xref: /linux/fs/btrfs/delayed-inode.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 	if (!delayed_node_cache)
33 		return -ENOMEM;
34 	return 0;
35 }
36 
37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 	kmem_cache_destroy(delayed_node_cache);
40 }
41 
42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 	atomic_set(&delayed_root->items, 0);
45 	atomic_set(&delayed_root->items_seq, 0);
46 	delayed_root->nodes = 0;
47 	spin_lock_init(&delayed_root->lock);
48 	init_waitqueue_head(&delayed_root->wait);
49 	INIT_LIST_HEAD(&delayed_root->node_list);
50 	INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52 
53 static inline void btrfs_init_delayed_node(
54 				struct btrfs_delayed_node *delayed_node,
55 				struct btrfs_root *root, u64 inode_id)
56 {
57 	delayed_node->root = root;
58 	delayed_node->inode_id = inode_id;
59 	refcount_set(&delayed_node->refs, 0);
60 	delayed_node->ins_root = RB_ROOT_CACHED;
61 	delayed_node->del_root = RB_ROOT_CACHED;
62 	mutex_init(&delayed_node->mutex);
63 	INIT_LIST_HEAD(&delayed_node->n_list);
64 	INIT_LIST_HEAD(&delayed_node->p_list);
65 }
66 
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 		struct btrfs_inode *btrfs_inode)
69 {
70 	struct btrfs_root *root = btrfs_inode->root;
71 	u64 ino = btrfs_ino(btrfs_inode);
72 	struct btrfs_delayed_node *node;
73 
74 	node = READ_ONCE(btrfs_inode->delayed_node);
75 	if (node) {
76 		refcount_inc(&node->refs);
77 		return node;
78 	}
79 
80 	xa_lock(&root->delayed_nodes);
81 	node = xa_load(&root->delayed_nodes, ino);
82 
83 	if (node) {
84 		if (btrfs_inode->delayed_node) {
85 			refcount_inc(&node->refs);	/* can be accessed */
86 			BUG_ON(btrfs_inode->delayed_node != node);
87 			xa_unlock(&root->delayed_nodes);
88 			return node;
89 		}
90 
91 		/*
92 		 * It's possible that we're racing into the middle of removing
93 		 * this node from the xarray.  In this case, the refcount
94 		 * was zero and it should never go back to one.  Just return
95 		 * NULL like it was never in the xarray at all; our release
96 		 * function is in the process of removing it.
97 		 *
98 		 * Some implementations of refcount_inc refuse to bump the
99 		 * refcount once it has hit zero.  If we don't do this dance
100 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 		 * of actually bumping the refcount.
102 		 *
103 		 * If this node is properly in the xarray, we want to bump the
104 		 * refcount twice, once for the inode and once for this get
105 		 * operation.
106 		 */
107 		if (refcount_inc_not_zero(&node->refs)) {
108 			refcount_inc(&node->refs);
109 			btrfs_inode->delayed_node = node;
110 		} else {
111 			node = NULL;
112 		}
113 
114 		xa_unlock(&root->delayed_nodes);
115 		return node;
116 	}
117 	xa_unlock(&root->delayed_nodes);
118 
119 	return NULL;
120 }
121 
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 		struct btrfs_inode *btrfs_inode)
125 {
126 	struct btrfs_delayed_node *node;
127 	struct btrfs_root *root = btrfs_inode->root;
128 	u64 ino = btrfs_ino(btrfs_inode);
129 	int ret;
130 	void *ptr;
131 
132 again:
133 	node = btrfs_get_delayed_node(btrfs_inode);
134 	if (node)
135 		return node;
136 
137 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
138 	if (!node)
139 		return ERR_PTR(-ENOMEM);
140 	btrfs_init_delayed_node(node, root, ino);
141 
142 	/* Cached in the inode and can be accessed. */
143 	refcount_set(&node->refs, 2);
144 
145 	/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
146 	ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
147 	if (ret == -ENOMEM) {
148 		kmem_cache_free(delayed_node_cache, node);
149 		return ERR_PTR(-ENOMEM);
150 	}
151 	xa_lock(&root->delayed_nodes);
152 	ptr = xa_load(&root->delayed_nodes, ino);
153 	if (ptr) {
154 		/* Somebody inserted it, go back and read it. */
155 		xa_unlock(&root->delayed_nodes);
156 		kmem_cache_free(delayed_node_cache, node);
157 		node = NULL;
158 		goto again;
159 	}
160 	ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
161 	ASSERT(xa_err(ptr) != -EINVAL);
162 	ASSERT(xa_err(ptr) != -ENOMEM);
163 	ASSERT(ptr == NULL);
164 	btrfs_inode->delayed_node = node;
165 	xa_unlock(&root->delayed_nodes);
166 
167 	return node;
168 }
169 
170 /*
171  * Call it when holding delayed_node->mutex
172  *
173  * If mod = 1, add this node into the prepared list.
174  */
175 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
176 				     struct btrfs_delayed_node *node,
177 				     int mod)
178 {
179 	spin_lock(&root->lock);
180 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
181 		if (!list_empty(&node->p_list))
182 			list_move_tail(&node->p_list, &root->prepare_list);
183 		else if (mod)
184 			list_add_tail(&node->p_list, &root->prepare_list);
185 	} else {
186 		list_add_tail(&node->n_list, &root->node_list);
187 		list_add_tail(&node->p_list, &root->prepare_list);
188 		refcount_inc(&node->refs);	/* inserted into list */
189 		root->nodes++;
190 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
191 	}
192 	spin_unlock(&root->lock);
193 }
194 
195 /* Call it when holding delayed_node->mutex */
196 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
197 				       struct btrfs_delayed_node *node)
198 {
199 	spin_lock(&root->lock);
200 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201 		root->nodes--;
202 		refcount_dec(&node->refs);	/* not in the list */
203 		list_del_init(&node->n_list);
204 		if (!list_empty(&node->p_list))
205 			list_del_init(&node->p_list);
206 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
207 	}
208 	spin_unlock(&root->lock);
209 }
210 
211 static struct btrfs_delayed_node *btrfs_first_delayed_node(
212 			struct btrfs_delayed_root *delayed_root)
213 {
214 	struct list_head *p;
215 	struct btrfs_delayed_node *node = NULL;
216 
217 	spin_lock(&delayed_root->lock);
218 	if (list_empty(&delayed_root->node_list))
219 		goto out;
220 
221 	p = delayed_root->node_list.next;
222 	node = list_entry(p, struct btrfs_delayed_node, n_list);
223 	refcount_inc(&node->refs);
224 out:
225 	spin_unlock(&delayed_root->lock);
226 
227 	return node;
228 }
229 
230 static struct btrfs_delayed_node *btrfs_next_delayed_node(
231 						struct btrfs_delayed_node *node)
232 {
233 	struct btrfs_delayed_root *delayed_root;
234 	struct list_head *p;
235 	struct btrfs_delayed_node *next = NULL;
236 
237 	delayed_root = node->root->fs_info->delayed_root;
238 	spin_lock(&delayed_root->lock);
239 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
240 		/* not in the list */
241 		if (list_empty(&delayed_root->node_list))
242 			goto out;
243 		p = delayed_root->node_list.next;
244 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
245 		goto out;
246 	else
247 		p = node->n_list.next;
248 
249 	next = list_entry(p, struct btrfs_delayed_node, n_list);
250 	refcount_inc(&next->refs);
251 out:
252 	spin_unlock(&delayed_root->lock);
253 
254 	return next;
255 }
256 
257 static void __btrfs_release_delayed_node(
258 				struct btrfs_delayed_node *delayed_node,
259 				int mod)
260 {
261 	struct btrfs_delayed_root *delayed_root;
262 
263 	if (!delayed_node)
264 		return;
265 
266 	delayed_root = delayed_node->root->fs_info->delayed_root;
267 
268 	mutex_lock(&delayed_node->mutex);
269 	if (delayed_node->count)
270 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
271 	else
272 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
273 	mutex_unlock(&delayed_node->mutex);
274 
275 	if (refcount_dec_and_test(&delayed_node->refs)) {
276 		struct btrfs_root *root = delayed_node->root;
277 
278 		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
279 		/*
280 		 * Once our refcount goes to zero, nobody is allowed to bump it
281 		 * back up.  We can delete it now.
282 		 */
283 		ASSERT(refcount_read(&delayed_node->refs) == 0);
284 		kmem_cache_free(delayed_node_cache, delayed_node);
285 	}
286 }
287 
288 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
289 {
290 	__btrfs_release_delayed_node(node, 0);
291 }
292 
293 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
294 					struct btrfs_delayed_root *delayed_root)
295 {
296 	struct list_head *p;
297 	struct btrfs_delayed_node *node = NULL;
298 
299 	spin_lock(&delayed_root->lock);
300 	if (list_empty(&delayed_root->prepare_list))
301 		goto out;
302 
303 	p = delayed_root->prepare_list.next;
304 	list_del_init(p);
305 	node = list_entry(p, struct btrfs_delayed_node, p_list);
306 	refcount_inc(&node->refs);
307 out:
308 	spin_unlock(&delayed_root->lock);
309 
310 	return node;
311 }
312 
313 static inline void btrfs_release_prepared_delayed_node(
314 					struct btrfs_delayed_node *node)
315 {
316 	__btrfs_release_delayed_node(node, 1);
317 }
318 
319 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
320 					   struct btrfs_delayed_node *node,
321 					   enum btrfs_delayed_item_type type)
322 {
323 	struct btrfs_delayed_item *item;
324 
325 	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
326 	if (item) {
327 		item->data_len = data_len;
328 		item->type = type;
329 		item->bytes_reserved = 0;
330 		item->delayed_node = node;
331 		RB_CLEAR_NODE(&item->rb_node);
332 		INIT_LIST_HEAD(&item->log_list);
333 		item->logged = false;
334 		refcount_set(&item->refs, 1);
335 	}
336 	return item;
337 }
338 
339 /*
340  * Look up the delayed item by key.
341  *
342  * @delayed_node: pointer to the delayed node
343  * @index:	  the dir index value to lookup (offset of a dir index key)
344  *
345  * Note: if we don't find the right item, we will return the prev item and
346  * the next item.
347  */
348 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
349 				struct rb_root *root,
350 				u64 index)
351 {
352 	struct rb_node *node = root->rb_node;
353 	struct btrfs_delayed_item *delayed_item = NULL;
354 
355 	while (node) {
356 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
357 					rb_node);
358 		if (delayed_item->index < index)
359 			node = node->rb_right;
360 		else if (delayed_item->index > index)
361 			node = node->rb_left;
362 		else
363 			return delayed_item;
364 	}
365 
366 	return NULL;
367 }
368 
369 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
370 				    struct btrfs_delayed_item *ins)
371 {
372 	struct rb_node **p, *node;
373 	struct rb_node *parent_node = NULL;
374 	struct rb_root_cached *root;
375 	struct btrfs_delayed_item *item;
376 	bool leftmost = true;
377 
378 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
379 		root = &delayed_node->ins_root;
380 	else
381 		root = &delayed_node->del_root;
382 
383 	p = &root->rb_root.rb_node;
384 	node = &ins->rb_node;
385 
386 	while (*p) {
387 		parent_node = *p;
388 		item = rb_entry(parent_node, struct btrfs_delayed_item,
389 				 rb_node);
390 
391 		if (item->index < ins->index) {
392 			p = &(*p)->rb_right;
393 			leftmost = false;
394 		} else if (item->index > ins->index) {
395 			p = &(*p)->rb_left;
396 		} else {
397 			return -EEXIST;
398 		}
399 	}
400 
401 	rb_link_node(node, parent_node, p);
402 	rb_insert_color_cached(node, root, leftmost);
403 
404 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
405 	    ins->index >= delayed_node->index_cnt)
406 		delayed_node->index_cnt = ins->index + 1;
407 
408 	delayed_node->count++;
409 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
410 	return 0;
411 }
412 
413 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
414 {
415 	int seq = atomic_inc_return(&delayed_root->items_seq);
416 
417 	/* atomic_dec_return implies a barrier */
418 	if ((atomic_dec_return(&delayed_root->items) <
419 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
420 		cond_wake_up_nomb(&delayed_root->wait);
421 }
422 
423 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
424 {
425 	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
426 	struct rb_root_cached *root;
427 	struct btrfs_delayed_root *delayed_root;
428 
429 	/* Not inserted, ignore it. */
430 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
431 		return;
432 
433 	/* If it's in a rbtree, then we need to have delayed node locked. */
434 	lockdep_assert_held(&delayed_node->mutex);
435 
436 	delayed_root = delayed_node->root->fs_info->delayed_root;
437 
438 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
439 		root = &delayed_node->ins_root;
440 	else
441 		root = &delayed_node->del_root;
442 
443 	rb_erase_cached(&delayed_item->rb_node, root);
444 	RB_CLEAR_NODE(&delayed_item->rb_node);
445 	delayed_node->count--;
446 
447 	finish_one_item(delayed_root);
448 }
449 
450 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
451 {
452 	if (item) {
453 		__btrfs_remove_delayed_item(item);
454 		if (refcount_dec_and_test(&item->refs))
455 			kfree(item);
456 	}
457 }
458 
459 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
460 					struct btrfs_delayed_node *delayed_node)
461 {
462 	struct rb_node *p;
463 	struct btrfs_delayed_item *item = NULL;
464 
465 	p = rb_first_cached(&delayed_node->ins_root);
466 	if (p)
467 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
468 
469 	return item;
470 }
471 
472 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
473 					struct btrfs_delayed_node *delayed_node)
474 {
475 	struct rb_node *p;
476 	struct btrfs_delayed_item *item = NULL;
477 
478 	p = rb_first_cached(&delayed_node->del_root);
479 	if (p)
480 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
481 
482 	return item;
483 }
484 
485 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
486 						struct btrfs_delayed_item *item)
487 {
488 	struct rb_node *p;
489 	struct btrfs_delayed_item *next = NULL;
490 
491 	p = rb_next(&item->rb_node);
492 	if (p)
493 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
494 
495 	return next;
496 }
497 
498 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
499 					       struct btrfs_delayed_item *item)
500 {
501 	struct btrfs_block_rsv *src_rsv;
502 	struct btrfs_block_rsv *dst_rsv;
503 	struct btrfs_fs_info *fs_info = trans->fs_info;
504 	u64 num_bytes;
505 	int ret;
506 
507 	if (!trans->bytes_reserved)
508 		return 0;
509 
510 	src_rsv = trans->block_rsv;
511 	dst_rsv = &fs_info->delayed_block_rsv;
512 
513 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
514 
515 	/*
516 	 * Here we migrate space rsv from transaction rsv, since have already
517 	 * reserved space when starting a transaction.  So no need to reserve
518 	 * qgroup space here.
519 	 */
520 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
521 	if (!ret) {
522 		trace_btrfs_space_reservation(fs_info, "delayed_item",
523 					      item->delayed_node->inode_id,
524 					      num_bytes, 1);
525 		/*
526 		 * For insertions we track reserved metadata space by accounting
527 		 * for the number of leaves that will be used, based on the delayed
528 		 * node's curr_index_batch_size and index_item_leaves fields.
529 		 */
530 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
531 			item->bytes_reserved = num_bytes;
532 	}
533 
534 	return ret;
535 }
536 
537 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
538 						struct btrfs_delayed_item *item)
539 {
540 	struct btrfs_block_rsv *rsv;
541 	struct btrfs_fs_info *fs_info = root->fs_info;
542 
543 	if (!item->bytes_reserved)
544 		return;
545 
546 	rsv = &fs_info->delayed_block_rsv;
547 	/*
548 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
549 	 * to release/reserve qgroup space.
550 	 */
551 	trace_btrfs_space_reservation(fs_info, "delayed_item",
552 				      item->delayed_node->inode_id,
553 				      item->bytes_reserved, 0);
554 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
555 }
556 
557 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
558 					      unsigned int num_leaves)
559 {
560 	struct btrfs_fs_info *fs_info = node->root->fs_info;
561 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
562 
563 	/* There are no space reservations during log replay, bail out. */
564 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
565 		return;
566 
567 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
568 				      bytes, 0);
569 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
570 }
571 
572 static int btrfs_delayed_inode_reserve_metadata(
573 					struct btrfs_trans_handle *trans,
574 					struct btrfs_root *root,
575 					struct btrfs_delayed_node *node)
576 {
577 	struct btrfs_fs_info *fs_info = root->fs_info;
578 	struct btrfs_block_rsv *src_rsv;
579 	struct btrfs_block_rsv *dst_rsv;
580 	u64 num_bytes;
581 	int ret;
582 
583 	src_rsv = trans->block_rsv;
584 	dst_rsv = &fs_info->delayed_block_rsv;
585 
586 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
587 
588 	/*
589 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
590 	 * which doesn't reserve space for speed.  This is a problem since we
591 	 * still need to reserve space for this update, so try to reserve the
592 	 * space.
593 	 *
594 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
595 	 * we always reserve enough to update the inode item.
596 	 */
597 	if (!src_rsv || (!trans->bytes_reserved &&
598 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
599 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
600 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
601 		if (ret < 0)
602 			return ret;
603 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
604 					  BTRFS_RESERVE_NO_FLUSH);
605 		/* NO_FLUSH could only fail with -ENOSPC */
606 		ASSERT(ret == 0 || ret == -ENOSPC);
607 		if (ret)
608 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
609 	} else {
610 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
611 	}
612 
613 	if (!ret) {
614 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
615 					      node->inode_id, num_bytes, 1);
616 		node->bytes_reserved = num_bytes;
617 	}
618 
619 	return ret;
620 }
621 
622 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
623 						struct btrfs_delayed_node *node,
624 						bool qgroup_free)
625 {
626 	struct btrfs_block_rsv *rsv;
627 
628 	if (!node->bytes_reserved)
629 		return;
630 
631 	rsv = &fs_info->delayed_block_rsv;
632 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
633 				      node->inode_id, node->bytes_reserved, 0);
634 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
635 	if (qgroup_free)
636 		btrfs_qgroup_free_meta_prealloc(node->root,
637 				node->bytes_reserved);
638 	else
639 		btrfs_qgroup_convert_reserved_meta(node->root,
640 				node->bytes_reserved);
641 	node->bytes_reserved = 0;
642 }
643 
644 /*
645  * Insert a single delayed item or a batch of delayed items, as many as possible
646  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
647  * in the rbtree, and if there's a gap between two consecutive dir index items,
648  * then it means at some point we had delayed dir indexes to add but they got
649  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
650  * into the subvolume tree. Dir index keys also have their offsets coming from a
651  * monotonically increasing counter, so we can't get new keys with an offset that
652  * fits within a gap between delayed dir index items.
653  */
654 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
655 				     struct btrfs_root *root,
656 				     struct btrfs_path *path,
657 				     struct btrfs_delayed_item *first_item)
658 {
659 	struct btrfs_fs_info *fs_info = root->fs_info;
660 	struct btrfs_delayed_node *node = first_item->delayed_node;
661 	LIST_HEAD(item_list);
662 	struct btrfs_delayed_item *curr;
663 	struct btrfs_delayed_item *next;
664 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
665 	struct btrfs_item_batch batch;
666 	struct btrfs_key first_key;
667 	const u32 first_data_size = first_item->data_len;
668 	int total_size;
669 	char *ins_data = NULL;
670 	int ret;
671 	bool continuous_keys_only = false;
672 
673 	lockdep_assert_held(&node->mutex);
674 
675 	/*
676 	 * During normal operation the delayed index offset is continuously
677 	 * increasing, so we can batch insert all items as there will not be any
678 	 * overlapping keys in the tree.
679 	 *
680 	 * The exception to this is log replay, where we may have interleaved
681 	 * offsets in the tree, so our batch needs to be continuous keys only in
682 	 * order to ensure we do not end up with out of order items in our leaf.
683 	 */
684 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
685 		continuous_keys_only = true;
686 
687 	/*
688 	 * For delayed items to insert, we track reserved metadata bytes based
689 	 * on the number of leaves that we will use.
690 	 * See btrfs_insert_delayed_dir_index() and
691 	 * btrfs_delayed_item_reserve_metadata()).
692 	 */
693 	ASSERT(first_item->bytes_reserved == 0);
694 
695 	list_add_tail(&first_item->tree_list, &item_list);
696 	batch.total_data_size = first_data_size;
697 	batch.nr = 1;
698 	total_size = first_data_size + sizeof(struct btrfs_item);
699 	curr = first_item;
700 
701 	while (true) {
702 		int next_size;
703 
704 		next = __btrfs_next_delayed_item(curr);
705 		if (!next)
706 			break;
707 
708 		/*
709 		 * We cannot allow gaps in the key space if we're doing log
710 		 * replay.
711 		 */
712 		if (continuous_keys_only && (next->index != curr->index + 1))
713 			break;
714 
715 		ASSERT(next->bytes_reserved == 0);
716 
717 		next_size = next->data_len + sizeof(struct btrfs_item);
718 		if (total_size + next_size > max_size)
719 			break;
720 
721 		list_add_tail(&next->tree_list, &item_list);
722 		batch.nr++;
723 		total_size += next_size;
724 		batch.total_data_size += next->data_len;
725 		curr = next;
726 	}
727 
728 	if (batch.nr == 1) {
729 		first_key.objectid = node->inode_id;
730 		first_key.type = BTRFS_DIR_INDEX_KEY;
731 		first_key.offset = first_item->index;
732 		batch.keys = &first_key;
733 		batch.data_sizes = &first_data_size;
734 	} else {
735 		struct btrfs_key *ins_keys;
736 		u32 *ins_sizes;
737 		int i = 0;
738 
739 		ins_data = kmalloc(batch.nr * sizeof(u32) +
740 				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
741 		if (!ins_data) {
742 			ret = -ENOMEM;
743 			goto out;
744 		}
745 		ins_sizes = (u32 *)ins_data;
746 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
747 		batch.keys = ins_keys;
748 		batch.data_sizes = ins_sizes;
749 		list_for_each_entry(curr, &item_list, tree_list) {
750 			ins_keys[i].objectid = node->inode_id;
751 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
752 			ins_keys[i].offset = curr->index;
753 			ins_sizes[i] = curr->data_len;
754 			i++;
755 		}
756 	}
757 
758 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
759 	if (ret)
760 		goto out;
761 
762 	list_for_each_entry(curr, &item_list, tree_list) {
763 		char *data_ptr;
764 
765 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
766 		write_extent_buffer(path->nodes[0], &curr->data,
767 				    (unsigned long)data_ptr, curr->data_len);
768 		path->slots[0]++;
769 	}
770 
771 	/*
772 	 * Now release our path before releasing the delayed items and their
773 	 * metadata reservations, so that we don't block other tasks for more
774 	 * time than needed.
775 	 */
776 	btrfs_release_path(path);
777 
778 	ASSERT(node->index_item_leaves > 0);
779 
780 	/*
781 	 * For normal operations we will batch an entire leaf's worth of delayed
782 	 * items, so if there are more items to process we can decrement
783 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
784 	 *
785 	 * However for log replay we may not have inserted an entire leaf's
786 	 * worth of items, we may have not had continuous items, so decrementing
787 	 * here would mess up the index_item_leaves accounting.  For this case
788 	 * only clean up the accounting when there are no items left.
789 	 */
790 	if (next && !continuous_keys_only) {
791 		/*
792 		 * We inserted one batch of items into a leaf a there are more
793 		 * items to flush in a future batch, now release one unit of
794 		 * metadata space from the delayed block reserve, corresponding
795 		 * the leaf we just flushed to.
796 		 */
797 		btrfs_delayed_item_release_leaves(node, 1);
798 		node->index_item_leaves--;
799 	} else if (!next) {
800 		/*
801 		 * There are no more items to insert. We can have a number of
802 		 * reserved leaves > 1 here - this happens when many dir index
803 		 * items are added and then removed before they are flushed (file
804 		 * names with a very short life, never span a transaction). So
805 		 * release all remaining leaves.
806 		 */
807 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
808 		node->index_item_leaves = 0;
809 	}
810 
811 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
812 		list_del(&curr->tree_list);
813 		btrfs_release_delayed_item(curr);
814 	}
815 out:
816 	kfree(ins_data);
817 	return ret;
818 }
819 
820 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
821 				      struct btrfs_path *path,
822 				      struct btrfs_root *root,
823 				      struct btrfs_delayed_node *node)
824 {
825 	int ret = 0;
826 
827 	while (ret == 0) {
828 		struct btrfs_delayed_item *curr;
829 
830 		mutex_lock(&node->mutex);
831 		curr = __btrfs_first_delayed_insertion_item(node);
832 		if (!curr) {
833 			mutex_unlock(&node->mutex);
834 			break;
835 		}
836 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
837 		mutex_unlock(&node->mutex);
838 	}
839 
840 	return ret;
841 }
842 
843 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
844 				    struct btrfs_root *root,
845 				    struct btrfs_path *path,
846 				    struct btrfs_delayed_item *item)
847 {
848 	const u64 ino = item->delayed_node->inode_id;
849 	struct btrfs_fs_info *fs_info = root->fs_info;
850 	struct btrfs_delayed_item *curr, *next;
851 	struct extent_buffer *leaf = path->nodes[0];
852 	LIST_HEAD(batch_list);
853 	int nitems, slot, last_slot;
854 	int ret;
855 	u64 total_reserved_size = item->bytes_reserved;
856 
857 	ASSERT(leaf != NULL);
858 
859 	slot = path->slots[0];
860 	last_slot = btrfs_header_nritems(leaf) - 1;
861 	/*
862 	 * Our caller always gives us a path pointing to an existing item, so
863 	 * this can not happen.
864 	 */
865 	ASSERT(slot <= last_slot);
866 	if (WARN_ON(slot > last_slot))
867 		return -ENOENT;
868 
869 	nitems = 1;
870 	curr = item;
871 	list_add_tail(&curr->tree_list, &batch_list);
872 
873 	/*
874 	 * Keep checking if the next delayed item matches the next item in the
875 	 * leaf - if so, we can add it to the batch of items to delete from the
876 	 * leaf.
877 	 */
878 	while (slot < last_slot) {
879 		struct btrfs_key key;
880 
881 		next = __btrfs_next_delayed_item(curr);
882 		if (!next)
883 			break;
884 
885 		slot++;
886 		btrfs_item_key_to_cpu(leaf, &key, slot);
887 		if (key.objectid != ino ||
888 		    key.type != BTRFS_DIR_INDEX_KEY ||
889 		    key.offset != next->index)
890 			break;
891 		nitems++;
892 		curr = next;
893 		list_add_tail(&curr->tree_list, &batch_list);
894 		total_reserved_size += curr->bytes_reserved;
895 	}
896 
897 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
898 	if (ret)
899 		return ret;
900 
901 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
902 	if (total_reserved_size > 0) {
903 		/*
904 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
905 		 * don't need to release/reserve qgroup space.
906 		 */
907 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
908 					      total_reserved_size, 0);
909 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
910 					total_reserved_size, NULL);
911 	}
912 
913 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
914 		list_del(&curr->tree_list);
915 		btrfs_release_delayed_item(curr);
916 	}
917 
918 	return 0;
919 }
920 
921 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
922 				      struct btrfs_path *path,
923 				      struct btrfs_root *root,
924 				      struct btrfs_delayed_node *node)
925 {
926 	struct btrfs_key key;
927 	int ret = 0;
928 
929 	key.objectid = node->inode_id;
930 	key.type = BTRFS_DIR_INDEX_KEY;
931 
932 	while (ret == 0) {
933 		struct btrfs_delayed_item *item;
934 
935 		mutex_lock(&node->mutex);
936 		item = __btrfs_first_delayed_deletion_item(node);
937 		if (!item) {
938 			mutex_unlock(&node->mutex);
939 			break;
940 		}
941 
942 		key.offset = item->index;
943 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
944 		if (ret > 0) {
945 			/*
946 			 * There's no matching item in the leaf. This means we
947 			 * have already deleted this item in a past run of the
948 			 * delayed items. We ignore errors when running delayed
949 			 * items from an async context, through a work queue job
950 			 * running btrfs_async_run_delayed_root(), and don't
951 			 * release delayed items that failed to complete. This
952 			 * is because we will retry later, and at transaction
953 			 * commit time we always run delayed items and will
954 			 * then deal with errors if they fail to run again.
955 			 *
956 			 * So just release delayed items for which we can't find
957 			 * an item in the tree, and move to the next item.
958 			 */
959 			btrfs_release_path(path);
960 			btrfs_release_delayed_item(item);
961 			ret = 0;
962 		} else if (ret == 0) {
963 			ret = btrfs_batch_delete_items(trans, root, path, item);
964 			btrfs_release_path(path);
965 		}
966 
967 		/*
968 		 * We unlock and relock on each iteration, this is to prevent
969 		 * blocking other tasks for too long while we are being run from
970 		 * the async context (work queue job). Those tasks are typically
971 		 * running system calls like creat/mkdir/rename/unlink/etc which
972 		 * need to add delayed items to this delayed node.
973 		 */
974 		mutex_unlock(&node->mutex);
975 	}
976 
977 	return ret;
978 }
979 
980 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
981 {
982 	struct btrfs_delayed_root *delayed_root;
983 
984 	if (delayed_node &&
985 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
986 		ASSERT(delayed_node->root);
987 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
988 		delayed_node->count--;
989 
990 		delayed_root = delayed_node->root->fs_info->delayed_root;
991 		finish_one_item(delayed_root);
992 	}
993 }
994 
995 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
996 {
997 
998 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
999 		struct btrfs_delayed_root *delayed_root;
1000 
1001 		ASSERT(delayed_node->root);
1002 		delayed_node->count--;
1003 
1004 		delayed_root = delayed_node->root->fs_info->delayed_root;
1005 		finish_one_item(delayed_root);
1006 	}
1007 }
1008 
1009 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1010 					struct btrfs_root *root,
1011 					struct btrfs_path *path,
1012 					struct btrfs_delayed_node *node)
1013 {
1014 	struct btrfs_fs_info *fs_info = root->fs_info;
1015 	struct btrfs_key key;
1016 	struct btrfs_inode_item *inode_item;
1017 	struct extent_buffer *leaf;
1018 	int mod;
1019 	int ret;
1020 
1021 	key.objectid = node->inode_id;
1022 	key.type = BTRFS_INODE_ITEM_KEY;
1023 	key.offset = 0;
1024 
1025 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1026 		mod = -1;
1027 	else
1028 		mod = 1;
1029 
1030 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1031 	if (ret > 0)
1032 		ret = -ENOENT;
1033 	if (ret < 0)
1034 		goto out;
1035 
1036 	leaf = path->nodes[0];
1037 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1038 				    struct btrfs_inode_item);
1039 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1040 			    sizeof(struct btrfs_inode_item));
1041 	btrfs_mark_buffer_dirty(trans, leaf);
1042 
1043 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1044 		goto out;
1045 
1046 	/*
1047 	 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1048 	 * only one ref left.  Check if the next item is an INODE_REF/EXTREF.
1049 	 *
1050 	 * But if we're the last item already, release and search for the last
1051 	 * INODE_REF/EXTREF.
1052 	 */
1053 	if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1054 		key.objectid = node->inode_id;
1055 		key.type = BTRFS_INODE_EXTREF_KEY;
1056 		key.offset = (u64)-1;
1057 
1058 		btrfs_release_path(path);
1059 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1060 		if (ret < 0)
1061 			goto err_out;
1062 		ASSERT(ret > 0);
1063 		ASSERT(path->slots[0] > 0);
1064 		ret = 0;
1065 		path->slots[0]--;
1066 		leaf = path->nodes[0];
1067 	} else {
1068 		path->slots[0]++;
1069 	}
1070 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1071 	if (key.objectid != node->inode_id)
1072 		goto out;
1073 	if (key.type != BTRFS_INODE_REF_KEY &&
1074 	    key.type != BTRFS_INODE_EXTREF_KEY)
1075 		goto out;
1076 
1077 	/*
1078 	 * Delayed iref deletion is for the inode who has only one link,
1079 	 * so there is only one iref. The case that several irefs are
1080 	 * in the same item doesn't exist.
1081 	 */
1082 	ret = btrfs_del_item(trans, root, path);
1083 out:
1084 	btrfs_release_delayed_iref(node);
1085 	btrfs_release_path(path);
1086 err_out:
1087 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1088 	btrfs_release_delayed_inode(node);
1089 
1090 	/*
1091 	 * If we fail to update the delayed inode we need to abort the
1092 	 * transaction, because we could leave the inode with the improper
1093 	 * counts behind.
1094 	 */
1095 	if (ret && ret != -ENOENT)
1096 		btrfs_abort_transaction(trans, ret);
1097 
1098 	return ret;
1099 }
1100 
1101 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1102 					     struct btrfs_root *root,
1103 					     struct btrfs_path *path,
1104 					     struct btrfs_delayed_node *node)
1105 {
1106 	int ret;
1107 
1108 	mutex_lock(&node->mutex);
1109 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1110 		mutex_unlock(&node->mutex);
1111 		return 0;
1112 	}
1113 
1114 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1115 	mutex_unlock(&node->mutex);
1116 	return ret;
1117 }
1118 
1119 static inline int
1120 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1121 				   struct btrfs_path *path,
1122 				   struct btrfs_delayed_node *node)
1123 {
1124 	int ret;
1125 
1126 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1127 	if (ret)
1128 		return ret;
1129 
1130 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1131 	if (ret)
1132 		return ret;
1133 
1134 	ret = btrfs_record_root_in_trans(trans, node->root);
1135 	if (ret)
1136 		return ret;
1137 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1138 	return ret;
1139 }
1140 
1141 /*
1142  * Called when committing the transaction.
1143  * Returns 0 on success.
1144  * Returns < 0 on error and returns with an aborted transaction with any
1145  * outstanding delayed items cleaned up.
1146  */
1147 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1148 {
1149 	struct btrfs_fs_info *fs_info = trans->fs_info;
1150 	struct btrfs_delayed_root *delayed_root;
1151 	struct btrfs_delayed_node *curr_node, *prev_node;
1152 	struct btrfs_path *path;
1153 	struct btrfs_block_rsv *block_rsv;
1154 	int ret = 0;
1155 	bool count = (nr > 0);
1156 
1157 	if (TRANS_ABORTED(trans))
1158 		return -EIO;
1159 
1160 	path = btrfs_alloc_path();
1161 	if (!path)
1162 		return -ENOMEM;
1163 
1164 	block_rsv = trans->block_rsv;
1165 	trans->block_rsv = &fs_info->delayed_block_rsv;
1166 
1167 	delayed_root = fs_info->delayed_root;
1168 
1169 	curr_node = btrfs_first_delayed_node(delayed_root);
1170 	while (curr_node && (!count || nr--)) {
1171 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1172 							 curr_node);
1173 		if (ret) {
1174 			btrfs_abort_transaction(trans, ret);
1175 			break;
1176 		}
1177 
1178 		prev_node = curr_node;
1179 		curr_node = btrfs_next_delayed_node(curr_node);
1180 		/*
1181 		 * See the comment below about releasing path before releasing
1182 		 * node. If the commit of delayed items was successful the path
1183 		 * should always be released, but in case of an error, it may
1184 		 * point to locked extent buffers (a leaf at the very least).
1185 		 */
1186 		ASSERT(path->nodes[0] == NULL);
1187 		btrfs_release_delayed_node(prev_node);
1188 	}
1189 
1190 	/*
1191 	 * Release the path to avoid a potential deadlock and lockdep splat when
1192 	 * releasing the delayed node, as that requires taking the delayed node's
1193 	 * mutex. If another task starts running delayed items before we take
1194 	 * the mutex, it will first lock the mutex and then it may try to lock
1195 	 * the same btree path (leaf).
1196 	 */
1197 	btrfs_free_path(path);
1198 
1199 	if (curr_node)
1200 		btrfs_release_delayed_node(curr_node);
1201 	trans->block_rsv = block_rsv;
1202 
1203 	return ret;
1204 }
1205 
1206 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1207 {
1208 	return __btrfs_run_delayed_items(trans, -1);
1209 }
1210 
1211 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1212 {
1213 	return __btrfs_run_delayed_items(trans, nr);
1214 }
1215 
1216 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1217 				     struct btrfs_inode *inode)
1218 {
1219 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1220 	struct btrfs_path *path;
1221 	struct btrfs_block_rsv *block_rsv;
1222 	int ret;
1223 
1224 	if (!delayed_node)
1225 		return 0;
1226 
1227 	mutex_lock(&delayed_node->mutex);
1228 	if (!delayed_node->count) {
1229 		mutex_unlock(&delayed_node->mutex);
1230 		btrfs_release_delayed_node(delayed_node);
1231 		return 0;
1232 	}
1233 	mutex_unlock(&delayed_node->mutex);
1234 
1235 	path = btrfs_alloc_path();
1236 	if (!path) {
1237 		btrfs_release_delayed_node(delayed_node);
1238 		return -ENOMEM;
1239 	}
1240 
1241 	block_rsv = trans->block_rsv;
1242 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1243 
1244 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1245 
1246 	btrfs_release_delayed_node(delayed_node);
1247 	btrfs_free_path(path);
1248 	trans->block_rsv = block_rsv;
1249 
1250 	return ret;
1251 }
1252 
1253 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1254 {
1255 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1256 	struct btrfs_trans_handle *trans;
1257 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1258 	struct btrfs_path *path;
1259 	struct btrfs_block_rsv *block_rsv;
1260 	int ret;
1261 
1262 	if (!delayed_node)
1263 		return 0;
1264 
1265 	mutex_lock(&delayed_node->mutex);
1266 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1267 		mutex_unlock(&delayed_node->mutex);
1268 		btrfs_release_delayed_node(delayed_node);
1269 		return 0;
1270 	}
1271 	mutex_unlock(&delayed_node->mutex);
1272 
1273 	trans = btrfs_join_transaction(delayed_node->root);
1274 	if (IS_ERR(trans)) {
1275 		ret = PTR_ERR(trans);
1276 		goto out;
1277 	}
1278 
1279 	path = btrfs_alloc_path();
1280 	if (!path) {
1281 		ret = -ENOMEM;
1282 		goto trans_out;
1283 	}
1284 
1285 	block_rsv = trans->block_rsv;
1286 	trans->block_rsv = &fs_info->delayed_block_rsv;
1287 
1288 	mutex_lock(&delayed_node->mutex);
1289 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1290 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1291 						   path, delayed_node);
1292 	else
1293 		ret = 0;
1294 	mutex_unlock(&delayed_node->mutex);
1295 
1296 	btrfs_free_path(path);
1297 	trans->block_rsv = block_rsv;
1298 trans_out:
1299 	btrfs_end_transaction(trans);
1300 	btrfs_btree_balance_dirty(fs_info);
1301 out:
1302 	btrfs_release_delayed_node(delayed_node);
1303 
1304 	return ret;
1305 }
1306 
1307 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1308 {
1309 	struct btrfs_delayed_node *delayed_node;
1310 
1311 	delayed_node = READ_ONCE(inode->delayed_node);
1312 	if (!delayed_node)
1313 		return;
1314 
1315 	inode->delayed_node = NULL;
1316 	btrfs_release_delayed_node(delayed_node);
1317 }
1318 
1319 struct btrfs_async_delayed_work {
1320 	struct btrfs_delayed_root *delayed_root;
1321 	int nr;
1322 	struct btrfs_work work;
1323 };
1324 
1325 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1326 {
1327 	struct btrfs_async_delayed_work *async_work;
1328 	struct btrfs_delayed_root *delayed_root;
1329 	struct btrfs_trans_handle *trans;
1330 	struct btrfs_path *path;
1331 	struct btrfs_delayed_node *delayed_node = NULL;
1332 	struct btrfs_root *root;
1333 	struct btrfs_block_rsv *block_rsv;
1334 	int total_done = 0;
1335 
1336 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1337 	delayed_root = async_work->delayed_root;
1338 
1339 	path = btrfs_alloc_path();
1340 	if (!path)
1341 		goto out;
1342 
1343 	do {
1344 		if (atomic_read(&delayed_root->items) <
1345 		    BTRFS_DELAYED_BACKGROUND / 2)
1346 			break;
1347 
1348 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1349 		if (!delayed_node)
1350 			break;
1351 
1352 		root = delayed_node->root;
1353 
1354 		trans = btrfs_join_transaction(root);
1355 		if (IS_ERR(trans)) {
1356 			btrfs_release_path(path);
1357 			btrfs_release_prepared_delayed_node(delayed_node);
1358 			total_done++;
1359 			continue;
1360 		}
1361 
1362 		block_rsv = trans->block_rsv;
1363 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1364 
1365 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1366 
1367 		trans->block_rsv = block_rsv;
1368 		btrfs_end_transaction(trans);
1369 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1370 
1371 		btrfs_release_path(path);
1372 		btrfs_release_prepared_delayed_node(delayed_node);
1373 		total_done++;
1374 
1375 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1376 		 || total_done < async_work->nr);
1377 
1378 	btrfs_free_path(path);
1379 out:
1380 	wake_up(&delayed_root->wait);
1381 	kfree(async_work);
1382 }
1383 
1384 
1385 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1386 				     struct btrfs_fs_info *fs_info, int nr)
1387 {
1388 	struct btrfs_async_delayed_work *async_work;
1389 
1390 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1391 	if (!async_work)
1392 		return -ENOMEM;
1393 
1394 	async_work->delayed_root = delayed_root;
1395 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1396 	async_work->nr = nr;
1397 
1398 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1399 	return 0;
1400 }
1401 
1402 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1403 {
1404 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1405 }
1406 
1407 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1408 {
1409 	int val = atomic_read(&delayed_root->items_seq);
1410 
1411 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1412 		return 1;
1413 
1414 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1415 		return 1;
1416 
1417 	return 0;
1418 }
1419 
1420 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1421 {
1422 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1423 
1424 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1425 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1426 		return;
1427 
1428 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1429 		int seq;
1430 		int ret;
1431 
1432 		seq = atomic_read(&delayed_root->items_seq);
1433 
1434 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1435 		if (ret)
1436 			return;
1437 
1438 		wait_event_interruptible(delayed_root->wait,
1439 					 could_end_wait(delayed_root, seq));
1440 		return;
1441 	}
1442 
1443 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1444 }
1445 
1446 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1447 {
1448 	struct btrfs_fs_info *fs_info = trans->fs_info;
1449 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1450 
1451 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1452 		return;
1453 
1454 	/*
1455 	 * Adding the new dir index item does not require touching another
1456 	 * leaf, so we can release 1 unit of metadata that was previously
1457 	 * reserved when starting the transaction. This applies only to
1458 	 * the case where we had a transaction start and excludes the
1459 	 * transaction join case (when replaying log trees).
1460 	 */
1461 	trace_btrfs_space_reservation(fs_info, "transaction",
1462 				      trans->transid, bytes, 0);
1463 	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1464 	ASSERT(trans->bytes_reserved >= bytes);
1465 	trans->bytes_reserved -= bytes;
1466 }
1467 
1468 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1469 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1470 				   const char *name, int name_len,
1471 				   struct btrfs_inode *dir,
1472 				   const struct btrfs_disk_key *disk_key, u8 flags,
1473 				   u64 index)
1474 {
1475 	struct btrfs_fs_info *fs_info = trans->fs_info;
1476 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1477 	struct btrfs_delayed_node *delayed_node;
1478 	struct btrfs_delayed_item *delayed_item;
1479 	struct btrfs_dir_item *dir_item;
1480 	bool reserve_leaf_space;
1481 	u32 data_len;
1482 	int ret;
1483 
1484 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1485 	if (IS_ERR(delayed_node))
1486 		return PTR_ERR(delayed_node);
1487 
1488 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1489 						delayed_node,
1490 						BTRFS_DELAYED_INSERTION_ITEM);
1491 	if (!delayed_item) {
1492 		ret = -ENOMEM;
1493 		goto release_node;
1494 	}
1495 
1496 	delayed_item->index = index;
1497 
1498 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1499 	dir_item->location = *disk_key;
1500 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1501 	btrfs_set_stack_dir_data_len(dir_item, 0);
1502 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1503 	btrfs_set_stack_dir_flags(dir_item, flags);
1504 	memcpy((char *)(dir_item + 1), name, name_len);
1505 
1506 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1507 
1508 	mutex_lock(&delayed_node->mutex);
1509 
1510 	/*
1511 	 * First attempt to insert the delayed item. This is to make the error
1512 	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1513 	 * any other task coming in and running the delayed item before we do
1514 	 * the metadata space reservation below, because we are holding the
1515 	 * delayed node's mutex and that mutex must also be locked before the
1516 	 * node's delayed items can be run.
1517 	 */
1518 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1519 	if (unlikely(ret)) {
1520 		btrfs_err(trans->fs_info,
1521 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1522 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1523 			  delayed_node->inode_id, dir->index_cnt,
1524 			  delayed_node->index_cnt, ret);
1525 		btrfs_release_delayed_item(delayed_item);
1526 		btrfs_release_dir_index_item_space(trans);
1527 		mutex_unlock(&delayed_node->mutex);
1528 		goto release_node;
1529 	}
1530 
1531 	if (delayed_node->index_item_leaves == 0 ||
1532 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1533 		delayed_node->curr_index_batch_size = data_len;
1534 		reserve_leaf_space = true;
1535 	} else {
1536 		delayed_node->curr_index_batch_size += data_len;
1537 		reserve_leaf_space = false;
1538 	}
1539 
1540 	if (reserve_leaf_space) {
1541 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1542 		/*
1543 		 * Space was reserved for a dir index item insertion when we
1544 		 * started the transaction, so getting a failure here should be
1545 		 * impossible.
1546 		 */
1547 		if (WARN_ON(ret)) {
1548 			btrfs_release_delayed_item(delayed_item);
1549 			mutex_unlock(&delayed_node->mutex);
1550 			goto release_node;
1551 		}
1552 
1553 		delayed_node->index_item_leaves++;
1554 	} else {
1555 		btrfs_release_dir_index_item_space(trans);
1556 	}
1557 	mutex_unlock(&delayed_node->mutex);
1558 
1559 release_node:
1560 	btrfs_release_delayed_node(delayed_node);
1561 	return ret;
1562 }
1563 
1564 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1565 					       struct btrfs_delayed_node *node,
1566 					       u64 index)
1567 {
1568 	struct btrfs_delayed_item *item;
1569 
1570 	mutex_lock(&node->mutex);
1571 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1572 	if (!item) {
1573 		mutex_unlock(&node->mutex);
1574 		return 1;
1575 	}
1576 
1577 	/*
1578 	 * For delayed items to insert, we track reserved metadata bytes based
1579 	 * on the number of leaves that we will use.
1580 	 * See btrfs_insert_delayed_dir_index() and
1581 	 * btrfs_delayed_item_reserve_metadata()).
1582 	 */
1583 	ASSERT(item->bytes_reserved == 0);
1584 	ASSERT(node->index_item_leaves > 0);
1585 
1586 	/*
1587 	 * If there's only one leaf reserved, we can decrement this item from the
1588 	 * current batch, otherwise we can not because we don't know which leaf
1589 	 * it belongs to. With the current limit on delayed items, we rarely
1590 	 * accumulate enough dir index items to fill more than one leaf (even
1591 	 * when using a leaf size of 4K).
1592 	 */
1593 	if (node->index_item_leaves == 1) {
1594 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1595 
1596 		ASSERT(node->curr_index_batch_size >= data_len);
1597 		node->curr_index_batch_size -= data_len;
1598 	}
1599 
1600 	btrfs_release_delayed_item(item);
1601 
1602 	/* If we now have no more dir index items, we can release all leaves. */
1603 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1604 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1605 		node->index_item_leaves = 0;
1606 	}
1607 
1608 	mutex_unlock(&node->mutex);
1609 	return 0;
1610 }
1611 
1612 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1613 				   struct btrfs_inode *dir, u64 index)
1614 {
1615 	struct btrfs_delayed_node *node;
1616 	struct btrfs_delayed_item *item;
1617 	int ret;
1618 
1619 	node = btrfs_get_or_create_delayed_node(dir);
1620 	if (IS_ERR(node))
1621 		return PTR_ERR(node);
1622 
1623 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1624 	if (!ret)
1625 		goto end;
1626 
1627 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1628 	if (!item) {
1629 		ret = -ENOMEM;
1630 		goto end;
1631 	}
1632 
1633 	item->index = index;
1634 
1635 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1636 	/*
1637 	 * we have reserved enough space when we start a new transaction,
1638 	 * so reserving metadata failure is impossible.
1639 	 */
1640 	if (ret < 0) {
1641 		btrfs_err(trans->fs_info,
1642 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1643 		btrfs_release_delayed_item(item);
1644 		goto end;
1645 	}
1646 
1647 	mutex_lock(&node->mutex);
1648 	ret = __btrfs_add_delayed_item(node, item);
1649 	if (unlikely(ret)) {
1650 		btrfs_err(trans->fs_info,
1651 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1652 			  index, btrfs_root_id(node->root),
1653 			  node->inode_id, ret);
1654 		btrfs_delayed_item_release_metadata(dir->root, item);
1655 		btrfs_release_delayed_item(item);
1656 	}
1657 	mutex_unlock(&node->mutex);
1658 end:
1659 	btrfs_release_delayed_node(node);
1660 	return ret;
1661 }
1662 
1663 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1664 {
1665 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1666 
1667 	if (!delayed_node)
1668 		return -ENOENT;
1669 
1670 	/*
1671 	 * Since we have held i_mutex of this directory, it is impossible that
1672 	 * a new directory index is added into the delayed node and index_cnt
1673 	 * is updated now. So we needn't lock the delayed node.
1674 	 */
1675 	if (!delayed_node->index_cnt) {
1676 		btrfs_release_delayed_node(delayed_node);
1677 		return -EINVAL;
1678 	}
1679 
1680 	inode->index_cnt = delayed_node->index_cnt;
1681 	btrfs_release_delayed_node(delayed_node);
1682 	return 0;
1683 }
1684 
1685 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1686 				     u64 last_index,
1687 				     struct list_head *ins_list,
1688 				     struct list_head *del_list)
1689 {
1690 	struct btrfs_delayed_node *delayed_node;
1691 	struct btrfs_delayed_item *item;
1692 
1693 	delayed_node = btrfs_get_delayed_node(inode);
1694 	if (!delayed_node)
1695 		return false;
1696 
1697 	/*
1698 	 * We can only do one readdir with delayed items at a time because of
1699 	 * item->readdir_list.
1700 	 */
1701 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1702 	btrfs_inode_lock(inode, 0);
1703 
1704 	mutex_lock(&delayed_node->mutex);
1705 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1706 	while (item && item->index <= last_index) {
1707 		refcount_inc(&item->refs);
1708 		list_add_tail(&item->readdir_list, ins_list);
1709 		item = __btrfs_next_delayed_item(item);
1710 	}
1711 
1712 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1713 	while (item && item->index <= last_index) {
1714 		refcount_inc(&item->refs);
1715 		list_add_tail(&item->readdir_list, del_list);
1716 		item = __btrfs_next_delayed_item(item);
1717 	}
1718 	mutex_unlock(&delayed_node->mutex);
1719 	/*
1720 	 * This delayed node is still cached in the btrfs inode, so refs
1721 	 * must be > 1 now, and we needn't check it is going to be freed
1722 	 * or not.
1723 	 *
1724 	 * Besides that, this function is used to read dir, we do not
1725 	 * insert/delete delayed items in this period. So we also needn't
1726 	 * requeue or dequeue this delayed node.
1727 	 */
1728 	refcount_dec(&delayed_node->refs);
1729 
1730 	return true;
1731 }
1732 
1733 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1734 				     struct list_head *ins_list,
1735 				     struct list_head *del_list)
1736 {
1737 	struct btrfs_delayed_item *curr, *next;
1738 
1739 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1740 		list_del(&curr->readdir_list);
1741 		if (refcount_dec_and_test(&curr->refs))
1742 			kfree(curr);
1743 	}
1744 
1745 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1746 		list_del(&curr->readdir_list);
1747 		if (refcount_dec_and_test(&curr->refs))
1748 			kfree(curr);
1749 	}
1750 
1751 	/*
1752 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1753 	 * read lock.
1754 	 */
1755 	downgrade_write(&inode->vfs_inode.i_rwsem);
1756 }
1757 
1758 int btrfs_should_delete_dir_index(const struct list_head *del_list,
1759 				  u64 index)
1760 {
1761 	struct btrfs_delayed_item *curr;
1762 	int ret = 0;
1763 
1764 	list_for_each_entry(curr, del_list, readdir_list) {
1765 		if (curr->index > index)
1766 			break;
1767 		if (curr->index == index) {
1768 			ret = 1;
1769 			break;
1770 		}
1771 	}
1772 	return ret;
1773 }
1774 
1775 /*
1776  * Read dir info stored in the delayed tree.
1777  */
1778 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1779 				    const struct list_head *ins_list)
1780 {
1781 	struct btrfs_dir_item *di;
1782 	struct btrfs_delayed_item *curr, *next;
1783 	struct btrfs_key location;
1784 	char *name;
1785 	int name_len;
1786 	int over = 0;
1787 	unsigned char d_type;
1788 
1789 	/*
1790 	 * Changing the data of the delayed item is impossible. So
1791 	 * we needn't lock them. And we have held i_mutex of the
1792 	 * directory, nobody can delete any directory indexes now.
1793 	 */
1794 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1795 		list_del(&curr->readdir_list);
1796 
1797 		if (curr->index < ctx->pos) {
1798 			if (refcount_dec_and_test(&curr->refs))
1799 				kfree(curr);
1800 			continue;
1801 		}
1802 
1803 		ctx->pos = curr->index;
1804 
1805 		di = (struct btrfs_dir_item *)curr->data;
1806 		name = (char *)(di + 1);
1807 		name_len = btrfs_stack_dir_name_len(di);
1808 
1809 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1810 		btrfs_disk_key_to_cpu(&location, &di->location);
1811 
1812 		over = !dir_emit(ctx, name, name_len,
1813 			       location.objectid, d_type);
1814 
1815 		if (refcount_dec_and_test(&curr->refs))
1816 			kfree(curr);
1817 
1818 		if (over)
1819 			return 1;
1820 		ctx->pos++;
1821 	}
1822 	return 0;
1823 }
1824 
1825 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1826 				  struct btrfs_inode_item *inode_item,
1827 				  struct inode *inode)
1828 {
1829 	u64 flags;
1830 
1831 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1832 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1833 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1834 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1835 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1836 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1837 	btrfs_set_stack_inode_generation(inode_item,
1838 					 BTRFS_I(inode)->generation);
1839 	btrfs_set_stack_inode_sequence(inode_item,
1840 				       inode_peek_iversion(inode));
1841 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1842 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1843 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1844 					  BTRFS_I(inode)->ro_flags);
1845 	btrfs_set_stack_inode_flags(inode_item, flags);
1846 	btrfs_set_stack_inode_block_group(inode_item, 0);
1847 
1848 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1849 				     inode_get_atime_sec(inode));
1850 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1851 				      inode_get_atime_nsec(inode));
1852 
1853 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1854 				     inode_get_mtime_sec(inode));
1855 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1856 				      inode_get_mtime_nsec(inode));
1857 
1858 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1859 				     inode_get_ctime_sec(inode));
1860 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1861 				      inode_get_ctime_nsec(inode));
1862 
1863 	btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1864 	btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1865 }
1866 
1867 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1868 {
1869 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1870 	struct btrfs_delayed_node *delayed_node;
1871 	struct btrfs_inode_item *inode_item;
1872 
1873 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1874 	if (!delayed_node)
1875 		return -ENOENT;
1876 
1877 	mutex_lock(&delayed_node->mutex);
1878 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1879 		mutex_unlock(&delayed_node->mutex);
1880 		btrfs_release_delayed_node(delayed_node);
1881 		return -ENOENT;
1882 	}
1883 
1884 	inode_item = &delayed_node->inode_item;
1885 
1886 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1887 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1888 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1889 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1890 			round_up(i_size_read(inode), fs_info->sectorsize));
1891 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1892 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1893 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1894 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1895         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1896 
1897 	inode_set_iversion_queried(inode,
1898 				   btrfs_stack_inode_sequence(inode_item));
1899 	inode->i_rdev = 0;
1900 	*rdev = btrfs_stack_inode_rdev(inode_item);
1901 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1902 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1903 
1904 	inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1905 			btrfs_stack_timespec_nsec(&inode_item->atime));
1906 
1907 	inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1908 			btrfs_stack_timespec_nsec(&inode_item->mtime));
1909 
1910 	inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1911 			btrfs_stack_timespec_nsec(&inode_item->ctime));
1912 
1913 	BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1914 	BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1915 
1916 	inode->i_generation = BTRFS_I(inode)->generation;
1917 	if (S_ISDIR(inode->i_mode))
1918 		BTRFS_I(inode)->index_cnt = (u64)-1;
1919 
1920 	mutex_unlock(&delayed_node->mutex);
1921 	btrfs_release_delayed_node(delayed_node);
1922 	return 0;
1923 }
1924 
1925 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1926 			       struct btrfs_inode *inode)
1927 {
1928 	struct btrfs_root *root = inode->root;
1929 	struct btrfs_delayed_node *delayed_node;
1930 	int ret = 0;
1931 
1932 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1933 	if (IS_ERR(delayed_node))
1934 		return PTR_ERR(delayed_node);
1935 
1936 	mutex_lock(&delayed_node->mutex);
1937 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1938 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1939 				      &inode->vfs_inode);
1940 		goto release_node;
1941 	}
1942 
1943 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1944 	if (ret)
1945 		goto release_node;
1946 
1947 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1948 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1949 	delayed_node->count++;
1950 	atomic_inc(&root->fs_info->delayed_root->items);
1951 release_node:
1952 	mutex_unlock(&delayed_node->mutex);
1953 	btrfs_release_delayed_node(delayed_node);
1954 	return ret;
1955 }
1956 
1957 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1958 {
1959 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1960 	struct btrfs_delayed_node *delayed_node;
1961 
1962 	/*
1963 	 * we don't do delayed inode updates during log recovery because it
1964 	 * leads to enospc problems.  This means we also can't do
1965 	 * delayed inode refs
1966 	 */
1967 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1968 		return -EAGAIN;
1969 
1970 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1971 	if (IS_ERR(delayed_node))
1972 		return PTR_ERR(delayed_node);
1973 
1974 	/*
1975 	 * We don't reserve space for inode ref deletion is because:
1976 	 * - We ONLY do async inode ref deletion for the inode who has only
1977 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1978 	 *   And in most case, the inode ref and the inode item are in the
1979 	 *   same leaf, and we will deal with them at the same time.
1980 	 *   Since we are sure we will reserve the space for the inode item,
1981 	 *   it is unnecessary to reserve space for inode ref deletion.
1982 	 * - If the inode ref and the inode item are not in the same leaf,
1983 	 *   We also needn't worry about enospc problem, because we reserve
1984 	 *   much more space for the inode update than it needs.
1985 	 * - At the worst, we can steal some space from the global reservation.
1986 	 *   It is very rare.
1987 	 */
1988 	mutex_lock(&delayed_node->mutex);
1989 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1990 		goto release_node;
1991 
1992 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1993 	delayed_node->count++;
1994 	atomic_inc(&fs_info->delayed_root->items);
1995 release_node:
1996 	mutex_unlock(&delayed_node->mutex);
1997 	btrfs_release_delayed_node(delayed_node);
1998 	return 0;
1999 }
2000 
2001 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2002 {
2003 	struct btrfs_root *root = delayed_node->root;
2004 	struct btrfs_fs_info *fs_info = root->fs_info;
2005 	struct btrfs_delayed_item *curr_item, *prev_item;
2006 
2007 	mutex_lock(&delayed_node->mutex);
2008 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2009 	while (curr_item) {
2010 		prev_item = curr_item;
2011 		curr_item = __btrfs_next_delayed_item(prev_item);
2012 		btrfs_release_delayed_item(prev_item);
2013 	}
2014 
2015 	if (delayed_node->index_item_leaves > 0) {
2016 		btrfs_delayed_item_release_leaves(delayed_node,
2017 					  delayed_node->index_item_leaves);
2018 		delayed_node->index_item_leaves = 0;
2019 	}
2020 
2021 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2022 	while (curr_item) {
2023 		btrfs_delayed_item_release_metadata(root, curr_item);
2024 		prev_item = curr_item;
2025 		curr_item = __btrfs_next_delayed_item(prev_item);
2026 		btrfs_release_delayed_item(prev_item);
2027 	}
2028 
2029 	btrfs_release_delayed_iref(delayed_node);
2030 
2031 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2032 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2033 		btrfs_release_delayed_inode(delayed_node);
2034 	}
2035 	mutex_unlock(&delayed_node->mutex);
2036 }
2037 
2038 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2039 {
2040 	struct btrfs_delayed_node *delayed_node;
2041 
2042 	delayed_node = btrfs_get_delayed_node(inode);
2043 	if (!delayed_node)
2044 		return;
2045 
2046 	__btrfs_kill_delayed_node(delayed_node);
2047 	btrfs_release_delayed_node(delayed_node);
2048 }
2049 
2050 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2051 {
2052 	unsigned long index = 0;
2053 	struct btrfs_delayed_node *delayed_nodes[8];
2054 
2055 	while (1) {
2056 		struct btrfs_delayed_node *node;
2057 		int count;
2058 
2059 		xa_lock(&root->delayed_nodes);
2060 		if (xa_empty(&root->delayed_nodes)) {
2061 			xa_unlock(&root->delayed_nodes);
2062 			return;
2063 		}
2064 
2065 		count = 0;
2066 		xa_for_each_start(&root->delayed_nodes, index, node, index) {
2067 			/*
2068 			 * Don't increase refs in case the node is dead and
2069 			 * about to be removed from the tree in the loop below
2070 			 */
2071 			if (refcount_inc_not_zero(&node->refs)) {
2072 				delayed_nodes[count] = node;
2073 				count++;
2074 			}
2075 			if (count >= ARRAY_SIZE(delayed_nodes))
2076 				break;
2077 		}
2078 		xa_unlock(&root->delayed_nodes);
2079 		index++;
2080 
2081 		for (int i = 0; i < count; i++) {
2082 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2083 			btrfs_release_delayed_node(delayed_nodes[i]);
2084 		}
2085 	}
2086 }
2087 
2088 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2089 {
2090 	struct btrfs_delayed_node *curr_node, *prev_node;
2091 
2092 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2093 	while (curr_node) {
2094 		__btrfs_kill_delayed_node(curr_node);
2095 
2096 		prev_node = curr_node;
2097 		curr_node = btrfs_next_delayed_node(curr_node);
2098 		btrfs_release_delayed_node(prev_node);
2099 	}
2100 }
2101 
2102 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2103 				 struct list_head *ins_list,
2104 				 struct list_head *del_list)
2105 {
2106 	struct btrfs_delayed_node *node;
2107 	struct btrfs_delayed_item *item;
2108 
2109 	node = btrfs_get_delayed_node(inode);
2110 	if (!node)
2111 		return;
2112 
2113 	mutex_lock(&node->mutex);
2114 	item = __btrfs_first_delayed_insertion_item(node);
2115 	while (item) {
2116 		/*
2117 		 * It's possible that the item is already in a log list. This
2118 		 * can happen in case two tasks are trying to log the same
2119 		 * directory. For example if we have tasks A and task B:
2120 		 *
2121 		 * Task A collected the delayed items into a log list while
2122 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2123 		 * only releases the items after logging the inodes they point
2124 		 * to (if they are new inodes), which happens after unlocking
2125 		 * the log mutex;
2126 		 *
2127 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2128 		 * of the same directory inode, before task B releases the
2129 		 * delayed items. This can happen for example when logging some
2130 		 * inode we need to trigger logging of its parent directory, so
2131 		 * logging two files that have the same parent directory can
2132 		 * lead to this.
2133 		 *
2134 		 * If this happens, just ignore delayed items already in a log
2135 		 * list. All the tasks logging the directory are under a log
2136 		 * transaction and whichever finishes first can not sync the log
2137 		 * before the other completes and leaves the log transaction.
2138 		 */
2139 		if (!item->logged && list_empty(&item->log_list)) {
2140 			refcount_inc(&item->refs);
2141 			list_add_tail(&item->log_list, ins_list);
2142 		}
2143 		item = __btrfs_next_delayed_item(item);
2144 	}
2145 
2146 	item = __btrfs_first_delayed_deletion_item(node);
2147 	while (item) {
2148 		/* It may be non-empty, for the same reason mentioned above. */
2149 		if (!item->logged && list_empty(&item->log_list)) {
2150 			refcount_inc(&item->refs);
2151 			list_add_tail(&item->log_list, del_list);
2152 		}
2153 		item = __btrfs_next_delayed_item(item);
2154 	}
2155 	mutex_unlock(&node->mutex);
2156 
2157 	/*
2158 	 * We are called during inode logging, which means the inode is in use
2159 	 * and can not be evicted before we finish logging the inode. So we never
2160 	 * have the last reference on the delayed inode.
2161 	 * Also, we don't use btrfs_release_delayed_node() because that would
2162 	 * requeue the delayed inode (change its order in the list of prepared
2163 	 * nodes) and we don't want to do such change because we don't create or
2164 	 * delete delayed items.
2165 	 */
2166 	ASSERT(refcount_read(&node->refs) > 1);
2167 	refcount_dec(&node->refs);
2168 }
2169 
2170 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2171 				 struct list_head *ins_list,
2172 				 struct list_head *del_list)
2173 {
2174 	struct btrfs_delayed_node *node;
2175 	struct btrfs_delayed_item *item;
2176 	struct btrfs_delayed_item *next;
2177 
2178 	node = btrfs_get_delayed_node(inode);
2179 	if (!node)
2180 		return;
2181 
2182 	mutex_lock(&node->mutex);
2183 
2184 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2185 		item->logged = true;
2186 		list_del_init(&item->log_list);
2187 		if (refcount_dec_and_test(&item->refs))
2188 			kfree(item);
2189 	}
2190 
2191 	list_for_each_entry_safe(item, next, del_list, log_list) {
2192 		item->logged = true;
2193 		list_del_init(&item->log_list);
2194 		if (refcount_dec_and_test(&item->refs))
2195 			kfree(item);
2196 	}
2197 
2198 	mutex_unlock(&node->mutex);
2199 
2200 	/*
2201 	 * We are called during inode logging, which means the inode is in use
2202 	 * and can not be evicted before we finish logging the inode. So we never
2203 	 * have the last reference on the delayed inode.
2204 	 * Also, we don't use btrfs_release_delayed_node() because that would
2205 	 * requeue the delayed inode (change its order in the list of prepared
2206 	 * nodes) and we don't want to do such change because we don't create or
2207 	 * delete delayed items.
2208 	 */
2209 	ASSERT(refcount_read(&node->refs) > 1);
2210 	refcount_dec(&node->refs);
2211 }
2212