650 651 /* 652 * helper function to update the accounting in the head ref 653 * existing and update must have the same bytenr 654 */ 655 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans, 656 struct btrfs_delayed_ref_head *existing, 657 struct btrfs_delayed_ref_head *update) 658 { 659 struct btrfs_delayed_ref_root *delayed_refs = 660 &trans->transaction->delayed_refs; 661 struct btrfs_fs_info *fs_info = trans->fs_info; 662 int old_ref_mod; 663 664 BUG_ON(existing->is_data != update->is_data); 665 666 spin_lock(&existing->lock); 667 if (update->must_insert_reserved) { 668 /* if the extent was freed and then 669 * reallocated before the delayed ref 670 * entries were processed, we can end up 671 * with an existing head ref without 672 * the must_insert_reserved flag set. 673 * Set it again here 674 */ 675 existing->must_insert_reserved = update->must_insert_reserved; 676 677 /* 678 * update the num_bytes so we make sure the accounting 679 * is done correctly 680 */ 681 existing->num_bytes = update->num_bytes; 682 683 } 684 685 if (update->extent_op) { 686 if (!existing->extent_op) { 687 existing->extent_op = update->extent_op; 688 } else { 689 if (update->extent_op->update_key) { 690 memcpy(&existing->extent_op->key, 691 &update->extent_op->key, 692 sizeof(update->extent_op->key)); 693 existing->extent_op->update_key = true; 694 } 695 if (update->extent_op->update_flags) { 696 existing->extent_op->flags_to_set |= 697 update->extent_op->flags_to_set; 698 existing->extent_op->update_flags = true; 699 } 700 btrfs_free_delayed_extent_op(update->extent_op); 701 } 702 } 703 /* 704 * update the reference mod on the head to reflect this new operation, 705 * only need the lock for this case cause we could be processing it 706 * currently, for refs we just added we know we're a-ok. 707 */ 708 old_ref_mod = existing->total_ref_mod; 709 existing->ref_mod += update->ref_mod; 710 existing->total_ref_mod += update->ref_mod; 711 712 /* 713 * If we are going to from a positive ref mod to a negative or vice 714 * versa we need to make sure to adjust pending_csums accordingly. 715 */ 716 if (existing->is_data) { 717 u64 csum_leaves = 718 btrfs_csum_bytes_to_leaves(fs_info, 719 existing->num_bytes); 720 721 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) { 722 delayed_refs->pending_csums -= existing->num_bytes; 723 btrfs_delayed_refs_rsv_release(fs_info, csum_leaves); 724 } 725 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) { 726 delayed_refs->pending_csums += existing->num_bytes; 727 trans->delayed_ref_updates += csum_leaves; 728 } 729 } 730 731 spin_unlock(&existing->lock); 732 } 733 734 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref, 735 struct btrfs_qgroup_extent_record *qrecord, 736 u64 bytenr, u64 num_bytes, u64 ref_root, 737 u64 reserved, int action, bool is_data, 738 bool is_system) 739 { 740 int count_mod = 1; 741 int must_insert_reserved = 0; 742 743 /* If reserved is provided, it must be a data extent. */ 744 BUG_ON(!is_data && reserved); 745 746 /* 747 * The head node stores the sum of all the mods, so dropping a ref 748 * should drop the sum in the head node by one. 749 */ 750 if (action == BTRFS_UPDATE_DELAYED_HEAD) 751 count_mod = 0; 752 else if (action == BTRFS_DROP_DELAYED_REF) 753 count_mod = -1; 754 755 /* 756 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved 757 * accounting when the extent is finally added, or if a later 758 * modification deletes the delayed ref without ever inserting the 759 * extent into the extent allocation tree. ref->must_insert_reserved 760 * is the flag used to record that accounting mods are required. 761 * 762 * Once we record must_insert_reserved, switch the action to 763 * BTRFS_ADD_DELAYED_REF because other special casing is not required. 764 */ 765 if (action == BTRFS_ADD_DELAYED_EXTENT) 766 must_insert_reserved = 1; 767 else 768 must_insert_reserved = 0; 769 770 refcount_set(&head_ref->refs, 1); 771 head_ref->bytenr = bytenr; 772 head_ref->num_bytes = num_bytes; 773 head_ref->ref_mod = count_mod; 774 head_ref->must_insert_reserved = must_insert_reserved; 775 head_ref->is_data = is_data; 776 head_ref->is_system = is_system; 777 head_ref->ref_tree = RB_ROOT_CACHED; 778 INIT_LIST_HEAD(&head_ref->ref_add_list); 779 RB_CLEAR_NODE(&head_ref->href_node); 780 head_ref->processing = 0; 781 head_ref->total_ref_mod = count_mod; 782 spin_lock_init(&head_ref->lock); 783 mutex_init(&head_ref->mutex); 784 785 if (qrecord) { 786 if (ref_root && reserved) { 787 qrecord->data_rsv = reserved; 788 qrecord->data_rsv_refroot = ref_root; 789 } 790 qrecord->bytenr = bytenr; 791 qrecord->num_bytes = num_bytes; 792 qrecord->old_roots = NULL; 793 } 794 } 795 796 /* 797 * helper function to actually insert a head node into the rbtree. 798 * this does all the dirty work in terms of maintaining the correct 799 * overall modification count. 800 */ 801 static noinline struct btrfs_delayed_ref_head * 802 add_delayed_ref_head(struct btrfs_trans_handle *trans, 803 struct btrfs_delayed_ref_head *head_ref, 804 struct btrfs_qgroup_extent_record *qrecord, 805 int action, int *qrecord_inserted_ret) 806 { 807 struct btrfs_delayed_ref_head *existing; 808 struct btrfs_delayed_ref_root *delayed_refs; 809 int qrecord_inserted = 0; 810 811 delayed_refs = &trans->transaction->delayed_refs; 812 813 /* Record qgroup extent info if provided */ 814 if (qrecord) { 815 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info, 816 delayed_refs, qrecord)) 817 kfree(qrecord); 818 else 819 qrecord_inserted = 1; 820 } 821 822 trace_add_delayed_ref_head(trans->fs_info, head_ref, action); 823 824 existing = htree_insert(&delayed_refs->href_root, 825 &head_ref->href_node); 826 if (existing) { 827 update_existing_head_ref(trans, existing, head_ref); 828 /* 829 * we've updated the existing ref, free the newly 830 * allocated ref 831 */ 832 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 833 head_ref = existing; 834 } else { 835 if (head_ref->is_data && head_ref->ref_mod < 0) { 836 delayed_refs->pending_csums += head_ref->num_bytes; 837 trans->delayed_ref_updates += 838 btrfs_csum_bytes_to_leaves(trans->fs_info, 839 head_ref->num_bytes); 840 } 841 delayed_refs->num_heads++; 842 delayed_refs->num_heads_ready++; 843 atomic_inc(&delayed_refs->num_entries); 844 trans->delayed_ref_updates++; 845 } 846 if (qrecord_inserted_ret) 847 *qrecord_inserted_ret = qrecord_inserted; 848 849 return head_ref; 850 } 851 852 /* 853 * init_delayed_ref_common - Initialize the structure which represents a 854 * modification to a an extent. 855 * 856 * @fs_info: Internal to the mounted filesystem mount structure. 857 * 858 * @ref: The structure which is going to be initialized. 859 * 860 * @bytenr: The logical address of the extent for which a modification is 861 * going to be recorded. 862 * 863 * @num_bytes: Size of the extent whose modification is being recorded. 864 * 865 * @ref_root: The id of the root where this modification has originated, this 866 * can be either one of the well-known metadata trees or the 867 * subvolume id which references this extent. 868 * 869 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or 870 * BTRFS_ADD_DELAYED_EXTENT 871 * 872 * @ref_type: Holds the type of the extent which is being recorded, can be 873 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY 874 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/ 875 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent 876 */ 877 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info, 878 struct btrfs_delayed_ref_node *ref, 879 u64 bytenr, u64 num_bytes, u64 ref_root, 880 int action, u8 ref_type) 881 { 882 u64 seq = 0; 883 884 if (action == BTRFS_ADD_DELAYED_EXTENT) 885 action = BTRFS_ADD_DELAYED_REF; 886 887 if (is_fstree(ref_root)) 888 seq = atomic64_read(&fs_info->tree_mod_seq); 889 890 refcount_set(&ref->refs, 1); 891 ref->bytenr = bytenr; 892 ref->num_bytes = num_bytes; 893 ref->ref_mod = 1; 894 ref->action = action; 895 ref->is_head = 0; 896 ref->in_tree = 1; 897 ref->seq = seq; 898 ref->type = ref_type; 899 RB_CLEAR_NODE(&ref->ref_node); 900 INIT_LIST_HEAD(&ref->add_list); 901 } 902 903 /* 904 * add a delayed tree ref. This does all of the accounting required 905 * to make sure the delayed ref is eventually processed before this 906 * transaction commits. 907 */ 908 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, 909 struct btrfs_ref *generic_ref, 910 struct btrfs_delayed_extent_op *extent_op) 911 { 912 struct btrfs_fs_info *fs_info = trans->fs_info; 913 struct btrfs_delayed_tree_ref *ref; 914 struct btrfs_delayed_ref_head *head_ref; 915 struct btrfs_delayed_ref_root *delayed_refs; 916 struct btrfs_qgroup_extent_record *record = NULL; 917 int qrecord_inserted; 918 bool is_system; 919 int action = generic_ref->action; 920 int level = generic_ref->tree_ref.level; 921 int ret; 922 u64 bytenr = generic_ref->bytenr; 923 u64 num_bytes = generic_ref->len; 924 u64 parent = generic_ref->parent; 925 u8 ref_type; 926 927 is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID); 928 929 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action); 930 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS); 931 if (!ref) 932 return -ENOMEM; 933 934 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 935 if (!head_ref) { 936 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 937 return -ENOMEM; 938 } 939 940 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 941 !generic_ref->skip_qgroup) { 942 record = kzalloc(sizeof(*record), GFP_NOFS); 943 if (!record) { 944 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 945 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref); 946 return -ENOMEM; 947 } 948 } 949 950 if (parent) 951 ref_type = BTRFS_SHARED_BLOCK_REF_KEY; 952 else 953 ref_type = BTRFS_TREE_BLOCK_REF_KEY; 954 955 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 956 generic_ref->tree_ref.owning_root, action, 957 ref_type); 958 ref->root = generic_ref->tree_ref.owning_root; 959 ref->parent = parent; 960 ref->level = level; 961 962 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, 963 generic_ref->tree_ref.owning_root, 0, action, 964 false, is_system); 965 head_ref->extent_op = extent_op; 966 967 delayed_refs = &trans->transaction->delayed_refs; 968 spin_lock(&delayed_refs->lock); 969 970 /* 971 * insert both the head node and the new ref without dropping 972 * the spin lock 973 */ 974 head_ref = add_delayed_ref_head(trans, head_ref, record, 975 action, &qrecord_inserted); 976 977 ret = insert_delayed_ref(delayed_refs, head_ref, &ref->node); 978 spin_unlock(&delayed_refs->lock); 979 980 /* 981 * Need to update the delayed_refs_rsv with any changes we may have 982 * made. 983 */ 984 btrfs_update_delayed_refs_rsv(trans); 985 986 trace_add_delayed_tree_ref(fs_info, &ref->node, ref, 987 action == BTRFS_ADD_DELAYED_EXTENT ? 988 BTRFS_ADD_DELAYED_REF : action); 989 if (ret > 0) 990 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref); 991 992 if (qrecord_inserted) 993 btrfs_qgroup_trace_extent_post(trans, record); 994 995 return 0; 996 } 997 998 /* 999 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref. 1000 */ 1001 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, 1002 struct btrfs_ref *generic_ref, 1003 u64 reserved) 1004 { 1005 struct btrfs_fs_info *fs_info = trans->fs_info; 1006 struct btrfs_delayed_data_ref *ref; 1007 struct btrfs_delayed_ref_head *head_ref; 1008 struct btrfs_delayed_ref_root *delayed_refs; 1009 struct btrfs_qgroup_extent_record *record = NULL; 1010 int qrecord_inserted; 1011 int action = generic_ref->action; 1012 int ret; 1013 u64 bytenr = generic_ref->bytenr; 1014 u64 num_bytes = generic_ref->len; 1015 u64 parent = generic_ref->parent; 1016 u64 ref_root = generic_ref->data_ref.owning_root; 1017 u64 owner = generic_ref->data_ref.ino; 1018 u64 offset = generic_ref->data_ref.offset; 1019 u8 ref_type; 1020 1021 ASSERT(generic_ref->type == BTRFS_REF_DATA && action); 1022 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS); 1023 if (!ref) 1024 return -ENOMEM; 1025 1026 if (parent) 1027 ref_type = BTRFS_SHARED_DATA_REF_KEY; 1028 else 1029 ref_type = BTRFS_EXTENT_DATA_REF_KEY; 1030 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes, 1031 ref_root, action, ref_type); 1032 ref->root = ref_root; 1033 ref->parent = parent; 1034 ref->objectid = owner; 1035 ref->offset = offset; 1036 1037 1038 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1039 if (!head_ref) { 1040 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1041 return -ENOMEM; 1042 } 1043 1044 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) && 1045 !generic_ref->skip_qgroup) { 1046 record = kzalloc(sizeof(*record), GFP_NOFS); 1047 if (!record) { 1048 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1049 kmem_cache_free(btrfs_delayed_ref_head_cachep, 1050 head_ref); 1051 return -ENOMEM; 1052 } 1053 } 1054 1055 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root, 1056 reserved, action, true, false); 1057 head_ref->extent_op = NULL; 1058 1059 delayed_refs = &trans->transaction->delayed_refs; 1060 spin_lock(&delayed_refs->lock); 1061 1062 /* 1063 * insert both the head node and the new ref without dropping 1064 * the spin lock 1065 */ 1066 head_ref = add_delayed_ref_head(trans, head_ref, record, 1067 action, &qrecord_inserted); 1068 1069 ret = insert_delayed_ref(delayed_refs, head_ref, &ref->node); 1070 spin_unlock(&delayed_refs->lock); 1071 1072 /* 1073 * Need to update the delayed_refs_rsv with any changes we may have 1074 * made. 1075 */ 1076 btrfs_update_delayed_refs_rsv(trans); 1077 1078 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref, 1079 action == BTRFS_ADD_DELAYED_EXTENT ? 1080 BTRFS_ADD_DELAYED_REF : action); 1081 if (ret > 0) 1082 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref); 1083 1084 1085 if (qrecord_inserted) 1086 return btrfs_qgroup_trace_extent_post(trans, record); 1087 return 0; 1088 } 1089 1090 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, 1091 u64 bytenr, u64 num_bytes, 1092 struct btrfs_delayed_extent_op *extent_op) 1093 { 1094 struct btrfs_delayed_ref_head *head_ref; 1095 struct btrfs_delayed_ref_root *delayed_refs; 1096 1097 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS); 1098 if (!head_ref) 1099 return -ENOMEM; 1100 1101 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0, 1102 BTRFS_UPDATE_DELAYED_HEAD, false, false); 1103 head_ref->extent_op = extent_op; 1104 1105 delayed_refs = &trans->transaction->delayed_refs; 1106 spin_lock(&delayed_refs->lock); 1107 1108 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD, 1109 NULL); 1110 1111 spin_unlock(&delayed_refs->lock); 1112 1113 /* 1114 * Need to update the delayed_refs_rsv with any changes we may have 1115 * made. 1116 */ 1117 btrfs_update_delayed_refs_rsv(trans); 1118 return 0; 1119 } 1120 1121 /* 1122 * This does a simple search for the head node for a given extent. Returns the 1123 * head node if found, or NULL if not. 1124 */ 1125 struct btrfs_delayed_ref_head * 1126 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr) 1127 { 1128 lockdep_assert_held(&delayed_refs->lock); 1129 1130 return find_ref_head(delayed_refs, bytenr, false); 1131 } 1132 1133 void __cold btrfs_delayed_ref_exit(void) 1134 { 1135 kmem_cache_destroy(btrfs_delayed_ref_head_cachep); 1136 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep); 1137 kmem_cache_destroy(btrfs_delayed_data_ref_cachep); 1138 kmem_cache_destroy(btrfs_delayed_extent_op_cachep); 1139 } 1140 1141 int __init btrfs_delayed_ref_init(void) 1142 { 1143 btrfs_delayed_ref_head_cachep = kmem_cache_create( 1144 "btrfs_delayed_ref_head", 1145 sizeof(struct btrfs_delayed_ref_head), 0, 1146 SLAB_MEM_SPREAD, NULL); 1147 if (!btrfs_delayed_ref_head_cachep) 1148 goto fail; 1149 1150 btrfs_delayed_tree_ref_cachep = kmem_cache_create( 1151 "btrfs_delayed_tree_ref", 1152 sizeof(struct btrfs_delayed_tree_ref), 0, 1153 SLAB_MEM_SPREAD, NULL); 1154 if (!btrfs_delayed_tree_ref_cachep) 1155 goto fail; 1156 1157 btrfs_delayed_data_ref_cachep = kmem_cache_create( 1158 "btrfs_delayed_data_ref", 1159 sizeof(struct btrfs_delayed_data_ref), 0, 1160 SLAB_MEM_SPREAD, NULL); 1161 if (!btrfs_delayed_data_ref_cachep) 1162 goto fail; 1163 1164 btrfs_delayed_extent_op_cachep = kmem_cache_create( 1165 "btrfs_delayed_extent_op", 1166 sizeof(struct btrfs_delayed_extent_op), 0, 1167 SLAB_MEM_SPREAD, NULL); 1168 if (!btrfs_delayed_extent_op_cachep) 1169 goto fail; 1170 1171 return 0; 1172 fail: 1173 btrfs_delayed_ref_exit(); 1174 return -ENOMEM; 1175 } 1176