1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "delayed-inode.h" 12 #include "disk-io.h" 13 #include "transaction.h" 14 #include "ctree.h" 15 #include "qgroup.h" 16 #include "locking.h" 17 18 #define BTRFS_DELAYED_WRITEBACK 512 19 #define BTRFS_DELAYED_BACKGROUND 128 20 #define BTRFS_DELAYED_BATCH 16 21 22 static struct kmem_cache *delayed_node_cache; 23 24 int __init btrfs_delayed_inode_init(void) 25 { 26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 27 sizeof(struct btrfs_delayed_node), 28 0, 29 SLAB_MEM_SPREAD, 30 NULL); 31 if (!delayed_node_cache) 32 return -ENOMEM; 33 return 0; 34 } 35 36 void __cold btrfs_delayed_inode_exit(void) 37 { 38 kmem_cache_destroy(delayed_node_cache); 39 } 40 41 static inline void btrfs_init_delayed_node( 42 struct btrfs_delayed_node *delayed_node, 43 struct btrfs_root *root, u64 inode_id) 44 { 45 delayed_node->root = root; 46 delayed_node->inode_id = inode_id; 47 refcount_set(&delayed_node->refs, 0); 48 delayed_node->ins_root = RB_ROOT_CACHED; 49 delayed_node->del_root = RB_ROOT_CACHED; 50 mutex_init(&delayed_node->mutex); 51 INIT_LIST_HEAD(&delayed_node->n_list); 52 INIT_LIST_HEAD(&delayed_node->p_list); 53 } 54 55 static inline int btrfs_is_continuous_delayed_item( 56 struct btrfs_delayed_item *item1, 57 struct btrfs_delayed_item *item2) 58 { 59 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 60 item1->key.objectid == item2->key.objectid && 61 item1->key.type == item2->key.type && 62 item1->key.offset + 1 == item2->key.offset) 63 return 1; 64 return 0; 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 spin_lock(&root->inode_lock); 81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 spin_unlock(&root->inode_lock); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the radix tree. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the radix at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the radix, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 spin_unlock(&root->inode_lock); 115 return node; 116 } 117 spin_unlock(&root->inode_lock); 118 119 return NULL; 120 } 121 122 /* Will return either the node or PTR_ERR(-ENOMEM) */ 123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 124 struct btrfs_inode *btrfs_inode) 125 { 126 struct btrfs_delayed_node *node; 127 struct btrfs_root *root = btrfs_inode->root; 128 u64 ino = btrfs_ino(btrfs_inode); 129 int ret; 130 131 again: 132 node = btrfs_get_delayed_node(btrfs_inode); 133 if (node) 134 return node; 135 136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 137 if (!node) 138 return ERR_PTR(-ENOMEM); 139 btrfs_init_delayed_node(node, root, ino); 140 141 /* cached in the btrfs inode and can be accessed */ 142 refcount_set(&node->refs, 2); 143 144 ret = radix_tree_preload(GFP_NOFS); 145 if (ret) { 146 kmem_cache_free(delayed_node_cache, node); 147 return ERR_PTR(ret); 148 } 149 150 spin_lock(&root->inode_lock); 151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 152 if (ret == -EEXIST) { 153 spin_unlock(&root->inode_lock); 154 kmem_cache_free(delayed_node_cache, node); 155 radix_tree_preload_end(); 156 goto again; 157 } 158 btrfs_inode->delayed_node = node; 159 spin_unlock(&root->inode_lock); 160 radix_tree_preload_end(); 161 162 return node; 163 } 164 165 /* 166 * Call it when holding delayed_node->mutex 167 * 168 * If mod = 1, add this node into the prepared list. 169 */ 170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 171 struct btrfs_delayed_node *node, 172 int mod) 173 { 174 spin_lock(&root->lock); 175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 176 if (!list_empty(&node->p_list)) 177 list_move_tail(&node->p_list, &root->prepare_list); 178 else if (mod) 179 list_add_tail(&node->p_list, &root->prepare_list); 180 } else { 181 list_add_tail(&node->n_list, &root->node_list); 182 list_add_tail(&node->p_list, &root->prepare_list); 183 refcount_inc(&node->refs); /* inserted into list */ 184 root->nodes++; 185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 186 } 187 spin_unlock(&root->lock); 188 } 189 190 /* Call it when holding delayed_node->mutex */ 191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 192 struct btrfs_delayed_node *node) 193 { 194 spin_lock(&root->lock); 195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 196 root->nodes--; 197 refcount_dec(&node->refs); /* not in the list */ 198 list_del_init(&node->n_list); 199 if (!list_empty(&node->p_list)) 200 list_del_init(&node->p_list); 201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 202 } 203 spin_unlock(&root->lock); 204 } 205 206 static struct btrfs_delayed_node *btrfs_first_delayed_node( 207 struct btrfs_delayed_root *delayed_root) 208 { 209 struct list_head *p; 210 struct btrfs_delayed_node *node = NULL; 211 212 spin_lock(&delayed_root->lock); 213 if (list_empty(&delayed_root->node_list)) 214 goto out; 215 216 p = delayed_root->node_list.next; 217 node = list_entry(p, struct btrfs_delayed_node, n_list); 218 refcount_inc(&node->refs); 219 out: 220 spin_unlock(&delayed_root->lock); 221 222 return node; 223 } 224 225 static struct btrfs_delayed_node *btrfs_next_delayed_node( 226 struct btrfs_delayed_node *node) 227 { 228 struct btrfs_delayed_root *delayed_root; 229 struct list_head *p; 230 struct btrfs_delayed_node *next = NULL; 231 232 delayed_root = node->root->fs_info->delayed_root; 233 spin_lock(&delayed_root->lock); 234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 235 /* not in the list */ 236 if (list_empty(&delayed_root->node_list)) 237 goto out; 238 p = delayed_root->node_list.next; 239 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 240 goto out; 241 else 242 p = node->n_list.next; 243 244 next = list_entry(p, struct btrfs_delayed_node, n_list); 245 refcount_inc(&next->refs); 246 out: 247 spin_unlock(&delayed_root->lock); 248 249 return next; 250 } 251 252 static void __btrfs_release_delayed_node( 253 struct btrfs_delayed_node *delayed_node, 254 int mod) 255 { 256 struct btrfs_delayed_root *delayed_root; 257 258 if (!delayed_node) 259 return; 260 261 delayed_root = delayed_node->root->fs_info->delayed_root; 262 263 mutex_lock(&delayed_node->mutex); 264 if (delayed_node->count) 265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 266 else 267 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 268 mutex_unlock(&delayed_node->mutex); 269 270 if (refcount_dec_and_test(&delayed_node->refs)) { 271 struct btrfs_root *root = delayed_node->root; 272 273 spin_lock(&root->inode_lock); 274 /* 275 * Once our refcount goes to zero, nobody is allowed to bump it 276 * back up. We can delete it now. 277 */ 278 ASSERT(refcount_read(&delayed_node->refs) == 0); 279 radix_tree_delete(&root->delayed_nodes_tree, 280 delayed_node->inode_id); 281 spin_unlock(&root->inode_lock); 282 kmem_cache_free(delayed_node_cache, delayed_node); 283 } 284 } 285 286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 287 { 288 __btrfs_release_delayed_node(node, 0); 289 } 290 291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 292 struct btrfs_delayed_root *delayed_root) 293 { 294 struct list_head *p; 295 struct btrfs_delayed_node *node = NULL; 296 297 spin_lock(&delayed_root->lock); 298 if (list_empty(&delayed_root->prepare_list)) 299 goto out; 300 301 p = delayed_root->prepare_list.next; 302 list_del_init(p); 303 node = list_entry(p, struct btrfs_delayed_node, p_list); 304 refcount_inc(&node->refs); 305 out: 306 spin_unlock(&delayed_root->lock); 307 308 return node; 309 } 310 311 static inline void btrfs_release_prepared_delayed_node( 312 struct btrfs_delayed_node *node) 313 { 314 __btrfs_release_delayed_node(node, 1); 315 } 316 317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 318 { 319 struct btrfs_delayed_item *item; 320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 321 if (item) { 322 item->data_len = data_len; 323 item->ins_or_del = 0; 324 item->bytes_reserved = 0; 325 item->delayed_node = NULL; 326 refcount_set(&item->refs, 1); 327 } 328 return item; 329 } 330 331 /* 332 * __btrfs_lookup_delayed_item - look up the delayed item by key 333 * @delayed_node: pointer to the delayed node 334 * @key: the key to look up 335 * @prev: used to store the prev item if the right item isn't found 336 * @next: used to store the next item if the right item isn't found 337 * 338 * Note: if we don't find the right item, we will return the prev item and 339 * the next item. 340 */ 341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 342 struct rb_root *root, 343 struct btrfs_key *key, 344 struct btrfs_delayed_item **prev, 345 struct btrfs_delayed_item **next) 346 { 347 struct rb_node *node, *prev_node = NULL; 348 struct btrfs_delayed_item *delayed_item = NULL; 349 int ret = 0; 350 351 node = root->rb_node; 352 353 while (node) { 354 delayed_item = rb_entry(node, struct btrfs_delayed_item, 355 rb_node); 356 prev_node = node; 357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 358 if (ret < 0) 359 node = node->rb_right; 360 else if (ret > 0) 361 node = node->rb_left; 362 else 363 return delayed_item; 364 } 365 366 if (prev) { 367 if (!prev_node) 368 *prev = NULL; 369 else if (ret < 0) 370 *prev = delayed_item; 371 else if ((node = rb_prev(prev_node)) != NULL) { 372 *prev = rb_entry(node, struct btrfs_delayed_item, 373 rb_node); 374 } else 375 *prev = NULL; 376 } 377 378 if (next) { 379 if (!prev_node) 380 *next = NULL; 381 else if (ret > 0) 382 *next = delayed_item; 383 else if ((node = rb_next(prev_node)) != NULL) { 384 *next = rb_entry(node, struct btrfs_delayed_item, 385 rb_node); 386 } else 387 *next = NULL; 388 } 389 return NULL; 390 } 391 392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 393 struct btrfs_delayed_node *delayed_node, 394 struct btrfs_key *key) 395 { 396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 397 NULL, NULL); 398 } 399 400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 401 struct btrfs_delayed_item *ins, 402 int action) 403 { 404 struct rb_node **p, *node; 405 struct rb_node *parent_node = NULL; 406 struct rb_root_cached *root; 407 struct btrfs_delayed_item *item; 408 int cmp; 409 bool leftmost = true; 410 411 if (action == BTRFS_DELAYED_INSERTION_ITEM) 412 root = &delayed_node->ins_root; 413 else if (action == BTRFS_DELAYED_DELETION_ITEM) 414 root = &delayed_node->del_root; 415 else 416 BUG(); 417 p = &root->rb_root.rb_node; 418 node = &ins->rb_node; 419 420 while (*p) { 421 parent_node = *p; 422 item = rb_entry(parent_node, struct btrfs_delayed_item, 423 rb_node); 424 425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 426 if (cmp < 0) { 427 p = &(*p)->rb_right; 428 leftmost = false; 429 } else if (cmp > 0) { 430 p = &(*p)->rb_left; 431 } else { 432 return -EEXIST; 433 } 434 } 435 436 rb_link_node(node, parent_node, p); 437 rb_insert_color_cached(node, root, leftmost); 438 ins->delayed_node = delayed_node; 439 ins->ins_or_del = action; 440 441 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 442 action == BTRFS_DELAYED_INSERTION_ITEM && 443 ins->key.offset >= delayed_node->index_cnt) 444 delayed_node->index_cnt = ins->key.offset + 1; 445 446 delayed_node->count++; 447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 448 return 0; 449 } 450 451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 452 struct btrfs_delayed_item *item) 453 { 454 return __btrfs_add_delayed_item(node, item, 455 BTRFS_DELAYED_INSERTION_ITEM); 456 } 457 458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 459 struct btrfs_delayed_item *item) 460 { 461 return __btrfs_add_delayed_item(node, item, 462 BTRFS_DELAYED_DELETION_ITEM); 463 } 464 465 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 466 { 467 int seq = atomic_inc_return(&delayed_root->items_seq); 468 469 /* atomic_dec_return implies a barrier */ 470 if ((atomic_dec_return(&delayed_root->items) < 471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 472 cond_wake_up_nomb(&delayed_root->wait); 473 } 474 475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 476 { 477 struct rb_root_cached *root; 478 struct btrfs_delayed_root *delayed_root; 479 480 /* Not associated with any delayed_node */ 481 if (!delayed_item->delayed_node) 482 return; 483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 484 485 BUG_ON(!delayed_root); 486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 488 489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 490 root = &delayed_item->delayed_node->ins_root; 491 else 492 root = &delayed_item->delayed_node->del_root; 493 494 rb_erase_cached(&delayed_item->rb_node, root); 495 delayed_item->delayed_node->count--; 496 497 finish_one_item(delayed_root); 498 } 499 500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 501 { 502 if (item) { 503 __btrfs_remove_delayed_item(item); 504 if (refcount_dec_and_test(&item->refs)) 505 kfree(item); 506 } 507 } 508 509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 510 struct btrfs_delayed_node *delayed_node) 511 { 512 struct rb_node *p; 513 struct btrfs_delayed_item *item = NULL; 514 515 p = rb_first_cached(&delayed_node->ins_root); 516 if (p) 517 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 518 519 return item; 520 } 521 522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 523 struct btrfs_delayed_node *delayed_node) 524 { 525 struct rb_node *p; 526 struct btrfs_delayed_item *item = NULL; 527 528 p = rb_first_cached(&delayed_node->del_root); 529 if (p) 530 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 531 532 return item; 533 } 534 535 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 536 struct btrfs_delayed_item *item) 537 { 538 struct rb_node *p; 539 struct btrfs_delayed_item *next = NULL; 540 541 p = rb_next(&item->rb_node); 542 if (p) 543 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 544 545 return next; 546 } 547 548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 549 struct btrfs_root *root, 550 struct btrfs_delayed_item *item) 551 { 552 struct btrfs_block_rsv *src_rsv; 553 struct btrfs_block_rsv *dst_rsv; 554 struct btrfs_fs_info *fs_info = root->fs_info; 555 u64 num_bytes; 556 int ret; 557 558 if (!trans->bytes_reserved) 559 return 0; 560 561 src_rsv = trans->block_rsv; 562 dst_rsv = &fs_info->delayed_block_rsv; 563 564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 565 566 /* 567 * Here we migrate space rsv from transaction rsv, since have already 568 * reserved space when starting a transaction. So no need to reserve 569 * qgroup space here. 570 */ 571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 572 if (!ret) { 573 trace_btrfs_space_reservation(fs_info, "delayed_item", 574 item->key.objectid, 575 num_bytes, 1); 576 item->bytes_reserved = num_bytes; 577 } 578 579 return ret; 580 } 581 582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 583 struct btrfs_delayed_item *item) 584 { 585 struct btrfs_block_rsv *rsv; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 588 if (!item->bytes_reserved) 589 return; 590 591 rsv = &fs_info->delayed_block_rsv; 592 /* 593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 594 * to release/reserve qgroup space. 595 */ 596 trace_btrfs_space_reservation(fs_info, "delayed_item", 597 item->key.objectid, item->bytes_reserved, 598 0); 599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 600 } 601 602 static int btrfs_delayed_inode_reserve_metadata( 603 struct btrfs_trans_handle *trans, 604 struct btrfs_root *root, 605 struct btrfs_inode *inode, 606 struct btrfs_delayed_node *node) 607 { 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_block_rsv *src_rsv; 610 struct btrfs_block_rsv *dst_rsv; 611 u64 num_bytes; 612 int ret; 613 614 src_rsv = trans->block_rsv; 615 dst_rsv = &fs_info->delayed_block_rsv; 616 617 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 618 619 /* 620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 621 * which doesn't reserve space for speed. This is a problem since we 622 * still need to reserve space for this update, so try to reserve the 623 * space. 624 * 625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 626 * we always reserve enough to update the inode item. 627 */ 628 if (!src_rsv || (!trans->bytes_reserved && 629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 630 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 631 BTRFS_QGROUP_RSV_META_PREALLOC, true); 632 if (ret < 0) 633 return ret; 634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 635 BTRFS_RESERVE_NO_FLUSH); 636 /* 637 * Since we're under a transaction reserve_metadata_bytes could 638 * try to commit the transaction which will make it return 639 * EAGAIN to make us stop the transaction we have, so return 640 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 641 */ 642 if (ret == -EAGAIN) { 643 ret = -ENOSPC; 644 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 645 } 646 if (!ret) { 647 node->bytes_reserved = num_bytes; 648 trace_btrfs_space_reservation(fs_info, 649 "delayed_inode", 650 btrfs_ino(inode), 651 num_bytes, 1); 652 } else { 653 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 654 } 655 return ret; 656 } 657 658 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 659 if (!ret) { 660 trace_btrfs_space_reservation(fs_info, "delayed_inode", 661 btrfs_ino(inode), num_bytes, 1); 662 node->bytes_reserved = num_bytes; 663 } 664 665 return ret; 666 } 667 668 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 669 struct btrfs_delayed_node *node, 670 bool qgroup_free) 671 { 672 struct btrfs_block_rsv *rsv; 673 674 if (!node->bytes_reserved) 675 return; 676 677 rsv = &fs_info->delayed_block_rsv; 678 trace_btrfs_space_reservation(fs_info, "delayed_inode", 679 node->inode_id, node->bytes_reserved, 0); 680 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 681 if (qgroup_free) 682 btrfs_qgroup_free_meta_prealloc(node->root, 683 node->bytes_reserved); 684 else 685 btrfs_qgroup_convert_reserved_meta(node->root, 686 node->bytes_reserved); 687 node->bytes_reserved = 0; 688 } 689 690 /* 691 * This helper will insert some continuous items into the same leaf according 692 * to the free space of the leaf. 693 */ 694 static int btrfs_batch_insert_items(struct btrfs_root *root, 695 struct btrfs_path *path, 696 struct btrfs_delayed_item *item) 697 { 698 struct btrfs_delayed_item *curr, *next; 699 int free_space; 700 int total_data_size = 0, total_size = 0; 701 struct extent_buffer *leaf; 702 char *data_ptr; 703 struct btrfs_key *keys; 704 u32 *data_size; 705 struct list_head head; 706 int slot; 707 int nitems; 708 int i; 709 int ret = 0; 710 711 BUG_ON(!path->nodes[0]); 712 713 leaf = path->nodes[0]; 714 free_space = btrfs_leaf_free_space(leaf); 715 INIT_LIST_HEAD(&head); 716 717 next = item; 718 nitems = 0; 719 720 /* 721 * count the number of the continuous items that we can insert in batch 722 */ 723 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 724 free_space) { 725 total_data_size += next->data_len; 726 total_size += next->data_len + sizeof(struct btrfs_item); 727 list_add_tail(&next->tree_list, &head); 728 nitems++; 729 730 curr = next; 731 next = __btrfs_next_delayed_item(curr); 732 if (!next) 733 break; 734 735 if (!btrfs_is_continuous_delayed_item(curr, next)) 736 break; 737 } 738 739 if (!nitems) { 740 ret = 0; 741 goto out; 742 } 743 744 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 745 if (!keys) { 746 ret = -ENOMEM; 747 goto out; 748 } 749 750 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 751 if (!data_size) { 752 ret = -ENOMEM; 753 goto error; 754 } 755 756 /* get keys of all the delayed items */ 757 i = 0; 758 list_for_each_entry(next, &head, tree_list) { 759 keys[i] = next->key; 760 data_size[i] = next->data_len; 761 i++; 762 } 763 764 /* insert the keys of the items */ 765 setup_items_for_insert(root, path, keys, data_size, nitems); 766 767 /* insert the dir index items */ 768 slot = path->slots[0]; 769 list_for_each_entry_safe(curr, next, &head, tree_list) { 770 data_ptr = btrfs_item_ptr(leaf, slot, char); 771 write_extent_buffer(leaf, &curr->data, 772 (unsigned long)data_ptr, 773 curr->data_len); 774 slot++; 775 776 btrfs_delayed_item_release_metadata(root, curr); 777 778 list_del(&curr->tree_list); 779 btrfs_release_delayed_item(curr); 780 } 781 782 error: 783 kfree(data_size); 784 kfree(keys); 785 out: 786 return ret; 787 } 788 789 /* 790 * This helper can just do simple insertion that needn't extend item for new 791 * data, such as directory name index insertion, inode insertion. 792 */ 793 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 794 struct btrfs_root *root, 795 struct btrfs_path *path, 796 struct btrfs_delayed_item *delayed_item) 797 { 798 struct extent_buffer *leaf; 799 unsigned int nofs_flag; 800 char *ptr; 801 int ret; 802 803 nofs_flag = memalloc_nofs_save(); 804 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 805 delayed_item->data_len); 806 memalloc_nofs_restore(nofs_flag); 807 if (ret < 0 && ret != -EEXIST) 808 return ret; 809 810 leaf = path->nodes[0]; 811 812 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 813 814 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 815 delayed_item->data_len); 816 btrfs_mark_buffer_dirty(leaf); 817 818 btrfs_delayed_item_release_metadata(root, delayed_item); 819 return 0; 820 } 821 822 /* 823 * we insert an item first, then if there are some continuous items, we try 824 * to insert those items into the same leaf. 825 */ 826 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 827 struct btrfs_path *path, 828 struct btrfs_root *root, 829 struct btrfs_delayed_node *node) 830 { 831 struct btrfs_delayed_item *curr, *prev; 832 int ret = 0; 833 834 do_again: 835 mutex_lock(&node->mutex); 836 curr = __btrfs_first_delayed_insertion_item(node); 837 if (!curr) 838 goto insert_end; 839 840 ret = btrfs_insert_delayed_item(trans, root, path, curr); 841 if (ret < 0) { 842 btrfs_release_path(path); 843 goto insert_end; 844 } 845 846 prev = curr; 847 curr = __btrfs_next_delayed_item(prev); 848 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 849 /* insert the continuous items into the same leaf */ 850 path->slots[0]++; 851 btrfs_batch_insert_items(root, path, curr); 852 } 853 btrfs_release_delayed_item(prev); 854 btrfs_mark_buffer_dirty(path->nodes[0]); 855 856 btrfs_release_path(path); 857 mutex_unlock(&node->mutex); 858 goto do_again; 859 860 insert_end: 861 mutex_unlock(&node->mutex); 862 return ret; 863 } 864 865 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 866 struct btrfs_root *root, 867 struct btrfs_path *path, 868 struct btrfs_delayed_item *item) 869 { 870 struct btrfs_delayed_item *curr, *next; 871 struct extent_buffer *leaf; 872 struct btrfs_key key; 873 struct list_head head; 874 int nitems, i, last_item; 875 int ret = 0; 876 877 BUG_ON(!path->nodes[0]); 878 879 leaf = path->nodes[0]; 880 881 i = path->slots[0]; 882 last_item = btrfs_header_nritems(leaf) - 1; 883 if (i > last_item) 884 return -ENOENT; /* FIXME: Is errno suitable? */ 885 886 next = item; 887 INIT_LIST_HEAD(&head); 888 btrfs_item_key_to_cpu(leaf, &key, i); 889 nitems = 0; 890 /* 891 * count the number of the dir index items that we can delete in batch 892 */ 893 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 894 list_add_tail(&next->tree_list, &head); 895 nitems++; 896 897 curr = next; 898 next = __btrfs_next_delayed_item(curr); 899 if (!next) 900 break; 901 902 if (!btrfs_is_continuous_delayed_item(curr, next)) 903 break; 904 905 i++; 906 if (i > last_item) 907 break; 908 btrfs_item_key_to_cpu(leaf, &key, i); 909 } 910 911 if (!nitems) 912 return 0; 913 914 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 915 if (ret) 916 goto out; 917 918 list_for_each_entry_safe(curr, next, &head, tree_list) { 919 btrfs_delayed_item_release_metadata(root, curr); 920 list_del(&curr->tree_list); 921 btrfs_release_delayed_item(curr); 922 } 923 924 out: 925 return ret; 926 } 927 928 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 929 struct btrfs_path *path, 930 struct btrfs_root *root, 931 struct btrfs_delayed_node *node) 932 { 933 struct btrfs_delayed_item *curr, *prev; 934 unsigned int nofs_flag; 935 int ret = 0; 936 937 do_again: 938 mutex_lock(&node->mutex); 939 curr = __btrfs_first_delayed_deletion_item(node); 940 if (!curr) 941 goto delete_fail; 942 943 nofs_flag = memalloc_nofs_save(); 944 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 945 memalloc_nofs_restore(nofs_flag); 946 if (ret < 0) 947 goto delete_fail; 948 else if (ret > 0) { 949 /* 950 * can't find the item which the node points to, so this node 951 * is invalid, just drop it. 952 */ 953 prev = curr; 954 curr = __btrfs_next_delayed_item(prev); 955 btrfs_release_delayed_item(prev); 956 ret = 0; 957 btrfs_release_path(path); 958 if (curr) { 959 mutex_unlock(&node->mutex); 960 goto do_again; 961 } else 962 goto delete_fail; 963 } 964 965 btrfs_batch_delete_items(trans, root, path, curr); 966 btrfs_release_path(path); 967 mutex_unlock(&node->mutex); 968 goto do_again; 969 970 delete_fail: 971 btrfs_release_path(path); 972 mutex_unlock(&node->mutex); 973 return ret; 974 } 975 976 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 977 { 978 struct btrfs_delayed_root *delayed_root; 979 980 if (delayed_node && 981 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 982 BUG_ON(!delayed_node->root); 983 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 984 delayed_node->count--; 985 986 delayed_root = delayed_node->root->fs_info->delayed_root; 987 finish_one_item(delayed_root); 988 } 989 } 990 991 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 992 { 993 struct btrfs_delayed_root *delayed_root; 994 995 ASSERT(delayed_node->root); 996 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 997 delayed_node->count--; 998 999 delayed_root = delayed_node->root->fs_info->delayed_root; 1000 finish_one_item(delayed_root); 1001 } 1002 1003 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1004 struct btrfs_root *root, 1005 struct btrfs_path *path, 1006 struct btrfs_delayed_node *node) 1007 { 1008 struct btrfs_fs_info *fs_info = root->fs_info; 1009 struct btrfs_key key; 1010 struct btrfs_inode_item *inode_item; 1011 struct extent_buffer *leaf; 1012 unsigned int nofs_flag; 1013 int mod; 1014 int ret; 1015 1016 key.objectid = node->inode_id; 1017 key.type = BTRFS_INODE_ITEM_KEY; 1018 key.offset = 0; 1019 1020 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1021 mod = -1; 1022 else 1023 mod = 1; 1024 1025 nofs_flag = memalloc_nofs_save(); 1026 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1027 memalloc_nofs_restore(nofs_flag); 1028 if (ret > 0) { 1029 btrfs_release_path(path); 1030 return -ENOENT; 1031 } else if (ret < 0) { 1032 return ret; 1033 } 1034 1035 leaf = path->nodes[0]; 1036 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1037 struct btrfs_inode_item); 1038 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1039 sizeof(struct btrfs_inode_item)); 1040 btrfs_mark_buffer_dirty(leaf); 1041 1042 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1043 goto no_iref; 1044 1045 path->slots[0]++; 1046 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1047 goto search; 1048 again: 1049 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1050 if (key.objectid != node->inode_id) 1051 goto out; 1052 1053 if (key.type != BTRFS_INODE_REF_KEY && 1054 key.type != BTRFS_INODE_EXTREF_KEY) 1055 goto out; 1056 1057 /* 1058 * Delayed iref deletion is for the inode who has only one link, 1059 * so there is only one iref. The case that several irefs are 1060 * in the same item doesn't exist. 1061 */ 1062 btrfs_del_item(trans, root, path); 1063 out: 1064 btrfs_release_delayed_iref(node); 1065 no_iref: 1066 btrfs_release_path(path); 1067 err_out: 1068 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1069 btrfs_release_delayed_inode(node); 1070 1071 return ret; 1072 1073 search: 1074 btrfs_release_path(path); 1075 1076 key.type = BTRFS_INODE_EXTREF_KEY; 1077 key.offset = -1; 1078 1079 nofs_flag = memalloc_nofs_save(); 1080 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1081 memalloc_nofs_restore(nofs_flag); 1082 if (ret < 0) 1083 goto err_out; 1084 ASSERT(ret); 1085 1086 ret = 0; 1087 leaf = path->nodes[0]; 1088 path->slots[0]--; 1089 goto again; 1090 } 1091 1092 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1093 struct btrfs_root *root, 1094 struct btrfs_path *path, 1095 struct btrfs_delayed_node *node) 1096 { 1097 int ret; 1098 1099 mutex_lock(&node->mutex); 1100 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1101 mutex_unlock(&node->mutex); 1102 return 0; 1103 } 1104 1105 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1106 mutex_unlock(&node->mutex); 1107 return ret; 1108 } 1109 1110 static inline int 1111 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1112 struct btrfs_path *path, 1113 struct btrfs_delayed_node *node) 1114 { 1115 int ret; 1116 1117 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1118 if (ret) 1119 return ret; 1120 1121 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1122 if (ret) 1123 return ret; 1124 1125 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1126 return ret; 1127 } 1128 1129 /* 1130 * Called when committing the transaction. 1131 * Returns 0 on success. 1132 * Returns < 0 on error and returns with an aborted transaction with any 1133 * outstanding delayed items cleaned up. 1134 */ 1135 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1136 { 1137 struct btrfs_fs_info *fs_info = trans->fs_info; 1138 struct btrfs_delayed_root *delayed_root; 1139 struct btrfs_delayed_node *curr_node, *prev_node; 1140 struct btrfs_path *path; 1141 struct btrfs_block_rsv *block_rsv; 1142 int ret = 0; 1143 bool count = (nr > 0); 1144 1145 if (TRANS_ABORTED(trans)) 1146 return -EIO; 1147 1148 path = btrfs_alloc_path(); 1149 if (!path) 1150 return -ENOMEM; 1151 1152 block_rsv = trans->block_rsv; 1153 trans->block_rsv = &fs_info->delayed_block_rsv; 1154 1155 delayed_root = fs_info->delayed_root; 1156 1157 curr_node = btrfs_first_delayed_node(delayed_root); 1158 while (curr_node && (!count || nr--)) { 1159 ret = __btrfs_commit_inode_delayed_items(trans, path, 1160 curr_node); 1161 if (ret) { 1162 btrfs_release_delayed_node(curr_node); 1163 curr_node = NULL; 1164 btrfs_abort_transaction(trans, ret); 1165 break; 1166 } 1167 1168 prev_node = curr_node; 1169 curr_node = btrfs_next_delayed_node(curr_node); 1170 btrfs_release_delayed_node(prev_node); 1171 } 1172 1173 if (curr_node) 1174 btrfs_release_delayed_node(curr_node); 1175 btrfs_free_path(path); 1176 trans->block_rsv = block_rsv; 1177 1178 return ret; 1179 } 1180 1181 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1182 { 1183 return __btrfs_run_delayed_items(trans, -1); 1184 } 1185 1186 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1187 { 1188 return __btrfs_run_delayed_items(trans, nr); 1189 } 1190 1191 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1192 struct btrfs_inode *inode) 1193 { 1194 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1195 struct btrfs_path *path; 1196 struct btrfs_block_rsv *block_rsv; 1197 int ret; 1198 1199 if (!delayed_node) 1200 return 0; 1201 1202 mutex_lock(&delayed_node->mutex); 1203 if (!delayed_node->count) { 1204 mutex_unlock(&delayed_node->mutex); 1205 btrfs_release_delayed_node(delayed_node); 1206 return 0; 1207 } 1208 mutex_unlock(&delayed_node->mutex); 1209 1210 path = btrfs_alloc_path(); 1211 if (!path) { 1212 btrfs_release_delayed_node(delayed_node); 1213 return -ENOMEM; 1214 } 1215 1216 block_rsv = trans->block_rsv; 1217 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1218 1219 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1220 1221 btrfs_release_delayed_node(delayed_node); 1222 btrfs_free_path(path); 1223 trans->block_rsv = block_rsv; 1224 1225 return ret; 1226 } 1227 1228 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1229 { 1230 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1231 struct btrfs_trans_handle *trans; 1232 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1233 struct btrfs_path *path; 1234 struct btrfs_block_rsv *block_rsv; 1235 int ret; 1236 1237 if (!delayed_node) 1238 return 0; 1239 1240 mutex_lock(&delayed_node->mutex); 1241 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1242 mutex_unlock(&delayed_node->mutex); 1243 btrfs_release_delayed_node(delayed_node); 1244 return 0; 1245 } 1246 mutex_unlock(&delayed_node->mutex); 1247 1248 trans = btrfs_join_transaction(delayed_node->root); 1249 if (IS_ERR(trans)) { 1250 ret = PTR_ERR(trans); 1251 goto out; 1252 } 1253 1254 path = btrfs_alloc_path(); 1255 if (!path) { 1256 ret = -ENOMEM; 1257 goto trans_out; 1258 } 1259 1260 block_rsv = trans->block_rsv; 1261 trans->block_rsv = &fs_info->delayed_block_rsv; 1262 1263 mutex_lock(&delayed_node->mutex); 1264 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1265 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1266 path, delayed_node); 1267 else 1268 ret = 0; 1269 mutex_unlock(&delayed_node->mutex); 1270 1271 btrfs_free_path(path); 1272 trans->block_rsv = block_rsv; 1273 trans_out: 1274 btrfs_end_transaction(trans); 1275 btrfs_btree_balance_dirty(fs_info); 1276 out: 1277 btrfs_release_delayed_node(delayed_node); 1278 1279 return ret; 1280 } 1281 1282 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1283 { 1284 struct btrfs_delayed_node *delayed_node; 1285 1286 delayed_node = READ_ONCE(inode->delayed_node); 1287 if (!delayed_node) 1288 return; 1289 1290 inode->delayed_node = NULL; 1291 btrfs_release_delayed_node(delayed_node); 1292 } 1293 1294 struct btrfs_async_delayed_work { 1295 struct btrfs_delayed_root *delayed_root; 1296 int nr; 1297 struct btrfs_work work; 1298 }; 1299 1300 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1301 { 1302 struct btrfs_async_delayed_work *async_work; 1303 struct btrfs_delayed_root *delayed_root; 1304 struct btrfs_trans_handle *trans; 1305 struct btrfs_path *path; 1306 struct btrfs_delayed_node *delayed_node = NULL; 1307 struct btrfs_root *root; 1308 struct btrfs_block_rsv *block_rsv; 1309 int total_done = 0; 1310 1311 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1312 delayed_root = async_work->delayed_root; 1313 1314 path = btrfs_alloc_path(); 1315 if (!path) 1316 goto out; 1317 1318 do { 1319 if (atomic_read(&delayed_root->items) < 1320 BTRFS_DELAYED_BACKGROUND / 2) 1321 break; 1322 1323 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1324 if (!delayed_node) 1325 break; 1326 1327 root = delayed_node->root; 1328 1329 trans = btrfs_join_transaction(root); 1330 if (IS_ERR(trans)) { 1331 btrfs_release_path(path); 1332 btrfs_release_prepared_delayed_node(delayed_node); 1333 total_done++; 1334 continue; 1335 } 1336 1337 block_rsv = trans->block_rsv; 1338 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1339 1340 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1341 1342 trans->block_rsv = block_rsv; 1343 btrfs_end_transaction(trans); 1344 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1345 1346 btrfs_release_path(path); 1347 btrfs_release_prepared_delayed_node(delayed_node); 1348 total_done++; 1349 1350 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1351 || total_done < async_work->nr); 1352 1353 btrfs_free_path(path); 1354 out: 1355 wake_up(&delayed_root->wait); 1356 kfree(async_work); 1357 } 1358 1359 1360 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1361 struct btrfs_fs_info *fs_info, int nr) 1362 { 1363 struct btrfs_async_delayed_work *async_work; 1364 1365 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1366 if (!async_work) 1367 return -ENOMEM; 1368 1369 async_work->delayed_root = delayed_root; 1370 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1371 NULL); 1372 async_work->nr = nr; 1373 1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1375 return 0; 1376 } 1377 1378 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1379 { 1380 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1381 } 1382 1383 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1384 { 1385 int val = atomic_read(&delayed_root->items_seq); 1386 1387 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1388 return 1; 1389 1390 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1391 return 1; 1392 1393 return 0; 1394 } 1395 1396 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1397 { 1398 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1399 1400 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1401 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1402 return; 1403 1404 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1405 int seq; 1406 int ret; 1407 1408 seq = atomic_read(&delayed_root->items_seq); 1409 1410 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1411 if (ret) 1412 return; 1413 1414 wait_event_interruptible(delayed_root->wait, 1415 could_end_wait(delayed_root, seq)); 1416 return; 1417 } 1418 1419 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1420 } 1421 1422 /* Will return 0 or -ENOMEM */ 1423 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1424 const char *name, int name_len, 1425 struct btrfs_inode *dir, 1426 struct btrfs_disk_key *disk_key, u8 type, 1427 u64 index) 1428 { 1429 struct btrfs_delayed_node *delayed_node; 1430 struct btrfs_delayed_item *delayed_item; 1431 struct btrfs_dir_item *dir_item; 1432 int ret; 1433 1434 delayed_node = btrfs_get_or_create_delayed_node(dir); 1435 if (IS_ERR(delayed_node)) 1436 return PTR_ERR(delayed_node); 1437 1438 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1439 if (!delayed_item) { 1440 ret = -ENOMEM; 1441 goto release_node; 1442 } 1443 1444 delayed_item->key.objectid = btrfs_ino(dir); 1445 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1446 delayed_item->key.offset = index; 1447 1448 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1449 dir_item->location = *disk_key; 1450 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1451 btrfs_set_stack_dir_data_len(dir_item, 0); 1452 btrfs_set_stack_dir_name_len(dir_item, name_len); 1453 btrfs_set_stack_dir_type(dir_item, type); 1454 memcpy((char *)(dir_item + 1), name, name_len); 1455 1456 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1457 /* 1458 * we have reserved enough space when we start a new transaction, 1459 * so reserving metadata failure is impossible 1460 */ 1461 BUG_ON(ret); 1462 1463 mutex_lock(&delayed_node->mutex); 1464 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1465 if (unlikely(ret)) { 1466 btrfs_err(trans->fs_info, 1467 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1468 name_len, name, delayed_node->root->root_key.objectid, 1469 delayed_node->inode_id, ret); 1470 BUG(); 1471 } 1472 mutex_unlock(&delayed_node->mutex); 1473 1474 release_node: 1475 btrfs_release_delayed_node(delayed_node); 1476 return ret; 1477 } 1478 1479 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1480 struct btrfs_delayed_node *node, 1481 struct btrfs_key *key) 1482 { 1483 struct btrfs_delayed_item *item; 1484 1485 mutex_lock(&node->mutex); 1486 item = __btrfs_lookup_delayed_insertion_item(node, key); 1487 if (!item) { 1488 mutex_unlock(&node->mutex); 1489 return 1; 1490 } 1491 1492 btrfs_delayed_item_release_metadata(node->root, item); 1493 btrfs_release_delayed_item(item); 1494 mutex_unlock(&node->mutex); 1495 return 0; 1496 } 1497 1498 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1499 struct btrfs_inode *dir, u64 index) 1500 { 1501 struct btrfs_delayed_node *node; 1502 struct btrfs_delayed_item *item; 1503 struct btrfs_key item_key; 1504 int ret; 1505 1506 node = btrfs_get_or_create_delayed_node(dir); 1507 if (IS_ERR(node)) 1508 return PTR_ERR(node); 1509 1510 item_key.objectid = btrfs_ino(dir); 1511 item_key.type = BTRFS_DIR_INDEX_KEY; 1512 item_key.offset = index; 1513 1514 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1515 &item_key); 1516 if (!ret) 1517 goto end; 1518 1519 item = btrfs_alloc_delayed_item(0); 1520 if (!item) { 1521 ret = -ENOMEM; 1522 goto end; 1523 } 1524 1525 item->key = item_key; 1526 1527 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1528 /* 1529 * we have reserved enough space when we start a new transaction, 1530 * so reserving metadata failure is impossible. 1531 */ 1532 if (ret < 0) { 1533 btrfs_err(trans->fs_info, 1534 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1535 btrfs_release_delayed_item(item); 1536 goto end; 1537 } 1538 1539 mutex_lock(&node->mutex); 1540 ret = __btrfs_add_delayed_deletion_item(node, item); 1541 if (unlikely(ret)) { 1542 btrfs_err(trans->fs_info, 1543 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1544 index, node->root->root_key.objectid, 1545 node->inode_id, ret); 1546 btrfs_delayed_item_release_metadata(dir->root, item); 1547 btrfs_release_delayed_item(item); 1548 } 1549 mutex_unlock(&node->mutex); 1550 end: 1551 btrfs_release_delayed_node(node); 1552 return ret; 1553 } 1554 1555 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1556 { 1557 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1558 1559 if (!delayed_node) 1560 return -ENOENT; 1561 1562 /* 1563 * Since we have held i_mutex of this directory, it is impossible that 1564 * a new directory index is added into the delayed node and index_cnt 1565 * is updated now. So we needn't lock the delayed node. 1566 */ 1567 if (!delayed_node->index_cnt) { 1568 btrfs_release_delayed_node(delayed_node); 1569 return -EINVAL; 1570 } 1571 1572 inode->index_cnt = delayed_node->index_cnt; 1573 btrfs_release_delayed_node(delayed_node); 1574 return 0; 1575 } 1576 1577 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1578 struct list_head *ins_list, 1579 struct list_head *del_list) 1580 { 1581 struct btrfs_delayed_node *delayed_node; 1582 struct btrfs_delayed_item *item; 1583 1584 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1585 if (!delayed_node) 1586 return false; 1587 1588 /* 1589 * We can only do one readdir with delayed items at a time because of 1590 * item->readdir_list. 1591 */ 1592 inode_unlock_shared(inode); 1593 inode_lock(inode); 1594 1595 mutex_lock(&delayed_node->mutex); 1596 item = __btrfs_first_delayed_insertion_item(delayed_node); 1597 while (item) { 1598 refcount_inc(&item->refs); 1599 list_add_tail(&item->readdir_list, ins_list); 1600 item = __btrfs_next_delayed_item(item); 1601 } 1602 1603 item = __btrfs_first_delayed_deletion_item(delayed_node); 1604 while (item) { 1605 refcount_inc(&item->refs); 1606 list_add_tail(&item->readdir_list, del_list); 1607 item = __btrfs_next_delayed_item(item); 1608 } 1609 mutex_unlock(&delayed_node->mutex); 1610 /* 1611 * This delayed node is still cached in the btrfs inode, so refs 1612 * must be > 1 now, and we needn't check it is going to be freed 1613 * or not. 1614 * 1615 * Besides that, this function is used to read dir, we do not 1616 * insert/delete delayed items in this period. So we also needn't 1617 * requeue or dequeue this delayed node. 1618 */ 1619 refcount_dec(&delayed_node->refs); 1620 1621 return true; 1622 } 1623 1624 void btrfs_readdir_put_delayed_items(struct inode *inode, 1625 struct list_head *ins_list, 1626 struct list_head *del_list) 1627 { 1628 struct btrfs_delayed_item *curr, *next; 1629 1630 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1631 list_del(&curr->readdir_list); 1632 if (refcount_dec_and_test(&curr->refs)) 1633 kfree(curr); 1634 } 1635 1636 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1637 list_del(&curr->readdir_list); 1638 if (refcount_dec_and_test(&curr->refs)) 1639 kfree(curr); 1640 } 1641 1642 /* 1643 * The VFS is going to do up_read(), so we need to downgrade back to a 1644 * read lock. 1645 */ 1646 downgrade_write(&inode->i_rwsem); 1647 } 1648 1649 int btrfs_should_delete_dir_index(struct list_head *del_list, 1650 u64 index) 1651 { 1652 struct btrfs_delayed_item *curr; 1653 int ret = 0; 1654 1655 list_for_each_entry(curr, del_list, readdir_list) { 1656 if (curr->key.offset > index) 1657 break; 1658 if (curr->key.offset == index) { 1659 ret = 1; 1660 break; 1661 } 1662 } 1663 return ret; 1664 } 1665 1666 /* 1667 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1668 * 1669 */ 1670 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1671 struct list_head *ins_list) 1672 { 1673 struct btrfs_dir_item *di; 1674 struct btrfs_delayed_item *curr, *next; 1675 struct btrfs_key location; 1676 char *name; 1677 int name_len; 1678 int over = 0; 1679 unsigned char d_type; 1680 1681 if (list_empty(ins_list)) 1682 return 0; 1683 1684 /* 1685 * Changing the data of the delayed item is impossible. So 1686 * we needn't lock them. And we have held i_mutex of the 1687 * directory, nobody can delete any directory indexes now. 1688 */ 1689 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1690 list_del(&curr->readdir_list); 1691 1692 if (curr->key.offset < ctx->pos) { 1693 if (refcount_dec_and_test(&curr->refs)) 1694 kfree(curr); 1695 continue; 1696 } 1697 1698 ctx->pos = curr->key.offset; 1699 1700 di = (struct btrfs_dir_item *)curr->data; 1701 name = (char *)(di + 1); 1702 name_len = btrfs_stack_dir_name_len(di); 1703 1704 d_type = fs_ftype_to_dtype(di->type); 1705 btrfs_disk_key_to_cpu(&location, &di->location); 1706 1707 over = !dir_emit(ctx, name, name_len, 1708 location.objectid, d_type); 1709 1710 if (refcount_dec_and_test(&curr->refs)) 1711 kfree(curr); 1712 1713 if (over) 1714 return 1; 1715 ctx->pos++; 1716 } 1717 return 0; 1718 } 1719 1720 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1721 struct btrfs_inode_item *inode_item, 1722 struct inode *inode) 1723 { 1724 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1725 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1726 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1727 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1728 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1729 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1730 btrfs_set_stack_inode_generation(inode_item, 1731 BTRFS_I(inode)->generation); 1732 btrfs_set_stack_inode_sequence(inode_item, 1733 inode_peek_iversion(inode)); 1734 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1735 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1736 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1737 btrfs_set_stack_inode_block_group(inode_item, 0); 1738 1739 btrfs_set_stack_timespec_sec(&inode_item->atime, 1740 inode->i_atime.tv_sec); 1741 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1742 inode->i_atime.tv_nsec); 1743 1744 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1745 inode->i_mtime.tv_sec); 1746 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1747 inode->i_mtime.tv_nsec); 1748 1749 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1750 inode->i_ctime.tv_sec); 1751 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1752 inode->i_ctime.tv_nsec); 1753 1754 btrfs_set_stack_timespec_sec(&inode_item->otime, 1755 BTRFS_I(inode)->i_otime.tv_sec); 1756 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1757 BTRFS_I(inode)->i_otime.tv_nsec); 1758 } 1759 1760 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1761 { 1762 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1763 struct btrfs_delayed_node *delayed_node; 1764 struct btrfs_inode_item *inode_item; 1765 1766 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1767 if (!delayed_node) 1768 return -ENOENT; 1769 1770 mutex_lock(&delayed_node->mutex); 1771 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1772 mutex_unlock(&delayed_node->mutex); 1773 btrfs_release_delayed_node(delayed_node); 1774 return -ENOENT; 1775 } 1776 1777 inode_item = &delayed_node->inode_item; 1778 1779 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1780 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1781 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1782 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1783 round_up(i_size_read(inode), fs_info->sectorsize)); 1784 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1785 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1786 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1787 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1788 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1789 1790 inode_set_iversion_queried(inode, 1791 btrfs_stack_inode_sequence(inode_item)); 1792 inode->i_rdev = 0; 1793 *rdev = btrfs_stack_inode_rdev(inode_item); 1794 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1795 1796 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1797 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1798 1799 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1800 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1801 1802 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1803 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1804 1805 BTRFS_I(inode)->i_otime.tv_sec = 1806 btrfs_stack_timespec_sec(&inode_item->otime); 1807 BTRFS_I(inode)->i_otime.tv_nsec = 1808 btrfs_stack_timespec_nsec(&inode_item->otime); 1809 1810 inode->i_generation = BTRFS_I(inode)->generation; 1811 BTRFS_I(inode)->index_cnt = (u64)-1; 1812 1813 mutex_unlock(&delayed_node->mutex); 1814 btrfs_release_delayed_node(delayed_node); 1815 return 0; 1816 } 1817 1818 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1819 struct btrfs_root *root, 1820 struct btrfs_inode *inode) 1821 { 1822 struct btrfs_delayed_node *delayed_node; 1823 int ret = 0; 1824 1825 delayed_node = btrfs_get_or_create_delayed_node(inode); 1826 if (IS_ERR(delayed_node)) 1827 return PTR_ERR(delayed_node); 1828 1829 mutex_lock(&delayed_node->mutex); 1830 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1831 fill_stack_inode_item(trans, &delayed_node->inode_item, 1832 &inode->vfs_inode); 1833 goto release_node; 1834 } 1835 1836 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1837 delayed_node); 1838 if (ret) 1839 goto release_node; 1840 1841 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1842 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1843 delayed_node->count++; 1844 atomic_inc(&root->fs_info->delayed_root->items); 1845 release_node: 1846 mutex_unlock(&delayed_node->mutex); 1847 btrfs_release_delayed_node(delayed_node); 1848 return ret; 1849 } 1850 1851 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1852 { 1853 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1854 struct btrfs_delayed_node *delayed_node; 1855 1856 /* 1857 * we don't do delayed inode updates during log recovery because it 1858 * leads to enospc problems. This means we also can't do 1859 * delayed inode refs 1860 */ 1861 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1862 return -EAGAIN; 1863 1864 delayed_node = btrfs_get_or_create_delayed_node(inode); 1865 if (IS_ERR(delayed_node)) 1866 return PTR_ERR(delayed_node); 1867 1868 /* 1869 * We don't reserve space for inode ref deletion is because: 1870 * - We ONLY do async inode ref deletion for the inode who has only 1871 * one link(i_nlink == 1), it means there is only one inode ref. 1872 * And in most case, the inode ref and the inode item are in the 1873 * same leaf, and we will deal with them at the same time. 1874 * Since we are sure we will reserve the space for the inode item, 1875 * it is unnecessary to reserve space for inode ref deletion. 1876 * - If the inode ref and the inode item are not in the same leaf, 1877 * We also needn't worry about enospc problem, because we reserve 1878 * much more space for the inode update than it needs. 1879 * - At the worst, we can steal some space from the global reservation. 1880 * It is very rare. 1881 */ 1882 mutex_lock(&delayed_node->mutex); 1883 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1884 goto release_node; 1885 1886 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1887 delayed_node->count++; 1888 atomic_inc(&fs_info->delayed_root->items); 1889 release_node: 1890 mutex_unlock(&delayed_node->mutex); 1891 btrfs_release_delayed_node(delayed_node); 1892 return 0; 1893 } 1894 1895 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1896 { 1897 struct btrfs_root *root = delayed_node->root; 1898 struct btrfs_fs_info *fs_info = root->fs_info; 1899 struct btrfs_delayed_item *curr_item, *prev_item; 1900 1901 mutex_lock(&delayed_node->mutex); 1902 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1903 while (curr_item) { 1904 btrfs_delayed_item_release_metadata(root, curr_item); 1905 prev_item = curr_item; 1906 curr_item = __btrfs_next_delayed_item(prev_item); 1907 btrfs_release_delayed_item(prev_item); 1908 } 1909 1910 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1911 while (curr_item) { 1912 btrfs_delayed_item_release_metadata(root, curr_item); 1913 prev_item = curr_item; 1914 curr_item = __btrfs_next_delayed_item(prev_item); 1915 btrfs_release_delayed_item(prev_item); 1916 } 1917 1918 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1919 btrfs_release_delayed_iref(delayed_node); 1920 1921 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1922 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1923 btrfs_release_delayed_inode(delayed_node); 1924 } 1925 mutex_unlock(&delayed_node->mutex); 1926 } 1927 1928 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1929 { 1930 struct btrfs_delayed_node *delayed_node; 1931 1932 delayed_node = btrfs_get_delayed_node(inode); 1933 if (!delayed_node) 1934 return; 1935 1936 __btrfs_kill_delayed_node(delayed_node); 1937 btrfs_release_delayed_node(delayed_node); 1938 } 1939 1940 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1941 { 1942 u64 inode_id = 0; 1943 struct btrfs_delayed_node *delayed_nodes[8]; 1944 int i, n; 1945 1946 while (1) { 1947 spin_lock(&root->inode_lock); 1948 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1949 (void **)delayed_nodes, inode_id, 1950 ARRAY_SIZE(delayed_nodes)); 1951 if (!n) { 1952 spin_unlock(&root->inode_lock); 1953 break; 1954 } 1955 1956 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1957 for (i = 0; i < n; i++) { 1958 /* 1959 * Don't increase refs in case the node is dead and 1960 * about to be removed from the tree in the loop below 1961 */ 1962 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 1963 delayed_nodes[i] = NULL; 1964 } 1965 spin_unlock(&root->inode_lock); 1966 1967 for (i = 0; i < n; i++) { 1968 if (!delayed_nodes[i]) 1969 continue; 1970 __btrfs_kill_delayed_node(delayed_nodes[i]); 1971 btrfs_release_delayed_node(delayed_nodes[i]); 1972 } 1973 } 1974 } 1975 1976 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1977 { 1978 struct btrfs_delayed_node *curr_node, *prev_node; 1979 1980 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1981 while (curr_node) { 1982 __btrfs_kill_delayed_node(curr_node); 1983 1984 prev_node = curr_node; 1985 curr_node = btrfs_next_delayed_node(curr_node); 1986 btrfs_release_delayed_node(prev_node); 1987 } 1988 } 1989 1990