xref: /linux/fs/btrfs/delayed-inode.c (revision d87c25e8f4051f813762da6a182c57f246b17441)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "misc.h"
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
15 #include "locking.h"
16 #include "inode-item.h"
17 
18 #define BTRFS_DELAYED_WRITEBACK		512
19 #define BTRFS_DELAYED_BACKGROUND	128
20 #define BTRFS_DELAYED_BATCH		16
21 
22 static struct kmem_cache *delayed_node_cache;
23 
24 int __init btrfs_delayed_inode_init(void)
25 {
26 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 					sizeof(struct btrfs_delayed_node),
28 					0,
29 					SLAB_MEM_SPREAD,
30 					NULL);
31 	if (!delayed_node_cache)
32 		return -ENOMEM;
33 	return 0;
34 }
35 
36 void __cold btrfs_delayed_inode_exit(void)
37 {
38 	kmem_cache_destroy(delayed_node_cache);
39 }
40 
41 static inline void btrfs_init_delayed_node(
42 				struct btrfs_delayed_node *delayed_node,
43 				struct btrfs_root *root, u64 inode_id)
44 {
45 	delayed_node->root = root;
46 	delayed_node->inode_id = inode_id;
47 	refcount_set(&delayed_node->refs, 0);
48 	delayed_node->ins_root = RB_ROOT_CACHED;
49 	delayed_node->del_root = RB_ROOT_CACHED;
50 	mutex_init(&delayed_node->mutex);
51 	INIT_LIST_HEAD(&delayed_node->n_list);
52 	INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54 
55 static inline int btrfs_is_continuous_delayed_item(
56 					struct btrfs_delayed_item *item1,
57 					struct btrfs_delayed_item *item2)
58 {
59 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 	    item1->key.objectid == item2->key.objectid &&
61 	    item1->key.type == item2->key.type &&
62 	    item1->key.offset + 1 == item2->key.offset)
63 		return 1;
64 	return 0;
65 }
66 
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 		struct btrfs_inode *btrfs_inode)
69 {
70 	struct btrfs_root *root = btrfs_inode->root;
71 	u64 ino = btrfs_ino(btrfs_inode);
72 	struct btrfs_delayed_node *node;
73 
74 	node = READ_ONCE(btrfs_inode->delayed_node);
75 	if (node) {
76 		refcount_inc(&node->refs);
77 		return node;
78 	}
79 
80 	spin_lock(&root->inode_lock);
81 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82 
83 	if (node) {
84 		if (btrfs_inode->delayed_node) {
85 			refcount_inc(&node->refs);	/* can be accessed */
86 			BUG_ON(btrfs_inode->delayed_node != node);
87 			spin_unlock(&root->inode_lock);
88 			return node;
89 		}
90 
91 		/*
92 		 * It's possible that we're racing into the middle of removing
93 		 * this node from the radix tree.  In this case, the refcount
94 		 * was zero and it should never go back to one.  Just return
95 		 * NULL like it was never in the radix at all; our release
96 		 * function is in the process of removing it.
97 		 *
98 		 * Some implementations of refcount_inc refuse to bump the
99 		 * refcount once it has hit zero.  If we don't do this dance
100 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 		 * of actually bumping the refcount.
102 		 *
103 		 * If this node is properly in the radix, we want to bump the
104 		 * refcount twice, once for the inode and once for this get
105 		 * operation.
106 		 */
107 		if (refcount_inc_not_zero(&node->refs)) {
108 			refcount_inc(&node->refs);
109 			btrfs_inode->delayed_node = node;
110 		} else {
111 			node = NULL;
112 		}
113 
114 		spin_unlock(&root->inode_lock);
115 		return node;
116 	}
117 	spin_unlock(&root->inode_lock);
118 
119 	return NULL;
120 }
121 
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 		struct btrfs_inode *btrfs_inode)
125 {
126 	struct btrfs_delayed_node *node;
127 	struct btrfs_root *root = btrfs_inode->root;
128 	u64 ino = btrfs_ino(btrfs_inode);
129 	int ret;
130 
131 again:
132 	node = btrfs_get_delayed_node(btrfs_inode);
133 	if (node)
134 		return node;
135 
136 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 	if (!node)
138 		return ERR_PTR(-ENOMEM);
139 	btrfs_init_delayed_node(node, root, ino);
140 
141 	/* cached in the btrfs inode and can be accessed */
142 	refcount_set(&node->refs, 2);
143 
144 	ret = radix_tree_preload(GFP_NOFS);
145 	if (ret) {
146 		kmem_cache_free(delayed_node_cache, node);
147 		return ERR_PTR(ret);
148 	}
149 
150 	spin_lock(&root->inode_lock);
151 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 	if (ret == -EEXIST) {
153 		spin_unlock(&root->inode_lock);
154 		kmem_cache_free(delayed_node_cache, node);
155 		radix_tree_preload_end();
156 		goto again;
157 	}
158 	btrfs_inode->delayed_node = node;
159 	spin_unlock(&root->inode_lock);
160 	radix_tree_preload_end();
161 
162 	return node;
163 }
164 
165 /*
166  * Call it when holding delayed_node->mutex
167  *
168  * If mod = 1, add this node into the prepared list.
169  */
170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 				     struct btrfs_delayed_node *node,
172 				     int mod)
173 {
174 	spin_lock(&root->lock);
175 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 		if (!list_empty(&node->p_list))
177 			list_move_tail(&node->p_list, &root->prepare_list);
178 		else if (mod)
179 			list_add_tail(&node->p_list, &root->prepare_list);
180 	} else {
181 		list_add_tail(&node->n_list, &root->node_list);
182 		list_add_tail(&node->p_list, &root->prepare_list);
183 		refcount_inc(&node->refs);	/* inserted into list */
184 		root->nodes++;
185 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 	}
187 	spin_unlock(&root->lock);
188 }
189 
190 /* Call it when holding delayed_node->mutex */
191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 				       struct btrfs_delayed_node *node)
193 {
194 	spin_lock(&root->lock);
195 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 		root->nodes--;
197 		refcount_dec(&node->refs);	/* not in the list */
198 		list_del_init(&node->n_list);
199 		if (!list_empty(&node->p_list))
200 			list_del_init(&node->p_list);
201 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 	}
203 	spin_unlock(&root->lock);
204 }
205 
206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 			struct btrfs_delayed_root *delayed_root)
208 {
209 	struct list_head *p;
210 	struct btrfs_delayed_node *node = NULL;
211 
212 	spin_lock(&delayed_root->lock);
213 	if (list_empty(&delayed_root->node_list))
214 		goto out;
215 
216 	p = delayed_root->node_list.next;
217 	node = list_entry(p, struct btrfs_delayed_node, n_list);
218 	refcount_inc(&node->refs);
219 out:
220 	spin_unlock(&delayed_root->lock);
221 
222 	return node;
223 }
224 
225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 						struct btrfs_delayed_node *node)
227 {
228 	struct btrfs_delayed_root *delayed_root;
229 	struct list_head *p;
230 	struct btrfs_delayed_node *next = NULL;
231 
232 	delayed_root = node->root->fs_info->delayed_root;
233 	spin_lock(&delayed_root->lock);
234 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 		/* not in the list */
236 		if (list_empty(&delayed_root->node_list))
237 			goto out;
238 		p = delayed_root->node_list.next;
239 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 		goto out;
241 	else
242 		p = node->n_list.next;
243 
244 	next = list_entry(p, struct btrfs_delayed_node, n_list);
245 	refcount_inc(&next->refs);
246 out:
247 	spin_unlock(&delayed_root->lock);
248 
249 	return next;
250 }
251 
252 static void __btrfs_release_delayed_node(
253 				struct btrfs_delayed_node *delayed_node,
254 				int mod)
255 {
256 	struct btrfs_delayed_root *delayed_root;
257 
258 	if (!delayed_node)
259 		return;
260 
261 	delayed_root = delayed_node->root->fs_info->delayed_root;
262 
263 	mutex_lock(&delayed_node->mutex);
264 	if (delayed_node->count)
265 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 	else
267 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 	mutex_unlock(&delayed_node->mutex);
269 
270 	if (refcount_dec_and_test(&delayed_node->refs)) {
271 		struct btrfs_root *root = delayed_node->root;
272 
273 		spin_lock(&root->inode_lock);
274 		/*
275 		 * Once our refcount goes to zero, nobody is allowed to bump it
276 		 * back up.  We can delete it now.
277 		 */
278 		ASSERT(refcount_read(&delayed_node->refs) == 0);
279 		radix_tree_delete(&root->delayed_nodes_tree,
280 				  delayed_node->inode_id);
281 		spin_unlock(&root->inode_lock);
282 		kmem_cache_free(delayed_node_cache, delayed_node);
283 	}
284 }
285 
286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287 {
288 	__btrfs_release_delayed_node(node, 0);
289 }
290 
291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 					struct btrfs_delayed_root *delayed_root)
293 {
294 	struct list_head *p;
295 	struct btrfs_delayed_node *node = NULL;
296 
297 	spin_lock(&delayed_root->lock);
298 	if (list_empty(&delayed_root->prepare_list))
299 		goto out;
300 
301 	p = delayed_root->prepare_list.next;
302 	list_del_init(p);
303 	node = list_entry(p, struct btrfs_delayed_node, p_list);
304 	refcount_inc(&node->refs);
305 out:
306 	spin_unlock(&delayed_root->lock);
307 
308 	return node;
309 }
310 
311 static inline void btrfs_release_prepared_delayed_node(
312 					struct btrfs_delayed_node *node)
313 {
314 	__btrfs_release_delayed_node(node, 1);
315 }
316 
317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318 {
319 	struct btrfs_delayed_item *item;
320 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 	if (item) {
322 		item->data_len = data_len;
323 		item->ins_or_del = 0;
324 		item->bytes_reserved = 0;
325 		item->delayed_node = NULL;
326 		refcount_set(&item->refs, 1);
327 	}
328 	return item;
329 }
330 
331 /*
332  * __btrfs_lookup_delayed_item - look up the delayed item by key
333  * @delayed_node: pointer to the delayed node
334  * @key:	  the key to look up
335  * @prev:	  used to store the prev item if the right item isn't found
336  * @next:	  used to store the next item if the right item isn't found
337  *
338  * Note: if we don't find the right item, we will return the prev item and
339  * the next item.
340  */
341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 				struct rb_root *root,
343 				struct btrfs_key *key,
344 				struct btrfs_delayed_item **prev,
345 				struct btrfs_delayed_item **next)
346 {
347 	struct rb_node *node, *prev_node = NULL;
348 	struct btrfs_delayed_item *delayed_item = NULL;
349 	int ret = 0;
350 
351 	node = root->rb_node;
352 
353 	while (node) {
354 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 					rb_node);
356 		prev_node = node;
357 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 		if (ret < 0)
359 			node = node->rb_right;
360 		else if (ret > 0)
361 			node = node->rb_left;
362 		else
363 			return delayed_item;
364 	}
365 
366 	if (prev) {
367 		if (!prev_node)
368 			*prev = NULL;
369 		else if (ret < 0)
370 			*prev = delayed_item;
371 		else if ((node = rb_prev(prev_node)) != NULL) {
372 			*prev = rb_entry(node, struct btrfs_delayed_item,
373 					 rb_node);
374 		} else
375 			*prev = NULL;
376 	}
377 
378 	if (next) {
379 		if (!prev_node)
380 			*next = NULL;
381 		else if (ret > 0)
382 			*next = delayed_item;
383 		else if ((node = rb_next(prev_node)) != NULL) {
384 			*next = rb_entry(node, struct btrfs_delayed_item,
385 					 rb_node);
386 		} else
387 			*next = NULL;
388 	}
389 	return NULL;
390 }
391 
392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 					struct btrfs_delayed_node *delayed_node,
394 					struct btrfs_key *key)
395 {
396 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 					   NULL, NULL);
398 }
399 
400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 				    struct btrfs_delayed_item *ins,
402 				    int action)
403 {
404 	struct rb_node **p, *node;
405 	struct rb_node *parent_node = NULL;
406 	struct rb_root_cached *root;
407 	struct btrfs_delayed_item *item;
408 	int cmp;
409 	bool leftmost = true;
410 
411 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 		root = &delayed_node->ins_root;
413 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 		root = &delayed_node->del_root;
415 	else
416 		BUG();
417 	p = &root->rb_root.rb_node;
418 	node = &ins->rb_node;
419 
420 	while (*p) {
421 		parent_node = *p;
422 		item = rb_entry(parent_node, struct btrfs_delayed_item,
423 				 rb_node);
424 
425 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 		if (cmp < 0) {
427 			p = &(*p)->rb_right;
428 			leftmost = false;
429 		} else if (cmp > 0) {
430 			p = &(*p)->rb_left;
431 		} else {
432 			return -EEXIST;
433 		}
434 	}
435 
436 	rb_link_node(node, parent_node, p);
437 	rb_insert_color_cached(node, root, leftmost);
438 	ins->delayed_node = delayed_node;
439 	ins->ins_or_del = action;
440 
441 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
443 	    ins->key.offset >= delayed_node->index_cnt)
444 			delayed_node->index_cnt = ins->key.offset + 1;
445 
446 	delayed_node->count++;
447 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 	return 0;
449 }
450 
451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 					      struct btrfs_delayed_item *item)
453 {
454 	return __btrfs_add_delayed_item(node, item,
455 					BTRFS_DELAYED_INSERTION_ITEM);
456 }
457 
458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 					     struct btrfs_delayed_item *item)
460 {
461 	return __btrfs_add_delayed_item(node, item,
462 					BTRFS_DELAYED_DELETION_ITEM);
463 }
464 
465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466 {
467 	int seq = atomic_inc_return(&delayed_root->items_seq);
468 
469 	/* atomic_dec_return implies a barrier */
470 	if ((atomic_dec_return(&delayed_root->items) <
471 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 		cond_wake_up_nomb(&delayed_root->wait);
473 }
474 
475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476 {
477 	struct rb_root_cached *root;
478 	struct btrfs_delayed_root *delayed_root;
479 
480 	/* Not associated with any delayed_node */
481 	if (!delayed_item->delayed_node)
482 		return;
483 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484 
485 	BUG_ON(!delayed_root);
486 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488 
489 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 		root = &delayed_item->delayed_node->ins_root;
491 	else
492 		root = &delayed_item->delayed_node->del_root;
493 
494 	rb_erase_cached(&delayed_item->rb_node, root);
495 	delayed_item->delayed_node->count--;
496 
497 	finish_one_item(delayed_root);
498 }
499 
500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501 {
502 	if (item) {
503 		__btrfs_remove_delayed_item(item);
504 		if (refcount_dec_and_test(&item->refs))
505 			kfree(item);
506 	}
507 }
508 
509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 					struct btrfs_delayed_node *delayed_node)
511 {
512 	struct rb_node *p;
513 	struct btrfs_delayed_item *item = NULL;
514 
515 	p = rb_first_cached(&delayed_node->ins_root);
516 	if (p)
517 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518 
519 	return item;
520 }
521 
522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 					struct btrfs_delayed_node *delayed_node)
524 {
525 	struct rb_node *p;
526 	struct btrfs_delayed_item *item = NULL;
527 
528 	p = rb_first_cached(&delayed_node->del_root);
529 	if (p)
530 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531 
532 	return item;
533 }
534 
535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 						struct btrfs_delayed_item *item)
537 {
538 	struct rb_node *p;
539 	struct btrfs_delayed_item *next = NULL;
540 
541 	p = rb_next(&item->rb_node);
542 	if (p)
543 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544 
545 	return next;
546 }
547 
548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 					       struct btrfs_root *root,
550 					       struct btrfs_delayed_item *item)
551 {
552 	struct btrfs_block_rsv *src_rsv;
553 	struct btrfs_block_rsv *dst_rsv;
554 	struct btrfs_fs_info *fs_info = root->fs_info;
555 	u64 num_bytes;
556 	int ret;
557 
558 	if (!trans->bytes_reserved)
559 		return 0;
560 
561 	src_rsv = trans->block_rsv;
562 	dst_rsv = &fs_info->delayed_block_rsv;
563 
564 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565 
566 	/*
567 	 * Here we migrate space rsv from transaction rsv, since have already
568 	 * reserved space when starting a transaction.  So no need to reserve
569 	 * qgroup space here.
570 	 */
571 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 	if (!ret) {
573 		trace_btrfs_space_reservation(fs_info, "delayed_item",
574 					      item->key.objectid,
575 					      num_bytes, 1);
576 		item->bytes_reserved = num_bytes;
577 	}
578 
579 	return ret;
580 }
581 
582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 						struct btrfs_delayed_item *item)
584 {
585 	struct btrfs_block_rsv *rsv;
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 
588 	if (!item->bytes_reserved)
589 		return;
590 
591 	rsv = &fs_info->delayed_block_rsv;
592 	/*
593 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 	 * to release/reserve qgroup space.
595 	 */
596 	trace_btrfs_space_reservation(fs_info, "delayed_item",
597 				      item->key.objectid, item->bytes_reserved,
598 				      0);
599 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600 }
601 
602 static int btrfs_delayed_inode_reserve_metadata(
603 					struct btrfs_trans_handle *trans,
604 					struct btrfs_root *root,
605 					struct btrfs_delayed_node *node)
606 {
607 	struct btrfs_fs_info *fs_info = root->fs_info;
608 	struct btrfs_block_rsv *src_rsv;
609 	struct btrfs_block_rsv *dst_rsv;
610 	u64 num_bytes;
611 	int ret;
612 
613 	src_rsv = trans->block_rsv;
614 	dst_rsv = &fs_info->delayed_block_rsv;
615 
616 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
617 
618 	/*
619 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620 	 * which doesn't reserve space for speed.  This is a problem since we
621 	 * still need to reserve space for this update, so try to reserve the
622 	 * space.
623 	 *
624 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625 	 * we always reserve enough to update the inode item.
626 	 */
627 	if (!src_rsv || (!trans->bytes_reserved &&
628 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
630 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
631 		if (ret < 0)
632 			return ret;
633 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
634 					  BTRFS_RESERVE_NO_FLUSH);
635 		/* NO_FLUSH could only fail with -ENOSPC */
636 		ASSERT(ret == 0 || ret == -ENOSPC);
637 		if (ret)
638 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
639 	} else {
640 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
641 	}
642 
643 	if (!ret) {
644 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
645 					      node->inode_id, num_bytes, 1);
646 		node->bytes_reserved = num_bytes;
647 	}
648 
649 	return ret;
650 }
651 
652 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
653 						struct btrfs_delayed_node *node,
654 						bool qgroup_free)
655 {
656 	struct btrfs_block_rsv *rsv;
657 
658 	if (!node->bytes_reserved)
659 		return;
660 
661 	rsv = &fs_info->delayed_block_rsv;
662 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
663 				      node->inode_id, node->bytes_reserved, 0);
664 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
665 	if (qgroup_free)
666 		btrfs_qgroup_free_meta_prealloc(node->root,
667 				node->bytes_reserved);
668 	else
669 		btrfs_qgroup_convert_reserved_meta(node->root,
670 				node->bytes_reserved);
671 	node->bytes_reserved = 0;
672 }
673 
674 /*
675  * Insert a single delayed item or a batch of delayed items that have consecutive
676  * keys if they exist.
677  */
678 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
679 				     struct btrfs_root *root,
680 				     struct btrfs_path *path,
681 				     struct btrfs_delayed_item *first_item)
682 {
683 	LIST_HEAD(item_list);
684 	struct btrfs_delayed_item *curr;
685 	struct btrfs_delayed_item *next;
686 	const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info);
687 	struct btrfs_item_batch batch;
688 	int total_size;
689 	char *ins_data = NULL;
690 	int ret;
691 
692 	list_add_tail(&first_item->tree_list, &item_list);
693 	batch.total_data_size = first_item->data_len;
694 	batch.nr = 1;
695 	total_size = first_item->data_len + sizeof(struct btrfs_item);
696 	curr = first_item;
697 
698 	while (true) {
699 		int next_size;
700 
701 		next = __btrfs_next_delayed_item(curr);
702 		if (!next || !btrfs_is_continuous_delayed_item(curr, next))
703 			break;
704 
705 		next_size = next->data_len + sizeof(struct btrfs_item);
706 		if (total_size + next_size > max_size)
707 			break;
708 
709 		list_add_tail(&next->tree_list, &item_list);
710 		batch.nr++;
711 		total_size += next_size;
712 		batch.total_data_size += next->data_len;
713 		curr = next;
714 	}
715 
716 	if (batch.nr == 1) {
717 		batch.keys = &first_item->key;
718 		batch.data_sizes = &first_item->data_len;
719 	} else {
720 		struct btrfs_key *ins_keys;
721 		u32 *ins_sizes;
722 		int i = 0;
723 
724 		ins_data = kmalloc(batch.nr * sizeof(u32) +
725 				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
726 		if (!ins_data) {
727 			ret = -ENOMEM;
728 			goto out;
729 		}
730 		ins_sizes = (u32 *)ins_data;
731 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
732 		batch.keys = ins_keys;
733 		batch.data_sizes = ins_sizes;
734 		list_for_each_entry(curr, &item_list, tree_list) {
735 			ins_keys[i] = curr->key;
736 			ins_sizes[i] = curr->data_len;
737 			i++;
738 		}
739 	}
740 
741 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
742 	if (ret)
743 		goto out;
744 
745 	list_for_each_entry(curr, &item_list, tree_list) {
746 		char *data_ptr;
747 
748 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
749 		write_extent_buffer(path->nodes[0], &curr->data,
750 				    (unsigned long)data_ptr, curr->data_len);
751 		path->slots[0]++;
752 	}
753 
754 	/*
755 	 * Now release our path before releasing the delayed items and their
756 	 * metadata reservations, so that we don't block other tasks for more
757 	 * time than needed.
758 	 */
759 	btrfs_release_path(path);
760 
761 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
762 		list_del(&curr->tree_list);
763 		btrfs_delayed_item_release_metadata(root, curr);
764 		btrfs_release_delayed_item(curr);
765 	}
766 out:
767 	kfree(ins_data);
768 	return ret;
769 }
770 
771 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
772 				      struct btrfs_path *path,
773 				      struct btrfs_root *root,
774 				      struct btrfs_delayed_node *node)
775 {
776 	int ret = 0;
777 
778 	while (ret == 0) {
779 		struct btrfs_delayed_item *curr;
780 
781 		mutex_lock(&node->mutex);
782 		curr = __btrfs_first_delayed_insertion_item(node);
783 		if (!curr) {
784 			mutex_unlock(&node->mutex);
785 			break;
786 		}
787 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
788 		mutex_unlock(&node->mutex);
789 	}
790 
791 	return ret;
792 }
793 
794 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
795 				    struct btrfs_root *root,
796 				    struct btrfs_path *path,
797 				    struct btrfs_delayed_item *item)
798 {
799 	struct btrfs_delayed_item *curr, *next;
800 	struct extent_buffer *leaf;
801 	struct btrfs_key key;
802 	struct list_head head;
803 	int nitems, i, last_item;
804 	int ret = 0;
805 
806 	BUG_ON(!path->nodes[0]);
807 
808 	leaf = path->nodes[0];
809 
810 	i = path->slots[0];
811 	last_item = btrfs_header_nritems(leaf) - 1;
812 	if (i > last_item)
813 		return -ENOENT;	/* FIXME: Is errno suitable? */
814 
815 	next = item;
816 	INIT_LIST_HEAD(&head);
817 	btrfs_item_key_to_cpu(leaf, &key, i);
818 	nitems = 0;
819 	/*
820 	 * count the number of the dir index items that we can delete in batch
821 	 */
822 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
823 		list_add_tail(&next->tree_list, &head);
824 		nitems++;
825 
826 		curr = next;
827 		next = __btrfs_next_delayed_item(curr);
828 		if (!next)
829 			break;
830 
831 		if (!btrfs_is_continuous_delayed_item(curr, next))
832 			break;
833 
834 		i++;
835 		if (i > last_item)
836 			break;
837 		btrfs_item_key_to_cpu(leaf, &key, i);
838 	}
839 
840 	if (!nitems)
841 		return 0;
842 
843 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
844 	if (ret)
845 		goto out;
846 
847 	list_for_each_entry_safe(curr, next, &head, tree_list) {
848 		btrfs_delayed_item_release_metadata(root, curr);
849 		list_del(&curr->tree_list);
850 		btrfs_release_delayed_item(curr);
851 	}
852 
853 out:
854 	return ret;
855 }
856 
857 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
858 				      struct btrfs_path *path,
859 				      struct btrfs_root *root,
860 				      struct btrfs_delayed_node *node)
861 {
862 	struct btrfs_delayed_item *curr, *prev;
863 	int ret = 0;
864 
865 do_again:
866 	mutex_lock(&node->mutex);
867 	curr = __btrfs_first_delayed_deletion_item(node);
868 	if (!curr)
869 		goto delete_fail;
870 
871 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
872 	if (ret < 0)
873 		goto delete_fail;
874 	else if (ret > 0) {
875 		/*
876 		 * can't find the item which the node points to, so this node
877 		 * is invalid, just drop it.
878 		 */
879 		prev = curr;
880 		curr = __btrfs_next_delayed_item(prev);
881 		btrfs_release_delayed_item(prev);
882 		ret = 0;
883 		btrfs_release_path(path);
884 		if (curr) {
885 			mutex_unlock(&node->mutex);
886 			goto do_again;
887 		} else
888 			goto delete_fail;
889 	}
890 
891 	btrfs_batch_delete_items(trans, root, path, curr);
892 	btrfs_release_path(path);
893 	mutex_unlock(&node->mutex);
894 	goto do_again;
895 
896 delete_fail:
897 	btrfs_release_path(path);
898 	mutex_unlock(&node->mutex);
899 	return ret;
900 }
901 
902 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
903 {
904 	struct btrfs_delayed_root *delayed_root;
905 
906 	if (delayed_node &&
907 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
908 		BUG_ON(!delayed_node->root);
909 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
910 		delayed_node->count--;
911 
912 		delayed_root = delayed_node->root->fs_info->delayed_root;
913 		finish_one_item(delayed_root);
914 	}
915 }
916 
917 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
918 {
919 
920 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
921 		struct btrfs_delayed_root *delayed_root;
922 
923 		ASSERT(delayed_node->root);
924 		delayed_node->count--;
925 
926 		delayed_root = delayed_node->root->fs_info->delayed_root;
927 		finish_one_item(delayed_root);
928 	}
929 }
930 
931 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
932 					struct btrfs_root *root,
933 					struct btrfs_path *path,
934 					struct btrfs_delayed_node *node)
935 {
936 	struct btrfs_fs_info *fs_info = root->fs_info;
937 	struct btrfs_key key;
938 	struct btrfs_inode_item *inode_item;
939 	struct extent_buffer *leaf;
940 	int mod;
941 	int ret;
942 
943 	key.objectid = node->inode_id;
944 	key.type = BTRFS_INODE_ITEM_KEY;
945 	key.offset = 0;
946 
947 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
948 		mod = -1;
949 	else
950 		mod = 1;
951 
952 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
953 	if (ret > 0)
954 		ret = -ENOENT;
955 	if (ret < 0)
956 		goto out;
957 
958 	leaf = path->nodes[0];
959 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
960 				    struct btrfs_inode_item);
961 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
962 			    sizeof(struct btrfs_inode_item));
963 	btrfs_mark_buffer_dirty(leaf);
964 
965 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
966 		goto out;
967 
968 	path->slots[0]++;
969 	if (path->slots[0] >= btrfs_header_nritems(leaf))
970 		goto search;
971 again:
972 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
973 	if (key.objectid != node->inode_id)
974 		goto out;
975 
976 	if (key.type != BTRFS_INODE_REF_KEY &&
977 	    key.type != BTRFS_INODE_EXTREF_KEY)
978 		goto out;
979 
980 	/*
981 	 * Delayed iref deletion is for the inode who has only one link,
982 	 * so there is only one iref. The case that several irefs are
983 	 * in the same item doesn't exist.
984 	 */
985 	btrfs_del_item(trans, root, path);
986 out:
987 	btrfs_release_delayed_iref(node);
988 	btrfs_release_path(path);
989 err_out:
990 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
991 	btrfs_release_delayed_inode(node);
992 
993 	/*
994 	 * If we fail to update the delayed inode we need to abort the
995 	 * transaction, because we could leave the inode with the improper
996 	 * counts behind.
997 	 */
998 	if (ret && ret != -ENOENT)
999 		btrfs_abort_transaction(trans, ret);
1000 
1001 	return ret;
1002 
1003 search:
1004 	btrfs_release_path(path);
1005 
1006 	key.type = BTRFS_INODE_EXTREF_KEY;
1007 	key.offset = -1;
1008 
1009 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1010 	if (ret < 0)
1011 		goto err_out;
1012 	ASSERT(ret);
1013 
1014 	ret = 0;
1015 	leaf = path->nodes[0];
1016 	path->slots[0]--;
1017 	goto again;
1018 }
1019 
1020 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1021 					     struct btrfs_root *root,
1022 					     struct btrfs_path *path,
1023 					     struct btrfs_delayed_node *node)
1024 {
1025 	int ret;
1026 
1027 	mutex_lock(&node->mutex);
1028 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1029 		mutex_unlock(&node->mutex);
1030 		return 0;
1031 	}
1032 
1033 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1034 	mutex_unlock(&node->mutex);
1035 	return ret;
1036 }
1037 
1038 static inline int
1039 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1040 				   struct btrfs_path *path,
1041 				   struct btrfs_delayed_node *node)
1042 {
1043 	int ret;
1044 
1045 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1046 	if (ret)
1047 		return ret;
1048 
1049 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1050 	if (ret)
1051 		return ret;
1052 
1053 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1054 	return ret;
1055 }
1056 
1057 /*
1058  * Called when committing the transaction.
1059  * Returns 0 on success.
1060  * Returns < 0 on error and returns with an aborted transaction with any
1061  * outstanding delayed items cleaned up.
1062  */
1063 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1064 {
1065 	struct btrfs_fs_info *fs_info = trans->fs_info;
1066 	struct btrfs_delayed_root *delayed_root;
1067 	struct btrfs_delayed_node *curr_node, *prev_node;
1068 	struct btrfs_path *path;
1069 	struct btrfs_block_rsv *block_rsv;
1070 	int ret = 0;
1071 	bool count = (nr > 0);
1072 
1073 	if (TRANS_ABORTED(trans))
1074 		return -EIO;
1075 
1076 	path = btrfs_alloc_path();
1077 	if (!path)
1078 		return -ENOMEM;
1079 
1080 	block_rsv = trans->block_rsv;
1081 	trans->block_rsv = &fs_info->delayed_block_rsv;
1082 
1083 	delayed_root = fs_info->delayed_root;
1084 
1085 	curr_node = btrfs_first_delayed_node(delayed_root);
1086 	while (curr_node && (!count || nr--)) {
1087 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1088 							 curr_node);
1089 		if (ret) {
1090 			btrfs_release_delayed_node(curr_node);
1091 			curr_node = NULL;
1092 			btrfs_abort_transaction(trans, ret);
1093 			break;
1094 		}
1095 
1096 		prev_node = curr_node;
1097 		curr_node = btrfs_next_delayed_node(curr_node);
1098 		btrfs_release_delayed_node(prev_node);
1099 	}
1100 
1101 	if (curr_node)
1102 		btrfs_release_delayed_node(curr_node);
1103 	btrfs_free_path(path);
1104 	trans->block_rsv = block_rsv;
1105 
1106 	return ret;
1107 }
1108 
1109 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1110 {
1111 	return __btrfs_run_delayed_items(trans, -1);
1112 }
1113 
1114 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1115 {
1116 	return __btrfs_run_delayed_items(trans, nr);
1117 }
1118 
1119 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120 				     struct btrfs_inode *inode)
1121 {
1122 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1123 	struct btrfs_path *path;
1124 	struct btrfs_block_rsv *block_rsv;
1125 	int ret;
1126 
1127 	if (!delayed_node)
1128 		return 0;
1129 
1130 	mutex_lock(&delayed_node->mutex);
1131 	if (!delayed_node->count) {
1132 		mutex_unlock(&delayed_node->mutex);
1133 		btrfs_release_delayed_node(delayed_node);
1134 		return 0;
1135 	}
1136 	mutex_unlock(&delayed_node->mutex);
1137 
1138 	path = btrfs_alloc_path();
1139 	if (!path) {
1140 		btrfs_release_delayed_node(delayed_node);
1141 		return -ENOMEM;
1142 	}
1143 
1144 	block_rsv = trans->block_rsv;
1145 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1146 
1147 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1148 
1149 	btrfs_release_delayed_node(delayed_node);
1150 	btrfs_free_path(path);
1151 	trans->block_rsv = block_rsv;
1152 
1153 	return ret;
1154 }
1155 
1156 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1157 {
1158 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1159 	struct btrfs_trans_handle *trans;
1160 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1161 	struct btrfs_path *path;
1162 	struct btrfs_block_rsv *block_rsv;
1163 	int ret;
1164 
1165 	if (!delayed_node)
1166 		return 0;
1167 
1168 	mutex_lock(&delayed_node->mutex);
1169 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1170 		mutex_unlock(&delayed_node->mutex);
1171 		btrfs_release_delayed_node(delayed_node);
1172 		return 0;
1173 	}
1174 	mutex_unlock(&delayed_node->mutex);
1175 
1176 	trans = btrfs_join_transaction(delayed_node->root);
1177 	if (IS_ERR(trans)) {
1178 		ret = PTR_ERR(trans);
1179 		goto out;
1180 	}
1181 
1182 	path = btrfs_alloc_path();
1183 	if (!path) {
1184 		ret = -ENOMEM;
1185 		goto trans_out;
1186 	}
1187 
1188 	block_rsv = trans->block_rsv;
1189 	trans->block_rsv = &fs_info->delayed_block_rsv;
1190 
1191 	mutex_lock(&delayed_node->mutex);
1192 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1193 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1194 						   path, delayed_node);
1195 	else
1196 		ret = 0;
1197 	mutex_unlock(&delayed_node->mutex);
1198 
1199 	btrfs_free_path(path);
1200 	trans->block_rsv = block_rsv;
1201 trans_out:
1202 	btrfs_end_transaction(trans);
1203 	btrfs_btree_balance_dirty(fs_info);
1204 out:
1205 	btrfs_release_delayed_node(delayed_node);
1206 
1207 	return ret;
1208 }
1209 
1210 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1211 {
1212 	struct btrfs_delayed_node *delayed_node;
1213 
1214 	delayed_node = READ_ONCE(inode->delayed_node);
1215 	if (!delayed_node)
1216 		return;
1217 
1218 	inode->delayed_node = NULL;
1219 	btrfs_release_delayed_node(delayed_node);
1220 }
1221 
1222 struct btrfs_async_delayed_work {
1223 	struct btrfs_delayed_root *delayed_root;
1224 	int nr;
1225 	struct btrfs_work work;
1226 };
1227 
1228 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1229 {
1230 	struct btrfs_async_delayed_work *async_work;
1231 	struct btrfs_delayed_root *delayed_root;
1232 	struct btrfs_trans_handle *trans;
1233 	struct btrfs_path *path;
1234 	struct btrfs_delayed_node *delayed_node = NULL;
1235 	struct btrfs_root *root;
1236 	struct btrfs_block_rsv *block_rsv;
1237 	int total_done = 0;
1238 
1239 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1240 	delayed_root = async_work->delayed_root;
1241 
1242 	path = btrfs_alloc_path();
1243 	if (!path)
1244 		goto out;
1245 
1246 	do {
1247 		if (atomic_read(&delayed_root->items) <
1248 		    BTRFS_DELAYED_BACKGROUND / 2)
1249 			break;
1250 
1251 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1252 		if (!delayed_node)
1253 			break;
1254 
1255 		root = delayed_node->root;
1256 
1257 		trans = btrfs_join_transaction(root);
1258 		if (IS_ERR(trans)) {
1259 			btrfs_release_path(path);
1260 			btrfs_release_prepared_delayed_node(delayed_node);
1261 			total_done++;
1262 			continue;
1263 		}
1264 
1265 		block_rsv = trans->block_rsv;
1266 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1267 
1268 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1269 
1270 		trans->block_rsv = block_rsv;
1271 		btrfs_end_transaction(trans);
1272 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1273 
1274 		btrfs_release_path(path);
1275 		btrfs_release_prepared_delayed_node(delayed_node);
1276 		total_done++;
1277 
1278 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1279 		 || total_done < async_work->nr);
1280 
1281 	btrfs_free_path(path);
1282 out:
1283 	wake_up(&delayed_root->wait);
1284 	kfree(async_work);
1285 }
1286 
1287 
1288 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1289 				     struct btrfs_fs_info *fs_info, int nr)
1290 {
1291 	struct btrfs_async_delayed_work *async_work;
1292 
1293 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1294 	if (!async_work)
1295 		return -ENOMEM;
1296 
1297 	async_work->delayed_root = delayed_root;
1298 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1299 			NULL);
1300 	async_work->nr = nr;
1301 
1302 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1303 	return 0;
1304 }
1305 
1306 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1307 {
1308 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1309 }
1310 
1311 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1312 {
1313 	int val = atomic_read(&delayed_root->items_seq);
1314 
1315 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1316 		return 1;
1317 
1318 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1319 		return 1;
1320 
1321 	return 0;
1322 }
1323 
1324 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1325 {
1326 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1327 
1328 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1329 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1330 		return;
1331 
1332 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1333 		int seq;
1334 		int ret;
1335 
1336 		seq = atomic_read(&delayed_root->items_seq);
1337 
1338 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1339 		if (ret)
1340 			return;
1341 
1342 		wait_event_interruptible(delayed_root->wait,
1343 					 could_end_wait(delayed_root, seq));
1344 		return;
1345 	}
1346 
1347 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1348 }
1349 
1350 /* Will return 0 or -ENOMEM */
1351 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1352 				   const char *name, int name_len,
1353 				   struct btrfs_inode *dir,
1354 				   struct btrfs_disk_key *disk_key, u8 type,
1355 				   u64 index)
1356 {
1357 	struct btrfs_delayed_node *delayed_node;
1358 	struct btrfs_delayed_item *delayed_item;
1359 	struct btrfs_dir_item *dir_item;
1360 	int ret;
1361 
1362 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1363 	if (IS_ERR(delayed_node))
1364 		return PTR_ERR(delayed_node);
1365 
1366 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1367 	if (!delayed_item) {
1368 		ret = -ENOMEM;
1369 		goto release_node;
1370 	}
1371 
1372 	delayed_item->key.objectid = btrfs_ino(dir);
1373 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1374 	delayed_item->key.offset = index;
1375 
1376 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1377 	dir_item->location = *disk_key;
1378 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1379 	btrfs_set_stack_dir_data_len(dir_item, 0);
1380 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1381 	btrfs_set_stack_dir_type(dir_item, type);
1382 	memcpy((char *)(dir_item + 1), name, name_len);
1383 
1384 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1385 	/*
1386 	 * we have reserved enough space when we start a new transaction,
1387 	 * so reserving metadata failure is impossible
1388 	 */
1389 	BUG_ON(ret);
1390 
1391 	mutex_lock(&delayed_node->mutex);
1392 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1393 	if (unlikely(ret)) {
1394 		btrfs_err(trans->fs_info,
1395 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1396 			  name_len, name, delayed_node->root->root_key.objectid,
1397 			  delayed_node->inode_id, ret);
1398 		BUG();
1399 	}
1400 	mutex_unlock(&delayed_node->mutex);
1401 
1402 release_node:
1403 	btrfs_release_delayed_node(delayed_node);
1404 	return ret;
1405 }
1406 
1407 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1408 					       struct btrfs_delayed_node *node,
1409 					       struct btrfs_key *key)
1410 {
1411 	struct btrfs_delayed_item *item;
1412 
1413 	mutex_lock(&node->mutex);
1414 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1415 	if (!item) {
1416 		mutex_unlock(&node->mutex);
1417 		return 1;
1418 	}
1419 
1420 	btrfs_delayed_item_release_metadata(node->root, item);
1421 	btrfs_release_delayed_item(item);
1422 	mutex_unlock(&node->mutex);
1423 	return 0;
1424 }
1425 
1426 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1427 				   struct btrfs_inode *dir, u64 index)
1428 {
1429 	struct btrfs_delayed_node *node;
1430 	struct btrfs_delayed_item *item;
1431 	struct btrfs_key item_key;
1432 	int ret;
1433 
1434 	node = btrfs_get_or_create_delayed_node(dir);
1435 	if (IS_ERR(node))
1436 		return PTR_ERR(node);
1437 
1438 	item_key.objectid = btrfs_ino(dir);
1439 	item_key.type = BTRFS_DIR_INDEX_KEY;
1440 	item_key.offset = index;
1441 
1442 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1443 						  &item_key);
1444 	if (!ret)
1445 		goto end;
1446 
1447 	item = btrfs_alloc_delayed_item(0);
1448 	if (!item) {
1449 		ret = -ENOMEM;
1450 		goto end;
1451 	}
1452 
1453 	item->key = item_key;
1454 
1455 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1456 	/*
1457 	 * we have reserved enough space when we start a new transaction,
1458 	 * so reserving metadata failure is impossible.
1459 	 */
1460 	if (ret < 0) {
1461 		btrfs_err(trans->fs_info,
1462 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1463 		btrfs_release_delayed_item(item);
1464 		goto end;
1465 	}
1466 
1467 	mutex_lock(&node->mutex);
1468 	ret = __btrfs_add_delayed_deletion_item(node, item);
1469 	if (unlikely(ret)) {
1470 		btrfs_err(trans->fs_info,
1471 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1472 			  index, node->root->root_key.objectid,
1473 			  node->inode_id, ret);
1474 		btrfs_delayed_item_release_metadata(dir->root, item);
1475 		btrfs_release_delayed_item(item);
1476 	}
1477 	mutex_unlock(&node->mutex);
1478 end:
1479 	btrfs_release_delayed_node(node);
1480 	return ret;
1481 }
1482 
1483 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1484 {
1485 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1486 
1487 	if (!delayed_node)
1488 		return -ENOENT;
1489 
1490 	/*
1491 	 * Since we have held i_mutex of this directory, it is impossible that
1492 	 * a new directory index is added into the delayed node and index_cnt
1493 	 * is updated now. So we needn't lock the delayed node.
1494 	 */
1495 	if (!delayed_node->index_cnt) {
1496 		btrfs_release_delayed_node(delayed_node);
1497 		return -EINVAL;
1498 	}
1499 
1500 	inode->index_cnt = delayed_node->index_cnt;
1501 	btrfs_release_delayed_node(delayed_node);
1502 	return 0;
1503 }
1504 
1505 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1506 				     struct list_head *ins_list,
1507 				     struct list_head *del_list)
1508 {
1509 	struct btrfs_delayed_node *delayed_node;
1510 	struct btrfs_delayed_item *item;
1511 
1512 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1513 	if (!delayed_node)
1514 		return false;
1515 
1516 	/*
1517 	 * We can only do one readdir with delayed items at a time because of
1518 	 * item->readdir_list.
1519 	 */
1520 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1521 	btrfs_inode_lock(inode, 0);
1522 
1523 	mutex_lock(&delayed_node->mutex);
1524 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1525 	while (item) {
1526 		refcount_inc(&item->refs);
1527 		list_add_tail(&item->readdir_list, ins_list);
1528 		item = __btrfs_next_delayed_item(item);
1529 	}
1530 
1531 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1532 	while (item) {
1533 		refcount_inc(&item->refs);
1534 		list_add_tail(&item->readdir_list, del_list);
1535 		item = __btrfs_next_delayed_item(item);
1536 	}
1537 	mutex_unlock(&delayed_node->mutex);
1538 	/*
1539 	 * This delayed node is still cached in the btrfs inode, so refs
1540 	 * must be > 1 now, and we needn't check it is going to be freed
1541 	 * or not.
1542 	 *
1543 	 * Besides that, this function is used to read dir, we do not
1544 	 * insert/delete delayed items in this period. So we also needn't
1545 	 * requeue or dequeue this delayed node.
1546 	 */
1547 	refcount_dec(&delayed_node->refs);
1548 
1549 	return true;
1550 }
1551 
1552 void btrfs_readdir_put_delayed_items(struct inode *inode,
1553 				     struct list_head *ins_list,
1554 				     struct list_head *del_list)
1555 {
1556 	struct btrfs_delayed_item *curr, *next;
1557 
1558 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1559 		list_del(&curr->readdir_list);
1560 		if (refcount_dec_and_test(&curr->refs))
1561 			kfree(curr);
1562 	}
1563 
1564 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1565 		list_del(&curr->readdir_list);
1566 		if (refcount_dec_and_test(&curr->refs))
1567 			kfree(curr);
1568 	}
1569 
1570 	/*
1571 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1572 	 * read lock.
1573 	 */
1574 	downgrade_write(&inode->i_rwsem);
1575 }
1576 
1577 int btrfs_should_delete_dir_index(struct list_head *del_list,
1578 				  u64 index)
1579 {
1580 	struct btrfs_delayed_item *curr;
1581 	int ret = 0;
1582 
1583 	list_for_each_entry(curr, del_list, readdir_list) {
1584 		if (curr->key.offset > index)
1585 			break;
1586 		if (curr->key.offset == index) {
1587 			ret = 1;
1588 			break;
1589 		}
1590 	}
1591 	return ret;
1592 }
1593 
1594 /*
1595  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1596  *
1597  */
1598 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1599 				    struct list_head *ins_list)
1600 {
1601 	struct btrfs_dir_item *di;
1602 	struct btrfs_delayed_item *curr, *next;
1603 	struct btrfs_key location;
1604 	char *name;
1605 	int name_len;
1606 	int over = 0;
1607 	unsigned char d_type;
1608 
1609 	if (list_empty(ins_list))
1610 		return 0;
1611 
1612 	/*
1613 	 * Changing the data of the delayed item is impossible. So
1614 	 * we needn't lock them. And we have held i_mutex of the
1615 	 * directory, nobody can delete any directory indexes now.
1616 	 */
1617 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1618 		list_del(&curr->readdir_list);
1619 
1620 		if (curr->key.offset < ctx->pos) {
1621 			if (refcount_dec_and_test(&curr->refs))
1622 				kfree(curr);
1623 			continue;
1624 		}
1625 
1626 		ctx->pos = curr->key.offset;
1627 
1628 		di = (struct btrfs_dir_item *)curr->data;
1629 		name = (char *)(di + 1);
1630 		name_len = btrfs_stack_dir_name_len(di);
1631 
1632 		d_type = fs_ftype_to_dtype(di->type);
1633 		btrfs_disk_key_to_cpu(&location, &di->location);
1634 
1635 		over = !dir_emit(ctx, name, name_len,
1636 			       location.objectid, d_type);
1637 
1638 		if (refcount_dec_and_test(&curr->refs))
1639 			kfree(curr);
1640 
1641 		if (over)
1642 			return 1;
1643 		ctx->pos++;
1644 	}
1645 	return 0;
1646 }
1647 
1648 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1649 				  struct btrfs_inode_item *inode_item,
1650 				  struct inode *inode)
1651 {
1652 	u64 flags;
1653 
1654 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1655 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1656 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1657 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1658 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1659 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1660 	btrfs_set_stack_inode_generation(inode_item,
1661 					 BTRFS_I(inode)->generation);
1662 	btrfs_set_stack_inode_sequence(inode_item,
1663 				       inode_peek_iversion(inode));
1664 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1665 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1666 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1667 					  BTRFS_I(inode)->ro_flags);
1668 	btrfs_set_stack_inode_flags(inode_item, flags);
1669 	btrfs_set_stack_inode_block_group(inode_item, 0);
1670 
1671 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1672 				     inode->i_atime.tv_sec);
1673 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1674 				      inode->i_atime.tv_nsec);
1675 
1676 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1677 				     inode->i_mtime.tv_sec);
1678 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1679 				      inode->i_mtime.tv_nsec);
1680 
1681 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1682 				     inode->i_ctime.tv_sec);
1683 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1684 				      inode->i_ctime.tv_nsec);
1685 
1686 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1687 				     BTRFS_I(inode)->i_otime.tv_sec);
1688 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1689 				     BTRFS_I(inode)->i_otime.tv_nsec);
1690 }
1691 
1692 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1693 {
1694 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1695 	struct btrfs_delayed_node *delayed_node;
1696 	struct btrfs_inode_item *inode_item;
1697 
1698 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1699 	if (!delayed_node)
1700 		return -ENOENT;
1701 
1702 	mutex_lock(&delayed_node->mutex);
1703 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1704 		mutex_unlock(&delayed_node->mutex);
1705 		btrfs_release_delayed_node(delayed_node);
1706 		return -ENOENT;
1707 	}
1708 
1709 	inode_item = &delayed_node->inode_item;
1710 
1711 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1712 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1713 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1714 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1715 			round_up(i_size_read(inode), fs_info->sectorsize));
1716 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1717 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1718 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1719 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1720         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1721 
1722 	inode_set_iversion_queried(inode,
1723 				   btrfs_stack_inode_sequence(inode_item));
1724 	inode->i_rdev = 0;
1725 	*rdev = btrfs_stack_inode_rdev(inode_item);
1726 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1727 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1728 
1729 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1730 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1731 
1732 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1733 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1734 
1735 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1736 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1737 
1738 	BTRFS_I(inode)->i_otime.tv_sec =
1739 		btrfs_stack_timespec_sec(&inode_item->otime);
1740 	BTRFS_I(inode)->i_otime.tv_nsec =
1741 		btrfs_stack_timespec_nsec(&inode_item->otime);
1742 
1743 	inode->i_generation = BTRFS_I(inode)->generation;
1744 	BTRFS_I(inode)->index_cnt = (u64)-1;
1745 
1746 	mutex_unlock(&delayed_node->mutex);
1747 	btrfs_release_delayed_node(delayed_node);
1748 	return 0;
1749 }
1750 
1751 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1752 			       struct btrfs_root *root,
1753 			       struct btrfs_inode *inode)
1754 {
1755 	struct btrfs_delayed_node *delayed_node;
1756 	int ret = 0;
1757 
1758 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1759 	if (IS_ERR(delayed_node))
1760 		return PTR_ERR(delayed_node);
1761 
1762 	mutex_lock(&delayed_node->mutex);
1763 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1764 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1765 				      &inode->vfs_inode);
1766 		goto release_node;
1767 	}
1768 
1769 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1770 	if (ret)
1771 		goto release_node;
1772 
1773 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1774 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1775 	delayed_node->count++;
1776 	atomic_inc(&root->fs_info->delayed_root->items);
1777 release_node:
1778 	mutex_unlock(&delayed_node->mutex);
1779 	btrfs_release_delayed_node(delayed_node);
1780 	return ret;
1781 }
1782 
1783 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1784 {
1785 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1786 	struct btrfs_delayed_node *delayed_node;
1787 
1788 	/*
1789 	 * we don't do delayed inode updates during log recovery because it
1790 	 * leads to enospc problems.  This means we also can't do
1791 	 * delayed inode refs
1792 	 */
1793 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1794 		return -EAGAIN;
1795 
1796 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1797 	if (IS_ERR(delayed_node))
1798 		return PTR_ERR(delayed_node);
1799 
1800 	/*
1801 	 * We don't reserve space for inode ref deletion is because:
1802 	 * - We ONLY do async inode ref deletion for the inode who has only
1803 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1804 	 *   And in most case, the inode ref and the inode item are in the
1805 	 *   same leaf, and we will deal with them at the same time.
1806 	 *   Since we are sure we will reserve the space for the inode item,
1807 	 *   it is unnecessary to reserve space for inode ref deletion.
1808 	 * - If the inode ref and the inode item are not in the same leaf,
1809 	 *   We also needn't worry about enospc problem, because we reserve
1810 	 *   much more space for the inode update than it needs.
1811 	 * - At the worst, we can steal some space from the global reservation.
1812 	 *   It is very rare.
1813 	 */
1814 	mutex_lock(&delayed_node->mutex);
1815 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1816 		goto release_node;
1817 
1818 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1819 	delayed_node->count++;
1820 	atomic_inc(&fs_info->delayed_root->items);
1821 release_node:
1822 	mutex_unlock(&delayed_node->mutex);
1823 	btrfs_release_delayed_node(delayed_node);
1824 	return 0;
1825 }
1826 
1827 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1828 {
1829 	struct btrfs_root *root = delayed_node->root;
1830 	struct btrfs_fs_info *fs_info = root->fs_info;
1831 	struct btrfs_delayed_item *curr_item, *prev_item;
1832 
1833 	mutex_lock(&delayed_node->mutex);
1834 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1835 	while (curr_item) {
1836 		btrfs_delayed_item_release_metadata(root, curr_item);
1837 		prev_item = curr_item;
1838 		curr_item = __btrfs_next_delayed_item(prev_item);
1839 		btrfs_release_delayed_item(prev_item);
1840 	}
1841 
1842 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1843 	while (curr_item) {
1844 		btrfs_delayed_item_release_metadata(root, curr_item);
1845 		prev_item = curr_item;
1846 		curr_item = __btrfs_next_delayed_item(prev_item);
1847 		btrfs_release_delayed_item(prev_item);
1848 	}
1849 
1850 	btrfs_release_delayed_iref(delayed_node);
1851 
1852 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1853 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1854 		btrfs_release_delayed_inode(delayed_node);
1855 	}
1856 	mutex_unlock(&delayed_node->mutex);
1857 }
1858 
1859 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1860 {
1861 	struct btrfs_delayed_node *delayed_node;
1862 
1863 	delayed_node = btrfs_get_delayed_node(inode);
1864 	if (!delayed_node)
1865 		return;
1866 
1867 	__btrfs_kill_delayed_node(delayed_node);
1868 	btrfs_release_delayed_node(delayed_node);
1869 }
1870 
1871 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1872 {
1873 	u64 inode_id = 0;
1874 	struct btrfs_delayed_node *delayed_nodes[8];
1875 	int i, n;
1876 
1877 	while (1) {
1878 		spin_lock(&root->inode_lock);
1879 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1880 					   (void **)delayed_nodes, inode_id,
1881 					   ARRAY_SIZE(delayed_nodes));
1882 		if (!n) {
1883 			spin_unlock(&root->inode_lock);
1884 			break;
1885 		}
1886 
1887 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1888 		for (i = 0; i < n; i++) {
1889 			/*
1890 			 * Don't increase refs in case the node is dead and
1891 			 * about to be removed from the tree in the loop below
1892 			 */
1893 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1894 				delayed_nodes[i] = NULL;
1895 		}
1896 		spin_unlock(&root->inode_lock);
1897 
1898 		for (i = 0; i < n; i++) {
1899 			if (!delayed_nodes[i])
1900 				continue;
1901 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1902 			btrfs_release_delayed_node(delayed_nodes[i]);
1903 		}
1904 	}
1905 }
1906 
1907 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1908 {
1909 	struct btrfs_delayed_node *curr_node, *prev_node;
1910 
1911 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1912 	while (curr_node) {
1913 		__btrfs_kill_delayed_node(curr_node);
1914 
1915 		prev_node = curr_node;
1916 		curr_node = btrfs_next_delayed_node(curr_node);
1917 		btrfs_release_delayed_node(prev_node);
1918 	}
1919 }
1920 
1921