1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 32 sizeof(struct btrfs_delayed_node), 33 0, 34 SLAB_MEM_SPREAD, 35 NULL); 36 if (!delayed_node_cache) 37 return -ENOMEM; 38 return 0; 39 } 40 41 void __cold btrfs_delayed_inode_exit(void) 42 { 43 kmem_cache_destroy(delayed_node_cache); 44 } 45 46 static inline void btrfs_init_delayed_node( 47 struct btrfs_delayed_node *delayed_node, 48 struct btrfs_root *root, u64 inode_id) 49 { 50 delayed_node->root = root; 51 delayed_node->inode_id = inode_id; 52 refcount_set(&delayed_node->refs, 0); 53 delayed_node->ins_root = RB_ROOT_CACHED; 54 delayed_node->del_root = RB_ROOT_CACHED; 55 mutex_init(&delayed_node->mutex); 56 INIT_LIST_HEAD(&delayed_node->n_list); 57 INIT_LIST_HEAD(&delayed_node->p_list); 58 } 59 60 static struct btrfs_delayed_node *btrfs_get_delayed_node( 61 struct btrfs_inode *btrfs_inode) 62 { 63 struct btrfs_root *root = btrfs_inode->root; 64 u64 ino = btrfs_ino(btrfs_inode); 65 struct btrfs_delayed_node *node; 66 67 node = READ_ONCE(btrfs_inode->delayed_node); 68 if (node) { 69 refcount_inc(&node->refs); 70 return node; 71 } 72 73 spin_lock(&root->inode_lock); 74 node = xa_load(&root->delayed_nodes, ino); 75 76 if (node) { 77 if (btrfs_inode->delayed_node) { 78 refcount_inc(&node->refs); /* can be accessed */ 79 BUG_ON(btrfs_inode->delayed_node != node); 80 spin_unlock(&root->inode_lock); 81 return node; 82 } 83 84 /* 85 * It's possible that we're racing into the middle of removing 86 * this node from the xarray. In this case, the refcount 87 * was zero and it should never go back to one. Just return 88 * NULL like it was never in the xarray at all; our release 89 * function is in the process of removing it. 90 * 91 * Some implementations of refcount_inc refuse to bump the 92 * refcount once it has hit zero. If we don't do this dance 93 * here, refcount_inc() may decide to just WARN_ONCE() instead 94 * of actually bumping the refcount. 95 * 96 * If this node is properly in the xarray, we want to bump the 97 * refcount twice, once for the inode and once for this get 98 * operation. 99 */ 100 if (refcount_inc_not_zero(&node->refs)) { 101 refcount_inc(&node->refs); 102 btrfs_inode->delayed_node = node; 103 } else { 104 node = NULL; 105 } 106 107 spin_unlock(&root->inode_lock); 108 return node; 109 } 110 spin_unlock(&root->inode_lock); 111 112 return NULL; 113 } 114 115 /* Will return either the node or PTR_ERR(-ENOMEM) */ 116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 117 struct btrfs_inode *btrfs_inode) 118 { 119 struct btrfs_delayed_node *node; 120 struct btrfs_root *root = btrfs_inode->root; 121 u64 ino = btrfs_ino(btrfs_inode); 122 int ret; 123 void *ptr; 124 125 again: 126 node = btrfs_get_delayed_node(btrfs_inode); 127 if (node) 128 return node; 129 130 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 131 if (!node) 132 return ERR_PTR(-ENOMEM); 133 btrfs_init_delayed_node(node, root, ino); 134 135 /* Cached in the inode and can be accessed. */ 136 refcount_set(&node->refs, 2); 137 138 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ 139 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); 140 if (ret == -ENOMEM) { 141 kmem_cache_free(delayed_node_cache, node); 142 return ERR_PTR(-ENOMEM); 143 } 144 spin_lock(&root->inode_lock); 145 ptr = xa_load(&root->delayed_nodes, ino); 146 if (ptr) { 147 /* Somebody inserted it, go back and read it. */ 148 spin_unlock(&root->inode_lock); 149 kmem_cache_free(delayed_node_cache, node); 150 node = NULL; 151 goto again; 152 } 153 ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); 154 ASSERT(xa_err(ptr) != -EINVAL); 155 ASSERT(xa_err(ptr) != -ENOMEM); 156 ASSERT(ptr == NULL); 157 btrfs_inode->delayed_node = node; 158 spin_unlock(&root->inode_lock); 159 160 return node; 161 } 162 163 /* 164 * Call it when holding delayed_node->mutex 165 * 166 * If mod = 1, add this node into the prepared list. 167 */ 168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 169 struct btrfs_delayed_node *node, 170 int mod) 171 { 172 spin_lock(&root->lock); 173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 174 if (!list_empty(&node->p_list)) 175 list_move_tail(&node->p_list, &root->prepare_list); 176 else if (mod) 177 list_add_tail(&node->p_list, &root->prepare_list); 178 } else { 179 list_add_tail(&node->n_list, &root->node_list); 180 list_add_tail(&node->p_list, &root->prepare_list); 181 refcount_inc(&node->refs); /* inserted into list */ 182 root->nodes++; 183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 184 } 185 spin_unlock(&root->lock); 186 } 187 188 /* Call it when holding delayed_node->mutex */ 189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 190 struct btrfs_delayed_node *node) 191 { 192 spin_lock(&root->lock); 193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 194 root->nodes--; 195 refcount_dec(&node->refs); /* not in the list */ 196 list_del_init(&node->n_list); 197 if (!list_empty(&node->p_list)) 198 list_del_init(&node->p_list); 199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 200 } 201 spin_unlock(&root->lock); 202 } 203 204 static struct btrfs_delayed_node *btrfs_first_delayed_node( 205 struct btrfs_delayed_root *delayed_root) 206 { 207 struct list_head *p; 208 struct btrfs_delayed_node *node = NULL; 209 210 spin_lock(&delayed_root->lock); 211 if (list_empty(&delayed_root->node_list)) 212 goto out; 213 214 p = delayed_root->node_list.next; 215 node = list_entry(p, struct btrfs_delayed_node, n_list); 216 refcount_inc(&node->refs); 217 out: 218 spin_unlock(&delayed_root->lock); 219 220 return node; 221 } 222 223 static struct btrfs_delayed_node *btrfs_next_delayed_node( 224 struct btrfs_delayed_node *node) 225 { 226 struct btrfs_delayed_root *delayed_root; 227 struct list_head *p; 228 struct btrfs_delayed_node *next = NULL; 229 230 delayed_root = node->root->fs_info->delayed_root; 231 spin_lock(&delayed_root->lock); 232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 233 /* not in the list */ 234 if (list_empty(&delayed_root->node_list)) 235 goto out; 236 p = delayed_root->node_list.next; 237 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 238 goto out; 239 else 240 p = node->n_list.next; 241 242 next = list_entry(p, struct btrfs_delayed_node, n_list); 243 refcount_inc(&next->refs); 244 out: 245 spin_unlock(&delayed_root->lock); 246 247 return next; 248 } 249 250 static void __btrfs_release_delayed_node( 251 struct btrfs_delayed_node *delayed_node, 252 int mod) 253 { 254 struct btrfs_delayed_root *delayed_root; 255 256 if (!delayed_node) 257 return; 258 259 delayed_root = delayed_node->root->fs_info->delayed_root; 260 261 mutex_lock(&delayed_node->mutex); 262 if (delayed_node->count) 263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 264 else 265 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 266 mutex_unlock(&delayed_node->mutex); 267 268 if (refcount_dec_and_test(&delayed_node->refs)) { 269 struct btrfs_root *root = delayed_node->root; 270 271 spin_lock(&root->inode_lock); 272 /* 273 * Once our refcount goes to zero, nobody is allowed to bump it 274 * back up. We can delete it now. 275 */ 276 ASSERT(refcount_read(&delayed_node->refs) == 0); 277 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 278 spin_unlock(&root->inode_lock); 279 kmem_cache_free(delayed_node_cache, delayed_node); 280 } 281 } 282 283 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 284 { 285 __btrfs_release_delayed_node(node, 0); 286 } 287 288 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 289 struct btrfs_delayed_root *delayed_root) 290 { 291 struct list_head *p; 292 struct btrfs_delayed_node *node = NULL; 293 294 spin_lock(&delayed_root->lock); 295 if (list_empty(&delayed_root->prepare_list)) 296 goto out; 297 298 p = delayed_root->prepare_list.next; 299 list_del_init(p); 300 node = list_entry(p, struct btrfs_delayed_node, p_list); 301 refcount_inc(&node->refs); 302 out: 303 spin_unlock(&delayed_root->lock); 304 305 return node; 306 } 307 308 static inline void btrfs_release_prepared_delayed_node( 309 struct btrfs_delayed_node *node) 310 { 311 __btrfs_release_delayed_node(node, 1); 312 } 313 314 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 315 struct btrfs_delayed_node *node, 316 enum btrfs_delayed_item_type type) 317 { 318 struct btrfs_delayed_item *item; 319 320 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 321 if (item) { 322 item->data_len = data_len; 323 item->type = type; 324 item->bytes_reserved = 0; 325 item->delayed_node = node; 326 RB_CLEAR_NODE(&item->rb_node); 327 INIT_LIST_HEAD(&item->log_list); 328 item->logged = false; 329 refcount_set(&item->refs, 1); 330 } 331 return item; 332 } 333 334 /* 335 * Look up the delayed item by key. 336 * 337 * @delayed_node: pointer to the delayed node 338 * @index: the dir index value to lookup (offset of a dir index key) 339 * 340 * Note: if we don't find the right item, we will return the prev item and 341 * the next item. 342 */ 343 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 344 struct rb_root *root, 345 u64 index) 346 { 347 struct rb_node *node = root->rb_node; 348 struct btrfs_delayed_item *delayed_item = NULL; 349 350 while (node) { 351 delayed_item = rb_entry(node, struct btrfs_delayed_item, 352 rb_node); 353 if (delayed_item->index < index) 354 node = node->rb_right; 355 else if (delayed_item->index > index) 356 node = node->rb_left; 357 else 358 return delayed_item; 359 } 360 361 return NULL; 362 } 363 364 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 365 struct btrfs_delayed_item *ins) 366 { 367 struct rb_node **p, *node; 368 struct rb_node *parent_node = NULL; 369 struct rb_root_cached *root; 370 struct btrfs_delayed_item *item; 371 bool leftmost = true; 372 373 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 374 root = &delayed_node->ins_root; 375 else 376 root = &delayed_node->del_root; 377 378 p = &root->rb_root.rb_node; 379 node = &ins->rb_node; 380 381 while (*p) { 382 parent_node = *p; 383 item = rb_entry(parent_node, struct btrfs_delayed_item, 384 rb_node); 385 386 if (item->index < ins->index) { 387 p = &(*p)->rb_right; 388 leftmost = false; 389 } else if (item->index > ins->index) { 390 p = &(*p)->rb_left; 391 } else { 392 return -EEXIST; 393 } 394 } 395 396 rb_link_node(node, parent_node, p); 397 rb_insert_color_cached(node, root, leftmost); 398 399 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 400 ins->index >= delayed_node->index_cnt) 401 delayed_node->index_cnt = ins->index + 1; 402 403 delayed_node->count++; 404 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 405 return 0; 406 } 407 408 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 409 { 410 int seq = atomic_inc_return(&delayed_root->items_seq); 411 412 /* atomic_dec_return implies a barrier */ 413 if ((atomic_dec_return(&delayed_root->items) < 414 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 415 cond_wake_up_nomb(&delayed_root->wait); 416 } 417 418 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 419 { 420 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 421 struct rb_root_cached *root; 422 struct btrfs_delayed_root *delayed_root; 423 424 /* Not inserted, ignore it. */ 425 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 426 return; 427 428 /* If it's in a rbtree, then we need to have delayed node locked. */ 429 lockdep_assert_held(&delayed_node->mutex); 430 431 delayed_root = delayed_node->root->fs_info->delayed_root; 432 433 BUG_ON(!delayed_root); 434 435 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 436 root = &delayed_node->ins_root; 437 else 438 root = &delayed_node->del_root; 439 440 rb_erase_cached(&delayed_item->rb_node, root); 441 RB_CLEAR_NODE(&delayed_item->rb_node); 442 delayed_node->count--; 443 444 finish_one_item(delayed_root); 445 } 446 447 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 448 { 449 if (item) { 450 __btrfs_remove_delayed_item(item); 451 if (refcount_dec_and_test(&item->refs)) 452 kfree(item); 453 } 454 } 455 456 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 457 struct btrfs_delayed_node *delayed_node) 458 { 459 struct rb_node *p; 460 struct btrfs_delayed_item *item = NULL; 461 462 p = rb_first_cached(&delayed_node->ins_root); 463 if (p) 464 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 465 466 return item; 467 } 468 469 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 470 struct btrfs_delayed_node *delayed_node) 471 { 472 struct rb_node *p; 473 struct btrfs_delayed_item *item = NULL; 474 475 p = rb_first_cached(&delayed_node->del_root); 476 if (p) 477 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 478 479 return item; 480 } 481 482 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 483 struct btrfs_delayed_item *item) 484 { 485 struct rb_node *p; 486 struct btrfs_delayed_item *next = NULL; 487 488 p = rb_next(&item->rb_node); 489 if (p) 490 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 491 492 return next; 493 } 494 495 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 496 struct btrfs_delayed_item *item) 497 { 498 struct btrfs_block_rsv *src_rsv; 499 struct btrfs_block_rsv *dst_rsv; 500 struct btrfs_fs_info *fs_info = trans->fs_info; 501 u64 num_bytes; 502 int ret; 503 504 if (!trans->bytes_reserved) 505 return 0; 506 507 src_rsv = trans->block_rsv; 508 dst_rsv = &fs_info->delayed_block_rsv; 509 510 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 511 512 /* 513 * Here we migrate space rsv from transaction rsv, since have already 514 * reserved space when starting a transaction. So no need to reserve 515 * qgroup space here. 516 */ 517 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 518 if (!ret) { 519 trace_btrfs_space_reservation(fs_info, "delayed_item", 520 item->delayed_node->inode_id, 521 num_bytes, 1); 522 /* 523 * For insertions we track reserved metadata space by accounting 524 * for the number of leaves that will be used, based on the delayed 525 * node's curr_index_batch_size and index_item_leaves fields. 526 */ 527 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 528 item->bytes_reserved = num_bytes; 529 } 530 531 return ret; 532 } 533 534 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 535 struct btrfs_delayed_item *item) 536 { 537 struct btrfs_block_rsv *rsv; 538 struct btrfs_fs_info *fs_info = root->fs_info; 539 540 if (!item->bytes_reserved) 541 return; 542 543 rsv = &fs_info->delayed_block_rsv; 544 /* 545 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 546 * to release/reserve qgroup space. 547 */ 548 trace_btrfs_space_reservation(fs_info, "delayed_item", 549 item->delayed_node->inode_id, 550 item->bytes_reserved, 0); 551 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 552 } 553 554 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 555 unsigned int num_leaves) 556 { 557 struct btrfs_fs_info *fs_info = node->root->fs_info; 558 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 559 560 /* There are no space reservations during log replay, bail out. */ 561 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 562 return; 563 564 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 565 bytes, 0); 566 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 567 } 568 569 static int btrfs_delayed_inode_reserve_metadata( 570 struct btrfs_trans_handle *trans, 571 struct btrfs_root *root, 572 struct btrfs_delayed_node *node) 573 { 574 struct btrfs_fs_info *fs_info = root->fs_info; 575 struct btrfs_block_rsv *src_rsv; 576 struct btrfs_block_rsv *dst_rsv; 577 u64 num_bytes; 578 int ret; 579 580 src_rsv = trans->block_rsv; 581 dst_rsv = &fs_info->delayed_block_rsv; 582 583 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 584 585 /* 586 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 587 * which doesn't reserve space for speed. This is a problem since we 588 * still need to reserve space for this update, so try to reserve the 589 * space. 590 * 591 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 592 * we always reserve enough to update the inode item. 593 */ 594 if (!src_rsv || (!trans->bytes_reserved && 595 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 596 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 597 BTRFS_QGROUP_RSV_META_PREALLOC, true); 598 if (ret < 0) 599 return ret; 600 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 601 BTRFS_RESERVE_NO_FLUSH); 602 /* NO_FLUSH could only fail with -ENOSPC */ 603 ASSERT(ret == 0 || ret == -ENOSPC); 604 if (ret) 605 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 606 } else { 607 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 608 } 609 610 if (!ret) { 611 trace_btrfs_space_reservation(fs_info, "delayed_inode", 612 node->inode_id, num_bytes, 1); 613 node->bytes_reserved = num_bytes; 614 } 615 616 return ret; 617 } 618 619 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 620 struct btrfs_delayed_node *node, 621 bool qgroup_free) 622 { 623 struct btrfs_block_rsv *rsv; 624 625 if (!node->bytes_reserved) 626 return; 627 628 rsv = &fs_info->delayed_block_rsv; 629 trace_btrfs_space_reservation(fs_info, "delayed_inode", 630 node->inode_id, node->bytes_reserved, 0); 631 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 632 if (qgroup_free) 633 btrfs_qgroup_free_meta_prealloc(node->root, 634 node->bytes_reserved); 635 else 636 btrfs_qgroup_convert_reserved_meta(node->root, 637 node->bytes_reserved); 638 node->bytes_reserved = 0; 639 } 640 641 /* 642 * Insert a single delayed item or a batch of delayed items, as many as possible 643 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 644 * in the rbtree, and if there's a gap between two consecutive dir index items, 645 * then it means at some point we had delayed dir indexes to add but they got 646 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 647 * into the subvolume tree. Dir index keys also have their offsets coming from a 648 * monotonically increasing counter, so we can't get new keys with an offset that 649 * fits within a gap between delayed dir index items. 650 */ 651 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 652 struct btrfs_root *root, 653 struct btrfs_path *path, 654 struct btrfs_delayed_item *first_item) 655 { 656 struct btrfs_fs_info *fs_info = root->fs_info; 657 struct btrfs_delayed_node *node = first_item->delayed_node; 658 LIST_HEAD(item_list); 659 struct btrfs_delayed_item *curr; 660 struct btrfs_delayed_item *next; 661 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 662 struct btrfs_item_batch batch; 663 struct btrfs_key first_key; 664 const u32 first_data_size = first_item->data_len; 665 int total_size; 666 char *ins_data = NULL; 667 int ret; 668 bool continuous_keys_only = false; 669 670 lockdep_assert_held(&node->mutex); 671 672 /* 673 * During normal operation the delayed index offset is continuously 674 * increasing, so we can batch insert all items as there will not be any 675 * overlapping keys in the tree. 676 * 677 * The exception to this is log replay, where we may have interleaved 678 * offsets in the tree, so our batch needs to be continuous keys only in 679 * order to ensure we do not end up with out of order items in our leaf. 680 */ 681 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 682 continuous_keys_only = true; 683 684 /* 685 * For delayed items to insert, we track reserved metadata bytes based 686 * on the number of leaves that we will use. 687 * See btrfs_insert_delayed_dir_index() and 688 * btrfs_delayed_item_reserve_metadata()). 689 */ 690 ASSERT(first_item->bytes_reserved == 0); 691 692 list_add_tail(&first_item->tree_list, &item_list); 693 batch.total_data_size = first_data_size; 694 batch.nr = 1; 695 total_size = first_data_size + sizeof(struct btrfs_item); 696 curr = first_item; 697 698 while (true) { 699 int next_size; 700 701 next = __btrfs_next_delayed_item(curr); 702 if (!next) 703 break; 704 705 /* 706 * We cannot allow gaps in the key space if we're doing log 707 * replay. 708 */ 709 if (continuous_keys_only && (next->index != curr->index + 1)) 710 break; 711 712 ASSERT(next->bytes_reserved == 0); 713 714 next_size = next->data_len + sizeof(struct btrfs_item); 715 if (total_size + next_size > max_size) 716 break; 717 718 list_add_tail(&next->tree_list, &item_list); 719 batch.nr++; 720 total_size += next_size; 721 batch.total_data_size += next->data_len; 722 curr = next; 723 } 724 725 if (batch.nr == 1) { 726 first_key.objectid = node->inode_id; 727 first_key.type = BTRFS_DIR_INDEX_KEY; 728 first_key.offset = first_item->index; 729 batch.keys = &first_key; 730 batch.data_sizes = &first_data_size; 731 } else { 732 struct btrfs_key *ins_keys; 733 u32 *ins_sizes; 734 int i = 0; 735 736 ins_data = kmalloc(batch.nr * sizeof(u32) + 737 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 738 if (!ins_data) { 739 ret = -ENOMEM; 740 goto out; 741 } 742 ins_sizes = (u32 *)ins_data; 743 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 744 batch.keys = ins_keys; 745 batch.data_sizes = ins_sizes; 746 list_for_each_entry(curr, &item_list, tree_list) { 747 ins_keys[i].objectid = node->inode_id; 748 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 749 ins_keys[i].offset = curr->index; 750 ins_sizes[i] = curr->data_len; 751 i++; 752 } 753 } 754 755 ret = btrfs_insert_empty_items(trans, root, path, &batch); 756 if (ret) 757 goto out; 758 759 list_for_each_entry(curr, &item_list, tree_list) { 760 char *data_ptr; 761 762 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 763 write_extent_buffer(path->nodes[0], &curr->data, 764 (unsigned long)data_ptr, curr->data_len); 765 path->slots[0]++; 766 } 767 768 /* 769 * Now release our path before releasing the delayed items and their 770 * metadata reservations, so that we don't block other tasks for more 771 * time than needed. 772 */ 773 btrfs_release_path(path); 774 775 ASSERT(node->index_item_leaves > 0); 776 777 /* 778 * For normal operations we will batch an entire leaf's worth of delayed 779 * items, so if there are more items to process we can decrement 780 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 781 * 782 * However for log replay we may not have inserted an entire leaf's 783 * worth of items, we may have not had continuous items, so decrementing 784 * here would mess up the index_item_leaves accounting. For this case 785 * only clean up the accounting when there are no items left. 786 */ 787 if (next && !continuous_keys_only) { 788 /* 789 * We inserted one batch of items into a leaf a there are more 790 * items to flush in a future batch, now release one unit of 791 * metadata space from the delayed block reserve, corresponding 792 * the leaf we just flushed to. 793 */ 794 btrfs_delayed_item_release_leaves(node, 1); 795 node->index_item_leaves--; 796 } else if (!next) { 797 /* 798 * There are no more items to insert. We can have a number of 799 * reserved leaves > 1 here - this happens when many dir index 800 * items are added and then removed before they are flushed (file 801 * names with a very short life, never span a transaction). So 802 * release all remaining leaves. 803 */ 804 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 805 node->index_item_leaves = 0; 806 } 807 808 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 809 list_del(&curr->tree_list); 810 btrfs_release_delayed_item(curr); 811 } 812 out: 813 kfree(ins_data); 814 return ret; 815 } 816 817 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 818 struct btrfs_path *path, 819 struct btrfs_root *root, 820 struct btrfs_delayed_node *node) 821 { 822 int ret = 0; 823 824 while (ret == 0) { 825 struct btrfs_delayed_item *curr; 826 827 mutex_lock(&node->mutex); 828 curr = __btrfs_first_delayed_insertion_item(node); 829 if (!curr) { 830 mutex_unlock(&node->mutex); 831 break; 832 } 833 ret = btrfs_insert_delayed_item(trans, root, path, curr); 834 mutex_unlock(&node->mutex); 835 } 836 837 return ret; 838 } 839 840 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 841 struct btrfs_root *root, 842 struct btrfs_path *path, 843 struct btrfs_delayed_item *item) 844 { 845 const u64 ino = item->delayed_node->inode_id; 846 struct btrfs_fs_info *fs_info = root->fs_info; 847 struct btrfs_delayed_item *curr, *next; 848 struct extent_buffer *leaf = path->nodes[0]; 849 LIST_HEAD(batch_list); 850 int nitems, slot, last_slot; 851 int ret; 852 u64 total_reserved_size = item->bytes_reserved; 853 854 ASSERT(leaf != NULL); 855 856 slot = path->slots[0]; 857 last_slot = btrfs_header_nritems(leaf) - 1; 858 /* 859 * Our caller always gives us a path pointing to an existing item, so 860 * this can not happen. 861 */ 862 ASSERT(slot <= last_slot); 863 if (WARN_ON(slot > last_slot)) 864 return -ENOENT; 865 866 nitems = 1; 867 curr = item; 868 list_add_tail(&curr->tree_list, &batch_list); 869 870 /* 871 * Keep checking if the next delayed item matches the next item in the 872 * leaf - if so, we can add it to the batch of items to delete from the 873 * leaf. 874 */ 875 while (slot < last_slot) { 876 struct btrfs_key key; 877 878 next = __btrfs_next_delayed_item(curr); 879 if (!next) 880 break; 881 882 slot++; 883 btrfs_item_key_to_cpu(leaf, &key, slot); 884 if (key.objectid != ino || 885 key.type != BTRFS_DIR_INDEX_KEY || 886 key.offset != next->index) 887 break; 888 nitems++; 889 curr = next; 890 list_add_tail(&curr->tree_list, &batch_list); 891 total_reserved_size += curr->bytes_reserved; 892 } 893 894 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 895 if (ret) 896 return ret; 897 898 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 899 if (total_reserved_size > 0) { 900 /* 901 * Check btrfs_delayed_item_reserve_metadata() to see why we 902 * don't need to release/reserve qgroup space. 903 */ 904 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 905 total_reserved_size, 0); 906 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 907 total_reserved_size, NULL); 908 } 909 910 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 911 list_del(&curr->tree_list); 912 btrfs_release_delayed_item(curr); 913 } 914 915 return 0; 916 } 917 918 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 919 struct btrfs_path *path, 920 struct btrfs_root *root, 921 struct btrfs_delayed_node *node) 922 { 923 struct btrfs_key key; 924 int ret = 0; 925 926 key.objectid = node->inode_id; 927 key.type = BTRFS_DIR_INDEX_KEY; 928 929 while (ret == 0) { 930 struct btrfs_delayed_item *item; 931 932 mutex_lock(&node->mutex); 933 item = __btrfs_first_delayed_deletion_item(node); 934 if (!item) { 935 mutex_unlock(&node->mutex); 936 break; 937 } 938 939 key.offset = item->index; 940 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 941 if (ret > 0) { 942 /* 943 * There's no matching item in the leaf. This means we 944 * have already deleted this item in a past run of the 945 * delayed items. We ignore errors when running delayed 946 * items from an async context, through a work queue job 947 * running btrfs_async_run_delayed_root(), and don't 948 * release delayed items that failed to complete. This 949 * is because we will retry later, and at transaction 950 * commit time we always run delayed items and will 951 * then deal with errors if they fail to run again. 952 * 953 * So just release delayed items for which we can't find 954 * an item in the tree, and move to the next item. 955 */ 956 btrfs_release_path(path); 957 btrfs_release_delayed_item(item); 958 ret = 0; 959 } else if (ret == 0) { 960 ret = btrfs_batch_delete_items(trans, root, path, item); 961 btrfs_release_path(path); 962 } 963 964 /* 965 * We unlock and relock on each iteration, this is to prevent 966 * blocking other tasks for too long while we are being run from 967 * the async context (work queue job). Those tasks are typically 968 * running system calls like creat/mkdir/rename/unlink/etc which 969 * need to add delayed items to this delayed node. 970 */ 971 mutex_unlock(&node->mutex); 972 } 973 974 return ret; 975 } 976 977 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 978 { 979 struct btrfs_delayed_root *delayed_root; 980 981 if (delayed_node && 982 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 983 BUG_ON(!delayed_node->root); 984 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 985 delayed_node->count--; 986 987 delayed_root = delayed_node->root->fs_info->delayed_root; 988 finish_one_item(delayed_root); 989 } 990 } 991 992 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 993 { 994 995 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 996 struct btrfs_delayed_root *delayed_root; 997 998 ASSERT(delayed_node->root); 999 delayed_node->count--; 1000 1001 delayed_root = delayed_node->root->fs_info->delayed_root; 1002 finish_one_item(delayed_root); 1003 } 1004 } 1005 1006 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1007 struct btrfs_root *root, 1008 struct btrfs_path *path, 1009 struct btrfs_delayed_node *node) 1010 { 1011 struct btrfs_fs_info *fs_info = root->fs_info; 1012 struct btrfs_key key; 1013 struct btrfs_inode_item *inode_item; 1014 struct extent_buffer *leaf; 1015 int mod; 1016 int ret; 1017 1018 key.objectid = node->inode_id; 1019 key.type = BTRFS_INODE_ITEM_KEY; 1020 key.offset = 0; 1021 1022 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1023 mod = -1; 1024 else 1025 mod = 1; 1026 1027 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1028 if (ret > 0) 1029 ret = -ENOENT; 1030 if (ret < 0) 1031 goto out; 1032 1033 leaf = path->nodes[0]; 1034 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1035 struct btrfs_inode_item); 1036 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1037 sizeof(struct btrfs_inode_item)); 1038 btrfs_mark_buffer_dirty(trans, leaf); 1039 1040 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1041 goto out; 1042 1043 /* 1044 * Now we're going to delete the INODE_REF/EXTREF, which should be the 1045 * only one ref left. Check if the next item is an INODE_REF/EXTREF. 1046 * 1047 * But if we're the last item already, release and search for the last 1048 * INODE_REF/EXTREF. 1049 */ 1050 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { 1051 key.objectid = node->inode_id; 1052 key.type = BTRFS_INODE_EXTREF_KEY; 1053 key.offset = (u64)-1; 1054 1055 btrfs_release_path(path); 1056 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1057 if (ret < 0) 1058 goto err_out; 1059 ASSERT(ret > 0); 1060 ASSERT(path->slots[0] > 0); 1061 ret = 0; 1062 path->slots[0]--; 1063 leaf = path->nodes[0]; 1064 } else { 1065 path->slots[0]++; 1066 } 1067 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1068 if (key.objectid != node->inode_id) 1069 goto out; 1070 if (key.type != BTRFS_INODE_REF_KEY && 1071 key.type != BTRFS_INODE_EXTREF_KEY) 1072 goto out; 1073 1074 /* 1075 * Delayed iref deletion is for the inode who has only one link, 1076 * so there is only one iref. The case that several irefs are 1077 * in the same item doesn't exist. 1078 */ 1079 ret = btrfs_del_item(trans, root, path); 1080 out: 1081 btrfs_release_delayed_iref(node); 1082 btrfs_release_path(path); 1083 err_out: 1084 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1085 btrfs_release_delayed_inode(node); 1086 1087 /* 1088 * If we fail to update the delayed inode we need to abort the 1089 * transaction, because we could leave the inode with the improper 1090 * counts behind. 1091 */ 1092 if (ret && ret != -ENOENT) 1093 btrfs_abort_transaction(trans, ret); 1094 1095 return ret; 1096 } 1097 1098 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1099 struct btrfs_root *root, 1100 struct btrfs_path *path, 1101 struct btrfs_delayed_node *node) 1102 { 1103 int ret; 1104 1105 mutex_lock(&node->mutex); 1106 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1107 mutex_unlock(&node->mutex); 1108 return 0; 1109 } 1110 1111 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1112 mutex_unlock(&node->mutex); 1113 return ret; 1114 } 1115 1116 static inline int 1117 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1118 struct btrfs_path *path, 1119 struct btrfs_delayed_node *node) 1120 { 1121 int ret; 1122 1123 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1124 if (ret) 1125 return ret; 1126 1127 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1128 if (ret) 1129 return ret; 1130 1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1132 return ret; 1133 } 1134 1135 /* 1136 * Called when committing the transaction. 1137 * Returns 0 on success. 1138 * Returns < 0 on error and returns with an aborted transaction with any 1139 * outstanding delayed items cleaned up. 1140 */ 1141 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1142 { 1143 struct btrfs_fs_info *fs_info = trans->fs_info; 1144 struct btrfs_delayed_root *delayed_root; 1145 struct btrfs_delayed_node *curr_node, *prev_node; 1146 struct btrfs_path *path; 1147 struct btrfs_block_rsv *block_rsv; 1148 int ret = 0; 1149 bool count = (nr > 0); 1150 1151 if (TRANS_ABORTED(trans)) 1152 return -EIO; 1153 1154 path = btrfs_alloc_path(); 1155 if (!path) 1156 return -ENOMEM; 1157 1158 block_rsv = trans->block_rsv; 1159 trans->block_rsv = &fs_info->delayed_block_rsv; 1160 1161 delayed_root = fs_info->delayed_root; 1162 1163 curr_node = btrfs_first_delayed_node(delayed_root); 1164 while (curr_node && (!count || nr--)) { 1165 ret = __btrfs_commit_inode_delayed_items(trans, path, 1166 curr_node); 1167 if (ret) { 1168 btrfs_abort_transaction(trans, ret); 1169 break; 1170 } 1171 1172 prev_node = curr_node; 1173 curr_node = btrfs_next_delayed_node(curr_node); 1174 /* 1175 * See the comment below about releasing path before releasing 1176 * node. If the commit of delayed items was successful the path 1177 * should always be released, but in case of an error, it may 1178 * point to locked extent buffers (a leaf at the very least). 1179 */ 1180 ASSERT(path->nodes[0] == NULL); 1181 btrfs_release_delayed_node(prev_node); 1182 } 1183 1184 /* 1185 * Release the path to avoid a potential deadlock and lockdep splat when 1186 * releasing the delayed node, as that requires taking the delayed node's 1187 * mutex. If another task starts running delayed items before we take 1188 * the mutex, it will first lock the mutex and then it may try to lock 1189 * the same btree path (leaf). 1190 */ 1191 btrfs_free_path(path); 1192 1193 if (curr_node) 1194 btrfs_release_delayed_node(curr_node); 1195 trans->block_rsv = block_rsv; 1196 1197 return ret; 1198 } 1199 1200 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1201 { 1202 return __btrfs_run_delayed_items(trans, -1); 1203 } 1204 1205 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1206 { 1207 return __btrfs_run_delayed_items(trans, nr); 1208 } 1209 1210 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1211 struct btrfs_inode *inode) 1212 { 1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1214 struct btrfs_path *path; 1215 struct btrfs_block_rsv *block_rsv; 1216 int ret; 1217 1218 if (!delayed_node) 1219 return 0; 1220 1221 mutex_lock(&delayed_node->mutex); 1222 if (!delayed_node->count) { 1223 mutex_unlock(&delayed_node->mutex); 1224 btrfs_release_delayed_node(delayed_node); 1225 return 0; 1226 } 1227 mutex_unlock(&delayed_node->mutex); 1228 1229 path = btrfs_alloc_path(); 1230 if (!path) { 1231 btrfs_release_delayed_node(delayed_node); 1232 return -ENOMEM; 1233 } 1234 1235 block_rsv = trans->block_rsv; 1236 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1237 1238 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1239 1240 btrfs_release_delayed_node(delayed_node); 1241 btrfs_free_path(path); 1242 trans->block_rsv = block_rsv; 1243 1244 return ret; 1245 } 1246 1247 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1248 { 1249 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1250 struct btrfs_trans_handle *trans; 1251 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1252 struct btrfs_path *path; 1253 struct btrfs_block_rsv *block_rsv; 1254 int ret; 1255 1256 if (!delayed_node) 1257 return 0; 1258 1259 mutex_lock(&delayed_node->mutex); 1260 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1261 mutex_unlock(&delayed_node->mutex); 1262 btrfs_release_delayed_node(delayed_node); 1263 return 0; 1264 } 1265 mutex_unlock(&delayed_node->mutex); 1266 1267 trans = btrfs_join_transaction(delayed_node->root); 1268 if (IS_ERR(trans)) { 1269 ret = PTR_ERR(trans); 1270 goto out; 1271 } 1272 1273 path = btrfs_alloc_path(); 1274 if (!path) { 1275 ret = -ENOMEM; 1276 goto trans_out; 1277 } 1278 1279 block_rsv = trans->block_rsv; 1280 trans->block_rsv = &fs_info->delayed_block_rsv; 1281 1282 mutex_lock(&delayed_node->mutex); 1283 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1284 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1285 path, delayed_node); 1286 else 1287 ret = 0; 1288 mutex_unlock(&delayed_node->mutex); 1289 1290 btrfs_free_path(path); 1291 trans->block_rsv = block_rsv; 1292 trans_out: 1293 btrfs_end_transaction(trans); 1294 btrfs_btree_balance_dirty(fs_info); 1295 out: 1296 btrfs_release_delayed_node(delayed_node); 1297 1298 return ret; 1299 } 1300 1301 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1302 { 1303 struct btrfs_delayed_node *delayed_node; 1304 1305 delayed_node = READ_ONCE(inode->delayed_node); 1306 if (!delayed_node) 1307 return; 1308 1309 inode->delayed_node = NULL; 1310 btrfs_release_delayed_node(delayed_node); 1311 } 1312 1313 struct btrfs_async_delayed_work { 1314 struct btrfs_delayed_root *delayed_root; 1315 int nr; 1316 struct btrfs_work work; 1317 }; 1318 1319 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1320 { 1321 struct btrfs_async_delayed_work *async_work; 1322 struct btrfs_delayed_root *delayed_root; 1323 struct btrfs_trans_handle *trans; 1324 struct btrfs_path *path; 1325 struct btrfs_delayed_node *delayed_node = NULL; 1326 struct btrfs_root *root; 1327 struct btrfs_block_rsv *block_rsv; 1328 int total_done = 0; 1329 1330 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1331 delayed_root = async_work->delayed_root; 1332 1333 path = btrfs_alloc_path(); 1334 if (!path) 1335 goto out; 1336 1337 do { 1338 if (atomic_read(&delayed_root->items) < 1339 BTRFS_DELAYED_BACKGROUND / 2) 1340 break; 1341 1342 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1343 if (!delayed_node) 1344 break; 1345 1346 root = delayed_node->root; 1347 1348 trans = btrfs_join_transaction(root); 1349 if (IS_ERR(trans)) { 1350 btrfs_release_path(path); 1351 btrfs_release_prepared_delayed_node(delayed_node); 1352 total_done++; 1353 continue; 1354 } 1355 1356 block_rsv = trans->block_rsv; 1357 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1358 1359 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1360 1361 trans->block_rsv = block_rsv; 1362 btrfs_end_transaction(trans); 1363 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1364 1365 btrfs_release_path(path); 1366 btrfs_release_prepared_delayed_node(delayed_node); 1367 total_done++; 1368 1369 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1370 || total_done < async_work->nr); 1371 1372 btrfs_free_path(path); 1373 out: 1374 wake_up(&delayed_root->wait); 1375 kfree(async_work); 1376 } 1377 1378 1379 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1380 struct btrfs_fs_info *fs_info, int nr) 1381 { 1382 struct btrfs_async_delayed_work *async_work; 1383 1384 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1385 if (!async_work) 1386 return -ENOMEM; 1387 1388 async_work->delayed_root = delayed_root; 1389 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); 1390 async_work->nr = nr; 1391 1392 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1393 return 0; 1394 } 1395 1396 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1397 { 1398 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1399 } 1400 1401 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1402 { 1403 int val = atomic_read(&delayed_root->items_seq); 1404 1405 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1406 return 1; 1407 1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1409 return 1; 1410 1411 return 0; 1412 } 1413 1414 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1415 { 1416 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1417 1418 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1419 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1420 return; 1421 1422 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1423 int seq; 1424 int ret; 1425 1426 seq = atomic_read(&delayed_root->items_seq); 1427 1428 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1429 if (ret) 1430 return; 1431 1432 wait_event_interruptible(delayed_root->wait, 1433 could_end_wait(delayed_root, seq)); 1434 return; 1435 } 1436 1437 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1438 } 1439 1440 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1441 { 1442 struct btrfs_fs_info *fs_info = trans->fs_info; 1443 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1444 1445 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1446 return; 1447 1448 /* 1449 * Adding the new dir index item does not require touching another 1450 * leaf, so we can release 1 unit of metadata that was previously 1451 * reserved when starting the transaction. This applies only to 1452 * the case where we had a transaction start and excludes the 1453 * transaction join case (when replaying log trees). 1454 */ 1455 trace_btrfs_space_reservation(fs_info, "transaction", 1456 trans->transid, bytes, 0); 1457 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1458 ASSERT(trans->bytes_reserved >= bytes); 1459 trans->bytes_reserved -= bytes; 1460 } 1461 1462 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1463 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1464 const char *name, int name_len, 1465 struct btrfs_inode *dir, 1466 struct btrfs_disk_key *disk_key, u8 flags, 1467 u64 index) 1468 { 1469 struct btrfs_fs_info *fs_info = trans->fs_info; 1470 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1471 struct btrfs_delayed_node *delayed_node; 1472 struct btrfs_delayed_item *delayed_item; 1473 struct btrfs_dir_item *dir_item; 1474 bool reserve_leaf_space; 1475 u32 data_len; 1476 int ret; 1477 1478 delayed_node = btrfs_get_or_create_delayed_node(dir); 1479 if (IS_ERR(delayed_node)) 1480 return PTR_ERR(delayed_node); 1481 1482 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1483 delayed_node, 1484 BTRFS_DELAYED_INSERTION_ITEM); 1485 if (!delayed_item) { 1486 ret = -ENOMEM; 1487 goto release_node; 1488 } 1489 1490 delayed_item->index = index; 1491 1492 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1493 dir_item->location = *disk_key; 1494 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1495 btrfs_set_stack_dir_data_len(dir_item, 0); 1496 btrfs_set_stack_dir_name_len(dir_item, name_len); 1497 btrfs_set_stack_dir_flags(dir_item, flags); 1498 memcpy((char *)(dir_item + 1), name, name_len); 1499 1500 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1501 1502 mutex_lock(&delayed_node->mutex); 1503 1504 /* 1505 * First attempt to insert the delayed item. This is to make the error 1506 * handling path simpler in case we fail (-EEXIST). There's no risk of 1507 * any other task coming in and running the delayed item before we do 1508 * the metadata space reservation below, because we are holding the 1509 * delayed node's mutex and that mutex must also be locked before the 1510 * node's delayed items can be run. 1511 */ 1512 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1513 if (unlikely(ret)) { 1514 btrfs_err(trans->fs_info, 1515 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1516 name_len, name, index, btrfs_root_id(delayed_node->root), 1517 delayed_node->inode_id, dir->index_cnt, 1518 delayed_node->index_cnt, ret); 1519 btrfs_release_delayed_item(delayed_item); 1520 btrfs_release_dir_index_item_space(trans); 1521 mutex_unlock(&delayed_node->mutex); 1522 goto release_node; 1523 } 1524 1525 if (delayed_node->index_item_leaves == 0 || 1526 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1527 delayed_node->curr_index_batch_size = data_len; 1528 reserve_leaf_space = true; 1529 } else { 1530 delayed_node->curr_index_batch_size += data_len; 1531 reserve_leaf_space = false; 1532 } 1533 1534 if (reserve_leaf_space) { 1535 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1536 /* 1537 * Space was reserved for a dir index item insertion when we 1538 * started the transaction, so getting a failure here should be 1539 * impossible. 1540 */ 1541 if (WARN_ON(ret)) { 1542 btrfs_release_delayed_item(delayed_item); 1543 mutex_unlock(&delayed_node->mutex); 1544 goto release_node; 1545 } 1546 1547 delayed_node->index_item_leaves++; 1548 } else { 1549 btrfs_release_dir_index_item_space(trans); 1550 } 1551 mutex_unlock(&delayed_node->mutex); 1552 1553 release_node: 1554 btrfs_release_delayed_node(delayed_node); 1555 return ret; 1556 } 1557 1558 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1559 struct btrfs_delayed_node *node, 1560 u64 index) 1561 { 1562 struct btrfs_delayed_item *item; 1563 1564 mutex_lock(&node->mutex); 1565 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1566 if (!item) { 1567 mutex_unlock(&node->mutex); 1568 return 1; 1569 } 1570 1571 /* 1572 * For delayed items to insert, we track reserved metadata bytes based 1573 * on the number of leaves that we will use. 1574 * See btrfs_insert_delayed_dir_index() and 1575 * btrfs_delayed_item_reserve_metadata()). 1576 */ 1577 ASSERT(item->bytes_reserved == 0); 1578 ASSERT(node->index_item_leaves > 0); 1579 1580 /* 1581 * If there's only one leaf reserved, we can decrement this item from the 1582 * current batch, otherwise we can not because we don't know which leaf 1583 * it belongs to. With the current limit on delayed items, we rarely 1584 * accumulate enough dir index items to fill more than one leaf (even 1585 * when using a leaf size of 4K). 1586 */ 1587 if (node->index_item_leaves == 1) { 1588 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1589 1590 ASSERT(node->curr_index_batch_size >= data_len); 1591 node->curr_index_batch_size -= data_len; 1592 } 1593 1594 btrfs_release_delayed_item(item); 1595 1596 /* If we now have no more dir index items, we can release all leaves. */ 1597 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1598 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1599 node->index_item_leaves = 0; 1600 } 1601 1602 mutex_unlock(&node->mutex); 1603 return 0; 1604 } 1605 1606 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1607 struct btrfs_inode *dir, u64 index) 1608 { 1609 struct btrfs_delayed_node *node; 1610 struct btrfs_delayed_item *item; 1611 int ret; 1612 1613 node = btrfs_get_or_create_delayed_node(dir); 1614 if (IS_ERR(node)) 1615 return PTR_ERR(node); 1616 1617 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index); 1618 if (!ret) 1619 goto end; 1620 1621 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1622 if (!item) { 1623 ret = -ENOMEM; 1624 goto end; 1625 } 1626 1627 item->index = index; 1628 1629 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1630 /* 1631 * we have reserved enough space when we start a new transaction, 1632 * so reserving metadata failure is impossible. 1633 */ 1634 if (ret < 0) { 1635 btrfs_err(trans->fs_info, 1636 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1637 btrfs_release_delayed_item(item); 1638 goto end; 1639 } 1640 1641 mutex_lock(&node->mutex); 1642 ret = __btrfs_add_delayed_item(node, item); 1643 if (unlikely(ret)) { 1644 btrfs_err(trans->fs_info, 1645 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1646 index, node->root->root_key.objectid, 1647 node->inode_id, ret); 1648 btrfs_delayed_item_release_metadata(dir->root, item); 1649 btrfs_release_delayed_item(item); 1650 } 1651 mutex_unlock(&node->mutex); 1652 end: 1653 btrfs_release_delayed_node(node); 1654 return ret; 1655 } 1656 1657 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1658 { 1659 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1660 1661 if (!delayed_node) 1662 return -ENOENT; 1663 1664 /* 1665 * Since we have held i_mutex of this directory, it is impossible that 1666 * a new directory index is added into the delayed node and index_cnt 1667 * is updated now. So we needn't lock the delayed node. 1668 */ 1669 if (!delayed_node->index_cnt) { 1670 btrfs_release_delayed_node(delayed_node); 1671 return -EINVAL; 1672 } 1673 1674 inode->index_cnt = delayed_node->index_cnt; 1675 btrfs_release_delayed_node(delayed_node); 1676 return 0; 1677 } 1678 1679 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1680 u64 last_index, 1681 struct list_head *ins_list, 1682 struct list_head *del_list) 1683 { 1684 struct btrfs_delayed_node *delayed_node; 1685 struct btrfs_delayed_item *item; 1686 1687 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1688 if (!delayed_node) 1689 return false; 1690 1691 /* 1692 * We can only do one readdir with delayed items at a time because of 1693 * item->readdir_list. 1694 */ 1695 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 1696 btrfs_inode_lock(BTRFS_I(inode), 0); 1697 1698 mutex_lock(&delayed_node->mutex); 1699 item = __btrfs_first_delayed_insertion_item(delayed_node); 1700 while (item && item->index <= last_index) { 1701 refcount_inc(&item->refs); 1702 list_add_tail(&item->readdir_list, ins_list); 1703 item = __btrfs_next_delayed_item(item); 1704 } 1705 1706 item = __btrfs_first_delayed_deletion_item(delayed_node); 1707 while (item && item->index <= last_index) { 1708 refcount_inc(&item->refs); 1709 list_add_tail(&item->readdir_list, del_list); 1710 item = __btrfs_next_delayed_item(item); 1711 } 1712 mutex_unlock(&delayed_node->mutex); 1713 /* 1714 * This delayed node is still cached in the btrfs inode, so refs 1715 * must be > 1 now, and we needn't check it is going to be freed 1716 * or not. 1717 * 1718 * Besides that, this function is used to read dir, we do not 1719 * insert/delete delayed items in this period. So we also needn't 1720 * requeue or dequeue this delayed node. 1721 */ 1722 refcount_dec(&delayed_node->refs); 1723 1724 return true; 1725 } 1726 1727 void btrfs_readdir_put_delayed_items(struct inode *inode, 1728 struct list_head *ins_list, 1729 struct list_head *del_list) 1730 { 1731 struct btrfs_delayed_item *curr, *next; 1732 1733 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1734 list_del(&curr->readdir_list); 1735 if (refcount_dec_and_test(&curr->refs)) 1736 kfree(curr); 1737 } 1738 1739 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1740 list_del(&curr->readdir_list); 1741 if (refcount_dec_and_test(&curr->refs)) 1742 kfree(curr); 1743 } 1744 1745 /* 1746 * The VFS is going to do up_read(), so we need to downgrade back to a 1747 * read lock. 1748 */ 1749 downgrade_write(&inode->i_rwsem); 1750 } 1751 1752 int btrfs_should_delete_dir_index(struct list_head *del_list, 1753 u64 index) 1754 { 1755 struct btrfs_delayed_item *curr; 1756 int ret = 0; 1757 1758 list_for_each_entry(curr, del_list, readdir_list) { 1759 if (curr->index > index) 1760 break; 1761 if (curr->index == index) { 1762 ret = 1; 1763 break; 1764 } 1765 } 1766 return ret; 1767 } 1768 1769 /* 1770 * Read dir info stored in the delayed tree. 1771 */ 1772 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1773 struct list_head *ins_list) 1774 { 1775 struct btrfs_dir_item *di; 1776 struct btrfs_delayed_item *curr, *next; 1777 struct btrfs_key location; 1778 char *name; 1779 int name_len; 1780 int over = 0; 1781 unsigned char d_type; 1782 1783 /* 1784 * Changing the data of the delayed item is impossible. So 1785 * we needn't lock them. And we have held i_mutex of the 1786 * directory, nobody can delete any directory indexes now. 1787 */ 1788 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1789 list_del(&curr->readdir_list); 1790 1791 if (curr->index < ctx->pos) { 1792 if (refcount_dec_and_test(&curr->refs)) 1793 kfree(curr); 1794 continue; 1795 } 1796 1797 ctx->pos = curr->index; 1798 1799 di = (struct btrfs_dir_item *)curr->data; 1800 name = (char *)(di + 1); 1801 name_len = btrfs_stack_dir_name_len(di); 1802 1803 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1804 btrfs_disk_key_to_cpu(&location, &di->location); 1805 1806 over = !dir_emit(ctx, name, name_len, 1807 location.objectid, d_type); 1808 1809 if (refcount_dec_and_test(&curr->refs)) 1810 kfree(curr); 1811 1812 if (over) 1813 return 1; 1814 ctx->pos++; 1815 } 1816 return 0; 1817 } 1818 1819 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1820 struct btrfs_inode_item *inode_item, 1821 struct inode *inode) 1822 { 1823 u64 flags; 1824 1825 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1826 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1827 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1828 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1829 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1830 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1831 btrfs_set_stack_inode_generation(inode_item, 1832 BTRFS_I(inode)->generation); 1833 btrfs_set_stack_inode_sequence(inode_item, 1834 inode_peek_iversion(inode)); 1835 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1836 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1837 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 1838 BTRFS_I(inode)->ro_flags); 1839 btrfs_set_stack_inode_flags(inode_item, flags); 1840 btrfs_set_stack_inode_block_group(inode_item, 0); 1841 1842 btrfs_set_stack_timespec_sec(&inode_item->atime, 1843 inode_get_atime_sec(inode)); 1844 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1845 inode_get_atime_nsec(inode)); 1846 1847 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1848 inode_get_mtime_sec(inode)); 1849 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1850 inode_get_mtime_nsec(inode)); 1851 1852 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1853 inode_get_ctime_sec(inode)); 1854 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1855 inode_get_ctime_nsec(inode)); 1856 1857 btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec); 1858 btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec); 1859 } 1860 1861 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1862 { 1863 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1864 struct btrfs_delayed_node *delayed_node; 1865 struct btrfs_inode_item *inode_item; 1866 1867 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1868 if (!delayed_node) 1869 return -ENOENT; 1870 1871 mutex_lock(&delayed_node->mutex); 1872 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1873 mutex_unlock(&delayed_node->mutex); 1874 btrfs_release_delayed_node(delayed_node); 1875 return -ENOENT; 1876 } 1877 1878 inode_item = &delayed_node->inode_item; 1879 1880 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1881 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1882 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1883 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1884 round_up(i_size_read(inode), fs_info->sectorsize)); 1885 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1886 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1887 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1888 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1889 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1890 1891 inode_set_iversion_queried(inode, 1892 btrfs_stack_inode_sequence(inode_item)); 1893 inode->i_rdev = 0; 1894 *rdev = btrfs_stack_inode_rdev(inode_item); 1895 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1896 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 1897 1898 inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime), 1899 btrfs_stack_timespec_nsec(&inode_item->atime)); 1900 1901 inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime), 1902 btrfs_stack_timespec_nsec(&inode_item->mtime)); 1903 1904 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1905 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1906 1907 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); 1908 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); 1909 1910 inode->i_generation = BTRFS_I(inode)->generation; 1911 BTRFS_I(inode)->index_cnt = (u64)-1; 1912 1913 mutex_unlock(&delayed_node->mutex); 1914 btrfs_release_delayed_node(delayed_node); 1915 return 0; 1916 } 1917 1918 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1919 struct btrfs_inode *inode) 1920 { 1921 struct btrfs_root *root = inode->root; 1922 struct btrfs_delayed_node *delayed_node; 1923 int ret = 0; 1924 1925 delayed_node = btrfs_get_or_create_delayed_node(inode); 1926 if (IS_ERR(delayed_node)) 1927 return PTR_ERR(delayed_node); 1928 1929 mutex_lock(&delayed_node->mutex); 1930 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1931 fill_stack_inode_item(trans, &delayed_node->inode_item, 1932 &inode->vfs_inode); 1933 goto release_node; 1934 } 1935 1936 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1937 if (ret) 1938 goto release_node; 1939 1940 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1941 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1942 delayed_node->count++; 1943 atomic_inc(&root->fs_info->delayed_root->items); 1944 release_node: 1945 mutex_unlock(&delayed_node->mutex); 1946 btrfs_release_delayed_node(delayed_node); 1947 return ret; 1948 } 1949 1950 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1951 { 1952 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1953 struct btrfs_delayed_node *delayed_node; 1954 1955 /* 1956 * we don't do delayed inode updates during log recovery because it 1957 * leads to enospc problems. This means we also can't do 1958 * delayed inode refs 1959 */ 1960 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1961 return -EAGAIN; 1962 1963 delayed_node = btrfs_get_or_create_delayed_node(inode); 1964 if (IS_ERR(delayed_node)) 1965 return PTR_ERR(delayed_node); 1966 1967 /* 1968 * We don't reserve space for inode ref deletion is because: 1969 * - We ONLY do async inode ref deletion for the inode who has only 1970 * one link(i_nlink == 1), it means there is only one inode ref. 1971 * And in most case, the inode ref and the inode item are in the 1972 * same leaf, and we will deal with them at the same time. 1973 * Since we are sure we will reserve the space for the inode item, 1974 * it is unnecessary to reserve space for inode ref deletion. 1975 * - If the inode ref and the inode item are not in the same leaf, 1976 * We also needn't worry about enospc problem, because we reserve 1977 * much more space for the inode update than it needs. 1978 * - At the worst, we can steal some space from the global reservation. 1979 * It is very rare. 1980 */ 1981 mutex_lock(&delayed_node->mutex); 1982 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1983 goto release_node; 1984 1985 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1986 delayed_node->count++; 1987 atomic_inc(&fs_info->delayed_root->items); 1988 release_node: 1989 mutex_unlock(&delayed_node->mutex); 1990 btrfs_release_delayed_node(delayed_node); 1991 return 0; 1992 } 1993 1994 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1995 { 1996 struct btrfs_root *root = delayed_node->root; 1997 struct btrfs_fs_info *fs_info = root->fs_info; 1998 struct btrfs_delayed_item *curr_item, *prev_item; 1999 2000 mutex_lock(&delayed_node->mutex); 2001 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 2002 while (curr_item) { 2003 prev_item = curr_item; 2004 curr_item = __btrfs_next_delayed_item(prev_item); 2005 btrfs_release_delayed_item(prev_item); 2006 } 2007 2008 if (delayed_node->index_item_leaves > 0) { 2009 btrfs_delayed_item_release_leaves(delayed_node, 2010 delayed_node->index_item_leaves); 2011 delayed_node->index_item_leaves = 0; 2012 } 2013 2014 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2015 while (curr_item) { 2016 btrfs_delayed_item_release_metadata(root, curr_item); 2017 prev_item = curr_item; 2018 curr_item = __btrfs_next_delayed_item(prev_item); 2019 btrfs_release_delayed_item(prev_item); 2020 } 2021 2022 btrfs_release_delayed_iref(delayed_node); 2023 2024 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2025 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2026 btrfs_release_delayed_inode(delayed_node); 2027 } 2028 mutex_unlock(&delayed_node->mutex); 2029 } 2030 2031 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2032 { 2033 struct btrfs_delayed_node *delayed_node; 2034 2035 delayed_node = btrfs_get_delayed_node(inode); 2036 if (!delayed_node) 2037 return; 2038 2039 __btrfs_kill_delayed_node(delayed_node); 2040 btrfs_release_delayed_node(delayed_node); 2041 } 2042 2043 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2044 { 2045 unsigned long index = 0; 2046 struct btrfs_delayed_node *delayed_nodes[8]; 2047 2048 while (1) { 2049 struct btrfs_delayed_node *node; 2050 int count; 2051 2052 spin_lock(&root->inode_lock); 2053 if (xa_empty(&root->delayed_nodes)) { 2054 spin_unlock(&root->inode_lock); 2055 return; 2056 } 2057 2058 count = 0; 2059 xa_for_each_start(&root->delayed_nodes, index, node, index) { 2060 /* 2061 * Don't increase refs in case the node is dead and 2062 * about to be removed from the tree in the loop below 2063 */ 2064 if (refcount_inc_not_zero(&node->refs)) { 2065 delayed_nodes[count] = node; 2066 count++; 2067 } 2068 if (count >= ARRAY_SIZE(delayed_nodes)) 2069 break; 2070 } 2071 spin_unlock(&root->inode_lock); 2072 index++; 2073 2074 for (int i = 0; i < count; i++) { 2075 __btrfs_kill_delayed_node(delayed_nodes[i]); 2076 btrfs_release_delayed_node(delayed_nodes[i]); 2077 } 2078 } 2079 } 2080 2081 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2082 { 2083 struct btrfs_delayed_node *curr_node, *prev_node; 2084 2085 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 2086 while (curr_node) { 2087 __btrfs_kill_delayed_node(curr_node); 2088 2089 prev_node = curr_node; 2090 curr_node = btrfs_next_delayed_node(curr_node); 2091 btrfs_release_delayed_node(prev_node); 2092 } 2093 } 2094 2095 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2096 struct list_head *ins_list, 2097 struct list_head *del_list) 2098 { 2099 struct btrfs_delayed_node *node; 2100 struct btrfs_delayed_item *item; 2101 2102 node = btrfs_get_delayed_node(inode); 2103 if (!node) 2104 return; 2105 2106 mutex_lock(&node->mutex); 2107 item = __btrfs_first_delayed_insertion_item(node); 2108 while (item) { 2109 /* 2110 * It's possible that the item is already in a log list. This 2111 * can happen in case two tasks are trying to log the same 2112 * directory. For example if we have tasks A and task B: 2113 * 2114 * Task A collected the delayed items into a log list while 2115 * under the inode's log_mutex (at btrfs_log_inode()), but it 2116 * only releases the items after logging the inodes they point 2117 * to (if they are new inodes), which happens after unlocking 2118 * the log mutex; 2119 * 2120 * Task B enters btrfs_log_inode() and acquires the log_mutex 2121 * of the same directory inode, before task B releases the 2122 * delayed items. This can happen for example when logging some 2123 * inode we need to trigger logging of its parent directory, so 2124 * logging two files that have the same parent directory can 2125 * lead to this. 2126 * 2127 * If this happens, just ignore delayed items already in a log 2128 * list. All the tasks logging the directory are under a log 2129 * transaction and whichever finishes first can not sync the log 2130 * before the other completes and leaves the log transaction. 2131 */ 2132 if (!item->logged && list_empty(&item->log_list)) { 2133 refcount_inc(&item->refs); 2134 list_add_tail(&item->log_list, ins_list); 2135 } 2136 item = __btrfs_next_delayed_item(item); 2137 } 2138 2139 item = __btrfs_first_delayed_deletion_item(node); 2140 while (item) { 2141 /* It may be non-empty, for the same reason mentioned above. */ 2142 if (!item->logged && list_empty(&item->log_list)) { 2143 refcount_inc(&item->refs); 2144 list_add_tail(&item->log_list, del_list); 2145 } 2146 item = __btrfs_next_delayed_item(item); 2147 } 2148 mutex_unlock(&node->mutex); 2149 2150 /* 2151 * We are called during inode logging, which means the inode is in use 2152 * and can not be evicted before we finish logging the inode. So we never 2153 * have the last reference on the delayed inode. 2154 * Also, we don't use btrfs_release_delayed_node() because that would 2155 * requeue the delayed inode (change its order in the list of prepared 2156 * nodes) and we don't want to do such change because we don't create or 2157 * delete delayed items. 2158 */ 2159 ASSERT(refcount_read(&node->refs) > 1); 2160 refcount_dec(&node->refs); 2161 } 2162 2163 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2164 struct list_head *ins_list, 2165 struct list_head *del_list) 2166 { 2167 struct btrfs_delayed_node *node; 2168 struct btrfs_delayed_item *item; 2169 struct btrfs_delayed_item *next; 2170 2171 node = btrfs_get_delayed_node(inode); 2172 if (!node) 2173 return; 2174 2175 mutex_lock(&node->mutex); 2176 2177 list_for_each_entry_safe(item, next, ins_list, log_list) { 2178 item->logged = true; 2179 list_del_init(&item->log_list); 2180 if (refcount_dec_and_test(&item->refs)) 2181 kfree(item); 2182 } 2183 2184 list_for_each_entry_safe(item, next, del_list, log_list) { 2185 item->logged = true; 2186 list_del_init(&item->log_list); 2187 if (refcount_dec_and_test(&item->refs)) 2188 kfree(item); 2189 } 2190 2191 mutex_unlock(&node->mutex); 2192 2193 /* 2194 * We are called during inode logging, which means the inode is in use 2195 * and can not be evicted before we finish logging the inode. So we never 2196 * have the last reference on the delayed inode. 2197 * Also, we don't use btrfs_release_delayed_node() because that would 2198 * requeue the delayed inode (change its order in the list of prepared 2199 * nodes) and we don't want to do such change because we don't create or 2200 * delete delayed items. 2201 */ 2202 ASSERT(refcount_read(&node->refs) > 1); 2203 refcount_dec(&node->refs); 2204 } 2205