xref: /linux/fs/btrfs/delayed-inode.c (revision e53b20598f394e37951d6355f1c88ae01165b53f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "misc.h"
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
15 #include "locking.h"
16 #include "inode-item.h"
17 
18 #define BTRFS_DELAYED_WRITEBACK		512
19 #define BTRFS_DELAYED_BACKGROUND	128
20 #define BTRFS_DELAYED_BATCH		16
21 
22 static struct kmem_cache *delayed_node_cache;
23 
24 int __init btrfs_delayed_inode_init(void)
25 {
26 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 					sizeof(struct btrfs_delayed_node),
28 					0,
29 					SLAB_MEM_SPREAD,
30 					NULL);
31 	if (!delayed_node_cache)
32 		return -ENOMEM;
33 	return 0;
34 }
35 
36 void __cold btrfs_delayed_inode_exit(void)
37 {
38 	kmem_cache_destroy(delayed_node_cache);
39 }
40 
41 static inline void btrfs_init_delayed_node(
42 				struct btrfs_delayed_node *delayed_node,
43 				struct btrfs_root *root, u64 inode_id)
44 {
45 	delayed_node->root = root;
46 	delayed_node->inode_id = inode_id;
47 	refcount_set(&delayed_node->refs, 0);
48 	delayed_node->ins_root = RB_ROOT_CACHED;
49 	delayed_node->del_root = RB_ROOT_CACHED;
50 	mutex_init(&delayed_node->mutex);
51 	INIT_LIST_HEAD(&delayed_node->n_list);
52 	INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54 
55 static inline int btrfs_is_continuous_delayed_item(
56 					struct btrfs_delayed_item *item1,
57 					struct btrfs_delayed_item *item2)
58 {
59 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 	    item1->key.objectid == item2->key.objectid &&
61 	    item1->key.type == item2->key.type &&
62 	    item1->key.offset + 1 == item2->key.offset)
63 		return 1;
64 	return 0;
65 }
66 
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 		struct btrfs_inode *btrfs_inode)
69 {
70 	struct btrfs_root *root = btrfs_inode->root;
71 	u64 ino = btrfs_ino(btrfs_inode);
72 	struct btrfs_delayed_node *node;
73 
74 	node = READ_ONCE(btrfs_inode->delayed_node);
75 	if (node) {
76 		refcount_inc(&node->refs);
77 		return node;
78 	}
79 
80 	spin_lock(&root->inode_lock);
81 	node = xa_load(&root->delayed_nodes, ino);
82 
83 	if (node) {
84 		if (btrfs_inode->delayed_node) {
85 			refcount_inc(&node->refs);	/* can be accessed */
86 			BUG_ON(btrfs_inode->delayed_node != node);
87 			spin_unlock(&root->inode_lock);
88 			return node;
89 		}
90 
91 		/*
92 		 * It's possible that we're racing into the middle of removing
93 		 * this node from the xarray.  In this case, the refcount
94 		 * was zero and it should never go back to one.  Just return
95 		 * NULL like it was never in the xarray at all; our release
96 		 * function is in the process of removing it.
97 		 *
98 		 * Some implementations of refcount_inc refuse to bump the
99 		 * refcount once it has hit zero.  If we don't do this dance
100 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 		 * of actually bumping the refcount.
102 		 *
103 		 * If this node is properly in the xarray, we want to bump the
104 		 * refcount twice, once for the inode and once for this get
105 		 * operation.
106 		 */
107 		if (refcount_inc_not_zero(&node->refs)) {
108 			refcount_inc(&node->refs);
109 			btrfs_inode->delayed_node = node;
110 		} else {
111 			node = NULL;
112 		}
113 
114 		spin_unlock(&root->inode_lock);
115 		return node;
116 	}
117 	spin_unlock(&root->inode_lock);
118 
119 	return NULL;
120 }
121 
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 		struct btrfs_inode *btrfs_inode)
125 {
126 	struct btrfs_delayed_node *node;
127 	struct btrfs_root *root = btrfs_inode->root;
128 	u64 ino = btrfs_ino(btrfs_inode);
129 	int ret;
130 
131 	do {
132 		node = btrfs_get_delayed_node(btrfs_inode);
133 		if (node)
134 			return node;
135 
136 		node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 		if (!node)
138 			return ERR_PTR(-ENOMEM);
139 		btrfs_init_delayed_node(node, root, ino);
140 
141 		/* Cached in the inode and can be accessed */
142 		refcount_set(&node->refs, 2);
143 
144 		spin_lock(&root->inode_lock);
145 		ret = xa_insert(&root->delayed_nodes, ino, node, GFP_NOFS);
146 		if (ret) {
147 			spin_unlock(&root->inode_lock);
148 			kmem_cache_free(delayed_node_cache, node);
149 			if (ret != -EBUSY)
150 				return ERR_PTR(ret);
151 		}
152 	} while (ret);
153 	btrfs_inode->delayed_node = node;
154 	spin_unlock(&root->inode_lock);
155 
156 	return node;
157 }
158 
159 /*
160  * Call it when holding delayed_node->mutex
161  *
162  * If mod = 1, add this node into the prepared list.
163  */
164 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
165 				     struct btrfs_delayed_node *node,
166 				     int mod)
167 {
168 	spin_lock(&root->lock);
169 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
170 		if (!list_empty(&node->p_list))
171 			list_move_tail(&node->p_list, &root->prepare_list);
172 		else if (mod)
173 			list_add_tail(&node->p_list, &root->prepare_list);
174 	} else {
175 		list_add_tail(&node->n_list, &root->node_list);
176 		list_add_tail(&node->p_list, &root->prepare_list);
177 		refcount_inc(&node->refs);	/* inserted into list */
178 		root->nodes++;
179 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
180 	}
181 	spin_unlock(&root->lock);
182 }
183 
184 /* Call it when holding delayed_node->mutex */
185 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
186 				       struct btrfs_delayed_node *node)
187 {
188 	spin_lock(&root->lock);
189 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
190 		root->nodes--;
191 		refcount_dec(&node->refs);	/* not in the list */
192 		list_del_init(&node->n_list);
193 		if (!list_empty(&node->p_list))
194 			list_del_init(&node->p_list);
195 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196 	}
197 	spin_unlock(&root->lock);
198 }
199 
200 static struct btrfs_delayed_node *btrfs_first_delayed_node(
201 			struct btrfs_delayed_root *delayed_root)
202 {
203 	struct list_head *p;
204 	struct btrfs_delayed_node *node = NULL;
205 
206 	spin_lock(&delayed_root->lock);
207 	if (list_empty(&delayed_root->node_list))
208 		goto out;
209 
210 	p = delayed_root->node_list.next;
211 	node = list_entry(p, struct btrfs_delayed_node, n_list);
212 	refcount_inc(&node->refs);
213 out:
214 	spin_unlock(&delayed_root->lock);
215 
216 	return node;
217 }
218 
219 static struct btrfs_delayed_node *btrfs_next_delayed_node(
220 						struct btrfs_delayed_node *node)
221 {
222 	struct btrfs_delayed_root *delayed_root;
223 	struct list_head *p;
224 	struct btrfs_delayed_node *next = NULL;
225 
226 	delayed_root = node->root->fs_info->delayed_root;
227 	spin_lock(&delayed_root->lock);
228 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
229 		/* not in the list */
230 		if (list_empty(&delayed_root->node_list))
231 			goto out;
232 		p = delayed_root->node_list.next;
233 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
234 		goto out;
235 	else
236 		p = node->n_list.next;
237 
238 	next = list_entry(p, struct btrfs_delayed_node, n_list);
239 	refcount_inc(&next->refs);
240 out:
241 	spin_unlock(&delayed_root->lock);
242 
243 	return next;
244 }
245 
246 static void __btrfs_release_delayed_node(
247 				struct btrfs_delayed_node *delayed_node,
248 				int mod)
249 {
250 	struct btrfs_delayed_root *delayed_root;
251 
252 	if (!delayed_node)
253 		return;
254 
255 	delayed_root = delayed_node->root->fs_info->delayed_root;
256 
257 	mutex_lock(&delayed_node->mutex);
258 	if (delayed_node->count)
259 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
260 	else
261 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
262 	mutex_unlock(&delayed_node->mutex);
263 
264 	if (refcount_dec_and_test(&delayed_node->refs)) {
265 		struct btrfs_root *root = delayed_node->root;
266 
267 		spin_lock(&root->inode_lock);
268 		/*
269 		 * Once our refcount goes to zero, nobody is allowed to bump it
270 		 * back up.  We can delete it now.
271 		 */
272 		ASSERT(refcount_read(&delayed_node->refs) == 0);
273 		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
274 		spin_unlock(&root->inode_lock);
275 		kmem_cache_free(delayed_node_cache, delayed_node);
276 	}
277 }
278 
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 	__btrfs_release_delayed_node(node, 0);
282 }
283 
284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 					struct btrfs_delayed_root *delayed_root)
286 {
287 	struct list_head *p;
288 	struct btrfs_delayed_node *node = NULL;
289 
290 	spin_lock(&delayed_root->lock);
291 	if (list_empty(&delayed_root->prepare_list))
292 		goto out;
293 
294 	p = delayed_root->prepare_list.next;
295 	list_del_init(p);
296 	node = list_entry(p, struct btrfs_delayed_node, p_list);
297 	refcount_inc(&node->refs);
298 out:
299 	spin_unlock(&delayed_root->lock);
300 
301 	return node;
302 }
303 
304 static inline void btrfs_release_prepared_delayed_node(
305 					struct btrfs_delayed_node *node)
306 {
307 	__btrfs_release_delayed_node(node, 1);
308 }
309 
310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 {
312 	struct btrfs_delayed_item *item;
313 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
314 	if (item) {
315 		item->data_len = data_len;
316 		item->ins_or_del = 0;
317 		item->bytes_reserved = 0;
318 		item->delayed_node = NULL;
319 		refcount_set(&item->refs, 1);
320 	}
321 	return item;
322 }
323 
324 /*
325  * __btrfs_lookup_delayed_item - look up the delayed item by key
326  * @delayed_node: pointer to the delayed node
327  * @key:	  the key to look up
328  * @prev:	  used to store the prev item if the right item isn't found
329  * @next:	  used to store the next item if the right item isn't found
330  *
331  * Note: if we don't find the right item, we will return the prev item and
332  * the next item.
333  */
334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
335 				struct rb_root *root,
336 				struct btrfs_key *key,
337 				struct btrfs_delayed_item **prev,
338 				struct btrfs_delayed_item **next)
339 {
340 	struct rb_node *node, *prev_node = NULL;
341 	struct btrfs_delayed_item *delayed_item = NULL;
342 	int ret = 0;
343 
344 	node = root->rb_node;
345 
346 	while (node) {
347 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 					rb_node);
349 		prev_node = node;
350 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
351 		if (ret < 0)
352 			node = node->rb_right;
353 		else if (ret > 0)
354 			node = node->rb_left;
355 		else
356 			return delayed_item;
357 	}
358 
359 	if (prev) {
360 		if (!prev_node)
361 			*prev = NULL;
362 		else if (ret < 0)
363 			*prev = delayed_item;
364 		else if ((node = rb_prev(prev_node)) != NULL) {
365 			*prev = rb_entry(node, struct btrfs_delayed_item,
366 					 rb_node);
367 		} else
368 			*prev = NULL;
369 	}
370 
371 	if (next) {
372 		if (!prev_node)
373 			*next = NULL;
374 		else if (ret > 0)
375 			*next = delayed_item;
376 		else if ((node = rb_next(prev_node)) != NULL) {
377 			*next = rb_entry(node, struct btrfs_delayed_item,
378 					 rb_node);
379 		} else
380 			*next = NULL;
381 	}
382 	return NULL;
383 }
384 
385 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
386 					struct btrfs_delayed_node *delayed_node,
387 					struct btrfs_key *key)
388 {
389 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
390 					   NULL, NULL);
391 }
392 
393 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
394 				    struct btrfs_delayed_item *ins,
395 				    int action)
396 {
397 	struct rb_node **p, *node;
398 	struct rb_node *parent_node = NULL;
399 	struct rb_root_cached *root;
400 	struct btrfs_delayed_item *item;
401 	int cmp;
402 	bool leftmost = true;
403 
404 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
405 		root = &delayed_node->ins_root;
406 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
407 		root = &delayed_node->del_root;
408 	else
409 		BUG();
410 	p = &root->rb_root.rb_node;
411 	node = &ins->rb_node;
412 
413 	while (*p) {
414 		parent_node = *p;
415 		item = rb_entry(parent_node, struct btrfs_delayed_item,
416 				 rb_node);
417 
418 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
419 		if (cmp < 0) {
420 			p = &(*p)->rb_right;
421 			leftmost = false;
422 		} else if (cmp > 0) {
423 			p = &(*p)->rb_left;
424 		} else {
425 			return -EEXIST;
426 		}
427 	}
428 
429 	rb_link_node(node, parent_node, p);
430 	rb_insert_color_cached(node, root, leftmost);
431 	ins->delayed_node = delayed_node;
432 	ins->ins_or_del = action;
433 
434 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
435 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
436 	    ins->key.offset >= delayed_node->index_cnt)
437 			delayed_node->index_cnt = ins->key.offset + 1;
438 
439 	delayed_node->count++;
440 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
441 	return 0;
442 }
443 
444 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
445 					      struct btrfs_delayed_item *item)
446 {
447 	return __btrfs_add_delayed_item(node, item,
448 					BTRFS_DELAYED_INSERTION_ITEM);
449 }
450 
451 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
452 					     struct btrfs_delayed_item *item)
453 {
454 	return __btrfs_add_delayed_item(node, item,
455 					BTRFS_DELAYED_DELETION_ITEM);
456 }
457 
458 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
459 {
460 	int seq = atomic_inc_return(&delayed_root->items_seq);
461 
462 	/* atomic_dec_return implies a barrier */
463 	if ((atomic_dec_return(&delayed_root->items) <
464 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
465 		cond_wake_up_nomb(&delayed_root->wait);
466 }
467 
468 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
469 {
470 	struct rb_root_cached *root;
471 	struct btrfs_delayed_root *delayed_root;
472 
473 	/* Not associated with any delayed_node */
474 	if (!delayed_item->delayed_node)
475 		return;
476 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
477 
478 	BUG_ON(!delayed_root);
479 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
480 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
481 
482 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
483 		root = &delayed_item->delayed_node->ins_root;
484 	else
485 		root = &delayed_item->delayed_node->del_root;
486 
487 	rb_erase_cached(&delayed_item->rb_node, root);
488 	delayed_item->delayed_node->count--;
489 
490 	finish_one_item(delayed_root);
491 }
492 
493 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
494 {
495 	if (item) {
496 		__btrfs_remove_delayed_item(item);
497 		if (refcount_dec_and_test(&item->refs))
498 			kfree(item);
499 	}
500 }
501 
502 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
503 					struct btrfs_delayed_node *delayed_node)
504 {
505 	struct rb_node *p;
506 	struct btrfs_delayed_item *item = NULL;
507 
508 	p = rb_first_cached(&delayed_node->ins_root);
509 	if (p)
510 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
511 
512 	return item;
513 }
514 
515 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
516 					struct btrfs_delayed_node *delayed_node)
517 {
518 	struct rb_node *p;
519 	struct btrfs_delayed_item *item = NULL;
520 
521 	p = rb_first_cached(&delayed_node->del_root);
522 	if (p)
523 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
524 
525 	return item;
526 }
527 
528 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
529 						struct btrfs_delayed_item *item)
530 {
531 	struct rb_node *p;
532 	struct btrfs_delayed_item *next = NULL;
533 
534 	p = rb_next(&item->rb_node);
535 	if (p)
536 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
537 
538 	return next;
539 }
540 
541 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
542 					       struct btrfs_root *root,
543 					       struct btrfs_delayed_item *item)
544 {
545 	struct btrfs_block_rsv *src_rsv;
546 	struct btrfs_block_rsv *dst_rsv;
547 	struct btrfs_fs_info *fs_info = root->fs_info;
548 	u64 num_bytes;
549 	int ret;
550 
551 	if (!trans->bytes_reserved)
552 		return 0;
553 
554 	src_rsv = trans->block_rsv;
555 	dst_rsv = &fs_info->delayed_block_rsv;
556 
557 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
558 
559 	/*
560 	 * Here we migrate space rsv from transaction rsv, since have already
561 	 * reserved space when starting a transaction.  So no need to reserve
562 	 * qgroup space here.
563 	 */
564 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
565 	if (!ret) {
566 		trace_btrfs_space_reservation(fs_info, "delayed_item",
567 					      item->key.objectid,
568 					      num_bytes, 1);
569 		item->bytes_reserved = num_bytes;
570 	}
571 
572 	return ret;
573 }
574 
575 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
576 						struct btrfs_delayed_item *item)
577 {
578 	struct btrfs_block_rsv *rsv;
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 
581 	if (!item->bytes_reserved)
582 		return;
583 
584 	rsv = &fs_info->delayed_block_rsv;
585 	/*
586 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
587 	 * to release/reserve qgroup space.
588 	 */
589 	trace_btrfs_space_reservation(fs_info, "delayed_item",
590 				      item->key.objectid, item->bytes_reserved,
591 				      0);
592 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
593 }
594 
595 static int btrfs_delayed_inode_reserve_metadata(
596 					struct btrfs_trans_handle *trans,
597 					struct btrfs_root *root,
598 					struct btrfs_delayed_node *node)
599 {
600 	struct btrfs_fs_info *fs_info = root->fs_info;
601 	struct btrfs_block_rsv *src_rsv;
602 	struct btrfs_block_rsv *dst_rsv;
603 	u64 num_bytes;
604 	int ret;
605 
606 	src_rsv = trans->block_rsv;
607 	dst_rsv = &fs_info->delayed_block_rsv;
608 
609 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
610 
611 	/*
612 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
613 	 * which doesn't reserve space for speed.  This is a problem since we
614 	 * still need to reserve space for this update, so try to reserve the
615 	 * space.
616 	 *
617 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
618 	 * we always reserve enough to update the inode item.
619 	 */
620 	if (!src_rsv || (!trans->bytes_reserved &&
621 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
622 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
623 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
624 		if (ret < 0)
625 			return ret;
626 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
627 					  BTRFS_RESERVE_NO_FLUSH);
628 		/* NO_FLUSH could only fail with -ENOSPC */
629 		ASSERT(ret == 0 || ret == -ENOSPC);
630 		if (ret)
631 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
632 	} else {
633 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
634 	}
635 
636 	if (!ret) {
637 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
638 					      node->inode_id, num_bytes, 1);
639 		node->bytes_reserved = num_bytes;
640 	}
641 
642 	return ret;
643 }
644 
645 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
646 						struct btrfs_delayed_node *node,
647 						bool qgroup_free)
648 {
649 	struct btrfs_block_rsv *rsv;
650 
651 	if (!node->bytes_reserved)
652 		return;
653 
654 	rsv = &fs_info->delayed_block_rsv;
655 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
656 				      node->inode_id, node->bytes_reserved, 0);
657 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
658 	if (qgroup_free)
659 		btrfs_qgroup_free_meta_prealloc(node->root,
660 				node->bytes_reserved);
661 	else
662 		btrfs_qgroup_convert_reserved_meta(node->root,
663 				node->bytes_reserved);
664 	node->bytes_reserved = 0;
665 }
666 
667 /*
668  * Insert a single delayed item or a batch of delayed items that have consecutive
669  * keys if they exist.
670  */
671 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
672 				     struct btrfs_root *root,
673 				     struct btrfs_path *path,
674 				     struct btrfs_delayed_item *first_item)
675 {
676 	LIST_HEAD(item_list);
677 	struct btrfs_delayed_item *curr;
678 	struct btrfs_delayed_item *next;
679 	const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info);
680 	struct btrfs_item_batch batch;
681 	int total_size;
682 	char *ins_data = NULL;
683 	int ret;
684 
685 	list_add_tail(&first_item->tree_list, &item_list);
686 	batch.total_data_size = first_item->data_len;
687 	batch.nr = 1;
688 	total_size = first_item->data_len + sizeof(struct btrfs_item);
689 	curr = first_item;
690 
691 	while (true) {
692 		int next_size;
693 
694 		next = __btrfs_next_delayed_item(curr);
695 		if (!next || !btrfs_is_continuous_delayed_item(curr, next))
696 			break;
697 
698 		next_size = next->data_len + sizeof(struct btrfs_item);
699 		if (total_size + next_size > max_size)
700 			break;
701 
702 		list_add_tail(&next->tree_list, &item_list);
703 		batch.nr++;
704 		total_size += next_size;
705 		batch.total_data_size += next->data_len;
706 		curr = next;
707 	}
708 
709 	if (batch.nr == 1) {
710 		batch.keys = &first_item->key;
711 		batch.data_sizes = &first_item->data_len;
712 	} else {
713 		struct btrfs_key *ins_keys;
714 		u32 *ins_sizes;
715 		int i = 0;
716 
717 		ins_data = kmalloc(batch.nr * sizeof(u32) +
718 				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
719 		if (!ins_data) {
720 			ret = -ENOMEM;
721 			goto out;
722 		}
723 		ins_sizes = (u32 *)ins_data;
724 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
725 		batch.keys = ins_keys;
726 		batch.data_sizes = ins_sizes;
727 		list_for_each_entry(curr, &item_list, tree_list) {
728 			ins_keys[i] = curr->key;
729 			ins_sizes[i] = curr->data_len;
730 			i++;
731 		}
732 	}
733 
734 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
735 	if (ret)
736 		goto out;
737 
738 	list_for_each_entry(curr, &item_list, tree_list) {
739 		char *data_ptr;
740 
741 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
742 		write_extent_buffer(path->nodes[0], &curr->data,
743 				    (unsigned long)data_ptr, curr->data_len);
744 		path->slots[0]++;
745 	}
746 
747 	/*
748 	 * Now release our path before releasing the delayed items and their
749 	 * metadata reservations, so that we don't block other tasks for more
750 	 * time than needed.
751 	 */
752 	btrfs_release_path(path);
753 
754 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
755 		list_del(&curr->tree_list);
756 		btrfs_delayed_item_release_metadata(root, curr);
757 		btrfs_release_delayed_item(curr);
758 	}
759 out:
760 	kfree(ins_data);
761 	return ret;
762 }
763 
764 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
765 				      struct btrfs_path *path,
766 				      struct btrfs_root *root,
767 				      struct btrfs_delayed_node *node)
768 {
769 	int ret = 0;
770 
771 	while (ret == 0) {
772 		struct btrfs_delayed_item *curr;
773 
774 		mutex_lock(&node->mutex);
775 		curr = __btrfs_first_delayed_insertion_item(node);
776 		if (!curr) {
777 			mutex_unlock(&node->mutex);
778 			break;
779 		}
780 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
781 		mutex_unlock(&node->mutex);
782 	}
783 
784 	return ret;
785 }
786 
787 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
788 				    struct btrfs_root *root,
789 				    struct btrfs_path *path,
790 				    struct btrfs_delayed_item *item)
791 {
792 	struct btrfs_delayed_item *curr, *next;
793 	struct extent_buffer *leaf;
794 	struct btrfs_key key;
795 	struct list_head head;
796 	int nitems, i, last_item;
797 	int ret = 0;
798 
799 	BUG_ON(!path->nodes[0]);
800 
801 	leaf = path->nodes[0];
802 
803 	i = path->slots[0];
804 	last_item = btrfs_header_nritems(leaf) - 1;
805 	if (i > last_item)
806 		return -ENOENT;	/* FIXME: Is errno suitable? */
807 
808 	next = item;
809 	INIT_LIST_HEAD(&head);
810 	btrfs_item_key_to_cpu(leaf, &key, i);
811 	nitems = 0;
812 	/*
813 	 * count the number of the dir index items that we can delete in batch
814 	 */
815 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
816 		list_add_tail(&next->tree_list, &head);
817 		nitems++;
818 
819 		curr = next;
820 		next = __btrfs_next_delayed_item(curr);
821 		if (!next)
822 			break;
823 
824 		if (!btrfs_is_continuous_delayed_item(curr, next))
825 			break;
826 
827 		i++;
828 		if (i > last_item)
829 			break;
830 		btrfs_item_key_to_cpu(leaf, &key, i);
831 	}
832 
833 	if (!nitems)
834 		return 0;
835 
836 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
837 	if (ret)
838 		goto out;
839 
840 	list_for_each_entry_safe(curr, next, &head, tree_list) {
841 		btrfs_delayed_item_release_metadata(root, curr);
842 		list_del(&curr->tree_list);
843 		btrfs_release_delayed_item(curr);
844 	}
845 
846 out:
847 	return ret;
848 }
849 
850 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
851 				      struct btrfs_path *path,
852 				      struct btrfs_root *root,
853 				      struct btrfs_delayed_node *node)
854 {
855 	struct btrfs_delayed_item *curr, *prev;
856 	int ret = 0;
857 
858 do_again:
859 	mutex_lock(&node->mutex);
860 	curr = __btrfs_first_delayed_deletion_item(node);
861 	if (!curr)
862 		goto delete_fail;
863 
864 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
865 	if (ret < 0)
866 		goto delete_fail;
867 	else if (ret > 0) {
868 		/*
869 		 * can't find the item which the node points to, so this node
870 		 * is invalid, just drop it.
871 		 */
872 		prev = curr;
873 		curr = __btrfs_next_delayed_item(prev);
874 		btrfs_release_delayed_item(prev);
875 		ret = 0;
876 		btrfs_release_path(path);
877 		if (curr) {
878 			mutex_unlock(&node->mutex);
879 			goto do_again;
880 		} else
881 			goto delete_fail;
882 	}
883 
884 	btrfs_batch_delete_items(trans, root, path, curr);
885 	btrfs_release_path(path);
886 	mutex_unlock(&node->mutex);
887 	goto do_again;
888 
889 delete_fail:
890 	btrfs_release_path(path);
891 	mutex_unlock(&node->mutex);
892 	return ret;
893 }
894 
895 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
896 {
897 	struct btrfs_delayed_root *delayed_root;
898 
899 	if (delayed_node &&
900 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
901 		BUG_ON(!delayed_node->root);
902 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
903 		delayed_node->count--;
904 
905 		delayed_root = delayed_node->root->fs_info->delayed_root;
906 		finish_one_item(delayed_root);
907 	}
908 }
909 
910 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
911 {
912 
913 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
914 		struct btrfs_delayed_root *delayed_root;
915 
916 		ASSERT(delayed_node->root);
917 		delayed_node->count--;
918 
919 		delayed_root = delayed_node->root->fs_info->delayed_root;
920 		finish_one_item(delayed_root);
921 	}
922 }
923 
924 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
925 					struct btrfs_root *root,
926 					struct btrfs_path *path,
927 					struct btrfs_delayed_node *node)
928 {
929 	struct btrfs_fs_info *fs_info = root->fs_info;
930 	struct btrfs_key key;
931 	struct btrfs_inode_item *inode_item;
932 	struct extent_buffer *leaf;
933 	int mod;
934 	int ret;
935 
936 	key.objectid = node->inode_id;
937 	key.type = BTRFS_INODE_ITEM_KEY;
938 	key.offset = 0;
939 
940 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
941 		mod = -1;
942 	else
943 		mod = 1;
944 
945 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
946 	if (ret > 0)
947 		ret = -ENOENT;
948 	if (ret < 0)
949 		goto out;
950 
951 	leaf = path->nodes[0];
952 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
953 				    struct btrfs_inode_item);
954 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
955 			    sizeof(struct btrfs_inode_item));
956 	btrfs_mark_buffer_dirty(leaf);
957 
958 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
959 		goto out;
960 
961 	path->slots[0]++;
962 	if (path->slots[0] >= btrfs_header_nritems(leaf))
963 		goto search;
964 again:
965 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
966 	if (key.objectid != node->inode_id)
967 		goto out;
968 
969 	if (key.type != BTRFS_INODE_REF_KEY &&
970 	    key.type != BTRFS_INODE_EXTREF_KEY)
971 		goto out;
972 
973 	/*
974 	 * Delayed iref deletion is for the inode who has only one link,
975 	 * so there is only one iref. The case that several irefs are
976 	 * in the same item doesn't exist.
977 	 */
978 	btrfs_del_item(trans, root, path);
979 out:
980 	btrfs_release_delayed_iref(node);
981 	btrfs_release_path(path);
982 err_out:
983 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
984 	btrfs_release_delayed_inode(node);
985 
986 	/*
987 	 * If we fail to update the delayed inode we need to abort the
988 	 * transaction, because we could leave the inode with the improper
989 	 * counts behind.
990 	 */
991 	if (ret && ret != -ENOENT)
992 		btrfs_abort_transaction(trans, ret);
993 
994 	return ret;
995 
996 search:
997 	btrfs_release_path(path);
998 
999 	key.type = BTRFS_INODE_EXTREF_KEY;
1000 	key.offset = -1;
1001 
1002 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1003 	if (ret < 0)
1004 		goto err_out;
1005 	ASSERT(ret);
1006 
1007 	ret = 0;
1008 	leaf = path->nodes[0];
1009 	path->slots[0]--;
1010 	goto again;
1011 }
1012 
1013 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1014 					     struct btrfs_root *root,
1015 					     struct btrfs_path *path,
1016 					     struct btrfs_delayed_node *node)
1017 {
1018 	int ret;
1019 
1020 	mutex_lock(&node->mutex);
1021 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1022 		mutex_unlock(&node->mutex);
1023 		return 0;
1024 	}
1025 
1026 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1027 	mutex_unlock(&node->mutex);
1028 	return ret;
1029 }
1030 
1031 static inline int
1032 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1033 				   struct btrfs_path *path,
1034 				   struct btrfs_delayed_node *node)
1035 {
1036 	int ret;
1037 
1038 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1039 	if (ret)
1040 		return ret;
1041 
1042 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1043 	if (ret)
1044 		return ret;
1045 
1046 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Called when committing the transaction.
1052  * Returns 0 on success.
1053  * Returns < 0 on error and returns with an aborted transaction with any
1054  * outstanding delayed items cleaned up.
1055  */
1056 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1057 {
1058 	struct btrfs_fs_info *fs_info = trans->fs_info;
1059 	struct btrfs_delayed_root *delayed_root;
1060 	struct btrfs_delayed_node *curr_node, *prev_node;
1061 	struct btrfs_path *path;
1062 	struct btrfs_block_rsv *block_rsv;
1063 	int ret = 0;
1064 	bool count = (nr > 0);
1065 
1066 	if (TRANS_ABORTED(trans))
1067 		return -EIO;
1068 
1069 	path = btrfs_alloc_path();
1070 	if (!path)
1071 		return -ENOMEM;
1072 
1073 	block_rsv = trans->block_rsv;
1074 	trans->block_rsv = &fs_info->delayed_block_rsv;
1075 
1076 	delayed_root = fs_info->delayed_root;
1077 
1078 	curr_node = btrfs_first_delayed_node(delayed_root);
1079 	while (curr_node && (!count || nr--)) {
1080 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1081 							 curr_node);
1082 		if (ret) {
1083 			btrfs_release_delayed_node(curr_node);
1084 			curr_node = NULL;
1085 			btrfs_abort_transaction(trans, ret);
1086 			break;
1087 		}
1088 
1089 		prev_node = curr_node;
1090 		curr_node = btrfs_next_delayed_node(curr_node);
1091 		btrfs_release_delayed_node(prev_node);
1092 	}
1093 
1094 	if (curr_node)
1095 		btrfs_release_delayed_node(curr_node);
1096 	btrfs_free_path(path);
1097 	trans->block_rsv = block_rsv;
1098 
1099 	return ret;
1100 }
1101 
1102 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1103 {
1104 	return __btrfs_run_delayed_items(trans, -1);
1105 }
1106 
1107 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1108 {
1109 	return __btrfs_run_delayed_items(trans, nr);
1110 }
1111 
1112 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1113 				     struct btrfs_inode *inode)
1114 {
1115 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1116 	struct btrfs_path *path;
1117 	struct btrfs_block_rsv *block_rsv;
1118 	int ret;
1119 
1120 	if (!delayed_node)
1121 		return 0;
1122 
1123 	mutex_lock(&delayed_node->mutex);
1124 	if (!delayed_node->count) {
1125 		mutex_unlock(&delayed_node->mutex);
1126 		btrfs_release_delayed_node(delayed_node);
1127 		return 0;
1128 	}
1129 	mutex_unlock(&delayed_node->mutex);
1130 
1131 	path = btrfs_alloc_path();
1132 	if (!path) {
1133 		btrfs_release_delayed_node(delayed_node);
1134 		return -ENOMEM;
1135 	}
1136 
1137 	block_rsv = trans->block_rsv;
1138 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1139 
1140 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1141 
1142 	btrfs_release_delayed_node(delayed_node);
1143 	btrfs_free_path(path);
1144 	trans->block_rsv = block_rsv;
1145 
1146 	return ret;
1147 }
1148 
1149 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1150 {
1151 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1152 	struct btrfs_trans_handle *trans;
1153 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1154 	struct btrfs_path *path;
1155 	struct btrfs_block_rsv *block_rsv;
1156 	int ret;
1157 
1158 	if (!delayed_node)
1159 		return 0;
1160 
1161 	mutex_lock(&delayed_node->mutex);
1162 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1163 		mutex_unlock(&delayed_node->mutex);
1164 		btrfs_release_delayed_node(delayed_node);
1165 		return 0;
1166 	}
1167 	mutex_unlock(&delayed_node->mutex);
1168 
1169 	trans = btrfs_join_transaction(delayed_node->root);
1170 	if (IS_ERR(trans)) {
1171 		ret = PTR_ERR(trans);
1172 		goto out;
1173 	}
1174 
1175 	path = btrfs_alloc_path();
1176 	if (!path) {
1177 		ret = -ENOMEM;
1178 		goto trans_out;
1179 	}
1180 
1181 	block_rsv = trans->block_rsv;
1182 	trans->block_rsv = &fs_info->delayed_block_rsv;
1183 
1184 	mutex_lock(&delayed_node->mutex);
1185 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1186 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1187 						   path, delayed_node);
1188 	else
1189 		ret = 0;
1190 	mutex_unlock(&delayed_node->mutex);
1191 
1192 	btrfs_free_path(path);
1193 	trans->block_rsv = block_rsv;
1194 trans_out:
1195 	btrfs_end_transaction(trans);
1196 	btrfs_btree_balance_dirty(fs_info);
1197 out:
1198 	btrfs_release_delayed_node(delayed_node);
1199 
1200 	return ret;
1201 }
1202 
1203 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1204 {
1205 	struct btrfs_delayed_node *delayed_node;
1206 
1207 	delayed_node = READ_ONCE(inode->delayed_node);
1208 	if (!delayed_node)
1209 		return;
1210 
1211 	inode->delayed_node = NULL;
1212 	btrfs_release_delayed_node(delayed_node);
1213 }
1214 
1215 struct btrfs_async_delayed_work {
1216 	struct btrfs_delayed_root *delayed_root;
1217 	int nr;
1218 	struct btrfs_work work;
1219 };
1220 
1221 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1222 {
1223 	struct btrfs_async_delayed_work *async_work;
1224 	struct btrfs_delayed_root *delayed_root;
1225 	struct btrfs_trans_handle *trans;
1226 	struct btrfs_path *path;
1227 	struct btrfs_delayed_node *delayed_node = NULL;
1228 	struct btrfs_root *root;
1229 	struct btrfs_block_rsv *block_rsv;
1230 	int total_done = 0;
1231 
1232 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1233 	delayed_root = async_work->delayed_root;
1234 
1235 	path = btrfs_alloc_path();
1236 	if (!path)
1237 		goto out;
1238 
1239 	do {
1240 		if (atomic_read(&delayed_root->items) <
1241 		    BTRFS_DELAYED_BACKGROUND / 2)
1242 			break;
1243 
1244 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1245 		if (!delayed_node)
1246 			break;
1247 
1248 		root = delayed_node->root;
1249 
1250 		trans = btrfs_join_transaction(root);
1251 		if (IS_ERR(trans)) {
1252 			btrfs_release_path(path);
1253 			btrfs_release_prepared_delayed_node(delayed_node);
1254 			total_done++;
1255 			continue;
1256 		}
1257 
1258 		block_rsv = trans->block_rsv;
1259 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1260 
1261 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1262 
1263 		trans->block_rsv = block_rsv;
1264 		btrfs_end_transaction(trans);
1265 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1266 
1267 		btrfs_release_path(path);
1268 		btrfs_release_prepared_delayed_node(delayed_node);
1269 		total_done++;
1270 
1271 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1272 		 || total_done < async_work->nr);
1273 
1274 	btrfs_free_path(path);
1275 out:
1276 	wake_up(&delayed_root->wait);
1277 	kfree(async_work);
1278 }
1279 
1280 
1281 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1282 				     struct btrfs_fs_info *fs_info, int nr)
1283 {
1284 	struct btrfs_async_delayed_work *async_work;
1285 
1286 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1287 	if (!async_work)
1288 		return -ENOMEM;
1289 
1290 	async_work->delayed_root = delayed_root;
1291 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1292 			NULL);
1293 	async_work->nr = nr;
1294 
1295 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1296 	return 0;
1297 }
1298 
1299 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1300 {
1301 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1302 }
1303 
1304 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1305 {
1306 	int val = atomic_read(&delayed_root->items_seq);
1307 
1308 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1309 		return 1;
1310 
1311 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1312 		return 1;
1313 
1314 	return 0;
1315 }
1316 
1317 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1318 {
1319 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1320 
1321 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1322 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1323 		return;
1324 
1325 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1326 		int seq;
1327 		int ret;
1328 
1329 		seq = atomic_read(&delayed_root->items_seq);
1330 
1331 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1332 		if (ret)
1333 			return;
1334 
1335 		wait_event_interruptible(delayed_root->wait,
1336 					 could_end_wait(delayed_root, seq));
1337 		return;
1338 	}
1339 
1340 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1341 }
1342 
1343 /* Will return 0 or -ENOMEM */
1344 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1345 				   const char *name, int name_len,
1346 				   struct btrfs_inode *dir,
1347 				   struct btrfs_disk_key *disk_key, u8 type,
1348 				   u64 index)
1349 {
1350 	struct btrfs_delayed_node *delayed_node;
1351 	struct btrfs_delayed_item *delayed_item;
1352 	struct btrfs_dir_item *dir_item;
1353 	int ret;
1354 
1355 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1356 	if (IS_ERR(delayed_node))
1357 		return PTR_ERR(delayed_node);
1358 
1359 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1360 	if (!delayed_item) {
1361 		ret = -ENOMEM;
1362 		goto release_node;
1363 	}
1364 
1365 	delayed_item->key.objectid = btrfs_ino(dir);
1366 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1367 	delayed_item->key.offset = index;
1368 
1369 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1370 	dir_item->location = *disk_key;
1371 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1372 	btrfs_set_stack_dir_data_len(dir_item, 0);
1373 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1374 	btrfs_set_stack_dir_type(dir_item, type);
1375 	memcpy((char *)(dir_item + 1), name, name_len);
1376 
1377 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1378 	/*
1379 	 * we have reserved enough space when we start a new transaction,
1380 	 * so reserving metadata failure is impossible
1381 	 */
1382 	BUG_ON(ret);
1383 
1384 	mutex_lock(&delayed_node->mutex);
1385 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1386 	if (unlikely(ret)) {
1387 		btrfs_err(trans->fs_info,
1388 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1389 			  name_len, name, delayed_node->root->root_key.objectid,
1390 			  delayed_node->inode_id, ret);
1391 		BUG();
1392 	}
1393 	mutex_unlock(&delayed_node->mutex);
1394 
1395 release_node:
1396 	btrfs_release_delayed_node(delayed_node);
1397 	return ret;
1398 }
1399 
1400 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1401 					       struct btrfs_delayed_node *node,
1402 					       struct btrfs_key *key)
1403 {
1404 	struct btrfs_delayed_item *item;
1405 
1406 	mutex_lock(&node->mutex);
1407 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1408 	if (!item) {
1409 		mutex_unlock(&node->mutex);
1410 		return 1;
1411 	}
1412 
1413 	btrfs_delayed_item_release_metadata(node->root, item);
1414 	btrfs_release_delayed_item(item);
1415 	mutex_unlock(&node->mutex);
1416 	return 0;
1417 }
1418 
1419 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1420 				   struct btrfs_inode *dir, u64 index)
1421 {
1422 	struct btrfs_delayed_node *node;
1423 	struct btrfs_delayed_item *item;
1424 	struct btrfs_key item_key;
1425 	int ret;
1426 
1427 	node = btrfs_get_or_create_delayed_node(dir);
1428 	if (IS_ERR(node))
1429 		return PTR_ERR(node);
1430 
1431 	item_key.objectid = btrfs_ino(dir);
1432 	item_key.type = BTRFS_DIR_INDEX_KEY;
1433 	item_key.offset = index;
1434 
1435 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1436 						  &item_key);
1437 	if (!ret)
1438 		goto end;
1439 
1440 	item = btrfs_alloc_delayed_item(0);
1441 	if (!item) {
1442 		ret = -ENOMEM;
1443 		goto end;
1444 	}
1445 
1446 	item->key = item_key;
1447 
1448 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1449 	/*
1450 	 * we have reserved enough space when we start a new transaction,
1451 	 * so reserving metadata failure is impossible.
1452 	 */
1453 	if (ret < 0) {
1454 		btrfs_err(trans->fs_info,
1455 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1456 		btrfs_release_delayed_item(item);
1457 		goto end;
1458 	}
1459 
1460 	mutex_lock(&node->mutex);
1461 	ret = __btrfs_add_delayed_deletion_item(node, item);
1462 	if (unlikely(ret)) {
1463 		btrfs_err(trans->fs_info,
1464 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1465 			  index, node->root->root_key.objectid,
1466 			  node->inode_id, ret);
1467 		btrfs_delayed_item_release_metadata(dir->root, item);
1468 		btrfs_release_delayed_item(item);
1469 	}
1470 	mutex_unlock(&node->mutex);
1471 end:
1472 	btrfs_release_delayed_node(node);
1473 	return ret;
1474 }
1475 
1476 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1477 {
1478 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1479 
1480 	if (!delayed_node)
1481 		return -ENOENT;
1482 
1483 	/*
1484 	 * Since we have held i_mutex of this directory, it is impossible that
1485 	 * a new directory index is added into the delayed node and index_cnt
1486 	 * is updated now. So we needn't lock the delayed node.
1487 	 */
1488 	if (!delayed_node->index_cnt) {
1489 		btrfs_release_delayed_node(delayed_node);
1490 		return -EINVAL;
1491 	}
1492 
1493 	inode->index_cnt = delayed_node->index_cnt;
1494 	btrfs_release_delayed_node(delayed_node);
1495 	return 0;
1496 }
1497 
1498 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1499 				     struct list_head *ins_list,
1500 				     struct list_head *del_list)
1501 {
1502 	struct btrfs_delayed_node *delayed_node;
1503 	struct btrfs_delayed_item *item;
1504 
1505 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1506 	if (!delayed_node)
1507 		return false;
1508 
1509 	/*
1510 	 * We can only do one readdir with delayed items at a time because of
1511 	 * item->readdir_list.
1512 	 */
1513 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1514 	btrfs_inode_lock(inode, 0);
1515 
1516 	mutex_lock(&delayed_node->mutex);
1517 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1518 	while (item) {
1519 		refcount_inc(&item->refs);
1520 		list_add_tail(&item->readdir_list, ins_list);
1521 		item = __btrfs_next_delayed_item(item);
1522 	}
1523 
1524 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1525 	while (item) {
1526 		refcount_inc(&item->refs);
1527 		list_add_tail(&item->readdir_list, del_list);
1528 		item = __btrfs_next_delayed_item(item);
1529 	}
1530 	mutex_unlock(&delayed_node->mutex);
1531 	/*
1532 	 * This delayed node is still cached in the btrfs inode, so refs
1533 	 * must be > 1 now, and we needn't check it is going to be freed
1534 	 * or not.
1535 	 *
1536 	 * Besides that, this function is used to read dir, we do not
1537 	 * insert/delete delayed items in this period. So we also needn't
1538 	 * requeue or dequeue this delayed node.
1539 	 */
1540 	refcount_dec(&delayed_node->refs);
1541 
1542 	return true;
1543 }
1544 
1545 void btrfs_readdir_put_delayed_items(struct inode *inode,
1546 				     struct list_head *ins_list,
1547 				     struct list_head *del_list)
1548 {
1549 	struct btrfs_delayed_item *curr, *next;
1550 
1551 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1552 		list_del(&curr->readdir_list);
1553 		if (refcount_dec_and_test(&curr->refs))
1554 			kfree(curr);
1555 	}
1556 
1557 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1558 		list_del(&curr->readdir_list);
1559 		if (refcount_dec_and_test(&curr->refs))
1560 			kfree(curr);
1561 	}
1562 
1563 	/*
1564 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1565 	 * read lock.
1566 	 */
1567 	downgrade_write(&inode->i_rwsem);
1568 }
1569 
1570 int btrfs_should_delete_dir_index(struct list_head *del_list,
1571 				  u64 index)
1572 {
1573 	struct btrfs_delayed_item *curr;
1574 	int ret = 0;
1575 
1576 	list_for_each_entry(curr, del_list, readdir_list) {
1577 		if (curr->key.offset > index)
1578 			break;
1579 		if (curr->key.offset == index) {
1580 			ret = 1;
1581 			break;
1582 		}
1583 	}
1584 	return ret;
1585 }
1586 
1587 /*
1588  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1589  *
1590  */
1591 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1592 				    struct list_head *ins_list)
1593 {
1594 	struct btrfs_dir_item *di;
1595 	struct btrfs_delayed_item *curr, *next;
1596 	struct btrfs_key location;
1597 	char *name;
1598 	int name_len;
1599 	int over = 0;
1600 	unsigned char d_type;
1601 
1602 	if (list_empty(ins_list))
1603 		return 0;
1604 
1605 	/*
1606 	 * Changing the data of the delayed item is impossible. So
1607 	 * we needn't lock them. And we have held i_mutex of the
1608 	 * directory, nobody can delete any directory indexes now.
1609 	 */
1610 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1611 		list_del(&curr->readdir_list);
1612 
1613 		if (curr->key.offset < ctx->pos) {
1614 			if (refcount_dec_and_test(&curr->refs))
1615 				kfree(curr);
1616 			continue;
1617 		}
1618 
1619 		ctx->pos = curr->key.offset;
1620 
1621 		di = (struct btrfs_dir_item *)curr->data;
1622 		name = (char *)(di + 1);
1623 		name_len = btrfs_stack_dir_name_len(di);
1624 
1625 		d_type = fs_ftype_to_dtype(di->type);
1626 		btrfs_disk_key_to_cpu(&location, &di->location);
1627 
1628 		over = !dir_emit(ctx, name, name_len,
1629 			       location.objectid, d_type);
1630 
1631 		if (refcount_dec_and_test(&curr->refs))
1632 			kfree(curr);
1633 
1634 		if (over)
1635 			return 1;
1636 		ctx->pos++;
1637 	}
1638 	return 0;
1639 }
1640 
1641 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1642 				  struct btrfs_inode_item *inode_item,
1643 				  struct inode *inode)
1644 {
1645 	u64 flags;
1646 
1647 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1648 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1649 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1650 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1651 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1652 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1653 	btrfs_set_stack_inode_generation(inode_item,
1654 					 BTRFS_I(inode)->generation);
1655 	btrfs_set_stack_inode_sequence(inode_item,
1656 				       inode_peek_iversion(inode));
1657 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1658 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1659 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1660 					  BTRFS_I(inode)->ro_flags);
1661 	btrfs_set_stack_inode_flags(inode_item, flags);
1662 	btrfs_set_stack_inode_block_group(inode_item, 0);
1663 
1664 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1665 				     inode->i_atime.tv_sec);
1666 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1667 				      inode->i_atime.tv_nsec);
1668 
1669 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1670 				     inode->i_mtime.tv_sec);
1671 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1672 				      inode->i_mtime.tv_nsec);
1673 
1674 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1675 				     inode->i_ctime.tv_sec);
1676 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1677 				      inode->i_ctime.tv_nsec);
1678 
1679 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1680 				     BTRFS_I(inode)->i_otime.tv_sec);
1681 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1682 				     BTRFS_I(inode)->i_otime.tv_nsec);
1683 }
1684 
1685 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1686 {
1687 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1688 	struct btrfs_delayed_node *delayed_node;
1689 	struct btrfs_inode_item *inode_item;
1690 
1691 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1692 	if (!delayed_node)
1693 		return -ENOENT;
1694 
1695 	mutex_lock(&delayed_node->mutex);
1696 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1697 		mutex_unlock(&delayed_node->mutex);
1698 		btrfs_release_delayed_node(delayed_node);
1699 		return -ENOENT;
1700 	}
1701 
1702 	inode_item = &delayed_node->inode_item;
1703 
1704 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1705 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1706 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1707 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1708 			round_up(i_size_read(inode), fs_info->sectorsize));
1709 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1710 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1711 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1712 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1713         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1714 
1715 	inode_set_iversion_queried(inode,
1716 				   btrfs_stack_inode_sequence(inode_item));
1717 	inode->i_rdev = 0;
1718 	*rdev = btrfs_stack_inode_rdev(inode_item);
1719 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1720 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1721 
1722 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1723 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1724 
1725 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1726 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1727 
1728 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1729 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1730 
1731 	BTRFS_I(inode)->i_otime.tv_sec =
1732 		btrfs_stack_timespec_sec(&inode_item->otime);
1733 	BTRFS_I(inode)->i_otime.tv_nsec =
1734 		btrfs_stack_timespec_nsec(&inode_item->otime);
1735 
1736 	inode->i_generation = BTRFS_I(inode)->generation;
1737 	BTRFS_I(inode)->index_cnt = (u64)-1;
1738 
1739 	mutex_unlock(&delayed_node->mutex);
1740 	btrfs_release_delayed_node(delayed_node);
1741 	return 0;
1742 }
1743 
1744 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1745 			       struct btrfs_root *root,
1746 			       struct btrfs_inode *inode)
1747 {
1748 	struct btrfs_delayed_node *delayed_node;
1749 	int ret = 0;
1750 
1751 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1752 	if (IS_ERR(delayed_node))
1753 		return PTR_ERR(delayed_node);
1754 
1755 	mutex_lock(&delayed_node->mutex);
1756 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1757 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1758 				      &inode->vfs_inode);
1759 		goto release_node;
1760 	}
1761 
1762 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1763 	if (ret)
1764 		goto release_node;
1765 
1766 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1767 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1768 	delayed_node->count++;
1769 	atomic_inc(&root->fs_info->delayed_root->items);
1770 release_node:
1771 	mutex_unlock(&delayed_node->mutex);
1772 	btrfs_release_delayed_node(delayed_node);
1773 	return ret;
1774 }
1775 
1776 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1777 {
1778 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1779 	struct btrfs_delayed_node *delayed_node;
1780 
1781 	/*
1782 	 * we don't do delayed inode updates during log recovery because it
1783 	 * leads to enospc problems.  This means we also can't do
1784 	 * delayed inode refs
1785 	 */
1786 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1787 		return -EAGAIN;
1788 
1789 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1790 	if (IS_ERR(delayed_node))
1791 		return PTR_ERR(delayed_node);
1792 
1793 	/*
1794 	 * We don't reserve space for inode ref deletion is because:
1795 	 * - We ONLY do async inode ref deletion for the inode who has only
1796 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1797 	 *   And in most case, the inode ref and the inode item are in the
1798 	 *   same leaf, and we will deal with them at the same time.
1799 	 *   Since we are sure we will reserve the space for the inode item,
1800 	 *   it is unnecessary to reserve space for inode ref deletion.
1801 	 * - If the inode ref and the inode item are not in the same leaf,
1802 	 *   We also needn't worry about enospc problem, because we reserve
1803 	 *   much more space for the inode update than it needs.
1804 	 * - At the worst, we can steal some space from the global reservation.
1805 	 *   It is very rare.
1806 	 */
1807 	mutex_lock(&delayed_node->mutex);
1808 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1809 		goto release_node;
1810 
1811 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1812 	delayed_node->count++;
1813 	atomic_inc(&fs_info->delayed_root->items);
1814 release_node:
1815 	mutex_unlock(&delayed_node->mutex);
1816 	btrfs_release_delayed_node(delayed_node);
1817 	return 0;
1818 }
1819 
1820 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1821 {
1822 	struct btrfs_root *root = delayed_node->root;
1823 	struct btrfs_fs_info *fs_info = root->fs_info;
1824 	struct btrfs_delayed_item *curr_item, *prev_item;
1825 
1826 	mutex_lock(&delayed_node->mutex);
1827 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1828 	while (curr_item) {
1829 		btrfs_delayed_item_release_metadata(root, curr_item);
1830 		prev_item = curr_item;
1831 		curr_item = __btrfs_next_delayed_item(prev_item);
1832 		btrfs_release_delayed_item(prev_item);
1833 	}
1834 
1835 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1836 	while (curr_item) {
1837 		btrfs_delayed_item_release_metadata(root, curr_item);
1838 		prev_item = curr_item;
1839 		curr_item = __btrfs_next_delayed_item(prev_item);
1840 		btrfs_release_delayed_item(prev_item);
1841 	}
1842 
1843 	btrfs_release_delayed_iref(delayed_node);
1844 
1845 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1846 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1847 		btrfs_release_delayed_inode(delayed_node);
1848 	}
1849 	mutex_unlock(&delayed_node->mutex);
1850 }
1851 
1852 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1853 {
1854 	struct btrfs_delayed_node *delayed_node;
1855 
1856 	delayed_node = btrfs_get_delayed_node(inode);
1857 	if (!delayed_node)
1858 		return;
1859 
1860 	__btrfs_kill_delayed_node(delayed_node);
1861 	btrfs_release_delayed_node(delayed_node);
1862 }
1863 
1864 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1865 {
1866 	unsigned long index = 0;
1867 	struct btrfs_delayed_node *delayed_node;
1868 	struct btrfs_delayed_node *delayed_nodes[8];
1869 
1870 	while (1) {
1871 		int n = 0;
1872 
1873 		spin_lock(&root->inode_lock);
1874 		if (xa_empty(&root->delayed_nodes)) {
1875 			spin_unlock(&root->inode_lock);
1876 			return;
1877 		}
1878 
1879 		xa_for_each_start(&root->delayed_nodes, index, delayed_node, index) {
1880 			/*
1881 			 * Don't increase refs in case the node is dead and
1882 			 * about to be removed from the tree in the loop below
1883 			 */
1884 			if (refcount_inc_not_zero(&delayed_node->refs)) {
1885 				delayed_nodes[n] = delayed_node;
1886 				n++;
1887 			}
1888 			if (n >= ARRAY_SIZE(delayed_nodes))
1889 				break;
1890 		}
1891 		index++;
1892 		spin_unlock(&root->inode_lock);
1893 
1894 		for (int i = 0; i < n; i++) {
1895 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1896 			btrfs_release_delayed_node(delayed_nodes[i]);
1897 		}
1898 	}
1899 }
1900 
1901 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1902 {
1903 	struct btrfs_delayed_node *curr_node, *prev_node;
1904 
1905 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1906 	while (curr_node) {
1907 		__btrfs_kill_delayed_node(curr_node);
1908 
1909 		prev_node = curr_node;
1910 		curr_node = btrfs_next_delayed_node(curr_node);
1911 		btrfs_release_delayed_node(prev_node);
1912 	}
1913 }
1914 
1915