1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0); 32 if (!delayed_node_cache) 33 return -ENOMEM; 34 return 0; 35 } 36 37 void __cold btrfs_delayed_inode_exit(void) 38 { 39 kmem_cache_destroy(delayed_node_cache); 40 } 41 42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root) 43 { 44 atomic_set(&delayed_root->items, 0); 45 atomic_set(&delayed_root->items_seq, 0); 46 delayed_root->nodes = 0; 47 spin_lock_init(&delayed_root->lock); 48 init_waitqueue_head(&delayed_root->wait); 49 INIT_LIST_HEAD(&delayed_root->node_list); 50 INIT_LIST_HEAD(&delayed_root->prepare_list); 51 } 52 53 static inline void btrfs_init_delayed_node( 54 struct btrfs_delayed_node *delayed_node, 55 struct btrfs_root *root, u64 inode_id) 56 { 57 delayed_node->root = root; 58 delayed_node->inode_id = inode_id; 59 refcount_set(&delayed_node->refs, 0); 60 delayed_node->ins_root = RB_ROOT_CACHED; 61 delayed_node->del_root = RB_ROOT_CACHED; 62 mutex_init(&delayed_node->mutex); 63 INIT_LIST_HEAD(&delayed_node->n_list); 64 INIT_LIST_HEAD(&delayed_node->p_list); 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 spin_lock(&root->inode_lock); 81 node = xa_load(&root->delayed_nodes, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 spin_unlock(&root->inode_lock); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the xarray. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the xarray at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the xarray, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 spin_unlock(&root->inode_lock); 115 return node; 116 } 117 spin_unlock(&root->inode_lock); 118 119 return NULL; 120 } 121 122 /* Will return either the node or PTR_ERR(-ENOMEM) */ 123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 124 struct btrfs_inode *btrfs_inode) 125 { 126 struct btrfs_delayed_node *node; 127 struct btrfs_root *root = btrfs_inode->root; 128 u64 ino = btrfs_ino(btrfs_inode); 129 int ret; 130 void *ptr; 131 132 again: 133 node = btrfs_get_delayed_node(btrfs_inode); 134 if (node) 135 return node; 136 137 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 138 if (!node) 139 return ERR_PTR(-ENOMEM); 140 btrfs_init_delayed_node(node, root, ino); 141 142 /* Cached in the inode and can be accessed. */ 143 refcount_set(&node->refs, 2); 144 145 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ 146 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); 147 if (ret == -ENOMEM) { 148 kmem_cache_free(delayed_node_cache, node); 149 return ERR_PTR(-ENOMEM); 150 } 151 spin_lock(&root->inode_lock); 152 ptr = xa_load(&root->delayed_nodes, ino); 153 if (ptr) { 154 /* Somebody inserted it, go back and read it. */ 155 spin_unlock(&root->inode_lock); 156 kmem_cache_free(delayed_node_cache, node); 157 node = NULL; 158 goto again; 159 } 160 ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); 161 ASSERT(xa_err(ptr) != -EINVAL); 162 ASSERT(xa_err(ptr) != -ENOMEM); 163 ASSERT(ptr == NULL); 164 btrfs_inode->delayed_node = node; 165 spin_unlock(&root->inode_lock); 166 167 return node; 168 } 169 170 /* 171 * Call it when holding delayed_node->mutex 172 * 173 * If mod = 1, add this node into the prepared list. 174 */ 175 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 176 struct btrfs_delayed_node *node, 177 int mod) 178 { 179 spin_lock(&root->lock); 180 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 181 if (!list_empty(&node->p_list)) 182 list_move_tail(&node->p_list, &root->prepare_list); 183 else if (mod) 184 list_add_tail(&node->p_list, &root->prepare_list); 185 } else { 186 list_add_tail(&node->n_list, &root->node_list); 187 list_add_tail(&node->p_list, &root->prepare_list); 188 refcount_inc(&node->refs); /* inserted into list */ 189 root->nodes++; 190 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 191 } 192 spin_unlock(&root->lock); 193 } 194 195 /* Call it when holding delayed_node->mutex */ 196 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 197 struct btrfs_delayed_node *node) 198 { 199 spin_lock(&root->lock); 200 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 201 root->nodes--; 202 refcount_dec(&node->refs); /* not in the list */ 203 list_del_init(&node->n_list); 204 if (!list_empty(&node->p_list)) 205 list_del_init(&node->p_list); 206 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 207 } 208 spin_unlock(&root->lock); 209 } 210 211 static struct btrfs_delayed_node *btrfs_first_delayed_node( 212 struct btrfs_delayed_root *delayed_root) 213 { 214 struct list_head *p; 215 struct btrfs_delayed_node *node = NULL; 216 217 spin_lock(&delayed_root->lock); 218 if (list_empty(&delayed_root->node_list)) 219 goto out; 220 221 p = delayed_root->node_list.next; 222 node = list_entry(p, struct btrfs_delayed_node, n_list); 223 refcount_inc(&node->refs); 224 out: 225 spin_unlock(&delayed_root->lock); 226 227 return node; 228 } 229 230 static struct btrfs_delayed_node *btrfs_next_delayed_node( 231 struct btrfs_delayed_node *node) 232 { 233 struct btrfs_delayed_root *delayed_root; 234 struct list_head *p; 235 struct btrfs_delayed_node *next = NULL; 236 237 delayed_root = node->root->fs_info->delayed_root; 238 spin_lock(&delayed_root->lock); 239 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 240 /* not in the list */ 241 if (list_empty(&delayed_root->node_list)) 242 goto out; 243 p = delayed_root->node_list.next; 244 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 245 goto out; 246 else 247 p = node->n_list.next; 248 249 next = list_entry(p, struct btrfs_delayed_node, n_list); 250 refcount_inc(&next->refs); 251 out: 252 spin_unlock(&delayed_root->lock); 253 254 return next; 255 } 256 257 static void __btrfs_release_delayed_node( 258 struct btrfs_delayed_node *delayed_node, 259 int mod) 260 { 261 struct btrfs_delayed_root *delayed_root; 262 263 if (!delayed_node) 264 return; 265 266 delayed_root = delayed_node->root->fs_info->delayed_root; 267 268 mutex_lock(&delayed_node->mutex); 269 if (delayed_node->count) 270 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 271 else 272 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 273 mutex_unlock(&delayed_node->mutex); 274 275 if (refcount_dec_and_test(&delayed_node->refs)) { 276 struct btrfs_root *root = delayed_node->root; 277 278 spin_lock(&root->inode_lock); 279 /* 280 * Once our refcount goes to zero, nobody is allowed to bump it 281 * back up. We can delete it now. 282 */ 283 ASSERT(refcount_read(&delayed_node->refs) == 0); 284 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 285 spin_unlock(&root->inode_lock); 286 kmem_cache_free(delayed_node_cache, delayed_node); 287 } 288 } 289 290 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 291 { 292 __btrfs_release_delayed_node(node, 0); 293 } 294 295 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 296 struct btrfs_delayed_root *delayed_root) 297 { 298 struct list_head *p; 299 struct btrfs_delayed_node *node = NULL; 300 301 spin_lock(&delayed_root->lock); 302 if (list_empty(&delayed_root->prepare_list)) 303 goto out; 304 305 p = delayed_root->prepare_list.next; 306 list_del_init(p); 307 node = list_entry(p, struct btrfs_delayed_node, p_list); 308 refcount_inc(&node->refs); 309 out: 310 spin_unlock(&delayed_root->lock); 311 312 return node; 313 } 314 315 static inline void btrfs_release_prepared_delayed_node( 316 struct btrfs_delayed_node *node) 317 { 318 __btrfs_release_delayed_node(node, 1); 319 } 320 321 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 322 struct btrfs_delayed_node *node, 323 enum btrfs_delayed_item_type type) 324 { 325 struct btrfs_delayed_item *item; 326 327 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 328 if (item) { 329 item->data_len = data_len; 330 item->type = type; 331 item->bytes_reserved = 0; 332 item->delayed_node = node; 333 RB_CLEAR_NODE(&item->rb_node); 334 INIT_LIST_HEAD(&item->log_list); 335 item->logged = false; 336 refcount_set(&item->refs, 1); 337 } 338 return item; 339 } 340 341 /* 342 * Look up the delayed item by key. 343 * 344 * @delayed_node: pointer to the delayed node 345 * @index: the dir index value to lookup (offset of a dir index key) 346 * 347 * Note: if we don't find the right item, we will return the prev item and 348 * the next item. 349 */ 350 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 351 struct rb_root *root, 352 u64 index) 353 { 354 struct rb_node *node = root->rb_node; 355 struct btrfs_delayed_item *delayed_item = NULL; 356 357 while (node) { 358 delayed_item = rb_entry(node, struct btrfs_delayed_item, 359 rb_node); 360 if (delayed_item->index < index) 361 node = node->rb_right; 362 else if (delayed_item->index > index) 363 node = node->rb_left; 364 else 365 return delayed_item; 366 } 367 368 return NULL; 369 } 370 371 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 372 struct btrfs_delayed_item *ins) 373 { 374 struct rb_node **p, *node; 375 struct rb_node *parent_node = NULL; 376 struct rb_root_cached *root; 377 struct btrfs_delayed_item *item; 378 bool leftmost = true; 379 380 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 381 root = &delayed_node->ins_root; 382 else 383 root = &delayed_node->del_root; 384 385 p = &root->rb_root.rb_node; 386 node = &ins->rb_node; 387 388 while (*p) { 389 parent_node = *p; 390 item = rb_entry(parent_node, struct btrfs_delayed_item, 391 rb_node); 392 393 if (item->index < ins->index) { 394 p = &(*p)->rb_right; 395 leftmost = false; 396 } else if (item->index > ins->index) { 397 p = &(*p)->rb_left; 398 } else { 399 return -EEXIST; 400 } 401 } 402 403 rb_link_node(node, parent_node, p); 404 rb_insert_color_cached(node, root, leftmost); 405 406 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 407 ins->index >= delayed_node->index_cnt) 408 delayed_node->index_cnt = ins->index + 1; 409 410 delayed_node->count++; 411 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 412 return 0; 413 } 414 415 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 416 { 417 int seq = atomic_inc_return(&delayed_root->items_seq); 418 419 /* atomic_dec_return implies a barrier */ 420 if ((atomic_dec_return(&delayed_root->items) < 421 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 422 cond_wake_up_nomb(&delayed_root->wait); 423 } 424 425 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 426 { 427 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 428 struct rb_root_cached *root; 429 struct btrfs_delayed_root *delayed_root; 430 431 /* Not inserted, ignore it. */ 432 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 433 return; 434 435 /* If it's in a rbtree, then we need to have delayed node locked. */ 436 lockdep_assert_held(&delayed_node->mutex); 437 438 delayed_root = delayed_node->root->fs_info->delayed_root; 439 440 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 441 root = &delayed_node->ins_root; 442 else 443 root = &delayed_node->del_root; 444 445 rb_erase_cached(&delayed_item->rb_node, root); 446 RB_CLEAR_NODE(&delayed_item->rb_node); 447 delayed_node->count--; 448 449 finish_one_item(delayed_root); 450 } 451 452 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 453 { 454 if (item) { 455 __btrfs_remove_delayed_item(item); 456 if (refcount_dec_and_test(&item->refs)) 457 kfree(item); 458 } 459 } 460 461 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 462 struct btrfs_delayed_node *delayed_node) 463 { 464 struct rb_node *p; 465 struct btrfs_delayed_item *item = NULL; 466 467 p = rb_first_cached(&delayed_node->ins_root); 468 if (p) 469 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 470 471 return item; 472 } 473 474 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 475 struct btrfs_delayed_node *delayed_node) 476 { 477 struct rb_node *p; 478 struct btrfs_delayed_item *item = NULL; 479 480 p = rb_first_cached(&delayed_node->del_root); 481 if (p) 482 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 483 484 return item; 485 } 486 487 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 488 struct btrfs_delayed_item *item) 489 { 490 struct rb_node *p; 491 struct btrfs_delayed_item *next = NULL; 492 493 p = rb_next(&item->rb_node); 494 if (p) 495 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 496 497 return next; 498 } 499 500 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 501 struct btrfs_delayed_item *item) 502 { 503 struct btrfs_block_rsv *src_rsv; 504 struct btrfs_block_rsv *dst_rsv; 505 struct btrfs_fs_info *fs_info = trans->fs_info; 506 u64 num_bytes; 507 int ret; 508 509 if (!trans->bytes_reserved) 510 return 0; 511 512 src_rsv = trans->block_rsv; 513 dst_rsv = &fs_info->delayed_block_rsv; 514 515 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 516 517 /* 518 * Here we migrate space rsv from transaction rsv, since have already 519 * reserved space when starting a transaction. So no need to reserve 520 * qgroup space here. 521 */ 522 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 523 if (!ret) { 524 trace_btrfs_space_reservation(fs_info, "delayed_item", 525 item->delayed_node->inode_id, 526 num_bytes, 1); 527 /* 528 * For insertions we track reserved metadata space by accounting 529 * for the number of leaves that will be used, based on the delayed 530 * node's curr_index_batch_size and index_item_leaves fields. 531 */ 532 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 533 item->bytes_reserved = num_bytes; 534 } 535 536 return ret; 537 } 538 539 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 540 struct btrfs_delayed_item *item) 541 { 542 struct btrfs_block_rsv *rsv; 543 struct btrfs_fs_info *fs_info = root->fs_info; 544 545 if (!item->bytes_reserved) 546 return; 547 548 rsv = &fs_info->delayed_block_rsv; 549 /* 550 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 551 * to release/reserve qgroup space. 552 */ 553 trace_btrfs_space_reservation(fs_info, "delayed_item", 554 item->delayed_node->inode_id, 555 item->bytes_reserved, 0); 556 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 557 } 558 559 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 560 unsigned int num_leaves) 561 { 562 struct btrfs_fs_info *fs_info = node->root->fs_info; 563 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 564 565 /* There are no space reservations during log replay, bail out. */ 566 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 567 return; 568 569 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 570 bytes, 0); 571 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 572 } 573 574 static int btrfs_delayed_inode_reserve_metadata( 575 struct btrfs_trans_handle *trans, 576 struct btrfs_root *root, 577 struct btrfs_delayed_node *node) 578 { 579 struct btrfs_fs_info *fs_info = root->fs_info; 580 struct btrfs_block_rsv *src_rsv; 581 struct btrfs_block_rsv *dst_rsv; 582 u64 num_bytes; 583 int ret; 584 585 src_rsv = trans->block_rsv; 586 dst_rsv = &fs_info->delayed_block_rsv; 587 588 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 589 590 /* 591 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 592 * which doesn't reserve space for speed. This is a problem since we 593 * still need to reserve space for this update, so try to reserve the 594 * space. 595 * 596 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 597 * we always reserve enough to update the inode item. 598 */ 599 if (!src_rsv || (!trans->bytes_reserved && 600 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 601 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 602 BTRFS_QGROUP_RSV_META_PREALLOC, true); 603 if (ret < 0) 604 return ret; 605 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 606 BTRFS_RESERVE_NO_FLUSH); 607 /* NO_FLUSH could only fail with -ENOSPC */ 608 ASSERT(ret == 0 || ret == -ENOSPC); 609 if (ret) 610 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 611 } else { 612 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 613 } 614 615 if (!ret) { 616 trace_btrfs_space_reservation(fs_info, "delayed_inode", 617 node->inode_id, num_bytes, 1); 618 node->bytes_reserved = num_bytes; 619 } 620 621 return ret; 622 } 623 624 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 625 struct btrfs_delayed_node *node, 626 bool qgroup_free) 627 { 628 struct btrfs_block_rsv *rsv; 629 630 if (!node->bytes_reserved) 631 return; 632 633 rsv = &fs_info->delayed_block_rsv; 634 trace_btrfs_space_reservation(fs_info, "delayed_inode", 635 node->inode_id, node->bytes_reserved, 0); 636 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 637 if (qgroup_free) 638 btrfs_qgroup_free_meta_prealloc(node->root, 639 node->bytes_reserved); 640 else 641 btrfs_qgroup_convert_reserved_meta(node->root, 642 node->bytes_reserved); 643 node->bytes_reserved = 0; 644 } 645 646 /* 647 * Insert a single delayed item or a batch of delayed items, as many as possible 648 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 649 * in the rbtree, and if there's a gap between two consecutive dir index items, 650 * then it means at some point we had delayed dir indexes to add but they got 651 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 652 * into the subvolume tree. Dir index keys also have their offsets coming from a 653 * monotonically increasing counter, so we can't get new keys with an offset that 654 * fits within a gap between delayed dir index items. 655 */ 656 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 657 struct btrfs_root *root, 658 struct btrfs_path *path, 659 struct btrfs_delayed_item *first_item) 660 { 661 struct btrfs_fs_info *fs_info = root->fs_info; 662 struct btrfs_delayed_node *node = first_item->delayed_node; 663 LIST_HEAD(item_list); 664 struct btrfs_delayed_item *curr; 665 struct btrfs_delayed_item *next; 666 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 667 struct btrfs_item_batch batch; 668 struct btrfs_key first_key; 669 const u32 first_data_size = first_item->data_len; 670 int total_size; 671 char *ins_data = NULL; 672 int ret; 673 bool continuous_keys_only = false; 674 675 lockdep_assert_held(&node->mutex); 676 677 /* 678 * During normal operation the delayed index offset is continuously 679 * increasing, so we can batch insert all items as there will not be any 680 * overlapping keys in the tree. 681 * 682 * The exception to this is log replay, where we may have interleaved 683 * offsets in the tree, so our batch needs to be continuous keys only in 684 * order to ensure we do not end up with out of order items in our leaf. 685 */ 686 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 687 continuous_keys_only = true; 688 689 /* 690 * For delayed items to insert, we track reserved metadata bytes based 691 * on the number of leaves that we will use. 692 * See btrfs_insert_delayed_dir_index() and 693 * btrfs_delayed_item_reserve_metadata()). 694 */ 695 ASSERT(first_item->bytes_reserved == 0); 696 697 list_add_tail(&first_item->tree_list, &item_list); 698 batch.total_data_size = first_data_size; 699 batch.nr = 1; 700 total_size = first_data_size + sizeof(struct btrfs_item); 701 curr = first_item; 702 703 while (true) { 704 int next_size; 705 706 next = __btrfs_next_delayed_item(curr); 707 if (!next) 708 break; 709 710 /* 711 * We cannot allow gaps in the key space if we're doing log 712 * replay. 713 */ 714 if (continuous_keys_only && (next->index != curr->index + 1)) 715 break; 716 717 ASSERT(next->bytes_reserved == 0); 718 719 next_size = next->data_len + sizeof(struct btrfs_item); 720 if (total_size + next_size > max_size) 721 break; 722 723 list_add_tail(&next->tree_list, &item_list); 724 batch.nr++; 725 total_size += next_size; 726 batch.total_data_size += next->data_len; 727 curr = next; 728 } 729 730 if (batch.nr == 1) { 731 first_key.objectid = node->inode_id; 732 first_key.type = BTRFS_DIR_INDEX_KEY; 733 first_key.offset = first_item->index; 734 batch.keys = &first_key; 735 batch.data_sizes = &first_data_size; 736 } else { 737 struct btrfs_key *ins_keys; 738 u32 *ins_sizes; 739 int i = 0; 740 741 ins_data = kmalloc(batch.nr * sizeof(u32) + 742 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 743 if (!ins_data) { 744 ret = -ENOMEM; 745 goto out; 746 } 747 ins_sizes = (u32 *)ins_data; 748 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 749 batch.keys = ins_keys; 750 batch.data_sizes = ins_sizes; 751 list_for_each_entry(curr, &item_list, tree_list) { 752 ins_keys[i].objectid = node->inode_id; 753 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 754 ins_keys[i].offset = curr->index; 755 ins_sizes[i] = curr->data_len; 756 i++; 757 } 758 } 759 760 ret = btrfs_insert_empty_items(trans, root, path, &batch); 761 if (ret) 762 goto out; 763 764 list_for_each_entry(curr, &item_list, tree_list) { 765 char *data_ptr; 766 767 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 768 write_extent_buffer(path->nodes[0], &curr->data, 769 (unsigned long)data_ptr, curr->data_len); 770 path->slots[0]++; 771 } 772 773 /* 774 * Now release our path before releasing the delayed items and their 775 * metadata reservations, so that we don't block other tasks for more 776 * time than needed. 777 */ 778 btrfs_release_path(path); 779 780 ASSERT(node->index_item_leaves > 0); 781 782 /* 783 * For normal operations we will batch an entire leaf's worth of delayed 784 * items, so if there are more items to process we can decrement 785 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 786 * 787 * However for log replay we may not have inserted an entire leaf's 788 * worth of items, we may have not had continuous items, so decrementing 789 * here would mess up the index_item_leaves accounting. For this case 790 * only clean up the accounting when there are no items left. 791 */ 792 if (next && !continuous_keys_only) { 793 /* 794 * We inserted one batch of items into a leaf a there are more 795 * items to flush in a future batch, now release one unit of 796 * metadata space from the delayed block reserve, corresponding 797 * the leaf we just flushed to. 798 */ 799 btrfs_delayed_item_release_leaves(node, 1); 800 node->index_item_leaves--; 801 } else if (!next) { 802 /* 803 * There are no more items to insert. We can have a number of 804 * reserved leaves > 1 here - this happens when many dir index 805 * items are added and then removed before they are flushed (file 806 * names with a very short life, never span a transaction). So 807 * release all remaining leaves. 808 */ 809 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 810 node->index_item_leaves = 0; 811 } 812 813 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 814 list_del(&curr->tree_list); 815 btrfs_release_delayed_item(curr); 816 } 817 out: 818 kfree(ins_data); 819 return ret; 820 } 821 822 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 823 struct btrfs_path *path, 824 struct btrfs_root *root, 825 struct btrfs_delayed_node *node) 826 { 827 int ret = 0; 828 829 while (ret == 0) { 830 struct btrfs_delayed_item *curr; 831 832 mutex_lock(&node->mutex); 833 curr = __btrfs_first_delayed_insertion_item(node); 834 if (!curr) { 835 mutex_unlock(&node->mutex); 836 break; 837 } 838 ret = btrfs_insert_delayed_item(trans, root, path, curr); 839 mutex_unlock(&node->mutex); 840 } 841 842 return ret; 843 } 844 845 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 846 struct btrfs_root *root, 847 struct btrfs_path *path, 848 struct btrfs_delayed_item *item) 849 { 850 const u64 ino = item->delayed_node->inode_id; 851 struct btrfs_fs_info *fs_info = root->fs_info; 852 struct btrfs_delayed_item *curr, *next; 853 struct extent_buffer *leaf = path->nodes[0]; 854 LIST_HEAD(batch_list); 855 int nitems, slot, last_slot; 856 int ret; 857 u64 total_reserved_size = item->bytes_reserved; 858 859 ASSERT(leaf != NULL); 860 861 slot = path->slots[0]; 862 last_slot = btrfs_header_nritems(leaf) - 1; 863 /* 864 * Our caller always gives us a path pointing to an existing item, so 865 * this can not happen. 866 */ 867 ASSERT(slot <= last_slot); 868 if (WARN_ON(slot > last_slot)) 869 return -ENOENT; 870 871 nitems = 1; 872 curr = item; 873 list_add_tail(&curr->tree_list, &batch_list); 874 875 /* 876 * Keep checking if the next delayed item matches the next item in the 877 * leaf - if so, we can add it to the batch of items to delete from the 878 * leaf. 879 */ 880 while (slot < last_slot) { 881 struct btrfs_key key; 882 883 next = __btrfs_next_delayed_item(curr); 884 if (!next) 885 break; 886 887 slot++; 888 btrfs_item_key_to_cpu(leaf, &key, slot); 889 if (key.objectid != ino || 890 key.type != BTRFS_DIR_INDEX_KEY || 891 key.offset != next->index) 892 break; 893 nitems++; 894 curr = next; 895 list_add_tail(&curr->tree_list, &batch_list); 896 total_reserved_size += curr->bytes_reserved; 897 } 898 899 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 900 if (ret) 901 return ret; 902 903 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 904 if (total_reserved_size > 0) { 905 /* 906 * Check btrfs_delayed_item_reserve_metadata() to see why we 907 * don't need to release/reserve qgroup space. 908 */ 909 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 910 total_reserved_size, 0); 911 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 912 total_reserved_size, NULL); 913 } 914 915 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 916 list_del(&curr->tree_list); 917 btrfs_release_delayed_item(curr); 918 } 919 920 return 0; 921 } 922 923 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 924 struct btrfs_path *path, 925 struct btrfs_root *root, 926 struct btrfs_delayed_node *node) 927 { 928 struct btrfs_key key; 929 int ret = 0; 930 931 key.objectid = node->inode_id; 932 key.type = BTRFS_DIR_INDEX_KEY; 933 934 while (ret == 0) { 935 struct btrfs_delayed_item *item; 936 937 mutex_lock(&node->mutex); 938 item = __btrfs_first_delayed_deletion_item(node); 939 if (!item) { 940 mutex_unlock(&node->mutex); 941 break; 942 } 943 944 key.offset = item->index; 945 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 946 if (ret > 0) { 947 /* 948 * There's no matching item in the leaf. This means we 949 * have already deleted this item in a past run of the 950 * delayed items. We ignore errors when running delayed 951 * items from an async context, through a work queue job 952 * running btrfs_async_run_delayed_root(), and don't 953 * release delayed items that failed to complete. This 954 * is because we will retry later, and at transaction 955 * commit time we always run delayed items and will 956 * then deal with errors if they fail to run again. 957 * 958 * So just release delayed items for which we can't find 959 * an item in the tree, and move to the next item. 960 */ 961 btrfs_release_path(path); 962 btrfs_release_delayed_item(item); 963 ret = 0; 964 } else if (ret == 0) { 965 ret = btrfs_batch_delete_items(trans, root, path, item); 966 btrfs_release_path(path); 967 } 968 969 /* 970 * We unlock and relock on each iteration, this is to prevent 971 * blocking other tasks for too long while we are being run from 972 * the async context (work queue job). Those tasks are typically 973 * running system calls like creat/mkdir/rename/unlink/etc which 974 * need to add delayed items to this delayed node. 975 */ 976 mutex_unlock(&node->mutex); 977 } 978 979 return ret; 980 } 981 982 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 983 { 984 struct btrfs_delayed_root *delayed_root; 985 986 if (delayed_node && 987 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 988 ASSERT(delayed_node->root); 989 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 990 delayed_node->count--; 991 992 delayed_root = delayed_node->root->fs_info->delayed_root; 993 finish_one_item(delayed_root); 994 } 995 } 996 997 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 998 { 999 1000 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 1001 struct btrfs_delayed_root *delayed_root; 1002 1003 ASSERT(delayed_node->root); 1004 delayed_node->count--; 1005 1006 delayed_root = delayed_node->root->fs_info->delayed_root; 1007 finish_one_item(delayed_root); 1008 } 1009 } 1010 1011 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1012 struct btrfs_root *root, 1013 struct btrfs_path *path, 1014 struct btrfs_delayed_node *node) 1015 { 1016 struct btrfs_fs_info *fs_info = root->fs_info; 1017 struct btrfs_key key; 1018 struct btrfs_inode_item *inode_item; 1019 struct extent_buffer *leaf; 1020 int mod; 1021 int ret; 1022 1023 key.objectid = node->inode_id; 1024 key.type = BTRFS_INODE_ITEM_KEY; 1025 key.offset = 0; 1026 1027 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1028 mod = -1; 1029 else 1030 mod = 1; 1031 1032 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1033 if (ret > 0) 1034 ret = -ENOENT; 1035 if (ret < 0) 1036 goto out; 1037 1038 leaf = path->nodes[0]; 1039 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1040 struct btrfs_inode_item); 1041 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1042 sizeof(struct btrfs_inode_item)); 1043 btrfs_mark_buffer_dirty(trans, leaf); 1044 1045 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1046 goto out; 1047 1048 /* 1049 * Now we're going to delete the INODE_REF/EXTREF, which should be the 1050 * only one ref left. Check if the next item is an INODE_REF/EXTREF. 1051 * 1052 * But if we're the last item already, release and search for the last 1053 * INODE_REF/EXTREF. 1054 */ 1055 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { 1056 key.objectid = node->inode_id; 1057 key.type = BTRFS_INODE_EXTREF_KEY; 1058 key.offset = (u64)-1; 1059 1060 btrfs_release_path(path); 1061 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1062 if (ret < 0) 1063 goto err_out; 1064 ASSERT(ret > 0); 1065 ASSERT(path->slots[0] > 0); 1066 ret = 0; 1067 path->slots[0]--; 1068 leaf = path->nodes[0]; 1069 } else { 1070 path->slots[0]++; 1071 } 1072 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1073 if (key.objectid != node->inode_id) 1074 goto out; 1075 if (key.type != BTRFS_INODE_REF_KEY && 1076 key.type != BTRFS_INODE_EXTREF_KEY) 1077 goto out; 1078 1079 /* 1080 * Delayed iref deletion is for the inode who has only one link, 1081 * so there is only one iref. The case that several irefs are 1082 * in the same item doesn't exist. 1083 */ 1084 ret = btrfs_del_item(trans, root, path); 1085 out: 1086 btrfs_release_delayed_iref(node); 1087 btrfs_release_path(path); 1088 err_out: 1089 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1090 btrfs_release_delayed_inode(node); 1091 1092 /* 1093 * If we fail to update the delayed inode we need to abort the 1094 * transaction, because we could leave the inode with the improper 1095 * counts behind. 1096 */ 1097 if (ret && ret != -ENOENT) 1098 btrfs_abort_transaction(trans, ret); 1099 1100 return ret; 1101 } 1102 1103 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1104 struct btrfs_root *root, 1105 struct btrfs_path *path, 1106 struct btrfs_delayed_node *node) 1107 { 1108 int ret; 1109 1110 mutex_lock(&node->mutex); 1111 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1112 mutex_unlock(&node->mutex); 1113 return 0; 1114 } 1115 1116 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1117 mutex_unlock(&node->mutex); 1118 return ret; 1119 } 1120 1121 static inline int 1122 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1123 struct btrfs_path *path, 1124 struct btrfs_delayed_node *node) 1125 { 1126 int ret; 1127 1128 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1129 if (ret) 1130 return ret; 1131 1132 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1133 if (ret) 1134 return ret; 1135 1136 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1137 return ret; 1138 } 1139 1140 /* 1141 * Called when committing the transaction. 1142 * Returns 0 on success. 1143 * Returns < 0 on error and returns with an aborted transaction with any 1144 * outstanding delayed items cleaned up. 1145 */ 1146 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1147 { 1148 struct btrfs_fs_info *fs_info = trans->fs_info; 1149 struct btrfs_delayed_root *delayed_root; 1150 struct btrfs_delayed_node *curr_node, *prev_node; 1151 struct btrfs_path *path; 1152 struct btrfs_block_rsv *block_rsv; 1153 int ret = 0; 1154 bool count = (nr > 0); 1155 1156 if (TRANS_ABORTED(trans)) 1157 return -EIO; 1158 1159 path = btrfs_alloc_path(); 1160 if (!path) 1161 return -ENOMEM; 1162 1163 block_rsv = trans->block_rsv; 1164 trans->block_rsv = &fs_info->delayed_block_rsv; 1165 1166 delayed_root = fs_info->delayed_root; 1167 1168 curr_node = btrfs_first_delayed_node(delayed_root); 1169 while (curr_node && (!count || nr--)) { 1170 ret = __btrfs_commit_inode_delayed_items(trans, path, 1171 curr_node); 1172 if (ret) { 1173 btrfs_abort_transaction(trans, ret); 1174 break; 1175 } 1176 1177 prev_node = curr_node; 1178 curr_node = btrfs_next_delayed_node(curr_node); 1179 /* 1180 * See the comment below about releasing path before releasing 1181 * node. If the commit of delayed items was successful the path 1182 * should always be released, but in case of an error, it may 1183 * point to locked extent buffers (a leaf at the very least). 1184 */ 1185 ASSERT(path->nodes[0] == NULL); 1186 btrfs_release_delayed_node(prev_node); 1187 } 1188 1189 /* 1190 * Release the path to avoid a potential deadlock and lockdep splat when 1191 * releasing the delayed node, as that requires taking the delayed node's 1192 * mutex. If another task starts running delayed items before we take 1193 * the mutex, it will first lock the mutex and then it may try to lock 1194 * the same btree path (leaf). 1195 */ 1196 btrfs_free_path(path); 1197 1198 if (curr_node) 1199 btrfs_release_delayed_node(curr_node); 1200 trans->block_rsv = block_rsv; 1201 1202 return ret; 1203 } 1204 1205 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1206 { 1207 return __btrfs_run_delayed_items(trans, -1); 1208 } 1209 1210 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1211 { 1212 return __btrfs_run_delayed_items(trans, nr); 1213 } 1214 1215 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1216 struct btrfs_inode *inode) 1217 { 1218 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1219 struct btrfs_path *path; 1220 struct btrfs_block_rsv *block_rsv; 1221 int ret; 1222 1223 if (!delayed_node) 1224 return 0; 1225 1226 mutex_lock(&delayed_node->mutex); 1227 if (!delayed_node->count) { 1228 mutex_unlock(&delayed_node->mutex); 1229 btrfs_release_delayed_node(delayed_node); 1230 return 0; 1231 } 1232 mutex_unlock(&delayed_node->mutex); 1233 1234 path = btrfs_alloc_path(); 1235 if (!path) { 1236 btrfs_release_delayed_node(delayed_node); 1237 return -ENOMEM; 1238 } 1239 1240 block_rsv = trans->block_rsv; 1241 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1242 1243 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1244 1245 btrfs_release_delayed_node(delayed_node); 1246 btrfs_free_path(path); 1247 trans->block_rsv = block_rsv; 1248 1249 return ret; 1250 } 1251 1252 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1253 { 1254 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1255 struct btrfs_trans_handle *trans; 1256 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1257 struct btrfs_path *path; 1258 struct btrfs_block_rsv *block_rsv; 1259 int ret; 1260 1261 if (!delayed_node) 1262 return 0; 1263 1264 mutex_lock(&delayed_node->mutex); 1265 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1266 mutex_unlock(&delayed_node->mutex); 1267 btrfs_release_delayed_node(delayed_node); 1268 return 0; 1269 } 1270 mutex_unlock(&delayed_node->mutex); 1271 1272 trans = btrfs_join_transaction(delayed_node->root); 1273 if (IS_ERR(trans)) { 1274 ret = PTR_ERR(trans); 1275 goto out; 1276 } 1277 1278 path = btrfs_alloc_path(); 1279 if (!path) { 1280 ret = -ENOMEM; 1281 goto trans_out; 1282 } 1283 1284 block_rsv = trans->block_rsv; 1285 trans->block_rsv = &fs_info->delayed_block_rsv; 1286 1287 mutex_lock(&delayed_node->mutex); 1288 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1289 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1290 path, delayed_node); 1291 else 1292 ret = 0; 1293 mutex_unlock(&delayed_node->mutex); 1294 1295 btrfs_free_path(path); 1296 trans->block_rsv = block_rsv; 1297 trans_out: 1298 btrfs_end_transaction(trans); 1299 btrfs_btree_balance_dirty(fs_info); 1300 out: 1301 btrfs_release_delayed_node(delayed_node); 1302 1303 return ret; 1304 } 1305 1306 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1307 { 1308 struct btrfs_delayed_node *delayed_node; 1309 1310 delayed_node = READ_ONCE(inode->delayed_node); 1311 if (!delayed_node) 1312 return; 1313 1314 inode->delayed_node = NULL; 1315 btrfs_release_delayed_node(delayed_node); 1316 } 1317 1318 struct btrfs_async_delayed_work { 1319 struct btrfs_delayed_root *delayed_root; 1320 int nr; 1321 struct btrfs_work work; 1322 }; 1323 1324 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1325 { 1326 struct btrfs_async_delayed_work *async_work; 1327 struct btrfs_delayed_root *delayed_root; 1328 struct btrfs_trans_handle *trans; 1329 struct btrfs_path *path; 1330 struct btrfs_delayed_node *delayed_node = NULL; 1331 struct btrfs_root *root; 1332 struct btrfs_block_rsv *block_rsv; 1333 int total_done = 0; 1334 1335 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1336 delayed_root = async_work->delayed_root; 1337 1338 path = btrfs_alloc_path(); 1339 if (!path) 1340 goto out; 1341 1342 do { 1343 if (atomic_read(&delayed_root->items) < 1344 BTRFS_DELAYED_BACKGROUND / 2) 1345 break; 1346 1347 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1348 if (!delayed_node) 1349 break; 1350 1351 root = delayed_node->root; 1352 1353 trans = btrfs_join_transaction(root); 1354 if (IS_ERR(trans)) { 1355 btrfs_release_path(path); 1356 btrfs_release_prepared_delayed_node(delayed_node); 1357 total_done++; 1358 continue; 1359 } 1360 1361 block_rsv = trans->block_rsv; 1362 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1363 1364 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1365 1366 trans->block_rsv = block_rsv; 1367 btrfs_end_transaction(trans); 1368 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1369 1370 btrfs_release_path(path); 1371 btrfs_release_prepared_delayed_node(delayed_node); 1372 total_done++; 1373 1374 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1375 || total_done < async_work->nr); 1376 1377 btrfs_free_path(path); 1378 out: 1379 wake_up(&delayed_root->wait); 1380 kfree(async_work); 1381 } 1382 1383 1384 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1385 struct btrfs_fs_info *fs_info, int nr) 1386 { 1387 struct btrfs_async_delayed_work *async_work; 1388 1389 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1390 if (!async_work) 1391 return -ENOMEM; 1392 1393 async_work->delayed_root = delayed_root; 1394 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); 1395 async_work->nr = nr; 1396 1397 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1398 return 0; 1399 } 1400 1401 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1402 { 1403 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1404 } 1405 1406 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1407 { 1408 int val = atomic_read(&delayed_root->items_seq); 1409 1410 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1411 return 1; 1412 1413 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1414 return 1; 1415 1416 return 0; 1417 } 1418 1419 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1420 { 1421 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1422 1423 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1424 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1425 return; 1426 1427 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1428 int seq; 1429 int ret; 1430 1431 seq = atomic_read(&delayed_root->items_seq); 1432 1433 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1434 if (ret) 1435 return; 1436 1437 wait_event_interruptible(delayed_root->wait, 1438 could_end_wait(delayed_root, seq)); 1439 return; 1440 } 1441 1442 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1443 } 1444 1445 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1446 { 1447 struct btrfs_fs_info *fs_info = trans->fs_info; 1448 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1449 1450 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1451 return; 1452 1453 /* 1454 * Adding the new dir index item does not require touching another 1455 * leaf, so we can release 1 unit of metadata that was previously 1456 * reserved when starting the transaction. This applies only to 1457 * the case where we had a transaction start and excludes the 1458 * transaction join case (when replaying log trees). 1459 */ 1460 trace_btrfs_space_reservation(fs_info, "transaction", 1461 trans->transid, bytes, 0); 1462 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1463 ASSERT(trans->bytes_reserved >= bytes); 1464 trans->bytes_reserved -= bytes; 1465 } 1466 1467 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1468 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1469 const char *name, int name_len, 1470 struct btrfs_inode *dir, 1471 struct btrfs_disk_key *disk_key, u8 flags, 1472 u64 index) 1473 { 1474 struct btrfs_fs_info *fs_info = trans->fs_info; 1475 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1476 struct btrfs_delayed_node *delayed_node; 1477 struct btrfs_delayed_item *delayed_item; 1478 struct btrfs_dir_item *dir_item; 1479 bool reserve_leaf_space; 1480 u32 data_len; 1481 int ret; 1482 1483 delayed_node = btrfs_get_or_create_delayed_node(dir); 1484 if (IS_ERR(delayed_node)) 1485 return PTR_ERR(delayed_node); 1486 1487 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1488 delayed_node, 1489 BTRFS_DELAYED_INSERTION_ITEM); 1490 if (!delayed_item) { 1491 ret = -ENOMEM; 1492 goto release_node; 1493 } 1494 1495 delayed_item->index = index; 1496 1497 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1498 dir_item->location = *disk_key; 1499 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1500 btrfs_set_stack_dir_data_len(dir_item, 0); 1501 btrfs_set_stack_dir_name_len(dir_item, name_len); 1502 btrfs_set_stack_dir_flags(dir_item, flags); 1503 memcpy((char *)(dir_item + 1), name, name_len); 1504 1505 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1506 1507 mutex_lock(&delayed_node->mutex); 1508 1509 /* 1510 * First attempt to insert the delayed item. This is to make the error 1511 * handling path simpler in case we fail (-EEXIST). There's no risk of 1512 * any other task coming in and running the delayed item before we do 1513 * the metadata space reservation below, because we are holding the 1514 * delayed node's mutex and that mutex must also be locked before the 1515 * node's delayed items can be run. 1516 */ 1517 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1518 if (unlikely(ret)) { 1519 btrfs_err(trans->fs_info, 1520 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1521 name_len, name, index, btrfs_root_id(delayed_node->root), 1522 delayed_node->inode_id, dir->index_cnt, 1523 delayed_node->index_cnt, ret); 1524 btrfs_release_delayed_item(delayed_item); 1525 btrfs_release_dir_index_item_space(trans); 1526 mutex_unlock(&delayed_node->mutex); 1527 goto release_node; 1528 } 1529 1530 if (delayed_node->index_item_leaves == 0 || 1531 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1532 delayed_node->curr_index_batch_size = data_len; 1533 reserve_leaf_space = true; 1534 } else { 1535 delayed_node->curr_index_batch_size += data_len; 1536 reserve_leaf_space = false; 1537 } 1538 1539 if (reserve_leaf_space) { 1540 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1541 /* 1542 * Space was reserved for a dir index item insertion when we 1543 * started the transaction, so getting a failure here should be 1544 * impossible. 1545 */ 1546 if (WARN_ON(ret)) { 1547 btrfs_release_delayed_item(delayed_item); 1548 mutex_unlock(&delayed_node->mutex); 1549 goto release_node; 1550 } 1551 1552 delayed_node->index_item_leaves++; 1553 } else { 1554 btrfs_release_dir_index_item_space(trans); 1555 } 1556 mutex_unlock(&delayed_node->mutex); 1557 1558 release_node: 1559 btrfs_release_delayed_node(delayed_node); 1560 return ret; 1561 } 1562 1563 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1564 struct btrfs_delayed_node *node, 1565 u64 index) 1566 { 1567 struct btrfs_delayed_item *item; 1568 1569 mutex_lock(&node->mutex); 1570 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1571 if (!item) { 1572 mutex_unlock(&node->mutex); 1573 return 1; 1574 } 1575 1576 /* 1577 * For delayed items to insert, we track reserved metadata bytes based 1578 * on the number of leaves that we will use. 1579 * See btrfs_insert_delayed_dir_index() and 1580 * btrfs_delayed_item_reserve_metadata()). 1581 */ 1582 ASSERT(item->bytes_reserved == 0); 1583 ASSERT(node->index_item_leaves > 0); 1584 1585 /* 1586 * If there's only one leaf reserved, we can decrement this item from the 1587 * current batch, otherwise we can not because we don't know which leaf 1588 * it belongs to. With the current limit on delayed items, we rarely 1589 * accumulate enough dir index items to fill more than one leaf (even 1590 * when using a leaf size of 4K). 1591 */ 1592 if (node->index_item_leaves == 1) { 1593 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1594 1595 ASSERT(node->curr_index_batch_size >= data_len); 1596 node->curr_index_batch_size -= data_len; 1597 } 1598 1599 btrfs_release_delayed_item(item); 1600 1601 /* If we now have no more dir index items, we can release all leaves. */ 1602 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1603 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1604 node->index_item_leaves = 0; 1605 } 1606 1607 mutex_unlock(&node->mutex); 1608 return 0; 1609 } 1610 1611 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1612 struct btrfs_inode *dir, u64 index) 1613 { 1614 struct btrfs_delayed_node *node; 1615 struct btrfs_delayed_item *item; 1616 int ret; 1617 1618 node = btrfs_get_or_create_delayed_node(dir); 1619 if (IS_ERR(node)) 1620 return PTR_ERR(node); 1621 1622 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index); 1623 if (!ret) 1624 goto end; 1625 1626 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1627 if (!item) { 1628 ret = -ENOMEM; 1629 goto end; 1630 } 1631 1632 item->index = index; 1633 1634 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1635 /* 1636 * we have reserved enough space when we start a new transaction, 1637 * so reserving metadata failure is impossible. 1638 */ 1639 if (ret < 0) { 1640 btrfs_err(trans->fs_info, 1641 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1642 btrfs_release_delayed_item(item); 1643 goto end; 1644 } 1645 1646 mutex_lock(&node->mutex); 1647 ret = __btrfs_add_delayed_item(node, item); 1648 if (unlikely(ret)) { 1649 btrfs_err(trans->fs_info, 1650 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1651 index, node->root->root_key.objectid, 1652 node->inode_id, ret); 1653 btrfs_delayed_item_release_metadata(dir->root, item); 1654 btrfs_release_delayed_item(item); 1655 } 1656 mutex_unlock(&node->mutex); 1657 end: 1658 btrfs_release_delayed_node(node); 1659 return ret; 1660 } 1661 1662 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1663 { 1664 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1665 1666 if (!delayed_node) 1667 return -ENOENT; 1668 1669 /* 1670 * Since we have held i_mutex of this directory, it is impossible that 1671 * a new directory index is added into the delayed node and index_cnt 1672 * is updated now. So we needn't lock the delayed node. 1673 */ 1674 if (!delayed_node->index_cnt) { 1675 btrfs_release_delayed_node(delayed_node); 1676 return -EINVAL; 1677 } 1678 1679 inode->index_cnt = delayed_node->index_cnt; 1680 btrfs_release_delayed_node(delayed_node); 1681 return 0; 1682 } 1683 1684 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1685 u64 last_index, 1686 struct list_head *ins_list, 1687 struct list_head *del_list) 1688 { 1689 struct btrfs_delayed_node *delayed_node; 1690 struct btrfs_delayed_item *item; 1691 1692 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1693 if (!delayed_node) 1694 return false; 1695 1696 /* 1697 * We can only do one readdir with delayed items at a time because of 1698 * item->readdir_list. 1699 */ 1700 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 1701 btrfs_inode_lock(BTRFS_I(inode), 0); 1702 1703 mutex_lock(&delayed_node->mutex); 1704 item = __btrfs_first_delayed_insertion_item(delayed_node); 1705 while (item && item->index <= last_index) { 1706 refcount_inc(&item->refs); 1707 list_add_tail(&item->readdir_list, ins_list); 1708 item = __btrfs_next_delayed_item(item); 1709 } 1710 1711 item = __btrfs_first_delayed_deletion_item(delayed_node); 1712 while (item && item->index <= last_index) { 1713 refcount_inc(&item->refs); 1714 list_add_tail(&item->readdir_list, del_list); 1715 item = __btrfs_next_delayed_item(item); 1716 } 1717 mutex_unlock(&delayed_node->mutex); 1718 /* 1719 * This delayed node is still cached in the btrfs inode, so refs 1720 * must be > 1 now, and we needn't check it is going to be freed 1721 * or not. 1722 * 1723 * Besides that, this function is used to read dir, we do not 1724 * insert/delete delayed items in this period. So we also needn't 1725 * requeue or dequeue this delayed node. 1726 */ 1727 refcount_dec(&delayed_node->refs); 1728 1729 return true; 1730 } 1731 1732 void btrfs_readdir_put_delayed_items(struct inode *inode, 1733 struct list_head *ins_list, 1734 struct list_head *del_list) 1735 { 1736 struct btrfs_delayed_item *curr, *next; 1737 1738 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1739 list_del(&curr->readdir_list); 1740 if (refcount_dec_and_test(&curr->refs)) 1741 kfree(curr); 1742 } 1743 1744 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1745 list_del(&curr->readdir_list); 1746 if (refcount_dec_and_test(&curr->refs)) 1747 kfree(curr); 1748 } 1749 1750 /* 1751 * The VFS is going to do up_read(), so we need to downgrade back to a 1752 * read lock. 1753 */ 1754 downgrade_write(&inode->i_rwsem); 1755 } 1756 1757 int btrfs_should_delete_dir_index(struct list_head *del_list, 1758 u64 index) 1759 { 1760 struct btrfs_delayed_item *curr; 1761 int ret = 0; 1762 1763 list_for_each_entry(curr, del_list, readdir_list) { 1764 if (curr->index > index) 1765 break; 1766 if (curr->index == index) { 1767 ret = 1; 1768 break; 1769 } 1770 } 1771 return ret; 1772 } 1773 1774 /* 1775 * Read dir info stored in the delayed tree. 1776 */ 1777 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1778 struct list_head *ins_list) 1779 { 1780 struct btrfs_dir_item *di; 1781 struct btrfs_delayed_item *curr, *next; 1782 struct btrfs_key location; 1783 char *name; 1784 int name_len; 1785 int over = 0; 1786 unsigned char d_type; 1787 1788 /* 1789 * Changing the data of the delayed item is impossible. So 1790 * we needn't lock them. And we have held i_mutex of the 1791 * directory, nobody can delete any directory indexes now. 1792 */ 1793 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1794 list_del(&curr->readdir_list); 1795 1796 if (curr->index < ctx->pos) { 1797 if (refcount_dec_and_test(&curr->refs)) 1798 kfree(curr); 1799 continue; 1800 } 1801 1802 ctx->pos = curr->index; 1803 1804 di = (struct btrfs_dir_item *)curr->data; 1805 name = (char *)(di + 1); 1806 name_len = btrfs_stack_dir_name_len(di); 1807 1808 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1809 btrfs_disk_key_to_cpu(&location, &di->location); 1810 1811 over = !dir_emit(ctx, name, name_len, 1812 location.objectid, d_type); 1813 1814 if (refcount_dec_and_test(&curr->refs)) 1815 kfree(curr); 1816 1817 if (over) 1818 return 1; 1819 ctx->pos++; 1820 } 1821 return 0; 1822 } 1823 1824 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1825 struct btrfs_inode_item *inode_item, 1826 struct inode *inode) 1827 { 1828 u64 flags; 1829 1830 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1831 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1832 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1833 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1834 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1835 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1836 btrfs_set_stack_inode_generation(inode_item, 1837 BTRFS_I(inode)->generation); 1838 btrfs_set_stack_inode_sequence(inode_item, 1839 inode_peek_iversion(inode)); 1840 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1841 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1842 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 1843 BTRFS_I(inode)->ro_flags); 1844 btrfs_set_stack_inode_flags(inode_item, flags); 1845 btrfs_set_stack_inode_block_group(inode_item, 0); 1846 1847 btrfs_set_stack_timespec_sec(&inode_item->atime, 1848 inode_get_atime_sec(inode)); 1849 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1850 inode_get_atime_nsec(inode)); 1851 1852 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1853 inode_get_mtime_sec(inode)); 1854 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1855 inode_get_mtime_nsec(inode)); 1856 1857 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1858 inode_get_ctime_sec(inode)); 1859 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1860 inode_get_ctime_nsec(inode)); 1861 1862 btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec); 1863 btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec); 1864 } 1865 1866 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1867 { 1868 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1869 struct btrfs_delayed_node *delayed_node; 1870 struct btrfs_inode_item *inode_item; 1871 1872 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1873 if (!delayed_node) 1874 return -ENOENT; 1875 1876 mutex_lock(&delayed_node->mutex); 1877 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1878 mutex_unlock(&delayed_node->mutex); 1879 btrfs_release_delayed_node(delayed_node); 1880 return -ENOENT; 1881 } 1882 1883 inode_item = &delayed_node->inode_item; 1884 1885 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1886 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1887 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1888 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1889 round_up(i_size_read(inode), fs_info->sectorsize)); 1890 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1891 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1892 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1893 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1894 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1895 1896 inode_set_iversion_queried(inode, 1897 btrfs_stack_inode_sequence(inode_item)); 1898 inode->i_rdev = 0; 1899 *rdev = btrfs_stack_inode_rdev(inode_item); 1900 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1901 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 1902 1903 inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime), 1904 btrfs_stack_timespec_nsec(&inode_item->atime)); 1905 1906 inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime), 1907 btrfs_stack_timespec_nsec(&inode_item->mtime)); 1908 1909 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1910 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1911 1912 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); 1913 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); 1914 1915 inode->i_generation = BTRFS_I(inode)->generation; 1916 BTRFS_I(inode)->index_cnt = (u64)-1; 1917 1918 mutex_unlock(&delayed_node->mutex); 1919 btrfs_release_delayed_node(delayed_node); 1920 return 0; 1921 } 1922 1923 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1924 struct btrfs_inode *inode) 1925 { 1926 struct btrfs_root *root = inode->root; 1927 struct btrfs_delayed_node *delayed_node; 1928 int ret = 0; 1929 1930 delayed_node = btrfs_get_or_create_delayed_node(inode); 1931 if (IS_ERR(delayed_node)) 1932 return PTR_ERR(delayed_node); 1933 1934 mutex_lock(&delayed_node->mutex); 1935 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1936 fill_stack_inode_item(trans, &delayed_node->inode_item, 1937 &inode->vfs_inode); 1938 goto release_node; 1939 } 1940 1941 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1942 if (ret) 1943 goto release_node; 1944 1945 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1946 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1947 delayed_node->count++; 1948 atomic_inc(&root->fs_info->delayed_root->items); 1949 release_node: 1950 mutex_unlock(&delayed_node->mutex); 1951 btrfs_release_delayed_node(delayed_node); 1952 return ret; 1953 } 1954 1955 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1956 { 1957 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1958 struct btrfs_delayed_node *delayed_node; 1959 1960 /* 1961 * we don't do delayed inode updates during log recovery because it 1962 * leads to enospc problems. This means we also can't do 1963 * delayed inode refs 1964 */ 1965 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1966 return -EAGAIN; 1967 1968 delayed_node = btrfs_get_or_create_delayed_node(inode); 1969 if (IS_ERR(delayed_node)) 1970 return PTR_ERR(delayed_node); 1971 1972 /* 1973 * We don't reserve space for inode ref deletion is because: 1974 * - We ONLY do async inode ref deletion for the inode who has only 1975 * one link(i_nlink == 1), it means there is only one inode ref. 1976 * And in most case, the inode ref and the inode item are in the 1977 * same leaf, and we will deal with them at the same time. 1978 * Since we are sure we will reserve the space for the inode item, 1979 * it is unnecessary to reserve space for inode ref deletion. 1980 * - If the inode ref and the inode item are not in the same leaf, 1981 * We also needn't worry about enospc problem, because we reserve 1982 * much more space for the inode update than it needs. 1983 * - At the worst, we can steal some space from the global reservation. 1984 * It is very rare. 1985 */ 1986 mutex_lock(&delayed_node->mutex); 1987 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1988 goto release_node; 1989 1990 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1991 delayed_node->count++; 1992 atomic_inc(&fs_info->delayed_root->items); 1993 release_node: 1994 mutex_unlock(&delayed_node->mutex); 1995 btrfs_release_delayed_node(delayed_node); 1996 return 0; 1997 } 1998 1999 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 2000 { 2001 struct btrfs_root *root = delayed_node->root; 2002 struct btrfs_fs_info *fs_info = root->fs_info; 2003 struct btrfs_delayed_item *curr_item, *prev_item; 2004 2005 mutex_lock(&delayed_node->mutex); 2006 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 2007 while (curr_item) { 2008 prev_item = curr_item; 2009 curr_item = __btrfs_next_delayed_item(prev_item); 2010 btrfs_release_delayed_item(prev_item); 2011 } 2012 2013 if (delayed_node->index_item_leaves > 0) { 2014 btrfs_delayed_item_release_leaves(delayed_node, 2015 delayed_node->index_item_leaves); 2016 delayed_node->index_item_leaves = 0; 2017 } 2018 2019 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2020 while (curr_item) { 2021 btrfs_delayed_item_release_metadata(root, curr_item); 2022 prev_item = curr_item; 2023 curr_item = __btrfs_next_delayed_item(prev_item); 2024 btrfs_release_delayed_item(prev_item); 2025 } 2026 2027 btrfs_release_delayed_iref(delayed_node); 2028 2029 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2030 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2031 btrfs_release_delayed_inode(delayed_node); 2032 } 2033 mutex_unlock(&delayed_node->mutex); 2034 } 2035 2036 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2037 { 2038 struct btrfs_delayed_node *delayed_node; 2039 2040 delayed_node = btrfs_get_delayed_node(inode); 2041 if (!delayed_node) 2042 return; 2043 2044 __btrfs_kill_delayed_node(delayed_node); 2045 btrfs_release_delayed_node(delayed_node); 2046 } 2047 2048 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2049 { 2050 unsigned long index = 0; 2051 struct btrfs_delayed_node *delayed_nodes[8]; 2052 2053 while (1) { 2054 struct btrfs_delayed_node *node; 2055 int count; 2056 2057 spin_lock(&root->inode_lock); 2058 if (xa_empty(&root->delayed_nodes)) { 2059 spin_unlock(&root->inode_lock); 2060 return; 2061 } 2062 2063 count = 0; 2064 xa_for_each_start(&root->delayed_nodes, index, node, index) { 2065 /* 2066 * Don't increase refs in case the node is dead and 2067 * about to be removed from the tree in the loop below 2068 */ 2069 if (refcount_inc_not_zero(&node->refs)) { 2070 delayed_nodes[count] = node; 2071 count++; 2072 } 2073 if (count >= ARRAY_SIZE(delayed_nodes)) 2074 break; 2075 } 2076 spin_unlock(&root->inode_lock); 2077 index++; 2078 2079 for (int i = 0; i < count; i++) { 2080 __btrfs_kill_delayed_node(delayed_nodes[i]); 2081 btrfs_release_delayed_node(delayed_nodes[i]); 2082 } 2083 } 2084 } 2085 2086 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2087 { 2088 struct btrfs_delayed_node *curr_node, *prev_node; 2089 2090 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 2091 while (curr_node) { 2092 __btrfs_kill_delayed_node(curr_node); 2093 2094 prev_node = curr_node; 2095 curr_node = btrfs_next_delayed_node(curr_node); 2096 btrfs_release_delayed_node(prev_node); 2097 } 2098 } 2099 2100 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2101 struct list_head *ins_list, 2102 struct list_head *del_list) 2103 { 2104 struct btrfs_delayed_node *node; 2105 struct btrfs_delayed_item *item; 2106 2107 node = btrfs_get_delayed_node(inode); 2108 if (!node) 2109 return; 2110 2111 mutex_lock(&node->mutex); 2112 item = __btrfs_first_delayed_insertion_item(node); 2113 while (item) { 2114 /* 2115 * It's possible that the item is already in a log list. This 2116 * can happen in case two tasks are trying to log the same 2117 * directory. For example if we have tasks A and task B: 2118 * 2119 * Task A collected the delayed items into a log list while 2120 * under the inode's log_mutex (at btrfs_log_inode()), but it 2121 * only releases the items after logging the inodes they point 2122 * to (if they are new inodes), which happens after unlocking 2123 * the log mutex; 2124 * 2125 * Task B enters btrfs_log_inode() and acquires the log_mutex 2126 * of the same directory inode, before task B releases the 2127 * delayed items. This can happen for example when logging some 2128 * inode we need to trigger logging of its parent directory, so 2129 * logging two files that have the same parent directory can 2130 * lead to this. 2131 * 2132 * If this happens, just ignore delayed items already in a log 2133 * list. All the tasks logging the directory are under a log 2134 * transaction and whichever finishes first can not sync the log 2135 * before the other completes and leaves the log transaction. 2136 */ 2137 if (!item->logged && list_empty(&item->log_list)) { 2138 refcount_inc(&item->refs); 2139 list_add_tail(&item->log_list, ins_list); 2140 } 2141 item = __btrfs_next_delayed_item(item); 2142 } 2143 2144 item = __btrfs_first_delayed_deletion_item(node); 2145 while (item) { 2146 /* It may be non-empty, for the same reason mentioned above. */ 2147 if (!item->logged && list_empty(&item->log_list)) { 2148 refcount_inc(&item->refs); 2149 list_add_tail(&item->log_list, del_list); 2150 } 2151 item = __btrfs_next_delayed_item(item); 2152 } 2153 mutex_unlock(&node->mutex); 2154 2155 /* 2156 * We are called during inode logging, which means the inode is in use 2157 * and can not be evicted before we finish logging the inode. So we never 2158 * have the last reference on the delayed inode. 2159 * Also, we don't use btrfs_release_delayed_node() because that would 2160 * requeue the delayed inode (change its order in the list of prepared 2161 * nodes) and we don't want to do such change because we don't create or 2162 * delete delayed items. 2163 */ 2164 ASSERT(refcount_read(&node->refs) > 1); 2165 refcount_dec(&node->refs); 2166 } 2167 2168 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2169 struct list_head *ins_list, 2170 struct list_head *del_list) 2171 { 2172 struct btrfs_delayed_node *node; 2173 struct btrfs_delayed_item *item; 2174 struct btrfs_delayed_item *next; 2175 2176 node = btrfs_get_delayed_node(inode); 2177 if (!node) 2178 return; 2179 2180 mutex_lock(&node->mutex); 2181 2182 list_for_each_entry_safe(item, next, ins_list, log_list) { 2183 item->logged = true; 2184 list_del_init(&item->log_list); 2185 if (refcount_dec_and_test(&item->refs)) 2186 kfree(item); 2187 } 2188 2189 list_for_each_entry_safe(item, next, del_list, log_list) { 2190 item->logged = true; 2191 list_del_init(&item->log_list); 2192 if (refcount_dec_and_test(&item->refs)) 2193 kfree(item); 2194 } 2195 2196 mutex_unlock(&node->mutex); 2197 2198 /* 2199 * We are called during inode logging, which means the inode is in use 2200 * and can not be evicted before we finish logging the inode. So we never 2201 * have the last reference on the delayed inode. 2202 * Also, we don't use btrfs_release_delayed_node() because that would 2203 * requeue the delayed inode (change its order in the list of prepared 2204 * nodes) and we don't want to do such change because we don't create or 2205 * delete delayed items. 2206 */ 2207 ASSERT(refcount_read(&node->refs) > 1); 2208 refcount_dec(&node->refs); 2209 } 2210