1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include "delayed-inode.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 25 #define BTRFS_DELAYED_WRITEBACK 400 26 #define BTRFS_DELAYED_BACKGROUND 100 27 28 static struct kmem_cache *delayed_node_cache; 29 30 int __init btrfs_delayed_inode_init(void) 31 { 32 delayed_node_cache = kmem_cache_create("delayed_node", 33 sizeof(struct btrfs_delayed_node), 34 0, 35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 36 NULL); 37 if (!delayed_node_cache) 38 return -ENOMEM; 39 return 0; 40 } 41 42 void btrfs_delayed_inode_exit(void) 43 { 44 if (delayed_node_cache) 45 kmem_cache_destroy(delayed_node_cache); 46 } 47 48 static inline void btrfs_init_delayed_node( 49 struct btrfs_delayed_node *delayed_node, 50 struct btrfs_root *root, u64 inode_id) 51 { 52 delayed_node->root = root; 53 delayed_node->inode_id = inode_id; 54 atomic_set(&delayed_node->refs, 0); 55 delayed_node->count = 0; 56 delayed_node->in_list = 0; 57 delayed_node->inode_dirty = 0; 58 delayed_node->ins_root = RB_ROOT; 59 delayed_node->del_root = RB_ROOT; 60 mutex_init(&delayed_node->mutex); 61 delayed_node->index_cnt = 0; 62 INIT_LIST_HEAD(&delayed_node->n_list); 63 INIT_LIST_HEAD(&delayed_node->p_list); 64 delayed_node->bytes_reserved = 0; 65 } 66 67 static inline int btrfs_is_continuous_delayed_item( 68 struct btrfs_delayed_item *item1, 69 struct btrfs_delayed_item *item2) 70 { 71 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 72 item1->key.objectid == item2->key.objectid && 73 item1->key.type == item2->key.type && 74 item1->key.offset + 1 == item2->key.offset) 75 return 1; 76 return 0; 77 } 78 79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root( 80 struct btrfs_root *root) 81 { 82 return root->fs_info->delayed_root; 83 } 84 85 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) 86 { 87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 88 struct btrfs_root *root = btrfs_inode->root; 89 u64 ino = btrfs_ino(inode); 90 struct btrfs_delayed_node *node; 91 92 node = ACCESS_ONCE(btrfs_inode->delayed_node); 93 if (node) { 94 atomic_inc(&node->refs); 95 return node; 96 } 97 98 spin_lock(&root->inode_lock); 99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 100 if (node) { 101 if (btrfs_inode->delayed_node) { 102 atomic_inc(&node->refs); /* can be accessed */ 103 BUG_ON(btrfs_inode->delayed_node != node); 104 spin_unlock(&root->inode_lock); 105 return node; 106 } 107 btrfs_inode->delayed_node = node; 108 atomic_inc(&node->refs); /* can be accessed */ 109 atomic_inc(&node->refs); /* cached in the inode */ 110 spin_unlock(&root->inode_lock); 111 return node; 112 } 113 spin_unlock(&root->inode_lock); 114 115 return NULL; 116 } 117 118 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 119 struct inode *inode) 120 { 121 struct btrfs_delayed_node *node; 122 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 123 struct btrfs_root *root = btrfs_inode->root; 124 u64 ino = btrfs_ino(inode); 125 int ret; 126 127 again: 128 node = btrfs_get_delayed_node(inode); 129 if (node) 130 return node; 131 132 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS); 133 if (!node) 134 return ERR_PTR(-ENOMEM); 135 btrfs_init_delayed_node(node, root, ino); 136 137 atomic_inc(&node->refs); /* cached in the btrfs inode */ 138 atomic_inc(&node->refs); /* can be accessed */ 139 140 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 141 if (ret) { 142 kmem_cache_free(delayed_node_cache, node); 143 return ERR_PTR(ret); 144 } 145 146 spin_lock(&root->inode_lock); 147 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 148 if (ret == -EEXIST) { 149 kmem_cache_free(delayed_node_cache, node); 150 spin_unlock(&root->inode_lock); 151 radix_tree_preload_end(); 152 goto again; 153 } 154 btrfs_inode->delayed_node = node; 155 spin_unlock(&root->inode_lock); 156 radix_tree_preload_end(); 157 158 return node; 159 } 160 161 /* 162 * Call it when holding delayed_node->mutex 163 * 164 * If mod = 1, add this node into the prepared list. 165 */ 166 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 167 struct btrfs_delayed_node *node, 168 int mod) 169 { 170 spin_lock(&root->lock); 171 if (node->in_list) { 172 if (!list_empty(&node->p_list)) 173 list_move_tail(&node->p_list, &root->prepare_list); 174 else if (mod) 175 list_add_tail(&node->p_list, &root->prepare_list); 176 } else { 177 list_add_tail(&node->n_list, &root->node_list); 178 list_add_tail(&node->p_list, &root->prepare_list); 179 atomic_inc(&node->refs); /* inserted into list */ 180 root->nodes++; 181 node->in_list = 1; 182 } 183 spin_unlock(&root->lock); 184 } 185 186 /* Call it when holding delayed_node->mutex */ 187 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 188 struct btrfs_delayed_node *node) 189 { 190 spin_lock(&root->lock); 191 if (node->in_list) { 192 root->nodes--; 193 atomic_dec(&node->refs); /* not in the list */ 194 list_del_init(&node->n_list); 195 if (!list_empty(&node->p_list)) 196 list_del_init(&node->p_list); 197 node->in_list = 0; 198 } 199 spin_unlock(&root->lock); 200 } 201 202 struct btrfs_delayed_node *btrfs_first_delayed_node( 203 struct btrfs_delayed_root *delayed_root) 204 { 205 struct list_head *p; 206 struct btrfs_delayed_node *node = NULL; 207 208 spin_lock(&delayed_root->lock); 209 if (list_empty(&delayed_root->node_list)) 210 goto out; 211 212 p = delayed_root->node_list.next; 213 node = list_entry(p, struct btrfs_delayed_node, n_list); 214 atomic_inc(&node->refs); 215 out: 216 spin_unlock(&delayed_root->lock); 217 218 return node; 219 } 220 221 struct btrfs_delayed_node *btrfs_next_delayed_node( 222 struct btrfs_delayed_node *node) 223 { 224 struct btrfs_delayed_root *delayed_root; 225 struct list_head *p; 226 struct btrfs_delayed_node *next = NULL; 227 228 delayed_root = node->root->fs_info->delayed_root; 229 spin_lock(&delayed_root->lock); 230 if (!node->in_list) { /* not in the list */ 231 if (list_empty(&delayed_root->node_list)) 232 goto out; 233 p = delayed_root->node_list.next; 234 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 235 goto out; 236 else 237 p = node->n_list.next; 238 239 next = list_entry(p, struct btrfs_delayed_node, n_list); 240 atomic_inc(&next->refs); 241 out: 242 spin_unlock(&delayed_root->lock); 243 244 return next; 245 } 246 247 static void __btrfs_release_delayed_node( 248 struct btrfs_delayed_node *delayed_node, 249 int mod) 250 { 251 struct btrfs_delayed_root *delayed_root; 252 253 if (!delayed_node) 254 return; 255 256 delayed_root = delayed_node->root->fs_info->delayed_root; 257 258 mutex_lock(&delayed_node->mutex); 259 if (delayed_node->count) 260 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 261 else 262 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 263 mutex_unlock(&delayed_node->mutex); 264 265 if (atomic_dec_and_test(&delayed_node->refs)) { 266 struct btrfs_root *root = delayed_node->root; 267 spin_lock(&root->inode_lock); 268 if (atomic_read(&delayed_node->refs) == 0) { 269 radix_tree_delete(&root->delayed_nodes_tree, 270 delayed_node->inode_id); 271 kmem_cache_free(delayed_node_cache, delayed_node); 272 } 273 spin_unlock(&root->inode_lock); 274 } 275 } 276 277 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 278 { 279 __btrfs_release_delayed_node(node, 0); 280 } 281 282 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 283 struct btrfs_delayed_root *delayed_root) 284 { 285 struct list_head *p; 286 struct btrfs_delayed_node *node = NULL; 287 288 spin_lock(&delayed_root->lock); 289 if (list_empty(&delayed_root->prepare_list)) 290 goto out; 291 292 p = delayed_root->prepare_list.next; 293 list_del_init(p); 294 node = list_entry(p, struct btrfs_delayed_node, p_list); 295 atomic_inc(&node->refs); 296 out: 297 spin_unlock(&delayed_root->lock); 298 299 return node; 300 } 301 302 static inline void btrfs_release_prepared_delayed_node( 303 struct btrfs_delayed_node *node) 304 { 305 __btrfs_release_delayed_node(node, 1); 306 } 307 308 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 309 { 310 struct btrfs_delayed_item *item; 311 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 312 if (item) { 313 item->data_len = data_len; 314 item->ins_or_del = 0; 315 item->bytes_reserved = 0; 316 item->delayed_node = NULL; 317 atomic_set(&item->refs, 1); 318 } 319 return item; 320 } 321 322 /* 323 * __btrfs_lookup_delayed_item - look up the delayed item by key 324 * @delayed_node: pointer to the delayed node 325 * @key: the key to look up 326 * @prev: used to store the prev item if the right item isn't found 327 * @next: used to store the next item if the right item isn't found 328 * 329 * Note: if we don't find the right item, we will return the prev item and 330 * the next item. 331 */ 332 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 333 struct rb_root *root, 334 struct btrfs_key *key, 335 struct btrfs_delayed_item **prev, 336 struct btrfs_delayed_item **next) 337 { 338 struct rb_node *node, *prev_node = NULL; 339 struct btrfs_delayed_item *delayed_item = NULL; 340 int ret = 0; 341 342 node = root->rb_node; 343 344 while (node) { 345 delayed_item = rb_entry(node, struct btrfs_delayed_item, 346 rb_node); 347 prev_node = node; 348 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 349 if (ret < 0) 350 node = node->rb_right; 351 else if (ret > 0) 352 node = node->rb_left; 353 else 354 return delayed_item; 355 } 356 357 if (prev) { 358 if (!prev_node) 359 *prev = NULL; 360 else if (ret < 0) 361 *prev = delayed_item; 362 else if ((node = rb_prev(prev_node)) != NULL) { 363 *prev = rb_entry(node, struct btrfs_delayed_item, 364 rb_node); 365 } else 366 *prev = NULL; 367 } 368 369 if (next) { 370 if (!prev_node) 371 *next = NULL; 372 else if (ret > 0) 373 *next = delayed_item; 374 else if ((node = rb_next(prev_node)) != NULL) { 375 *next = rb_entry(node, struct btrfs_delayed_item, 376 rb_node); 377 } else 378 *next = NULL; 379 } 380 return NULL; 381 } 382 383 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 384 struct btrfs_delayed_node *delayed_node, 385 struct btrfs_key *key) 386 { 387 struct btrfs_delayed_item *item; 388 389 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 390 NULL, NULL); 391 return item; 392 } 393 394 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item( 395 struct btrfs_delayed_node *delayed_node, 396 struct btrfs_key *key) 397 { 398 struct btrfs_delayed_item *item; 399 400 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key, 401 NULL, NULL); 402 return item; 403 } 404 405 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item( 406 struct btrfs_delayed_node *delayed_node, 407 struct btrfs_key *key) 408 { 409 struct btrfs_delayed_item *item, *next; 410 411 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 412 NULL, &next); 413 if (!item) 414 item = next; 415 416 return item; 417 } 418 419 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item( 420 struct btrfs_delayed_node *delayed_node, 421 struct btrfs_key *key) 422 { 423 struct btrfs_delayed_item *item, *next; 424 425 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key, 426 NULL, &next); 427 if (!item) 428 item = next; 429 430 return item; 431 } 432 433 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 434 struct btrfs_delayed_item *ins, 435 int action) 436 { 437 struct rb_node **p, *node; 438 struct rb_node *parent_node = NULL; 439 struct rb_root *root; 440 struct btrfs_delayed_item *item; 441 int cmp; 442 443 if (action == BTRFS_DELAYED_INSERTION_ITEM) 444 root = &delayed_node->ins_root; 445 else if (action == BTRFS_DELAYED_DELETION_ITEM) 446 root = &delayed_node->del_root; 447 else 448 BUG(); 449 p = &root->rb_node; 450 node = &ins->rb_node; 451 452 while (*p) { 453 parent_node = *p; 454 item = rb_entry(parent_node, struct btrfs_delayed_item, 455 rb_node); 456 457 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 458 if (cmp < 0) 459 p = &(*p)->rb_right; 460 else if (cmp > 0) 461 p = &(*p)->rb_left; 462 else 463 return -EEXIST; 464 } 465 466 rb_link_node(node, parent_node, p); 467 rb_insert_color(node, root); 468 ins->delayed_node = delayed_node; 469 ins->ins_or_del = action; 470 471 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 472 action == BTRFS_DELAYED_INSERTION_ITEM && 473 ins->key.offset >= delayed_node->index_cnt) 474 delayed_node->index_cnt = ins->key.offset + 1; 475 476 delayed_node->count++; 477 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 478 return 0; 479 } 480 481 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 482 struct btrfs_delayed_item *item) 483 { 484 return __btrfs_add_delayed_item(node, item, 485 BTRFS_DELAYED_INSERTION_ITEM); 486 } 487 488 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 489 struct btrfs_delayed_item *item) 490 { 491 return __btrfs_add_delayed_item(node, item, 492 BTRFS_DELAYED_DELETION_ITEM); 493 } 494 495 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 496 { 497 struct rb_root *root; 498 struct btrfs_delayed_root *delayed_root; 499 500 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 501 502 BUG_ON(!delayed_root); 503 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 504 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 505 506 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 507 root = &delayed_item->delayed_node->ins_root; 508 else 509 root = &delayed_item->delayed_node->del_root; 510 511 rb_erase(&delayed_item->rb_node, root); 512 delayed_item->delayed_node->count--; 513 atomic_dec(&delayed_root->items); 514 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND && 515 waitqueue_active(&delayed_root->wait)) 516 wake_up(&delayed_root->wait); 517 } 518 519 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 520 { 521 if (item) { 522 __btrfs_remove_delayed_item(item); 523 if (atomic_dec_and_test(&item->refs)) 524 kfree(item); 525 } 526 } 527 528 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 529 struct btrfs_delayed_node *delayed_node) 530 { 531 struct rb_node *p; 532 struct btrfs_delayed_item *item = NULL; 533 534 p = rb_first(&delayed_node->ins_root); 535 if (p) 536 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 537 538 return item; 539 } 540 541 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 542 struct btrfs_delayed_node *delayed_node) 543 { 544 struct rb_node *p; 545 struct btrfs_delayed_item *item = NULL; 546 547 p = rb_first(&delayed_node->del_root); 548 if (p) 549 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 550 551 return item; 552 } 553 554 struct btrfs_delayed_item *__btrfs_next_delayed_item( 555 struct btrfs_delayed_item *item) 556 { 557 struct rb_node *p; 558 struct btrfs_delayed_item *next = NULL; 559 560 p = rb_next(&item->rb_node); 561 if (p) 562 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 563 564 return next; 565 } 566 567 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root, 568 u64 root_id) 569 { 570 struct btrfs_key root_key; 571 572 if (root->objectid == root_id) 573 return root; 574 575 root_key.objectid = root_id; 576 root_key.type = BTRFS_ROOT_ITEM_KEY; 577 root_key.offset = (u64)-1; 578 return btrfs_read_fs_root_no_name(root->fs_info, &root_key); 579 } 580 581 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 582 struct btrfs_root *root, 583 struct btrfs_delayed_item *item) 584 { 585 struct btrfs_block_rsv *src_rsv; 586 struct btrfs_block_rsv *dst_rsv; 587 u64 num_bytes; 588 int ret; 589 590 if (!trans->bytes_reserved) 591 return 0; 592 593 src_rsv = trans->block_rsv; 594 dst_rsv = &root->fs_info->delayed_block_rsv; 595 596 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 597 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 598 if (!ret) 599 item->bytes_reserved = num_bytes; 600 601 return ret; 602 } 603 604 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 605 struct btrfs_delayed_item *item) 606 { 607 struct btrfs_block_rsv *rsv; 608 609 if (!item->bytes_reserved) 610 return; 611 612 rsv = &root->fs_info->delayed_block_rsv; 613 btrfs_block_rsv_release(root, rsv, 614 item->bytes_reserved); 615 } 616 617 static int btrfs_delayed_inode_reserve_metadata( 618 struct btrfs_trans_handle *trans, 619 struct btrfs_root *root, 620 struct inode *inode, 621 struct btrfs_delayed_node *node) 622 { 623 struct btrfs_block_rsv *src_rsv; 624 struct btrfs_block_rsv *dst_rsv; 625 u64 num_bytes; 626 int ret; 627 int release = false; 628 629 src_rsv = trans->block_rsv; 630 dst_rsv = &root->fs_info->delayed_block_rsv; 631 632 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 633 634 /* 635 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 636 * which doesn't reserve space for speed. This is a problem since we 637 * still need to reserve space for this update, so try to reserve the 638 * space. 639 * 640 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 641 * we're accounted for. 642 */ 643 if (!trans->bytes_reserved && 644 src_rsv != &root->fs_info->delalloc_block_rsv) { 645 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes); 646 /* 647 * Since we're under a transaction reserve_metadata_bytes could 648 * try to commit the transaction which will make it return 649 * EAGAIN to make us stop the transaction we have, so return 650 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 651 */ 652 if (ret == -EAGAIN) 653 ret = -ENOSPC; 654 if (!ret) 655 node->bytes_reserved = num_bytes; 656 return ret; 657 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) { 658 spin_lock(&BTRFS_I(inode)->lock); 659 if (BTRFS_I(inode)->delalloc_meta_reserved) { 660 BTRFS_I(inode)->delalloc_meta_reserved = 0; 661 spin_unlock(&BTRFS_I(inode)->lock); 662 release = true; 663 goto migrate; 664 } 665 spin_unlock(&BTRFS_I(inode)->lock); 666 667 /* Ok we didn't have space pre-reserved. This shouldn't happen 668 * too often but it can happen if we do delalloc to an existing 669 * inode which gets dirtied because of the time update, and then 670 * isn't touched again until after the transaction commits and 671 * then we try to write out the data. First try to be nice and 672 * reserve something strictly for us. If not be a pain and try 673 * to steal from the delalloc block rsv. 674 */ 675 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes); 676 if (!ret) 677 goto out; 678 679 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 680 if (!ret) 681 goto out; 682 683 /* 684 * Ok this is a problem, let's just steal from the global rsv 685 * since this really shouldn't happen that often. 686 */ 687 WARN_ON(1); 688 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv, 689 dst_rsv, num_bytes); 690 goto out; 691 } 692 693 migrate: 694 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 695 696 out: 697 /* 698 * Migrate only takes a reservation, it doesn't touch the size of the 699 * block_rsv. This is to simplify people who don't normally have things 700 * migrated from their block rsv. If they go to release their 701 * reservation, that will decrease the size as well, so if migrate 702 * reduced size we'd end up with a negative size. But for the 703 * delalloc_meta_reserved stuff we will only know to drop 1 reservation, 704 * but we could in fact do this reserve/migrate dance several times 705 * between the time we did the original reservation and we'd clean it 706 * up. So to take care of this, release the space for the meta 707 * reservation here. I think it may be time for a documentation page on 708 * how block rsvs. work. 709 */ 710 if (!ret) 711 node->bytes_reserved = num_bytes; 712 713 if (release) 714 btrfs_block_rsv_release(root, src_rsv, num_bytes); 715 716 return ret; 717 } 718 719 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, 720 struct btrfs_delayed_node *node) 721 { 722 struct btrfs_block_rsv *rsv; 723 724 if (!node->bytes_reserved) 725 return; 726 727 rsv = &root->fs_info->delayed_block_rsv; 728 btrfs_block_rsv_release(root, rsv, 729 node->bytes_reserved); 730 node->bytes_reserved = 0; 731 } 732 733 /* 734 * This helper will insert some continuous items into the same leaf according 735 * to the free space of the leaf. 736 */ 737 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans, 738 struct btrfs_root *root, 739 struct btrfs_path *path, 740 struct btrfs_delayed_item *item) 741 { 742 struct btrfs_delayed_item *curr, *next; 743 int free_space; 744 int total_data_size = 0, total_size = 0; 745 struct extent_buffer *leaf; 746 char *data_ptr; 747 struct btrfs_key *keys; 748 u32 *data_size; 749 struct list_head head; 750 int slot; 751 int nitems; 752 int i; 753 int ret = 0; 754 755 BUG_ON(!path->nodes[0]); 756 757 leaf = path->nodes[0]; 758 free_space = btrfs_leaf_free_space(root, leaf); 759 INIT_LIST_HEAD(&head); 760 761 next = item; 762 nitems = 0; 763 764 /* 765 * count the number of the continuous items that we can insert in batch 766 */ 767 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 768 free_space) { 769 total_data_size += next->data_len; 770 total_size += next->data_len + sizeof(struct btrfs_item); 771 list_add_tail(&next->tree_list, &head); 772 nitems++; 773 774 curr = next; 775 next = __btrfs_next_delayed_item(curr); 776 if (!next) 777 break; 778 779 if (!btrfs_is_continuous_delayed_item(curr, next)) 780 break; 781 } 782 783 if (!nitems) { 784 ret = 0; 785 goto out; 786 } 787 788 /* 789 * we need allocate some memory space, but it might cause the task 790 * to sleep, so we set all locked nodes in the path to blocking locks 791 * first. 792 */ 793 btrfs_set_path_blocking(path); 794 795 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS); 796 if (!keys) { 797 ret = -ENOMEM; 798 goto out; 799 } 800 801 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS); 802 if (!data_size) { 803 ret = -ENOMEM; 804 goto error; 805 } 806 807 /* get keys of all the delayed items */ 808 i = 0; 809 list_for_each_entry(next, &head, tree_list) { 810 keys[i] = next->key; 811 data_size[i] = next->data_len; 812 i++; 813 } 814 815 /* reset all the locked nodes in the patch to spinning locks. */ 816 btrfs_clear_path_blocking(path, NULL, 0); 817 818 /* insert the keys of the items */ 819 ret = setup_items_for_insert(trans, root, path, keys, data_size, 820 total_data_size, total_size, nitems); 821 if (ret) 822 goto error; 823 824 /* insert the dir index items */ 825 slot = path->slots[0]; 826 list_for_each_entry_safe(curr, next, &head, tree_list) { 827 data_ptr = btrfs_item_ptr(leaf, slot, char); 828 write_extent_buffer(leaf, &curr->data, 829 (unsigned long)data_ptr, 830 curr->data_len); 831 slot++; 832 833 btrfs_delayed_item_release_metadata(root, curr); 834 835 list_del(&curr->tree_list); 836 btrfs_release_delayed_item(curr); 837 } 838 839 error: 840 kfree(data_size); 841 kfree(keys); 842 out: 843 return ret; 844 } 845 846 /* 847 * This helper can just do simple insertion that needn't extend item for new 848 * data, such as directory name index insertion, inode insertion. 849 */ 850 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 851 struct btrfs_root *root, 852 struct btrfs_path *path, 853 struct btrfs_delayed_item *delayed_item) 854 { 855 struct extent_buffer *leaf; 856 struct btrfs_item *item; 857 char *ptr; 858 int ret; 859 860 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 861 delayed_item->data_len); 862 if (ret < 0 && ret != -EEXIST) 863 return ret; 864 865 leaf = path->nodes[0]; 866 867 item = btrfs_item_nr(leaf, path->slots[0]); 868 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 869 870 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 871 delayed_item->data_len); 872 btrfs_mark_buffer_dirty(leaf); 873 874 btrfs_delayed_item_release_metadata(root, delayed_item); 875 return 0; 876 } 877 878 /* 879 * we insert an item first, then if there are some continuous items, we try 880 * to insert those items into the same leaf. 881 */ 882 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 883 struct btrfs_path *path, 884 struct btrfs_root *root, 885 struct btrfs_delayed_node *node) 886 { 887 struct btrfs_delayed_item *curr, *prev; 888 int ret = 0; 889 890 do_again: 891 mutex_lock(&node->mutex); 892 curr = __btrfs_first_delayed_insertion_item(node); 893 if (!curr) 894 goto insert_end; 895 896 ret = btrfs_insert_delayed_item(trans, root, path, curr); 897 if (ret < 0) { 898 btrfs_release_path(path); 899 goto insert_end; 900 } 901 902 prev = curr; 903 curr = __btrfs_next_delayed_item(prev); 904 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 905 /* insert the continuous items into the same leaf */ 906 path->slots[0]++; 907 btrfs_batch_insert_items(trans, root, path, curr); 908 } 909 btrfs_release_delayed_item(prev); 910 btrfs_mark_buffer_dirty(path->nodes[0]); 911 912 btrfs_release_path(path); 913 mutex_unlock(&node->mutex); 914 goto do_again; 915 916 insert_end: 917 mutex_unlock(&node->mutex); 918 return ret; 919 } 920 921 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 922 struct btrfs_root *root, 923 struct btrfs_path *path, 924 struct btrfs_delayed_item *item) 925 { 926 struct btrfs_delayed_item *curr, *next; 927 struct extent_buffer *leaf; 928 struct btrfs_key key; 929 struct list_head head; 930 int nitems, i, last_item; 931 int ret = 0; 932 933 BUG_ON(!path->nodes[0]); 934 935 leaf = path->nodes[0]; 936 937 i = path->slots[0]; 938 last_item = btrfs_header_nritems(leaf) - 1; 939 if (i > last_item) 940 return -ENOENT; /* FIXME: Is errno suitable? */ 941 942 next = item; 943 INIT_LIST_HEAD(&head); 944 btrfs_item_key_to_cpu(leaf, &key, i); 945 nitems = 0; 946 /* 947 * count the number of the dir index items that we can delete in batch 948 */ 949 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 950 list_add_tail(&next->tree_list, &head); 951 nitems++; 952 953 curr = next; 954 next = __btrfs_next_delayed_item(curr); 955 if (!next) 956 break; 957 958 if (!btrfs_is_continuous_delayed_item(curr, next)) 959 break; 960 961 i++; 962 if (i > last_item) 963 break; 964 btrfs_item_key_to_cpu(leaf, &key, i); 965 } 966 967 if (!nitems) 968 return 0; 969 970 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 971 if (ret) 972 goto out; 973 974 list_for_each_entry_safe(curr, next, &head, tree_list) { 975 btrfs_delayed_item_release_metadata(root, curr); 976 list_del(&curr->tree_list); 977 btrfs_release_delayed_item(curr); 978 } 979 980 out: 981 return ret; 982 } 983 984 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 985 struct btrfs_path *path, 986 struct btrfs_root *root, 987 struct btrfs_delayed_node *node) 988 { 989 struct btrfs_delayed_item *curr, *prev; 990 int ret = 0; 991 992 do_again: 993 mutex_lock(&node->mutex); 994 curr = __btrfs_first_delayed_deletion_item(node); 995 if (!curr) 996 goto delete_fail; 997 998 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 999 if (ret < 0) 1000 goto delete_fail; 1001 else if (ret > 0) { 1002 /* 1003 * can't find the item which the node points to, so this node 1004 * is invalid, just drop it. 1005 */ 1006 prev = curr; 1007 curr = __btrfs_next_delayed_item(prev); 1008 btrfs_release_delayed_item(prev); 1009 ret = 0; 1010 btrfs_release_path(path); 1011 if (curr) 1012 goto do_again; 1013 else 1014 goto delete_fail; 1015 } 1016 1017 btrfs_batch_delete_items(trans, root, path, curr); 1018 btrfs_release_path(path); 1019 mutex_unlock(&node->mutex); 1020 goto do_again; 1021 1022 delete_fail: 1023 btrfs_release_path(path); 1024 mutex_unlock(&node->mutex); 1025 return ret; 1026 } 1027 1028 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 1029 { 1030 struct btrfs_delayed_root *delayed_root; 1031 1032 if (delayed_node && delayed_node->inode_dirty) { 1033 BUG_ON(!delayed_node->root); 1034 delayed_node->inode_dirty = 0; 1035 delayed_node->count--; 1036 1037 delayed_root = delayed_node->root->fs_info->delayed_root; 1038 atomic_dec(&delayed_root->items); 1039 if (atomic_read(&delayed_root->items) < 1040 BTRFS_DELAYED_BACKGROUND && 1041 waitqueue_active(&delayed_root->wait)) 1042 wake_up(&delayed_root->wait); 1043 } 1044 } 1045 1046 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1047 struct btrfs_root *root, 1048 struct btrfs_path *path, 1049 struct btrfs_delayed_node *node) 1050 { 1051 struct btrfs_key key; 1052 struct btrfs_inode_item *inode_item; 1053 struct extent_buffer *leaf; 1054 int ret; 1055 1056 mutex_lock(&node->mutex); 1057 if (!node->inode_dirty) { 1058 mutex_unlock(&node->mutex); 1059 return 0; 1060 } 1061 1062 key.objectid = node->inode_id; 1063 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 1064 key.offset = 0; 1065 ret = btrfs_lookup_inode(trans, root, path, &key, 1); 1066 if (ret > 0) { 1067 btrfs_release_path(path); 1068 mutex_unlock(&node->mutex); 1069 return -ENOENT; 1070 } else if (ret < 0) { 1071 mutex_unlock(&node->mutex); 1072 return ret; 1073 } 1074 1075 btrfs_unlock_up_safe(path, 1); 1076 leaf = path->nodes[0]; 1077 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1078 struct btrfs_inode_item); 1079 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1080 sizeof(struct btrfs_inode_item)); 1081 btrfs_mark_buffer_dirty(leaf); 1082 btrfs_release_path(path); 1083 1084 btrfs_delayed_inode_release_metadata(root, node); 1085 btrfs_release_delayed_inode(node); 1086 mutex_unlock(&node->mutex); 1087 1088 return 0; 1089 } 1090 1091 /* Called when committing the transaction. */ 1092 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1093 struct btrfs_root *root) 1094 { 1095 struct btrfs_delayed_root *delayed_root; 1096 struct btrfs_delayed_node *curr_node, *prev_node; 1097 struct btrfs_path *path; 1098 struct btrfs_block_rsv *block_rsv; 1099 int ret = 0; 1100 1101 path = btrfs_alloc_path(); 1102 if (!path) 1103 return -ENOMEM; 1104 path->leave_spinning = 1; 1105 1106 block_rsv = trans->block_rsv; 1107 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1108 1109 delayed_root = btrfs_get_delayed_root(root); 1110 1111 curr_node = btrfs_first_delayed_node(delayed_root); 1112 while (curr_node) { 1113 root = curr_node->root; 1114 ret = btrfs_insert_delayed_items(trans, path, root, 1115 curr_node); 1116 if (!ret) 1117 ret = btrfs_delete_delayed_items(trans, path, root, 1118 curr_node); 1119 if (!ret) 1120 ret = btrfs_update_delayed_inode(trans, root, path, 1121 curr_node); 1122 if (ret) { 1123 btrfs_release_delayed_node(curr_node); 1124 break; 1125 } 1126 1127 prev_node = curr_node; 1128 curr_node = btrfs_next_delayed_node(curr_node); 1129 btrfs_release_delayed_node(prev_node); 1130 } 1131 1132 btrfs_free_path(path); 1133 trans->block_rsv = block_rsv; 1134 return ret; 1135 } 1136 1137 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1138 struct btrfs_delayed_node *node) 1139 { 1140 struct btrfs_path *path; 1141 struct btrfs_block_rsv *block_rsv; 1142 int ret; 1143 1144 path = btrfs_alloc_path(); 1145 if (!path) 1146 return -ENOMEM; 1147 path->leave_spinning = 1; 1148 1149 block_rsv = trans->block_rsv; 1150 trans->block_rsv = &node->root->fs_info->delayed_block_rsv; 1151 1152 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1153 if (!ret) 1154 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1155 if (!ret) 1156 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1157 btrfs_free_path(path); 1158 1159 trans->block_rsv = block_rsv; 1160 return ret; 1161 } 1162 1163 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1164 struct inode *inode) 1165 { 1166 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1167 int ret; 1168 1169 if (!delayed_node) 1170 return 0; 1171 1172 mutex_lock(&delayed_node->mutex); 1173 if (!delayed_node->count) { 1174 mutex_unlock(&delayed_node->mutex); 1175 btrfs_release_delayed_node(delayed_node); 1176 return 0; 1177 } 1178 mutex_unlock(&delayed_node->mutex); 1179 1180 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node); 1181 btrfs_release_delayed_node(delayed_node); 1182 return ret; 1183 } 1184 1185 void btrfs_remove_delayed_node(struct inode *inode) 1186 { 1187 struct btrfs_delayed_node *delayed_node; 1188 1189 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); 1190 if (!delayed_node) 1191 return; 1192 1193 BTRFS_I(inode)->delayed_node = NULL; 1194 btrfs_release_delayed_node(delayed_node); 1195 } 1196 1197 struct btrfs_async_delayed_node { 1198 struct btrfs_root *root; 1199 struct btrfs_delayed_node *delayed_node; 1200 struct btrfs_work work; 1201 }; 1202 1203 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work) 1204 { 1205 struct btrfs_async_delayed_node *async_node; 1206 struct btrfs_trans_handle *trans; 1207 struct btrfs_path *path; 1208 struct btrfs_delayed_node *delayed_node = NULL; 1209 struct btrfs_root *root; 1210 struct btrfs_block_rsv *block_rsv; 1211 unsigned long nr = 0; 1212 int need_requeue = 0; 1213 int ret; 1214 1215 async_node = container_of(work, struct btrfs_async_delayed_node, work); 1216 1217 path = btrfs_alloc_path(); 1218 if (!path) 1219 goto out; 1220 path->leave_spinning = 1; 1221 1222 delayed_node = async_node->delayed_node; 1223 root = delayed_node->root; 1224 1225 trans = btrfs_join_transaction(root); 1226 if (IS_ERR(trans)) 1227 goto free_path; 1228 1229 block_rsv = trans->block_rsv; 1230 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1231 1232 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node); 1233 if (!ret) 1234 ret = btrfs_delete_delayed_items(trans, path, root, 1235 delayed_node); 1236 1237 if (!ret) 1238 btrfs_update_delayed_inode(trans, root, path, delayed_node); 1239 1240 /* 1241 * Maybe new delayed items have been inserted, so we need requeue 1242 * the work. Besides that, we must dequeue the empty delayed nodes 1243 * to avoid the race between delayed items balance and the worker. 1244 * The race like this: 1245 * Task1 Worker thread 1246 * count == 0, needn't requeue 1247 * also needn't insert the 1248 * delayed node into prepare 1249 * list again. 1250 * add lots of delayed items 1251 * queue the delayed node 1252 * already in the list, 1253 * and not in the prepare 1254 * list, it means the delayed 1255 * node is being dealt with 1256 * by the worker. 1257 * do delayed items balance 1258 * the delayed node is being 1259 * dealt with by the worker 1260 * now, just wait. 1261 * the worker goto idle. 1262 * Task1 will sleep until the transaction is commited. 1263 */ 1264 mutex_lock(&delayed_node->mutex); 1265 if (delayed_node->count) 1266 need_requeue = 1; 1267 else 1268 btrfs_dequeue_delayed_node(root->fs_info->delayed_root, 1269 delayed_node); 1270 mutex_unlock(&delayed_node->mutex); 1271 1272 nr = trans->blocks_used; 1273 1274 trans->block_rsv = block_rsv; 1275 btrfs_end_transaction_dmeta(trans, root); 1276 __btrfs_btree_balance_dirty(root, nr); 1277 free_path: 1278 btrfs_free_path(path); 1279 out: 1280 if (need_requeue) 1281 btrfs_requeue_work(&async_node->work); 1282 else { 1283 btrfs_release_prepared_delayed_node(delayed_node); 1284 kfree(async_node); 1285 } 1286 } 1287 1288 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1289 struct btrfs_root *root, int all) 1290 { 1291 struct btrfs_async_delayed_node *async_node; 1292 struct btrfs_delayed_node *curr; 1293 int count = 0; 1294 1295 again: 1296 curr = btrfs_first_prepared_delayed_node(delayed_root); 1297 if (!curr) 1298 return 0; 1299 1300 async_node = kmalloc(sizeof(*async_node), GFP_NOFS); 1301 if (!async_node) { 1302 btrfs_release_prepared_delayed_node(curr); 1303 return -ENOMEM; 1304 } 1305 1306 async_node->root = root; 1307 async_node->delayed_node = curr; 1308 1309 async_node->work.func = btrfs_async_run_delayed_node_done; 1310 async_node->work.flags = 0; 1311 1312 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work); 1313 count++; 1314 1315 if (all || count < 4) 1316 goto again; 1317 1318 return 0; 1319 } 1320 1321 void btrfs_assert_delayed_root_empty(struct btrfs_root *root) 1322 { 1323 struct btrfs_delayed_root *delayed_root; 1324 delayed_root = btrfs_get_delayed_root(root); 1325 WARN_ON(btrfs_first_delayed_node(delayed_root)); 1326 } 1327 1328 void btrfs_balance_delayed_items(struct btrfs_root *root) 1329 { 1330 struct btrfs_delayed_root *delayed_root; 1331 1332 delayed_root = btrfs_get_delayed_root(root); 1333 1334 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1335 return; 1336 1337 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1338 int ret; 1339 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1); 1340 if (ret) 1341 return; 1342 1343 wait_event_interruptible_timeout( 1344 delayed_root->wait, 1345 (atomic_read(&delayed_root->items) < 1346 BTRFS_DELAYED_BACKGROUND), 1347 HZ); 1348 return; 1349 } 1350 1351 btrfs_wq_run_delayed_node(delayed_root, root, 0); 1352 } 1353 1354 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1355 struct btrfs_root *root, const char *name, 1356 int name_len, struct inode *dir, 1357 struct btrfs_disk_key *disk_key, u8 type, 1358 u64 index) 1359 { 1360 struct btrfs_delayed_node *delayed_node; 1361 struct btrfs_delayed_item *delayed_item; 1362 struct btrfs_dir_item *dir_item; 1363 int ret; 1364 1365 delayed_node = btrfs_get_or_create_delayed_node(dir); 1366 if (IS_ERR(delayed_node)) 1367 return PTR_ERR(delayed_node); 1368 1369 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1370 if (!delayed_item) { 1371 ret = -ENOMEM; 1372 goto release_node; 1373 } 1374 1375 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); 1376 /* 1377 * we have reserved enough space when we start a new transaction, 1378 * so reserving metadata failure is impossible 1379 */ 1380 BUG_ON(ret); 1381 1382 delayed_item->key.objectid = btrfs_ino(dir); 1383 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY); 1384 delayed_item->key.offset = index; 1385 1386 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1387 dir_item->location = *disk_key; 1388 dir_item->transid = cpu_to_le64(trans->transid); 1389 dir_item->data_len = 0; 1390 dir_item->name_len = cpu_to_le16(name_len); 1391 dir_item->type = type; 1392 memcpy((char *)(dir_item + 1), name, name_len); 1393 1394 mutex_lock(&delayed_node->mutex); 1395 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1396 if (unlikely(ret)) { 1397 printk(KERN_ERR "err add delayed dir index item(name: %s) into " 1398 "the insertion tree of the delayed node" 1399 "(root id: %llu, inode id: %llu, errno: %d)\n", 1400 name, 1401 (unsigned long long)delayed_node->root->objectid, 1402 (unsigned long long)delayed_node->inode_id, 1403 ret); 1404 BUG(); 1405 } 1406 mutex_unlock(&delayed_node->mutex); 1407 1408 release_node: 1409 btrfs_release_delayed_node(delayed_node); 1410 return ret; 1411 } 1412 1413 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, 1414 struct btrfs_delayed_node *node, 1415 struct btrfs_key *key) 1416 { 1417 struct btrfs_delayed_item *item; 1418 1419 mutex_lock(&node->mutex); 1420 item = __btrfs_lookup_delayed_insertion_item(node, key); 1421 if (!item) { 1422 mutex_unlock(&node->mutex); 1423 return 1; 1424 } 1425 1426 btrfs_delayed_item_release_metadata(root, item); 1427 btrfs_release_delayed_item(item); 1428 mutex_unlock(&node->mutex); 1429 return 0; 1430 } 1431 1432 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1433 struct btrfs_root *root, struct inode *dir, 1434 u64 index) 1435 { 1436 struct btrfs_delayed_node *node; 1437 struct btrfs_delayed_item *item; 1438 struct btrfs_key item_key; 1439 int ret; 1440 1441 node = btrfs_get_or_create_delayed_node(dir); 1442 if (IS_ERR(node)) 1443 return PTR_ERR(node); 1444 1445 item_key.objectid = btrfs_ino(dir); 1446 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY); 1447 item_key.offset = index; 1448 1449 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); 1450 if (!ret) 1451 goto end; 1452 1453 item = btrfs_alloc_delayed_item(0); 1454 if (!item) { 1455 ret = -ENOMEM; 1456 goto end; 1457 } 1458 1459 item->key = item_key; 1460 1461 ret = btrfs_delayed_item_reserve_metadata(trans, root, item); 1462 /* 1463 * we have reserved enough space when we start a new transaction, 1464 * so reserving metadata failure is impossible. 1465 */ 1466 BUG_ON(ret); 1467 1468 mutex_lock(&node->mutex); 1469 ret = __btrfs_add_delayed_deletion_item(node, item); 1470 if (unlikely(ret)) { 1471 printk(KERN_ERR "err add delayed dir index item(index: %llu) " 1472 "into the deletion tree of the delayed node" 1473 "(root id: %llu, inode id: %llu, errno: %d)\n", 1474 (unsigned long long)index, 1475 (unsigned long long)node->root->objectid, 1476 (unsigned long long)node->inode_id, 1477 ret); 1478 BUG(); 1479 } 1480 mutex_unlock(&node->mutex); 1481 end: 1482 btrfs_release_delayed_node(node); 1483 return ret; 1484 } 1485 1486 int btrfs_inode_delayed_dir_index_count(struct inode *inode) 1487 { 1488 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1489 1490 if (!delayed_node) 1491 return -ENOENT; 1492 1493 /* 1494 * Since we have held i_mutex of this directory, it is impossible that 1495 * a new directory index is added into the delayed node and index_cnt 1496 * is updated now. So we needn't lock the delayed node. 1497 */ 1498 if (!delayed_node->index_cnt) { 1499 btrfs_release_delayed_node(delayed_node); 1500 return -EINVAL; 1501 } 1502 1503 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; 1504 btrfs_release_delayed_node(delayed_node); 1505 return 0; 1506 } 1507 1508 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list, 1509 struct list_head *del_list) 1510 { 1511 struct btrfs_delayed_node *delayed_node; 1512 struct btrfs_delayed_item *item; 1513 1514 delayed_node = btrfs_get_delayed_node(inode); 1515 if (!delayed_node) 1516 return; 1517 1518 mutex_lock(&delayed_node->mutex); 1519 item = __btrfs_first_delayed_insertion_item(delayed_node); 1520 while (item) { 1521 atomic_inc(&item->refs); 1522 list_add_tail(&item->readdir_list, ins_list); 1523 item = __btrfs_next_delayed_item(item); 1524 } 1525 1526 item = __btrfs_first_delayed_deletion_item(delayed_node); 1527 while (item) { 1528 atomic_inc(&item->refs); 1529 list_add_tail(&item->readdir_list, del_list); 1530 item = __btrfs_next_delayed_item(item); 1531 } 1532 mutex_unlock(&delayed_node->mutex); 1533 /* 1534 * This delayed node is still cached in the btrfs inode, so refs 1535 * must be > 1 now, and we needn't check it is going to be freed 1536 * or not. 1537 * 1538 * Besides that, this function is used to read dir, we do not 1539 * insert/delete delayed items in this period. So we also needn't 1540 * requeue or dequeue this delayed node. 1541 */ 1542 atomic_dec(&delayed_node->refs); 1543 } 1544 1545 void btrfs_put_delayed_items(struct list_head *ins_list, 1546 struct list_head *del_list) 1547 { 1548 struct btrfs_delayed_item *curr, *next; 1549 1550 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1551 list_del(&curr->readdir_list); 1552 if (atomic_dec_and_test(&curr->refs)) 1553 kfree(curr); 1554 } 1555 1556 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1557 list_del(&curr->readdir_list); 1558 if (atomic_dec_and_test(&curr->refs)) 1559 kfree(curr); 1560 } 1561 } 1562 1563 int btrfs_should_delete_dir_index(struct list_head *del_list, 1564 u64 index) 1565 { 1566 struct btrfs_delayed_item *curr, *next; 1567 int ret; 1568 1569 if (list_empty(del_list)) 1570 return 0; 1571 1572 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1573 if (curr->key.offset > index) 1574 break; 1575 1576 list_del(&curr->readdir_list); 1577 ret = (curr->key.offset == index); 1578 1579 if (atomic_dec_and_test(&curr->refs)) 1580 kfree(curr); 1581 1582 if (ret) 1583 return 1; 1584 else 1585 continue; 1586 } 1587 return 0; 1588 } 1589 1590 /* 1591 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1592 * 1593 */ 1594 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent, 1595 filldir_t filldir, 1596 struct list_head *ins_list) 1597 { 1598 struct btrfs_dir_item *di; 1599 struct btrfs_delayed_item *curr, *next; 1600 struct btrfs_key location; 1601 char *name; 1602 int name_len; 1603 int over = 0; 1604 unsigned char d_type; 1605 1606 if (list_empty(ins_list)) 1607 return 0; 1608 1609 /* 1610 * Changing the data of the delayed item is impossible. So 1611 * we needn't lock them. And we have held i_mutex of the 1612 * directory, nobody can delete any directory indexes now. 1613 */ 1614 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1615 list_del(&curr->readdir_list); 1616 1617 if (curr->key.offset < filp->f_pos) { 1618 if (atomic_dec_and_test(&curr->refs)) 1619 kfree(curr); 1620 continue; 1621 } 1622 1623 filp->f_pos = curr->key.offset; 1624 1625 di = (struct btrfs_dir_item *)curr->data; 1626 name = (char *)(di + 1); 1627 name_len = le16_to_cpu(di->name_len); 1628 1629 d_type = btrfs_filetype_table[di->type]; 1630 btrfs_disk_key_to_cpu(&location, &di->location); 1631 1632 over = filldir(dirent, name, name_len, curr->key.offset, 1633 location.objectid, d_type); 1634 1635 if (atomic_dec_and_test(&curr->refs)) 1636 kfree(curr); 1637 1638 if (over) 1639 return 1; 1640 } 1641 return 0; 1642 } 1643 1644 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1645 generation, 64); 1646 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1647 sequence, 64); 1648 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1649 transid, 64); 1650 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1651 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1652 nbytes, 64); 1653 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1654 block_group, 64); 1655 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1656 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1657 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1658 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1659 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1660 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1661 1662 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1663 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1664 1665 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1666 struct btrfs_inode_item *inode_item, 1667 struct inode *inode) 1668 { 1669 btrfs_set_stack_inode_uid(inode_item, inode->i_uid); 1670 btrfs_set_stack_inode_gid(inode_item, inode->i_gid); 1671 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1672 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1673 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1674 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1675 btrfs_set_stack_inode_generation(inode_item, 1676 BTRFS_I(inode)->generation); 1677 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence); 1678 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1679 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1680 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1681 btrfs_set_stack_inode_block_group(inode_item, 0); 1682 1683 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item), 1684 inode->i_atime.tv_sec); 1685 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item), 1686 inode->i_atime.tv_nsec); 1687 1688 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item), 1689 inode->i_mtime.tv_sec); 1690 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item), 1691 inode->i_mtime.tv_nsec); 1692 1693 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item), 1694 inode->i_ctime.tv_sec); 1695 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item), 1696 inode->i_ctime.tv_nsec); 1697 } 1698 1699 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1700 { 1701 struct btrfs_delayed_node *delayed_node; 1702 struct btrfs_inode_item *inode_item; 1703 struct btrfs_timespec *tspec; 1704 1705 delayed_node = btrfs_get_delayed_node(inode); 1706 if (!delayed_node) 1707 return -ENOENT; 1708 1709 mutex_lock(&delayed_node->mutex); 1710 if (!delayed_node->inode_dirty) { 1711 mutex_unlock(&delayed_node->mutex); 1712 btrfs_release_delayed_node(delayed_node); 1713 return -ENOENT; 1714 } 1715 1716 inode_item = &delayed_node->inode_item; 1717 1718 inode->i_uid = btrfs_stack_inode_uid(inode_item); 1719 inode->i_gid = btrfs_stack_inode_gid(inode_item); 1720 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1721 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1722 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1723 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1724 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1725 BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item); 1726 inode->i_rdev = 0; 1727 *rdev = btrfs_stack_inode_rdev(inode_item); 1728 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1729 1730 tspec = btrfs_inode_atime(inode_item); 1731 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec); 1732 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1733 1734 tspec = btrfs_inode_mtime(inode_item); 1735 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec); 1736 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1737 1738 tspec = btrfs_inode_ctime(inode_item); 1739 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec); 1740 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1741 1742 inode->i_generation = BTRFS_I(inode)->generation; 1743 BTRFS_I(inode)->index_cnt = (u64)-1; 1744 1745 mutex_unlock(&delayed_node->mutex); 1746 btrfs_release_delayed_node(delayed_node); 1747 return 0; 1748 } 1749 1750 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1751 struct btrfs_root *root, struct inode *inode) 1752 { 1753 struct btrfs_delayed_node *delayed_node; 1754 int ret = 0; 1755 1756 delayed_node = btrfs_get_or_create_delayed_node(inode); 1757 if (IS_ERR(delayed_node)) 1758 return PTR_ERR(delayed_node); 1759 1760 mutex_lock(&delayed_node->mutex); 1761 if (delayed_node->inode_dirty) { 1762 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1763 goto release_node; 1764 } 1765 1766 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1767 delayed_node); 1768 if (ret) 1769 goto release_node; 1770 1771 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1772 delayed_node->inode_dirty = 1; 1773 delayed_node->count++; 1774 atomic_inc(&root->fs_info->delayed_root->items); 1775 release_node: 1776 mutex_unlock(&delayed_node->mutex); 1777 btrfs_release_delayed_node(delayed_node); 1778 return ret; 1779 } 1780 1781 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1782 { 1783 struct btrfs_root *root = delayed_node->root; 1784 struct btrfs_delayed_item *curr_item, *prev_item; 1785 1786 mutex_lock(&delayed_node->mutex); 1787 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1788 while (curr_item) { 1789 btrfs_delayed_item_release_metadata(root, curr_item); 1790 prev_item = curr_item; 1791 curr_item = __btrfs_next_delayed_item(prev_item); 1792 btrfs_release_delayed_item(prev_item); 1793 } 1794 1795 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1796 while (curr_item) { 1797 btrfs_delayed_item_release_metadata(root, curr_item); 1798 prev_item = curr_item; 1799 curr_item = __btrfs_next_delayed_item(prev_item); 1800 btrfs_release_delayed_item(prev_item); 1801 } 1802 1803 if (delayed_node->inode_dirty) { 1804 btrfs_delayed_inode_release_metadata(root, delayed_node); 1805 btrfs_release_delayed_inode(delayed_node); 1806 } 1807 mutex_unlock(&delayed_node->mutex); 1808 } 1809 1810 void btrfs_kill_delayed_inode_items(struct inode *inode) 1811 { 1812 struct btrfs_delayed_node *delayed_node; 1813 1814 delayed_node = btrfs_get_delayed_node(inode); 1815 if (!delayed_node) 1816 return; 1817 1818 __btrfs_kill_delayed_node(delayed_node); 1819 btrfs_release_delayed_node(delayed_node); 1820 } 1821 1822 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1823 { 1824 u64 inode_id = 0; 1825 struct btrfs_delayed_node *delayed_nodes[8]; 1826 int i, n; 1827 1828 while (1) { 1829 spin_lock(&root->inode_lock); 1830 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1831 (void **)delayed_nodes, inode_id, 1832 ARRAY_SIZE(delayed_nodes)); 1833 if (!n) { 1834 spin_unlock(&root->inode_lock); 1835 break; 1836 } 1837 1838 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1839 1840 for (i = 0; i < n; i++) 1841 atomic_inc(&delayed_nodes[i]->refs); 1842 spin_unlock(&root->inode_lock); 1843 1844 for (i = 0; i < n; i++) { 1845 __btrfs_kill_delayed_node(delayed_nodes[i]); 1846 btrfs_release_delayed_node(delayed_nodes[i]); 1847 } 1848 } 1849 } 1850