1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 32 sizeof(struct btrfs_delayed_node), 33 0, 34 SLAB_MEM_SPREAD, 35 NULL); 36 if (!delayed_node_cache) 37 return -ENOMEM; 38 return 0; 39 } 40 41 void __cold btrfs_delayed_inode_exit(void) 42 { 43 kmem_cache_destroy(delayed_node_cache); 44 } 45 46 static inline void btrfs_init_delayed_node( 47 struct btrfs_delayed_node *delayed_node, 48 struct btrfs_root *root, u64 inode_id) 49 { 50 delayed_node->root = root; 51 delayed_node->inode_id = inode_id; 52 refcount_set(&delayed_node->refs, 0); 53 delayed_node->ins_root = RB_ROOT_CACHED; 54 delayed_node->del_root = RB_ROOT_CACHED; 55 mutex_init(&delayed_node->mutex); 56 INIT_LIST_HEAD(&delayed_node->n_list); 57 INIT_LIST_HEAD(&delayed_node->p_list); 58 } 59 60 static struct btrfs_delayed_node *btrfs_get_delayed_node( 61 struct btrfs_inode *btrfs_inode) 62 { 63 struct btrfs_root *root = btrfs_inode->root; 64 u64 ino = btrfs_ino(btrfs_inode); 65 struct btrfs_delayed_node *node; 66 67 node = READ_ONCE(btrfs_inode->delayed_node); 68 if (node) { 69 refcount_inc(&node->refs); 70 return node; 71 } 72 73 spin_lock(&root->inode_lock); 74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 75 76 if (node) { 77 if (btrfs_inode->delayed_node) { 78 refcount_inc(&node->refs); /* can be accessed */ 79 BUG_ON(btrfs_inode->delayed_node != node); 80 spin_unlock(&root->inode_lock); 81 return node; 82 } 83 84 /* 85 * It's possible that we're racing into the middle of removing 86 * this node from the radix tree. In this case, the refcount 87 * was zero and it should never go back to one. Just return 88 * NULL like it was never in the radix at all; our release 89 * function is in the process of removing it. 90 * 91 * Some implementations of refcount_inc refuse to bump the 92 * refcount once it has hit zero. If we don't do this dance 93 * here, refcount_inc() may decide to just WARN_ONCE() instead 94 * of actually bumping the refcount. 95 * 96 * If this node is properly in the radix, we want to bump the 97 * refcount twice, once for the inode and once for this get 98 * operation. 99 */ 100 if (refcount_inc_not_zero(&node->refs)) { 101 refcount_inc(&node->refs); 102 btrfs_inode->delayed_node = node; 103 } else { 104 node = NULL; 105 } 106 107 spin_unlock(&root->inode_lock); 108 return node; 109 } 110 spin_unlock(&root->inode_lock); 111 112 return NULL; 113 } 114 115 /* Will return either the node or PTR_ERR(-ENOMEM) */ 116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 117 struct btrfs_inode *btrfs_inode) 118 { 119 struct btrfs_delayed_node *node; 120 struct btrfs_root *root = btrfs_inode->root; 121 u64 ino = btrfs_ino(btrfs_inode); 122 int ret; 123 124 again: 125 node = btrfs_get_delayed_node(btrfs_inode); 126 if (node) 127 return node; 128 129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 130 if (!node) 131 return ERR_PTR(-ENOMEM); 132 btrfs_init_delayed_node(node, root, ino); 133 134 /* cached in the btrfs inode and can be accessed */ 135 refcount_set(&node->refs, 2); 136 137 ret = radix_tree_preload(GFP_NOFS); 138 if (ret) { 139 kmem_cache_free(delayed_node_cache, node); 140 return ERR_PTR(ret); 141 } 142 143 spin_lock(&root->inode_lock); 144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 145 if (ret == -EEXIST) { 146 spin_unlock(&root->inode_lock); 147 kmem_cache_free(delayed_node_cache, node); 148 radix_tree_preload_end(); 149 goto again; 150 } 151 btrfs_inode->delayed_node = node; 152 spin_unlock(&root->inode_lock); 153 radix_tree_preload_end(); 154 155 return node; 156 } 157 158 /* 159 * Call it when holding delayed_node->mutex 160 * 161 * If mod = 1, add this node into the prepared list. 162 */ 163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 164 struct btrfs_delayed_node *node, 165 int mod) 166 { 167 spin_lock(&root->lock); 168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 169 if (!list_empty(&node->p_list)) 170 list_move_tail(&node->p_list, &root->prepare_list); 171 else if (mod) 172 list_add_tail(&node->p_list, &root->prepare_list); 173 } else { 174 list_add_tail(&node->n_list, &root->node_list); 175 list_add_tail(&node->p_list, &root->prepare_list); 176 refcount_inc(&node->refs); /* inserted into list */ 177 root->nodes++; 178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 179 } 180 spin_unlock(&root->lock); 181 } 182 183 /* Call it when holding delayed_node->mutex */ 184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 185 struct btrfs_delayed_node *node) 186 { 187 spin_lock(&root->lock); 188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 189 root->nodes--; 190 refcount_dec(&node->refs); /* not in the list */ 191 list_del_init(&node->n_list); 192 if (!list_empty(&node->p_list)) 193 list_del_init(&node->p_list); 194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 195 } 196 spin_unlock(&root->lock); 197 } 198 199 static struct btrfs_delayed_node *btrfs_first_delayed_node( 200 struct btrfs_delayed_root *delayed_root) 201 { 202 struct list_head *p; 203 struct btrfs_delayed_node *node = NULL; 204 205 spin_lock(&delayed_root->lock); 206 if (list_empty(&delayed_root->node_list)) 207 goto out; 208 209 p = delayed_root->node_list.next; 210 node = list_entry(p, struct btrfs_delayed_node, n_list); 211 refcount_inc(&node->refs); 212 out: 213 spin_unlock(&delayed_root->lock); 214 215 return node; 216 } 217 218 static struct btrfs_delayed_node *btrfs_next_delayed_node( 219 struct btrfs_delayed_node *node) 220 { 221 struct btrfs_delayed_root *delayed_root; 222 struct list_head *p; 223 struct btrfs_delayed_node *next = NULL; 224 225 delayed_root = node->root->fs_info->delayed_root; 226 spin_lock(&delayed_root->lock); 227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 228 /* not in the list */ 229 if (list_empty(&delayed_root->node_list)) 230 goto out; 231 p = delayed_root->node_list.next; 232 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 233 goto out; 234 else 235 p = node->n_list.next; 236 237 next = list_entry(p, struct btrfs_delayed_node, n_list); 238 refcount_inc(&next->refs); 239 out: 240 spin_unlock(&delayed_root->lock); 241 242 return next; 243 } 244 245 static void __btrfs_release_delayed_node( 246 struct btrfs_delayed_node *delayed_node, 247 int mod) 248 { 249 struct btrfs_delayed_root *delayed_root; 250 251 if (!delayed_node) 252 return; 253 254 delayed_root = delayed_node->root->fs_info->delayed_root; 255 256 mutex_lock(&delayed_node->mutex); 257 if (delayed_node->count) 258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 259 else 260 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 261 mutex_unlock(&delayed_node->mutex); 262 263 if (refcount_dec_and_test(&delayed_node->refs)) { 264 struct btrfs_root *root = delayed_node->root; 265 266 spin_lock(&root->inode_lock); 267 /* 268 * Once our refcount goes to zero, nobody is allowed to bump it 269 * back up. We can delete it now. 270 */ 271 ASSERT(refcount_read(&delayed_node->refs) == 0); 272 radix_tree_delete(&root->delayed_nodes_tree, 273 delayed_node->inode_id); 274 spin_unlock(&root->inode_lock); 275 kmem_cache_free(delayed_node_cache, delayed_node); 276 } 277 } 278 279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 280 { 281 __btrfs_release_delayed_node(node, 0); 282 } 283 284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 285 struct btrfs_delayed_root *delayed_root) 286 { 287 struct list_head *p; 288 struct btrfs_delayed_node *node = NULL; 289 290 spin_lock(&delayed_root->lock); 291 if (list_empty(&delayed_root->prepare_list)) 292 goto out; 293 294 p = delayed_root->prepare_list.next; 295 list_del_init(p); 296 node = list_entry(p, struct btrfs_delayed_node, p_list); 297 refcount_inc(&node->refs); 298 out: 299 spin_unlock(&delayed_root->lock); 300 301 return node; 302 } 303 304 static inline void btrfs_release_prepared_delayed_node( 305 struct btrfs_delayed_node *node) 306 { 307 __btrfs_release_delayed_node(node, 1); 308 } 309 310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 311 struct btrfs_delayed_node *node, 312 enum btrfs_delayed_item_type type) 313 { 314 struct btrfs_delayed_item *item; 315 316 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 317 if (item) { 318 item->data_len = data_len; 319 item->type = type; 320 item->bytes_reserved = 0; 321 item->delayed_node = node; 322 RB_CLEAR_NODE(&item->rb_node); 323 INIT_LIST_HEAD(&item->log_list); 324 item->logged = false; 325 refcount_set(&item->refs, 1); 326 } 327 return item; 328 } 329 330 /* 331 * __btrfs_lookup_delayed_item - look up the delayed item by key 332 * @delayed_node: pointer to the delayed node 333 * @index: the dir index value to lookup (offset of a dir index key) 334 * 335 * Note: if we don't find the right item, we will return the prev item and 336 * the next item. 337 */ 338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 339 struct rb_root *root, 340 u64 index) 341 { 342 struct rb_node *node = root->rb_node; 343 struct btrfs_delayed_item *delayed_item = NULL; 344 345 while (node) { 346 delayed_item = rb_entry(node, struct btrfs_delayed_item, 347 rb_node); 348 if (delayed_item->index < index) 349 node = node->rb_right; 350 else if (delayed_item->index > index) 351 node = node->rb_left; 352 else 353 return delayed_item; 354 } 355 356 return NULL; 357 } 358 359 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 360 struct btrfs_delayed_item *ins) 361 { 362 struct rb_node **p, *node; 363 struct rb_node *parent_node = NULL; 364 struct rb_root_cached *root; 365 struct btrfs_delayed_item *item; 366 bool leftmost = true; 367 368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 369 root = &delayed_node->ins_root; 370 else 371 root = &delayed_node->del_root; 372 373 p = &root->rb_root.rb_node; 374 node = &ins->rb_node; 375 376 while (*p) { 377 parent_node = *p; 378 item = rb_entry(parent_node, struct btrfs_delayed_item, 379 rb_node); 380 381 if (item->index < ins->index) { 382 p = &(*p)->rb_right; 383 leftmost = false; 384 } else if (item->index > ins->index) { 385 p = &(*p)->rb_left; 386 } else { 387 return -EEXIST; 388 } 389 } 390 391 rb_link_node(node, parent_node, p); 392 rb_insert_color_cached(node, root, leftmost); 393 394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 395 ins->index >= delayed_node->index_cnt) 396 delayed_node->index_cnt = ins->index + 1; 397 398 delayed_node->count++; 399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 400 return 0; 401 } 402 403 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 404 { 405 int seq = atomic_inc_return(&delayed_root->items_seq); 406 407 /* atomic_dec_return implies a barrier */ 408 if ((atomic_dec_return(&delayed_root->items) < 409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 410 cond_wake_up_nomb(&delayed_root->wait); 411 } 412 413 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 414 { 415 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 416 struct rb_root_cached *root; 417 struct btrfs_delayed_root *delayed_root; 418 419 /* Not inserted, ignore it. */ 420 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 421 return; 422 423 /* If it's in a rbtree, then we need to have delayed node locked. */ 424 lockdep_assert_held(&delayed_node->mutex); 425 426 delayed_root = delayed_node->root->fs_info->delayed_root; 427 428 BUG_ON(!delayed_root); 429 430 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 431 root = &delayed_node->ins_root; 432 else 433 root = &delayed_node->del_root; 434 435 rb_erase_cached(&delayed_item->rb_node, root); 436 RB_CLEAR_NODE(&delayed_item->rb_node); 437 delayed_node->count--; 438 439 finish_one_item(delayed_root); 440 } 441 442 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 443 { 444 if (item) { 445 __btrfs_remove_delayed_item(item); 446 if (refcount_dec_and_test(&item->refs)) 447 kfree(item); 448 } 449 } 450 451 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 452 struct btrfs_delayed_node *delayed_node) 453 { 454 struct rb_node *p; 455 struct btrfs_delayed_item *item = NULL; 456 457 p = rb_first_cached(&delayed_node->ins_root); 458 if (p) 459 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 460 461 return item; 462 } 463 464 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 465 struct btrfs_delayed_node *delayed_node) 466 { 467 struct rb_node *p; 468 struct btrfs_delayed_item *item = NULL; 469 470 p = rb_first_cached(&delayed_node->del_root); 471 if (p) 472 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 473 474 return item; 475 } 476 477 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 478 struct btrfs_delayed_item *item) 479 { 480 struct rb_node *p; 481 struct btrfs_delayed_item *next = NULL; 482 483 p = rb_next(&item->rb_node); 484 if (p) 485 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 486 487 return next; 488 } 489 490 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 491 struct btrfs_delayed_item *item) 492 { 493 struct btrfs_block_rsv *src_rsv; 494 struct btrfs_block_rsv *dst_rsv; 495 struct btrfs_fs_info *fs_info = trans->fs_info; 496 u64 num_bytes; 497 int ret; 498 499 if (!trans->bytes_reserved) 500 return 0; 501 502 src_rsv = trans->block_rsv; 503 dst_rsv = &fs_info->delayed_block_rsv; 504 505 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 506 507 /* 508 * Here we migrate space rsv from transaction rsv, since have already 509 * reserved space when starting a transaction. So no need to reserve 510 * qgroup space here. 511 */ 512 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 513 if (!ret) { 514 trace_btrfs_space_reservation(fs_info, "delayed_item", 515 item->delayed_node->inode_id, 516 num_bytes, 1); 517 /* 518 * For insertions we track reserved metadata space by accounting 519 * for the number of leaves that will be used, based on the delayed 520 * node's index_items_size field. 521 */ 522 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 523 item->bytes_reserved = num_bytes; 524 } 525 526 return ret; 527 } 528 529 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 530 struct btrfs_delayed_item *item) 531 { 532 struct btrfs_block_rsv *rsv; 533 struct btrfs_fs_info *fs_info = root->fs_info; 534 535 if (!item->bytes_reserved) 536 return; 537 538 rsv = &fs_info->delayed_block_rsv; 539 /* 540 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 541 * to release/reserve qgroup space. 542 */ 543 trace_btrfs_space_reservation(fs_info, "delayed_item", 544 item->delayed_node->inode_id, 545 item->bytes_reserved, 0); 546 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 547 } 548 549 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 550 unsigned int num_leaves) 551 { 552 struct btrfs_fs_info *fs_info = node->root->fs_info; 553 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 554 555 /* There are no space reservations during log replay, bail out. */ 556 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 557 return; 558 559 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 560 bytes, 0); 561 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 562 } 563 564 static int btrfs_delayed_inode_reserve_metadata( 565 struct btrfs_trans_handle *trans, 566 struct btrfs_root *root, 567 struct btrfs_delayed_node *node) 568 { 569 struct btrfs_fs_info *fs_info = root->fs_info; 570 struct btrfs_block_rsv *src_rsv; 571 struct btrfs_block_rsv *dst_rsv; 572 u64 num_bytes; 573 int ret; 574 575 src_rsv = trans->block_rsv; 576 dst_rsv = &fs_info->delayed_block_rsv; 577 578 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 579 580 /* 581 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 582 * which doesn't reserve space for speed. This is a problem since we 583 * still need to reserve space for this update, so try to reserve the 584 * space. 585 * 586 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 587 * we always reserve enough to update the inode item. 588 */ 589 if (!src_rsv || (!trans->bytes_reserved && 590 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 591 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 592 BTRFS_QGROUP_RSV_META_PREALLOC, true); 593 if (ret < 0) 594 return ret; 595 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 596 BTRFS_RESERVE_NO_FLUSH); 597 /* NO_FLUSH could only fail with -ENOSPC */ 598 ASSERT(ret == 0 || ret == -ENOSPC); 599 if (ret) 600 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 601 } else { 602 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 603 } 604 605 if (!ret) { 606 trace_btrfs_space_reservation(fs_info, "delayed_inode", 607 node->inode_id, num_bytes, 1); 608 node->bytes_reserved = num_bytes; 609 } 610 611 return ret; 612 } 613 614 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 615 struct btrfs_delayed_node *node, 616 bool qgroup_free) 617 { 618 struct btrfs_block_rsv *rsv; 619 620 if (!node->bytes_reserved) 621 return; 622 623 rsv = &fs_info->delayed_block_rsv; 624 trace_btrfs_space_reservation(fs_info, "delayed_inode", 625 node->inode_id, node->bytes_reserved, 0); 626 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 627 if (qgroup_free) 628 btrfs_qgroup_free_meta_prealloc(node->root, 629 node->bytes_reserved); 630 else 631 btrfs_qgroup_convert_reserved_meta(node->root, 632 node->bytes_reserved); 633 node->bytes_reserved = 0; 634 } 635 636 /* 637 * Insert a single delayed item or a batch of delayed items, as many as possible 638 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 639 * in the rbtree, and if there's a gap between two consecutive dir index items, 640 * then it means at some point we had delayed dir indexes to add but they got 641 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 642 * into the subvolume tree. Dir index keys also have their offsets coming from a 643 * monotonically increasing counter, so we can't get new keys with an offset that 644 * fits within a gap between delayed dir index items. 645 */ 646 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 647 struct btrfs_root *root, 648 struct btrfs_path *path, 649 struct btrfs_delayed_item *first_item) 650 { 651 struct btrfs_fs_info *fs_info = root->fs_info; 652 struct btrfs_delayed_node *node = first_item->delayed_node; 653 LIST_HEAD(item_list); 654 struct btrfs_delayed_item *curr; 655 struct btrfs_delayed_item *next; 656 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 657 struct btrfs_item_batch batch; 658 struct btrfs_key first_key; 659 const u32 first_data_size = first_item->data_len; 660 int total_size; 661 char *ins_data = NULL; 662 int ret; 663 bool continuous_keys_only = false; 664 665 lockdep_assert_held(&node->mutex); 666 667 /* 668 * During normal operation the delayed index offset is continuously 669 * increasing, so we can batch insert all items as there will not be any 670 * overlapping keys in the tree. 671 * 672 * The exception to this is log replay, where we may have interleaved 673 * offsets in the tree, so our batch needs to be continuous keys only in 674 * order to ensure we do not end up with out of order items in our leaf. 675 */ 676 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 677 continuous_keys_only = true; 678 679 /* 680 * For delayed items to insert, we track reserved metadata bytes based 681 * on the number of leaves that we will use. 682 * See btrfs_insert_delayed_dir_index() and 683 * btrfs_delayed_item_reserve_metadata()). 684 */ 685 ASSERT(first_item->bytes_reserved == 0); 686 687 list_add_tail(&first_item->tree_list, &item_list); 688 batch.total_data_size = first_data_size; 689 batch.nr = 1; 690 total_size = first_data_size + sizeof(struct btrfs_item); 691 curr = first_item; 692 693 while (true) { 694 int next_size; 695 696 next = __btrfs_next_delayed_item(curr); 697 if (!next) 698 break; 699 700 /* 701 * We cannot allow gaps in the key space if we're doing log 702 * replay. 703 */ 704 if (continuous_keys_only && (next->index != curr->index + 1)) 705 break; 706 707 ASSERT(next->bytes_reserved == 0); 708 709 next_size = next->data_len + sizeof(struct btrfs_item); 710 if (total_size + next_size > max_size) 711 break; 712 713 list_add_tail(&next->tree_list, &item_list); 714 batch.nr++; 715 total_size += next_size; 716 batch.total_data_size += next->data_len; 717 curr = next; 718 } 719 720 if (batch.nr == 1) { 721 first_key.objectid = node->inode_id; 722 first_key.type = BTRFS_DIR_INDEX_KEY; 723 first_key.offset = first_item->index; 724 batch.keys = &first_key; 725 batch.data_sizes = &first_data_size; 726 } else { 727 struct btrfs_key *ins_keys; 728 u32 *ins_sizes; 729 int i = 0; 730 731 ins_data = kmalloc(batch.nr * sizeof(u32) + 732 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 733 if (!ins_data) { 734 ret = -ENOMEM; 735 goto out; 736 } 737 ins_sizes = (u32 *)ins_data; 738 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 739 batch.keys = ins_keys; 740 batch.data_sizes = ins_sizes; 741 list_for_each_entry(curr, &item_list, tree_list) { 742 ins_keys[i].objectid = node->inode_id; 743 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 744 ins_keys[i].offset = curr->index; 745 ins_sizes[i] = curr->data_len; 746 i++; 747 } 748 } 749 750 ret = btrfs_insert_empty_items(trans, root, path, &batch); 751 if (ret) 752 goto out; 753 754 list_for_each_entry(curr, &item_list, tree_list) { 755 char *data_ptr; 756 757 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 758 write_extent_buffer(path->nodes[0], &curr->data, 759 (unsigned long)data_ptr, curr->data_len); 760 path->slots[0]++; 761 } 762 763 /* 764 * Now release our path before releasing the delayed items and their 765 * metadata reservations, so that we don't block other tasks for more 766 * time than needed. 767 */ 768 btrfs_release_path(path); 769 770 ASSERT(node->index_item_leaves > 0); 771 772 /* 773 * For normal operations we will batch an entire leaf's worth of delayed 774 * items, so if there are more items to process we can decrement 775 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 776 * 777 * However for log replay we may not have inserted an entire leaf's 778 * worth of items, we may have not had continuous items, so decrementing 779 * here would mess up the index_item_leaves accounting. For this case 780 * only clean up the accounting when there are no items left. 781 */ 782 if (next && !continuous_keys_only) { 783 /* 784 * We inserted one batch of items into a leaf a there are more 785 * items to flush in a future batch, now release one unit of 786 * metadata space from the delayed block reserve, corresponding 787 * the leaf we just flushed to. 788 */ 789 btrfs_delayed_item_release_leaves(node, 1); 790 node->index_item_leaves--; 791 } else if (!next) { 792 /* 793 * There are no more items to insert. We can have a number of 794 * reserved leaves > 1 here - this happens when many dir index 795 * items are added and then removed before they are flushed (file 796 * names with a very short life, never span a transaction). So 797 * release all remaining leaves. 798 */ 799 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 800 node->index_item_leaves = 0; 801 } 802 803 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 804 list_del(&curr->tree_list); 805 btrfs_release_delayed_item(curr); 806 } 807 out: 808 kfree(ins_data); 809 return ret; 810 } 811 812 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 813 struct btrfs_path *path, 814 struct btrfs_root *root, 815 struct btrfs_delayed_node *node) 816 { 817 int ret = 0; 818 819 while (ret == 0) { 820 struct btrfs_delayed_item *curr; 821 822 mutex_lock(&node->mutex); 823 curr = __btrfs_first_delayed_insertion_item(node); 824 if (!curr) { 825 mutex_unlock(&node->mutex); 826 break; 827 } 828 ret = btrfs_insert_delayed_item(trans, root, path, curr); 829 mutex_unlock(&node->mutex); 830 } 831 832 return ret; 833 } 834 835 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 836 struct btrfs_root *root, 837 struct btrfs_path *path, 838 struct btrfs_delayed_item *item) 839 { 840 const u64 ino = item->delayed_node->inode_id; 841 struct btrfs_fs_info *fs_info = root->fs_info; 842 struct btrfs_delayed_item *curr, *next; 843 struct extent_buffer *leaf = path->nodes[0]; 844 LIST_HEAD(batch_list); 845 int nitems, slot, last_slot; 846 int ret; 847 u64 total_reserved_size = item->bytes_reserved; 848 849 ASSERT(leaf != NULL); 850 851 slot = path->slots[0]; 852 last_slot = btrfs_header_nritems(leaf) - 1; 853 /* 854 * Our caller always gives us a path pointing to an existing item, so 855 * this can not happen. 856 */ 857 ASSERT(slot <= last_slot); 858 if (WARN_ON(slot > last_slot)) 859 return -ENOENT; 860 861 nitems = 1; 862 curr = item; 863 list_add_tail(&curr->tree_list, &batch_list); 864 865 /* 866 * Keep checking if the next delayed item matches the next item in the 867 * leaf - if so, we can add it to the batch of items to delete from the 868 * leaf. 869 */ 870 while (slot < last_slot) { 871 struct btrfs_key key; 872 873 next = __btrfs_next_delayed_item(curr); 874 if (!next) 875 break; 876 877 slot++; 878 btrfs_item_key_to_cpu(leaf, &key, slot); 879 if (key.objectid != ino || 880 key.type != BTRFS_DIR_INDEX_KEY || 881 key.offset != next->index) 882 break; 883 nitems++; 884 curr = next; 885 list_add_tail(&curr->tree_list, &batch_list); 886 total_reserved_size += curr->bytes_reserved; 887 } 888 889 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 890 if (ret) 891 return ret; 892 893 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 894 if (total_reserved_size > 0) { 895 /* 896 * Check btrfs_delayed_item_reserve_metadata() to see why we 897 * don't need to release/reserve qgroup space. 898 */ 899 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 900 total_reserved_size, 0); 901 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 902 total_reserved_size, NULL); 903 } 904 905 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 906 list_del(&curr->tree_list); 907 btrfs_release_delayed_item(curr); 908 } 909 910 return 0; 911 } 912 913 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 914 struct btrfs_path *path, 915 struct btrfs_root *root, 916 struct btrfs_delayed_node *node) 917 { 918 struct btrfs_key key; 919 int ret = 0; 920 921 key.objectid = node->inode_id; 922 key.type = BTRFS_DIR_INDEX_KEY; 923 924 while (ret == 0) { 925 struct btrfs_delayed_item *item; 926 927 mutex_lock(&node->mutex); 928 item = __btrfs_first_delayed_deletion_item(node); 929 if (!item) { 930 mutex_unlock(&node->mutex); 931 break; 932 } 933 934 key.offset = item->index; 935 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 936 if (ret > 0) { 937 /* 938 * There's no matching item in the leaf. This means we 939 * have already deleted this item in a past run of the 940 * delayed items. We ignore errors when running delayed 941 * items from an async context, through a work queue job 942 * running btrfs_async_run_delayed_root(), and don't 943 * release delayed items that failed to complete. This 944 * is because we will retry later, and at transaction 945 * commit time we always run delayed items and will 946 * then deal with errors if they fail to run again. 947 * 948 * So just release delayed items for which we can't find 949 * an item in the tree, and move to the next item. 950 */ 951 btrfs_release_path(path); 952 btrfs_release_delayed_item(item); 953 ret = 0; 954 } else if (ret == 0) { 955 ret = btrfs_batch_delete_items(trans, root, path, item); 956 btrfs_release_path(path); 957 } 958 959 /* 960 * We unlock and relock on each iteration, this is to prevent 961 * blocking other tasks for too long while we are being run from 962 * the async context (work queue job). Those tasks are typically 963 * running system calls like creat/mkdir/rename/unlink/etc which 964 * need to add delayed items to this delayed node. 965 */ 966 mutex_unlock(&node->mutex); 967 } 968 969 return ret; 970 } 971 972 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 973 { 974 struct btrfs_delayed_root *delayed_root; 975 976 if (delayed_node && 977 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 978 BUG_ON(!delayed_node->root); 979 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 980 delayed_node->count--; 981 982 delayed_root = delayed_node->root->fs_info->delayed_root; 983 finish_one_item(delayed_root); 984 } 985 } 986 987 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 988 { 989 990 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 991 struct btrfs_delayed_root *delayed_root; 992 993 ASSERT(delayed_node->root); 994 delayed_node->count--; 995 996 delayed_root = delayed_node->root->fs_info->delayed_root; 997 finish_one_item(delayed_root); 998 } 999 } 1000 1001 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1002 struct btrfs_root *root, 1003 struct btrfs_path *path, 1004 struct btrfs_delayed_node *node) 1005 { 1006 struct btrfs_fs_info *fs_info = root->fs_info; 1007 struct btrfs_key key; 1008 struct btrfs_inode_item *inode_item; 1009 struct extent_buffer *leaf; 1010 int mod; 1011 int ret; 1012 1013 key.objectid = node->inode_id; 1014 key.type = BTRFS_INODE_ITEM_KEY; 1015 key.offset = 0; 1016 1017 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1018 mod = -1; 1019 else 1020 mod = 1; 1021 1022 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1023 if (ret > 0) 1024 ret = -ENOENT; 1025 if (ret < 0) 1026 goto out; 1027 1028 leaf = path->nodes[0]; 1029 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1030 struct btrfs_inode_item); 1031 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1032 sizeof(struct btrfs_inode_item)); 1033 btrfs_mark_buffer_dirty(leaf); 1034 1035 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1036 goto out; 1037 1038 path->slots[0]++; 1039 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1040 goto search; 1041 again: 1042 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1043 if (key.objectid != node->inode_id) 1044 goto out; 1045 1046 if (key.type != BTRFS_INODE_REF_KEY && 1047 key.type != BTRFS_INODE_EXTREF_KEY) 1048 goto out; 1049 1050 /* 1051 * Delayed iref deletion is for the inode who has only one link, 1052 * so there is only one iref. The case that several irefs are 1053 * in the same item doesn't exist. 1054 */ 1055 ret = btrfs_del_item(trans, root, path); 1056 out: 1057 btrfs_release_delayed_iref(node); 1058 btrfs_release_path(path); 1059 err_out: 1060 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1061 btrfs_release_delayed_inode(node); 1062 1063 /* 1064 * If we fail to update the delayed inode we need to abort the 1065 * transaction, because we could leave the inode with the improper 1066 * counts behind. 1067 */ 1068 if (ret && ret != -ENOENT) 1069 btrfs_abort_transaction(trans, ret); 1070 1071 return ret; 1072 1073 search: 1074 btrfs_release_path(path); 1075 1076 key.type = BTRFS_INODE_EXTREF_KEY; 1077 key.offset = -1; 1078 1079 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1080 if (ret < 0) 1081 goto err_out; 1082 ASSERT(ret); 1083 1084 ret = 0; 1085 leaf = path->nodes[0]; 1086 path->slots[0]--; 1087 goto again; 1088 } 1089 1090 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1091 struct btrfs_root *root, 1092 struct btrfs_path *path, 1093 struct btrfs_delayed_node *node) 1094 { 1095 int ret; 1096 1097 mutex_lock(&node->mutex); 1098 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1099 mutex_unlock(&node->mutex); 1100 return 0; 1101 } 1102 1103 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1104 mutex_unlock(&node->mutex); 1105 return ret; 1106 } 1107 1108 static inline int 1109 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1110 struct btrfs_path *path, 1111 struct btrfs_delayed_node *node) 1112 { 1113 int ret; 1114 1115 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1116 if (ret) 1117 return ret; 1118 1119 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1120 if (ret) 1121 return ret; 1122 1123 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1124 return ret; 1125 } 1126 1127 /* 1128 * Called when committing the transaction. 1129 * Returns 0 on success. 1130 * Returns < 0 on error and returns with an aborted transaction with any 1131 * outstanding delayed items cleaned up. 1132 */ 1133 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1134 { 1135 struct btrfs_fs_info *fs_info = trans->fs_info; 1136 struct btrfs_delayed_root *delayed_root; 1137 struct btrfs_delayed_node *curr_node, *prev_node; 1138 struct btrfs_path *path; 1139 struct btrfs_block_rsv *block_rsv; 1140 int ret = 0; 1141 bool count = (nr > 0); 1142 1143 if (TRANS_ABORTED(trans)) 1144 return -EIO; 1145 1146 path = btrfs_alloc_path(); 1147 if (!path) 1148 return -ENOMEM; 1149 1150 block_rsv = trans->block_rsv; 1151 trans->block_rsv = &fs_info->delayed_block_rsv; 1152 1153 delayed_root = fs_info->delayed_root; 1154 1155 curr_node = btrfs_first_delayed_node(delayed_root); 1156 while (curr_node && (!count || nr--)) { 1157 ret = __btrfs_commit_inode_delayed_items(trans, path, 1158 curr_node); 1159 if (ret) { 1160 btrfs_abort_transaction(trans, ret); 1161 break; 1162 } 1163 1164 prev_node = curr_node; 1165 curr_node = btrfs_next_delayed_node(curr_node); 1166 /* 1167 * See the comment below about releasing path before releasing 1168 * node. If the commit of delayed items was successful the path 1169 * should always be released, but in case of an error, it may 1170 * point to locked extent buffers (a leaf at the very least). 1171 */ 1172 ASSERT(path->nodes[0] == NULL); 1173 btrfs_release_delayed_node(prev_node); 1174 } 1175 1176 /* 1177 * Release the path to avoid a potential deadlock and lockdep splat when 1178 * releasing the delayed node, as that requires taking the delayed node's 1179 * mutex. If another task starts running delayed items before we take 1180 * the mutex, it will first lock the mutex and then it may try to lock 1181 * the same btree path (leaf). 1182 */ 1183 btrfs_free_path(path); 1184 1185 if (curr_node) 1186 btrfs_release_delayed_node(curr_node); 1187 trans->block_rsv = block_rsv; 1188 1189 return ret; 1190 } 1191 1192 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1193 { 1194 return __btrfs_run_delayed_items(trans, -1); 1195 } 1196 1197 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1198 { 1199 return __btrfs_run_delayed_items(trans, nr); 1200 } 1201 1202 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1203 struct btrfs_inode *inode) 1204 { 1205 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1206 struct btrfs_path *path; 1207 struct btrfs_block_rsv *block_rsv; 1208 int ret; 1209 1210 if (!delayed_node) 1211 return 0; 1212 1213 mutex_lock(&delayed_node->mutex); 1214 if (!delayed_node->count) { 1215 mutex_unlock(&delayed_node->mutex); 1216 btrfs_release_delayed_node(delayed_node); 1217 return 0; 1218 } 1219 mutex_unlock(&delayed_node->mutex); 1220 1221 path = btrfs_alloc_path(); 1222 if (!path) { 1223 btrfs_release_delayed_node(delayed_node); 1224 return -ENOMEM; 1225 } 1226 1227 block_rsv = trans->block_rsv; 1228 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1229 1230 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1231 1232 btrfs_release_delayed_node(delayed_node); 1233 btrfs_free_path(path); 1234 trans->block_rsv = block_rsv; 1235 1236 return ret; 1237 } 1238 1239 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1240 { 1241 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1242 struct btrfs_trans_handle *trans; 1243 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1244 struct btrfs_path *path; 1245 struct btrfs_block_rsv *block_rsv; 1246 int ret; 1247 1248 if (!delayed_node) 1249 return 0; 1250 1251 mutex_lock(&delayed_node->mutex); 1252 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1253 mutex_unlock(&delayed_node->mutex); 1254 btrfs_release_delayed_node(delayed_node); 1255 return 0; 1256 } 1257 mutex_unlock(&delayed_node->mutex); 1258 1259 trans = btrfs_join_transaction(delayed_node->root); 1260 if (IS_ERR(trans)) { 1261 ret = PTR_ERR(trans); 1262 goto out; 1263 } 1264 1265 path = btrfs_alloc_path(); 1266 if (!path) { 1267 ret = -ENOMEM; 1268 goto trans_out; 1269 } 1270 1271 block_rsv = trans->block_rsv; 1272 trans->block_rsv = &fs_info->delayed_block_rsv; 1273 1274 mutex_lock(&delayed_node->mutex); 1275 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1276 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1277 path, delayed_node); 1278 else 1279 ret = 0; 1280 mutex_unlock(&delayed_node->mutex); 1281 1282 btrfs_free_path(path); 1283 trans->block_rsv = block_rsv; 1284 trans_out: 1285 btrfs_end_transaction(trans); 1286 btrfs_btree_balance_dirty(fs_info); 1287 out: 1288 btrfs_release_delayed_node(delayed_node); 1289 1290 return ret; 1291 } 1292 1293 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1294 { 1295 struct btrfs_delayed_node *delayed_node; 1296 1297 delayed_node = READ_ONCE(inode->delayed_node); 1298 if (!delayed_node) 1299 return; 1300 1301 inode->delayed_node = NULL; 1302 btrfs_release_delayed_node(delayed_node); 1303 } 1304 1305 struct btrfs_async_delayed_work { 1306 struct btrfs_delayed_root *delayed_root; 1307 int nr; 1308 struct btrfs_work work; 1309 }; 1310 1311 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1312 { 1313 struct btrfs_async_delayed_work *async_work; 1314 struct btrfs_delayed_root *delayed_root; 1315 struct btrfs_trans_handle *trans; 1316 struct btrfs_path *path; 1317 struct btrfs_delayed_node *delayed_node = NULL; 1318 struct btrfs_root *root; 1319 struct btrfs_block_rsv *block_rsv; 1320 int total_done = 0; 1321 1322 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1323 delayed_root = async_work->delayed_root; 1324 1325 path = btrfs_alloc_path(); 1326 if (!path) 1327 goto out; 1328 1329 do { 1330 if (atomic_read(&delayed_root->items) < 1331 BTRFS_DELAYED_BACKGROUND / 2) 1332 break; 1333 1334 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1335 if (!delayed_node) 1336 break; 1337 1338 root = delayed_node->root; 1339 1340 trans = btrfs_join_transaction(root); 1341 if (IS_ERR(trans)) { 1342 btrfs_release_path(path); 1343 btrfs_release_prepared_delayed_node(delayed_node); 1344 total_done++; 1345 continue; 1346 } 1347 1348 block_rsv = trans->block_rsv; 1349 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1350 1351 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1352 1353 trans->block_rsv = block_rsv; 1354 btrfs_end_transaction(trans); 1355 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1356 1357 btrfs_release_path(path); 1358 btrfs_release_prepared_delayed_node(delayed_node); 1359 total_done++; 1360 1361 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1362 || total_done < async_work->nr); 1363 1364 btrfs_free_path(path); 1365 out: 1366 wake_up(&delayed_root->wait); 1367 kfree(async_work); 1368 } 1369 1370 1371 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1372 struct btrfs_fs_info *fs_info, int nr) 1373 { 1374 struct btrfs_async_delayed_work *async_work; 1375 1376 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1377 if (!async_work) 1378 return -ENOMEM; 1379 1380 async_work->delayed_root = delayed_root; 1381 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1382 NULL); 1383 async_work->nr = nr; 1384 1385 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1386 return 0; 1387 } 1388 1389 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1390 { 1391 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1392 } 1393 1394 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1395 { 1396 int val = atomic_read(&delayed_root->items_seq); 1397 1398 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1399 return 1; 1400 1401 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1402 return 1; 1403 1404 return 0; 1405 } 1406 1407 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1408 { 1409 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1410 1411 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1412 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1413 return; 1414 1415 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1416 int seq; 1417 int ret; 1418 1419 seq = atomic_read(&delayed_root->items_seq); 1420 1421 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1422 if (ret) 1423 return; 1424 1425 wait_event_interruptible(delayed_root->wait, 1426 could_end_wait(delayed_root, seq)); 1427 return; 1428 } 1429 1430 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1431 } 1432 1433 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1434 { 1435 struct btrfs_fs_info *fs_info = trans->fs_info; 1436 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1437 1438 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1439 return; 1440 1441 /* 1442 * Adding the new dir index item does not require touching another 1443 * leaf, so we can release 1 unit of metadata that was previously 1444 * reserved when starting the transaction. This applies only to 1445 * the case where we had a transaction start and excludes the 1446 * transaction join case (when replaying log trees). 1447 */ 1448 trace_btrfs_space_reservation(fs_info, "transaction", 1449 trans->transid, bytes, 0); 1450 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1451 ASSERT(trans->bytes_reserved >= bytes); 1452 trans->bytes_reserved -= bytes; 1453 } 1454 1455 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1456 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1457 const char *name, int name_len, 1458 struct btrfs_inode *dir, 1459 struct btrfs_disk_key *disk_key, u8 flags, 1460 u64 index) 1461 { 1462 struct btrfs_fs_info *fs_info = trans->fs_info; 1463 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1464 struct btrfs_delayed_node *delayed_node; 1465 struct btrfs_delayed_item *delayed_item; 1466 struct btrfs_dir_item *dir_item; 1467 bool reserve_leaf_space; 1468 u32 data_len; 1469 int ret; 1470 1471 delayed_node = btrfs_get_or_create_delayed_node(dir); 1472 if (IS_ERR(delayed_node)) 1473 return PTR_ERR(delayed_node); 1474 1475 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1476 delayed_node, 1477 BTRFS_DELAYED_INSERTION_ITEM); 1478 if (!delayed_item) { 1479 ret = -ENOMEM; 1480 goto release_node; 1481 } 1482 1483 delayed_item->index = index; 1484 1485 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1486 dir_item->location = *disk_key; 1487 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1488 btrfs_set_stack_dir_data_len(dir_item, 0); 1489 btrfs_set_stack_dir_name_len(dir_item, name_len); 1490 btrfs_set_stack_dir_flags(dir_item, flags); 1491 memcpy((char *)(dir_item + 1), name, name_len); 1492 1493 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1494 1495 mutex_lock(&delayed_node->mutex); 1496 1497 /* 1498 * First attempt to insert the delayed item. This is to make the error 1499 * handling path simpler in case we fail (-EEXIST). There's no risk of 1500 * any other task coming in and running the delayed item before we do 1501 * the metadata space reservation below, because we are holding the 1502 * delayed node's mutex and that mutex must also be locked before the 1503 * node's delayed items can be run. 1504 */ 1505 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1506 if (unlikely(ret)) { 1507 btrfs_err(trans->fs_info, 1508 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1509 name_len, name, index, btrfs_root_id(delayed_node->root), 1510 delayed_node->inode_id, dir->index_cnt, 1511 delayed_node->index_cnt, ret); 1512 btrfs_release_delayed_item(delayed_item); 1513 btrfs_release_dir_index_item_space(trans); 1514 mutex_unlock(&delayed_node->mutex); 1515 goto release_node; 1516 } 1517 1518 if (delayed_node->index_item_leaves == 0 || 1519 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1520 delayed_node->curr_index_batch_size = data_len; 1521 reserve_leaf_space = true; 1522 } else { 1523 delayed_node->curr_index_batch_size += data_len; 1524 reserve_leaf_space = false; 1525 } 1526 1527 if (reserve_leaf_space) { 1528 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1529 /* 1530 * Space was reserved for a dir index item insertion when we 1531 * started the transaction, so getting a failure here should be 1532 * impossible. 1533 */ 1534 if (WARN_ON(ret)) { 1535 btrfs_release_delayed_item(delayed_item); 1536 mutex_unlock(&delayed_node->mutex); 1537 goto release_node; 1538 } 1539 1540 delayed_node->index_item_leaves++; 1541 } else { 1542 btrfs_release_dir_index_item_space(trans); 1543 } 1544 mutex_unlock(&delayed_node->mutex); 1545 1546 release_node: 1547 btrfs_release_delayed_node(delayed_node); 1548 return ret; 1549 } 1550 1551 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1552 struct btrfs_delayed_node *node, 1553 u64 index) 1554 { 1555 struct btrfs_delayed_item *item; 1556 1557 mutex_lock(&node->mutex); 1558 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1559 if (!item) { 1560 mutex_unlock(&node->mutex); 1561 return 1; 1562 } 1563 1564 /* 1565 * For delayed items to insert, we track reserved metadata bytes based 1566 * on the number of leaves that we will use. 1567 * See btrfs_insert_delayed_dir_index() and 1568 * btrfs_delayed_item_reserve_metadata()). 1569 */ 1570 ASSERT(item->bytes_reserved == 0); 1571 ASSERT(node->index_item_leaves > 0); 1572 1573 /* 1574 * If there's only one leaf reserved, we can decrement this item from the 1575 * current batch, otherwise we can not because we don't know which leaf 1576 * it belongs to. With the current limit on delayed items, we rarely 1577 * accumulate enough dir index items to fill more than one leaf (even 1578 * when using a leaf size of 4K). 1579 */ 1580 if (node->index_item_leaves == 1) { 1581 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1582 1583 ASSERT(node->curr_index_batch_size >= data_len); 1584 node->curr_index_batch_size -= data_len; 1585 } 1586 1587 btrfs_release_delayed_item(item); 1588 1589 /* If we now have no more dir index items, we can release all leaves. */ 1590 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1591 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1592 node->index_item_leaves = 0; 1593 } 1594 1595 mutex_unlock(&node->mutex); 1596 return 0; 1597 } 1598 1599 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1600 struct btrfs_inode *dir, u64 index) 1601 { 1602 struct btrfs_delayed_node *node; 1603 struct btrfs_delayed_item *item; 1604 int ret; 1605 1606 node = btrfs_get_or_create_delayed_node(dir); 1607 if (IS_ERR(node)) 1608 return PTR_ERR(node); 1609 1610 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index); 1611 if (!ret) 1612 goto end; 1613 1614 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1615 if (!item) { 1616 ret = -ENOMEM; 1617 goto end; 1618 } 1619 1620 item->index = index; 1621 1622 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1623 /* 1624 * we have reserved enough space when we start a new transaction, 1625 * so reserving metadata failure is impossible. 1626 */ 1627 if (ret < 0) { 1628 btrfs_err(trans->fs_info, 1629 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1630 btrfs_release_delayed_item(item); 1631 goto end; 1632 } 1633 1634 mutex_lock(&node->mutex); 1635 ret = __btrfs_add_delayed_item(node, item); 1636 if (unlikely(ret)) { 1637 btrfs_err(trans->fs_info, 1638 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1639 index, node->root->root_key.objectid, 1640 node->inode_id, ret); 1641 btrfs_delayed_item_release_metadata(dir->root, item); 1642 btrfs_release_delayed_item(item); 1643 } 1644 mutex_unlock(&node->mutex); 1645 end: 1646 btrfs_release_delayed_node(node); 1647 return ret; 1648 } 1649 1650 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1651 { 1652 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1653 1654 if (!delayed_node) 1655 return -ENOENT; 1656 1657 /* 1658 * Since we have held i_mutex of this directory, it is impossible that 1659 * a new directory index is added into the delayed node and index_cnt 1660 * is updated now. So we needn't lock the delayed node. 1661 */ 1662 if (!delayed_node->index_cnt) { 1663 btrfs_release_delayed_node(delayed_node); 1664 return -EINVAL; 1665 } 1666 1667 inode->index_cnt = delayed_node->index_cnt; 1668 btrfs_release_delayed_node(delayed_node); 1669 return 0; 1670 } 1671 1672 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1673 u64 last_index, 1674 struct list_head *ins_list, 1675 struct list_head *del_list) 1676 { 1677 struct btrfs_delayed_node *delayed_node; 1678 struct btrfs_delayed_item *item; 1679 1680 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1681 if (!delayed_node) 1682 return false; 1683 1684 /* 1685 * We can only do one readdir with delayed items at a time because of 1686 * item->readdir_list. 1687 */ 1688 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 1689 btrfs_inode_lock(BTRFS_I(inode), 0); 1690 1691 mutex_lock(&delayed_node->mutex); 1692 item = __btrfs_first_delayed_insertion_item(delayed_node); 1693 while (item && item->index <= last_index) { 1694 refcount_inc(&item->refs); 1695 list_add_tail(&item->readdir_list, ins_list); 1696 item = __btrfs_next_delayed_item(item); 1697 } 1698 1699 item = __btrfs_first_delayed_deletion_item(delayed_node); 1700 while (item && item->index <= last_index) { 1701 refcount_inc(&item->refs); 1702 list_add_tail(&item->readdir_list, del_list); 1703 item = __btrfs_next_delayed_item(item); 1704 } 1705 mutex_unlock(&delayed_node->mutex); 1706 /* 1707 * This delayed node is still cached in the btrfs inode, so refs 1708 * must be > 1 now, and we needn't check it is going to be freed 1709 * or not. 1710 * 1711 * Besides that, this function is used to read dir, we do not 1712 * insert/delete delayed items in this period. So we also needn't 1713 * requeue or dequeue this delayed node. 1714 */ 1715 refcount_dec(&delayed_node->refs); 1716 1717 return true; 1718 } 1719 1720 void btrfs_readdir_put_delayed_items(struct inode *inode, 1721 struct list_head *ins_list, 1722 struct list_head *del_list) 1723 { 1724 struct btrfs_delayed_item *curr, *next; 1725 1726 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1727 list_del(&curr->readdir_list); 1728 if (refcount_dec_and_test(&curr->refs)) 1729 kfree(curr); 1730 } 1731 1732 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1733 list_del(&curr->readdir_list); 1734 if (refcount_dec_and_test(&curr->refs)) 1735 kfree(curr); 1736 } 1737 1738 /* 1739 * The VFS is going to do up_read(), so we need to downgrade back to a 1740 * read lock. 1741 */ 1742 downgrade_write(&inode->i_rwsem); 1743 } 1744 1745 int btrfs_should_delete_dir_index(struct list_head *del_list, 1746 u64 index) 1747 { 1748 struct btrfs_delayed_item *curr; 1749 int ret = 0; 1750 1751 list_for_each_entry(curr, del_list, readdir_list) { 1752 if (curr->index > index) 1753 break; 1754 if (curr->index == index) { 1755 ret = 1; 1756 break; 1757 } 1758 } 1759 return ret; 1760 } 1761 1762 /* 1763 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1764 * 1765 */ 1766 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1767 struct list_head *ins_list) 1768 { 1769 struct btrfs_dir_item *di; 1770 struct btrfs_delayed_item *curr, *next; 1771 struct btrfs_key location; 1772 char *name; 1773 int name_len; 1774 int over = 0; 1775 unsigned char d_type; 1776 1777 /* 1778 * Changing the data of the delayed item is impossible. So 1779 * we needn't lock them. And we have held i_mutex of the 1780 * directory, nobody can delete any directory indexes now. 1781 */ 1782 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1783 list_del(&curr->readdir_list); 1784 1785 if (curr->index < ctx->pos) { 1786 if (refcount_dec_and_test(&curr->refs)) 1787 kfree(curr); 1788 continue; 1789 } 1790 1791 ctx->pos = curr->index; 1792 1793 di = (struct btrfs_dir_item *)curr->data; 1794 name = (char *)(di + 1); 1795 name_len = btrfs_stack_dir_name_len(di); 1796 1797 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1798 btrfs_disk_key_to_cpu(&location, &di->location); 1799 1800 over = !dir_emit(ctx, name, name_len, 1801 location.objectid, d_type); 1802 1803 if (refcount_dec_and_test(&curr->refs)) 1804 kfree(curr); 1805 1806 if (over) 1807 return 1; 1808 ctx->pos++; 1809 } 1810 return 0; 1811 } 1812 1813 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1814 struct btrfs_inode_item *inode_item, 1815 struct inode *inode) 1816 { 1817 u64 flags; 1818 1819 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1820 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1821 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1822 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1823 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1824 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1825 btrfs_set_stack_inode_generation(inode_item, 1826 BTRFS_I(inode)->generation); 1827 btrfs_set_stack_inode_sequence(inode_item, 1828 inode_peek_iversion(inode)); 1829 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1830 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1831 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 1832 BTRFS_I(inode)->ro_flags); 1833 btrfs_set_stack_inode_flags(inode_item, flags); 1834 btrfs_set_stack_inode_block_group(inode_item, 0); 1835 1836 btrfs_set_stack_timespec_sec(&inode_item->atime, 1837 inode->i_atime.tv_sec); 1838 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1839 inode->i_atime.tv_nsec); 1840 1841 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1842 inode->i_mtime.tv_sec); 1843 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1844 inode->i_mtime.tv_nsec); 1845 1846 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1847 inode_get_ctime(inode).tv_sec); 1848 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1849 inode_get_ctime(inode).tv_nsec); 1850 1851 btrfs_set_stack_timespec_sec(&inode_item->otime, 1852 BTRFS_I(inode)->i_otime.tv_sec); 1853 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1854 BTRFS_I(inode)->i_otime.tv_nsec); 1855 } 1856 1857 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1858 { 1859 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1860 struct btrfs_delayed_node *delayed_node; 1861 struct btrfs_inode_item *inode_item; 1862 1863 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1864 if (!delayed_node) 1865 return -ENOENT; 1866 1867 mutex_lock(&delayed_node->mutex); 1868 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1869 mutex_unlock(&delayed_node->mutex); 1870 btrfs_release_delayed_node(delayed_node); 1871 return -ENOENT; 1872 } 1873 1874 inode_item = &delayed_node->inode_item; 1875 1876 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1877 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1878 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1879 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1880 round_up(i_size_read(inode), fs_info->sectorsize)); 1881 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1882 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1883 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1884 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1885 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1886 1887 inode_set_iversion_queried(inode, 1888 btrfs_stack_inode_sequence(inode_item)); 1889 inode->i_rdev = 0; 1890 *rdev = btrfs_stack_inode_rdev(inode_item); 1891 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1892 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 1893 1894 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1895 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1896 1897 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1898 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1899 1900 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1901 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1902 1903 BTRFS_I(inode)->i_otime.tv_sec = 1904 btrfs_stack_timespec_sec(&inode_item->otime); 1905 BTRFS_I(inode)->i_otime.tv_nsec = 1906 btrfs_stack_timespec_nsec(&inode_item->otime); 1907 1908 inode->i_generation = BTRFS_I(inode)->generation; 1909 BTRFS_I(inode)->index_cnt = (u64)-1; 1910 1911 mutex_unlock(&delayed_node->mutex); 1912 btrfs_release_delayed_node(delayed_node); 1913 return 0; 1914 } 1915 1916 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1917 struct btrfs_root *root, 1918 struct btrfs_inode *inode) 1919 { 1920 struct btrfs_delayed_node *delayed_node; 1921 int ret = 0; 1922 1923 delayed_node = btrfs_get_or_create_delayed_node(inode); 1924 if (IS_ERR(delayed_node)) 1925 return PTR_ERR(delayed_node); 1926 1927 mutex_lock(&delayed_node->mutex); 1928 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1929 fill_stack_inode_item(trans, &delayed_node->inode_item, 1930 &inode->vfs_inode); 1931 goto release_node; 1932 } 1933 1934 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1935 if (ret) 1936 goto release_node; 1937 1938 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1939 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1940 delayed_node->count++; 1941 atomic_inc(&root->fs_info->delayed_root->items); 1942 release_node: 1943 mutex_unlock(&delayed_node->mutex); 1944 btrfs_release_delayed_node(delayed_node); 1945 return ret; 1946 } 1947 1948 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1949 { 1950 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1951 struct btrfs_delayed_node *delayed_node; 1952 1953 /* 1954 * we don't do delayed inode updates during log recovery because it 1955 * leads to enospc problems. This means we also can't do 1956 * delayed inode refs 1957 */ 1958 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1959 return -EAGAIN; 1960 1961 delayed_node = btrfs_get_or_create_delayed_node(inode); 1962 if (IS_ERR(delayed_node)) 1963 return PTR_ERR(delayed_node); 1964 1965 /* 1966 * We don't reserve space for inode ref deletion is because: 1967 * - We ONLY do async inode ref deletion for the inode who has only 1968 * one link(i_nlink == 1), it means there is only one inode ref. 1969 * And in most case, the inode ref and the inode item are in the 1970 * same leaf, and we will deal with them at the same time. 1971 * Since we are sure we will reserve the space for the inode item, 1972 * it is unnecessary to reserve space for inode ref deletion. 1973 * - If the inode ref and the inode item are not in the same leaf, 1974 * We also needn't worry about enospc problem, because we reserve 1975 * much more space for the inode update than it needs. 1976 * - At the worst, we can steal some space from the global reservation. 1977 * It is very rare. 1978 */ 1979 mutex_lock(&delayed_node->mutex); 1980 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1981 goto release_node; 1982 1983 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1984 delayed_node->count++; 1985 atomic_inc(&fs_info->delayed_root->items); 1986 release_node: 1987 mutex_unlock(&delayed_node->mutex); 1988 btrfs_release_delayed_node(delayed_node); 1989 return 0; 1990 } 1991 1992 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1993 { 1994 struct btrfs_root *root = delayed_node->root; 1995 struct btrfs_fs_info *fs_info = root->fs_info; 1996 struct btrfs_delayed_item *curr_item, *prev_item; 1997 1998 mutex_lock(&delayed_node->mutex); 1999 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 2000 while (curr_item) { 2001 prev_item = curr_item; 2002 curr_item = __btrfs_next_delayed_item(prev_item); 2003 btrfs_release_delayed_item(prev_item); 2004 } 2005 2006 if (delayed_node->index_item_leaves > 0) { 2007 btrfs_delayed_item_release_leaves(delayed_node, 2008 delayed_node->index_item_leaves); 2009 delayed_node->index_item_leaves = 0; 2010 } 2011 2012 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2013 while (curr_item) { 2014 btrfs_delayed_item_release_metadata(root, curr_item); 2015 prev_item = curr_item; 2016 curr_item = __btrfs_next_delayed_item(prev_item); 2017 btrfs_release_delayed_item(prev_item); 2018 } 2019 2020 btrfs_release_delayed_iref(delayed_node); 2021 2022 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2023 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2024 btrfs_release_delayed_inode(delayed_node); 2025 } 2026 mutex_unlock(&delayed_node->mutex); 2027 } 2028 2029 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2030 { 2031 struct btrfs_delayed_node *delayed_node; 2032 2033 delayed_node = btrfs_get_delayed_node(inode); 2034 if (!delayed_node) 2035 return; 2036 2037 __btrfs_kill_delayed_node(delayed_node); 2038 btrfs_release_delayed_node(delayed_node); 2039 } 2040 2041 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2042 { 2043 u64 inode_id = 0; 2044 struct btrfs_delayed_node *delayed_nodes[8]; 2045 int i, n; 2046 2047 while (1) { 2048 spin_lock(&root->inode_lock); 2049 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 2050 (void **)delayed_nodes, inode_id, 2051 ARRAY_SIZE(delayed_nodes)); 2052 if (!n) { 2053 spin_unlock(&root->inode_lock); 2054 break; 2055 } 2056 2057 inode_id = delayed_nodes[n - 1]->inode_id + 1; 2058 for (i = 0; i < n; i++) { 2059 /* 2060 * Don't increase refs in case the node is dead and 2061 * about to be removed from the tree in the loop below 2062 */ 2063 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 2064 delayed_nodes[i] = NULL; 2065 } 2066 spin_unlock(&root->inode_lock); 2067 2068 for (i = 0; i < n; i++) { 2069 if (!delayed_nodes[i]) 2070 continue; 2071 __btrfs_kill_delayed_node(delayed_nodes[i]); 2072 btrfs_release_delayed_node(delayed_nodes[i]); 2073 } 2074 } 2075 } 2076 2077 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2078 { 2079 struct btrfs_delayed_node *curr_node, *prev_node; 2080 2081 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 2082 while (curr_node) { 2083 __btrfs_kill_delayed_node(curr_node); 2084 2085 prev_node = curr_node; 2086 curr_node = btrfs_next_delayed_node(curr_node); 2087 btrfs_release_delayed_node(prev_node); 2088 } 2089 } 2090 2091 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2092 struct list_head *ins_list, 2093 struct list_head *del_list) 2094 { 2095 struct btrfs_delayed_node *node; 2096 struct btrfs_delayed_item *item; 2097 2098 node = btrfs_get_delayed_node(inode); 2099 if (!node) 2100 return; 2101 2102 mutex_lock(&node->mutex); 2103 item = __btrfs_first_delayed_insertion_item(node); 2104 while (item) { 2105 /* 2106 * It's possible that the item is already in a log list. This 2107 * can happen in case two tasks are trying to log the same 2108 * directory. For example if we have tasks A and task B: 2109 * 2110 * Task A collected the delayed items into a log list while 2111 * under the inode's log_mutex (at btrfs_log_inode()), but it 2112 * only releases the items after logging the inodes they point 2113 * to (if they are new inodes), which happens after unlocking 2114 * the log mutex; 2115 * 2116 * Task B enters btrfs_log_inode() and acquires the log_mutex 2117 * of the same directory inode, before task B releases the 2118 * delayed items. This can happen for example when logging some 2119 * inode we need to trigger logging of its parent directory, so 2120 * logging two files that have the same parent directory can 2121 * lead to this. 2122 * 2123 * If this happens, just ignore delayed items already in a log 2124 * list. All the tasks logging the directory are under a log 2125 * transaction and whichever finishes first can not sync the log 2126 * before the other completes and leaves the log transaction. 2127 */ 2128 if (!item->logged && list_empty(&item->log_list)) { 2129 refcount_inc(&item->refs); 2130 list_add_tail(&item->log_list, ins_list); 2131 } 2132 item = __btrfs_next_delayed_item(item); 2133 } 2134 2135 item = __btrfs_first_delayed_deletion_item(node); 2136 while (item) { 2137 /* It may be non-empty, for the same reason mentioned above. */ 2138 if (!item->logged && list_empty(&item->log_list)) { 2139 refcount_inc(&item->refs); 2140 list_add_tail(&item->log_list, del_list); 2141 } 2142 item = __btrfs_next_delayed_item(item); 2143 } 2144 mutex_unlock(&node->mutex); 2145 2146 /* 2147 * We are called during inode logging, which means the inode is in use 2148 * and can not be evicted before we finish logging the inode. So we never 2149 * have the last reference on the delayed inode. 2150 * Also, we don't use btrfs_release_delayed_node() because that would 2151 * requeue the delayed inode (change its order in the list of prepared 2152 * nodes) and we don't want to do such change because we don't create or 2153 * delete delayed items. 2154 */ 2155 ASSERT(refcount_read(&node->refs) > 1); 2156 refcount_dec(&node->refs); 2157 } 2158 2159 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2160 struct list_head *ins_list, 2161 struct list_head *del_list) 2162 { 2163 struct btrfs_delayed_node *node; 2164 struct btrfs_delayed_item *item; 2165 struct btrfs_delayed_item *next; 2166 2167 node = btrfs_get_delayed_node(inode); 2168 if (!node) 2169 return; 2170 2171 mutex_lock(&node->mutex); 2172 2173 list_for_each_entry_safe(item, next, ins_list, log_list) { 2174 item->logged = true; 2175 list_del_init(&item->log_list); 2176 if (refcount_dec_and_test(&item->refs)) 2177 kfree(item); 2178 } 2179 2180 list_for_each_entry_safe(item, next, del_list, log_list) { 2181 item->logged = true; 2182 list_del_init(&item->log_list); 2183 if (refcount_dec_and_test(&item->refs)) 2184 kfree(item); 2185 } 2186 2187 mutex_unlock(&node->mutex); 2188 2189 /* 2190 * We are called during inode logging, which means the inode is in use 2191 * and can not be evicted before we finish logging the inode. So we never 2192 * have the last reference on the delayed inode. 2193 * Also, we don't use btrfs_release_delayed_node() because that would 2194 * requeue the delayed inode (change its order in the list of prepared 2195 * nodes) and we don't want to do such change because we don't create or 2196 * delete delayed items. 2197 */ 2198 ASSERT(refcount_read(&node->refs) > 1); 2199 refcount_dec(&node->refs); 2200 } 2201