1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "misc.h" 10 #include "delayed-inode.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "ctree.h" 14 #include "qgroup.h" 15 #include "locking.h" 16 #include "inode-item.h" 17 18 #define BTRFS_DELAYED_WRITEBACK 512 19 #define BTRFS_DELAYED_BACKGROUND 128 20 #define BTRFS_DELAYED_BATCH 16 21 22 static struct kmem_cache *delayed_node_cache; 23 24 int __init btrfs_delayed_inode_init(void) 25 { 26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 27 sizeof(struct btrfs_delayed_node), 28 0, 29 SLAB_MEM_SPREAD, 30 NULL); 31 if (!delayed_node_cache) 32 return -ENOMEM; 33 return 0; 34 } 35 36 void __cold btrfs_delayed_inode_exit(void) 37 { 38 kmem_cache_destroy(delayed_node_cache); 39 } 40 41 static inline void btrfs_init_delayed_node( 42 struct btrfs_delayed_node *delayed_node, 43 struct btrfs_root *root, u64 inode_id) 44 { 45 delayed_node->root = root; 46 delayed_node->inode_id = inode_id; 47 refcount_set(&delayed_node->refs, 0); 48 delayed_node->ins_root = RB_ROOT_CACHED; 49 delayed_node->del_root = RB_ROOT_CACHED; 50 mutex_init(&delayed_node->mutex); 51 INIT_LIST_HEAD(&delayed_node->n_list); 52 INIT_LIST_HEAD(&delayed_node->p_list); 53 } 54 55 static inline int btrfs_is_continuous_delayed_item( 56 struct btrfs_delayed_item *item1, 57 struct btrfs_delayed_item *item2) 58 { 59 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 60 item1->key.objectid == item2->key.objectid && 61 item1->key.type == item2->key.type && 62 item1->key.offset + 1 == item2->key.offset) 63 return 1; 64 return 0; 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 spin_lock(&root->inode_lock); 81 node = xa_load(&root->delayed_nodes, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 spin_unlock(&root->inode_lock); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the xarray. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the xarray at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the xarray, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 spin_unlock(&root->inode_lock); 115 return node; 116 } 117 spin_unlock(&root->inode_lock); 118 119 return NULL; 120 } 121 122 /* Will return either the node or PTR_ERR(-ENOMEM) */ 123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 124 struct btrfs_inode *btrfs_inode) 125 { 126 struct btrfs_delayed_node *node; 127 struct btrfs_root *root = btrfs_inode->root; 128 u64 ino = btrfs_ino(btrfs_inode); 129 int ret; 130 131 do { 132 node = btrfs_get_delayed_node(btrfs_inode); 133 if (node) 134 return node; 135 136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 137 if (!node) 138 return ERR_PTR(-ENOMEM); 139 btrfs_init_delayed_node(node, root, ino); 140 141 /* Cached in the inode and can be accessed */ 142 refcount_set(&node->refs, 2); 143 144 spin_lock(&root->inode_lock); 145 ret = xa_insert(&root->delayed_nodes, ino, node, GFP_NOFS); 146 if (ret) { 147 spin_unlock(&root->inode_lock); 148 kmem_cache_free(delayed_node_cache, node); 149 if (ret != -EBUSY) 150 return ERR_PTR(ret); 151 } 152 } while (ret); 153 btrfs_inode->delayed_node = node; 154 spin_unlock(&root->inode_lock); 155 156 return node; 157 } 158 159 /* 160 * Call it when holding delayed_node->mutex 161 * 162 * If mod = 1, add this node into the prepared list. 163 */ 164 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 165 struct btrfs_delayed_node *node, 166 int mod) 167 { 168 spin_lock(&root->lock); 169 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 170 if (!list_empty(&node->p_list)) 171 list_move_tail(&node->p_list, &root->prepare_list); 172 else if (mod) 173 list_add_tail(&node->p_list, &root->prepare_list); 174 } else { 175 list_add_tail(&node->n_list, &root->node_list); 176 list_add_tail(&node->p_list, &root->prepare_list); 177 refcount_inc(&node->refs); /* inserted into list */ 178 root->nodes++; 179 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 180 } 181 spin_unlock(&root->lock); 182 } 183 184 /* Call it when holding delayed_node->mutex */ 185 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 186 struct btrfs_delayed_node *node) 187 { 188 spin_lock(&root->lock); 189 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 190 root->nodes--; 191 refcount_dec(&node->refs); /* not in the list */ 192 list_del_init(&node->n_list); 193 if (!list_empty(&node->p_list)) 194 list_del_init(&node->p_list); 195 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 196 } 197 spin_unlock(&root->lock); 198 } 199 200 static struct btrfs_delayed_node *btrfs_first_delayed_node( 201 struct btrfs_delayed_root *delayed_root) 202 { 203 struct list_head *p; 204 struct btrfs_delayed_node *node = NULL; 205 206 spin_lock(&delayed_root->lock); 207 if (list_empty(&delayed_root->node_list)) 208 goto out; 209 210 p = delayed_root->node_list.next; 211 node = list_entry(p, struct btrfs_delayed_node, n_list); 212 refcount_inc(&node->refs); 213 out: 214 spin_unlock(&delayed_root->lock); 215 216 return node; 217 } 218 219 static struct btrfs_delayed_node *btrfs_next_delayed_node( 220 struct btrfs_delayed_node *node) 221 { 222 struct btrfs_delayed_root *delayed_root; 223 struct list_head *p; 224 struct btrfs_delayed_node *next = NULL; 225 226 delayed_root = node->root->fs_info->delayed_root; 227 spin_lock(&delayed_root->lock); 228 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 229 /* not in the list */ 230 if (list_empty(&delayed_root->node_list)) 231 goto out; 232 p = delayed_root->node_list.next; 233 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 234 goto out; 235 else 236 p = node->n_list.next; 237 238 next = list_entry(p, struct btrfs_delayed_node, n_list); 239 refcount_inc(&next->refs); 240 out: 241 spin_unlock(&delayed_root->lock); 242 243 return next; 244 } 245 246 static void __btrfs_release_delayed_node( 247 struct btrfs_delayed_node *delayed_node, 248 int mod) 249 { 250 struct btrfs_delayed_root *delayed_root; 251 252 if (!delayed_node) 253 return; 254 255 delayed_root = delayed_node->root->fs_info->delayed_root; 256 257 mutex_lock(&delayed_node->mutex); 258 if (delayed_node->count) 259 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 260 else 261 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 262 mutex_unlock(&delayed_node->mutex); 263 264 if (refcount_dec_and_test(&delayed_node->refs)) { 265 struct btrfs_root *root = delayed_node->root; 266 267 spin_lock(&root->inode_lock); 268 /* 269 * Once our refcount goes to zero, nobody is allowed to bump it 270 * back up. We can delete it now. 271 */ 272 ASSERT(refcount_read(&delayed_node->refs) == 0); 273 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 274 spin_unlock(&root->inode_lock); 275 kmem_cache_free(delayed_node_cache, delayed_node); 276 } 277 } 278 279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 280 { 281 __btrfs_release_delayed_node(node, 0); 282 } 283 284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 285 struct btrfs_delayed_root *delayed_root) 286 { 287 struct list_head *p; 288 struct btrfs_delayed_node *node = NULL; 289 290 spin_lock(&delayed_root->lock); 291 if (list_empty(&delayed_root->prepare_list)) 292 goto out; 293 294 p = delayed_root->prepare_list.next; 295 list_del_init(p); 296 node = list_entry(p, struct btrfs_delayed_node, p_list); 297 refcount_inc(&node->refs); 298 out: 299 spin_unlock(&delayed_root->lock); 300 301 return node; 302 } 303 304 static inline void btrfs_release_prepared_delayed_node( 305 struct btrfs_delayed_node *node) 306 { 307 __btrfs_release_delayed_node(node, 1); 308 } 309 310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 311 { 312 struct btrfs_delayed_item *item; 313 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 314 if (item) { 315 item->data_len = data_len; 316 item->ins_or_del = 0; 317 item->bytes_reserved = 0; 318 item->delayed_node = NULL; 319 refcount_set(&item->refs, 1); 320 } 321 return item; 322 } 323 324 /* 325 * __btrfs_lookup_delayed_item - look up the delayed item by key 326 * @delayed_node: pointer to the delayed node 327 * @key: the key to look up 328 * @prev: used to store the prev item if the right item isn't found 329 * @next: used to store the next item if the right item isn't found 330 * 331 * Note: if we don't find the right item, we will return the prev item and 332 * the next item. 333 */ 334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 335 struct rb_root *root, 336 struct btrfs_key *key, 337 struct btrfs_delayed_item **prev, 338 struct btrfs_delayed_item **next) 339 { 340 struct rb_node *node, *prev_node = NULL; 341 struct btrfs_delayed_item *delayed_item = NULL; 342 int ret = 0; 343 344 node = root->rb_node; 345 346 while (node) { 347 delayed_item = rb_entry(node, struct btrfs_delayed_item, 348 rb_node); 349 prev_node = node; 350 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 351 if (ret < 0) 352 node = node->rb_right; 353 else if (ret > 0) 354 node = node->rb_left; 355 else 356 return delayed_item; 357 } 358 359 if (prev) { 360 if (!prev_node) 361 *prev = NULL; 362 else if (ret < 0) 363 *prev = delayed_item; 364 else if ((node = rb_prev(prev_node)) != NULL) { 365 *prev = rb_entry(node, struct btrfs_delayed_item, 366 rb_node); 367 } else 368 *prev = NULL; 369 } 370 371 if (next) { 372 if (!prev_node) 373 *next = NULL; 374 else if (ret > 0) 375 *next = delayed_item; 376 else if ((node = rb_next(prev_node)) != NULL) { 377 *next = rb_entry(node, struct btrfs_delayed_item, 378 rb_node); 379 } else 380 *next = NULL; 381 } 382 return NULL; 383 } 384 385 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 386 struct btrfs_delayed_node *delayed_node, 387 struct btrfs_key *key) 388 { 389 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 390 NULL, NULL); 391 } 392 393 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 394 struct btrfs_delayed_item *ins, 395 int action) 396 { 397 struct rb_node **p, *node; 398 struct rb_node *parent_node = NULL; 399 struct rb_root_cached *root; 400 struct btrfs_delayed_item *item; 401 int cmp; 402 bool leftmost = true; 403 404 if (action == BTRFS_DELAYED_INSERTION_ITEM) 405 root = &delayed_node->ins_root; 406 else if (action == BTRFS_DELAYED_DELETION_ITEM) 407 root = &delayed_node->del_root; 408 else 409 BUG(); 410 p = &root->rb_root.rb_node; 411 node = &ins->rb_node; 412 413 while (*p) { 414 parent_node = *p; 415 item = rb_entry(parent_node, struct btrfs_delayed_item, 416 rb_node); 417 418 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 419 if (cmp < 0) { 420 p = &(*p)->rb_right; 421 leftmost = false; 422 } else if (cmp > 0) { 423 p = &(*p)->rb_left; 424 } else { 425 return -EEXIST; 426 } 427 } 428 429 rb_link_node(node, parent_node, p); 430 rb_insert_color_cached(node, root, leftmost); 431 ins->delayed_node = delayed_node; 432 ins->ins_or_del = action; 433 434 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 435 action == BTRFS_DELAYED_INSERTION_ITEM && 436 ins->key.offset >= delayed_node->index_cnt) 437 delayed_node->index_cnt = ins->key.offset + 1; 438 439 delayed_node->count++; 440 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 441 return 0; 442 } 443 444 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 445 struct btrfs_delayed_item *item) 446 { 447 return __btrfs_add_delayed_item(node, item, 448 BTRFS_DELAYED_INSERTION_ITEM); 449 } 450 451 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 452 struct btrfs_delayed_item *item) 453 { 454 return __btrfs_add_delayed_item(node, item, 455 BTRFS_DELAYED_DELETION_ITEM); 456 } 457 458 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 459 { 460 int seq = atomic_inc_return(&delayed_root->items_seq); 461 462 /* atomic_dec_return implies a barrier */ 463 if ((atomic_dec_return(&delayed_root->items) < 464 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 465 cond_wake_up_nomb(&delayed_root->wait); 466 } 467 468 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 469 { 470 struct rb_root_cached *root; 471 struct btrfs_delayed_root *delayed_root; 472 473 /* Not associated with any delayed_node */ 474 if (!delayed_item->delayed_node) 475 return; 476 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 477 478 BUG_ON(!delayed_root); 479 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 480 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 481 482 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 483 root = &delayed_item->delayed_node->ins_root; 484 else 485 root = &delayed_item->delayed_node->del_root; 486 487 rb_erase_cached(&delayed_item->rb_node, root); 488 delayed_item->delayed_node->count--; 489 490 finish_one_item(delayed_root); 491 } 492 493 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 494 { 495 if (item) { 496 __btrfs_remove_delayed_item(item); 497 if (refcount_dec_and_test(&item->refs)) 498 kfree(item); 499 } 500 } 501 502 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 503 struct btrfs_delayed_node *delayed_node) 504 { 505 struct rb_node *p; 506 struct btrfs_delayed_item *item = NULL; 507 508 p = rb_first_cached(&delayed_node->ins_root); 509 if (p) 510 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 511 512 return item; 513 } 514 515 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 516 struct btrfs_delayed_node *delayed_node) 517 { 518 struct rb_node *p; 519 struct btrfs_delayed_item *item = NULL; 520 521 p = rb_first_cached(&delayed_node->del_root); 522 if (p) 523 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 524 525 return item; 526 } 527 528 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 529 struct btrfs_delayed_item *item) 530 { 531 struct rb_node *p; 532 struct btrfs_delayed_item *next = NULL; 533 534 p = rb_next(&item->rb_node); 535 if (p) 536 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 537 538 return next; 539 } 540 541 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 542 struct btrfs_root *root, 543 struct btrfs_delayed_item *item) 544 { 545 struct btrfs_block_rsv *src_rsv; 546 struct btrfs_block_rsv *dst_rsv; 547 struct btrfs_fs_info *fs_info = root->fs_info; 548 u64 num_bytes; 549 int ret; 550 551 if (!trans->bytes_reserved) 552 return 0; 553 554 src_rsv = trans->block_rsv; 555 dst_rsv = &fs_info->delayed_block_rsv; 556 557 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 558 559 /* 560 * Here we migrate space rsv from transaction rsv, since have already 561 * reserved space when starting a transaction. So no need to reserve 562 * qgroup space here. 563 */ 564 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 565 if (!ret) { 566 trace_btrfs_space_reservation(fs_info, "delayed_item", 567 item->key.objectid, 568 num_bytes, 1); 569 item->bytes_reserved = num_bytes; 570 } 571 572 return ret; 573 } 574 575 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 576 struct btrfs_delayed_item *item) 577 { 578 struct btrfs_block_rsv *rsv; 579 struct btrfs_fs_info *fs_info = root->fs_info; 580 581 if (!item->bytes_reserved) 582 return; 583 584 rsv = &fs_info->delayed_block_rsv; 585 /* 586 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 587 * to release/reserve qgroup space. 588 */ 589 trace_btrfs_space_reservation(fs_info, "delayed_item", 590 item->key.objectid, item->bytes_reserved, 591 0); 592 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 593 } 594 595 static int btrfs_delayed_inode_reserve_metadata( 596 struct btrfs_trans_handle *trans, 597 struct btrfs_root *root, 598 struct btrfs_delayed_node *node) 599 { 600 struct btrfs_fs_info *fs_info = root->fs_info; 601 struct btrfs_block_rsv *src_rsv; 602 struct btrfs_block_rsv *dst_rsv; 603 u64 num_bytes; 604 int ret; 605 606 src_rsv = trans->block_rsv; 607 dst_rsv = &fs_info->delayed_block_rsv; 608 609 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 610 611 /* 612 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 613 * which doesn't reserve space for speed. This is a problem since we 614 * still need to reserve space for this update, so try to reserve the 615 * space. 616 * 617 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 618 * we always reserve enough to update the inode item. 619 */ 620 if (!src_rsv || (!trans->bytes_reserved && 621 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 622 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 623 BTRFS_QGROUP_RSV_META_PREALLOC, true); 624 if (ret < 0) 625 return ret; 626 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 627 BTRFS_RESERVE_NO_FLUSH); 628 /* NO_FLUSH could only fail with -ENOSPC */ 629 ASSERT(ret == 0 || ret == -ENOSPC); 630 if (ret) 631 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 632 } else { 633 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 634 } 635 636 if (!ret) { 637 trace_btrfs_space_reservation(fs_info, "delayed_inode", 638 node->inode_id, num_bytes, 1); 639 node->bytes_reserved = num_bytes; 640 } 641 642 return ret; 643 } 644 645 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 646 struct btrfs_delayed_node *node, 647 bool qgroup_free) 648 { 649 struct btrfs_block_rsv *rsv; 650 651 if (!node->bytes_reserved) 652 return; 653 654 rsv = &fs_info->delayed_block_rsv; 655 trace_btrfs_space_reservation(fs_info, "delayed_inode", 656 node->inode_id, node->bytes_reserved, 0); 657 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 658 if (qgroup_free) 659 btrfs_qgroup_free_meta_prealloc(node->root, 660 node->bytes_reserved); 661 else 662 btrfs_qgroup_convert_reserved_meta(node->root, 663 node->bytes_reserved); 664 node->bytes_reserved = 0; 665 } 666 667 /* 668 * Insert a single delayed item or a batch of delayed items that have consecutive 669 * keys if they exist. 670 */ 671 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 672 struct btrfs_root *root, 673 struct btrfs_path *path, 674 struct btrfs_delayed_item *first_item) 675 { 676 LIST_HEAD(item_list); 677 struct btrfs_delayed_item *curr; 678 struct btrfs_delayed_item *next; 679 const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info); 680 struct btrfs_item_batch batch; 681 int total_size; 682 char *ins_data = NULL; 683 int ret; 684 685 list_add_tail(&first_item->tree_list, &item_list); 686 batch.total_data_size = first_item->data_len; 687 batch.nr = 1; 688 total_size = first_item->data_len + sizeof(struct btrfs_item); 689 curr = first_item; 690 691 while (true) { 692 int next_size; 693 694 next = __btrfs_next_delayed_item(curr); 695 if (!next || !btrfs_is_continuous_delayed_item(curr, next)) 696 break; 697 698 next_size = next->data_len + sizeof(struct btrfs_item); 699 if (total_size + next_size > max_size) 700 break; 701 702 list_add_tail(&next->tree_list, &item_list); 703 batch.nr++; 704 total_size += next_size; 705 batch.total_data_size += next->data_len; 706 curr = next; 707 } 708 709 if (batch.nr == 1) { 710 batch.keys = &first_item->key; 711 batch.data_sizes = &first_item->data_len; 712 } else { 713 struct btrfs_key *ins_keys; 714 u32 *ins_sizes; 715 int i = 0; 716 717 ins_data = kmalloc(batch.nr * sizeof(u32) + 718 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 719 if (!ins_data) { 720 ret = -ENOMEM; 721 goto out; 722 } 723 ins_sizes = (u32 *)ins_data; 724 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 725 batch.keys = ins_keys; 726 batch.data_sizes = ins_sizes; 727 list_for_each_entry(curr, &item_list, tree_list) { 728 ins_keys[i] = curr->key; 729 ins_sizes[i] = curr->data_len; 730 i++; 731 } 732 } 733 734 ret = btrfs_insert_empty_items(trans, root, path, &batch); 735 if (ret) 736 goto out; 737 738 list_for_each_entry(curr, &item_list, tree_list) { 739 char *data_ptr; 740 741 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 742 write_extent_buffer(path->nodes[0], &curr->data, 743 (unsigned long)data_ptr, curr->data_len); 744 path->slots[0]++; 745 } 746 747 /* 748 * Now release our path before releasing the delayed items and their 749 * metadata reservations, so that we don't block other tasks for more 750 * time than needed. 751 */ 752 btrfs_release_path(path); 753 754 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 755 list_del(&curr->tree_list); 756 btrfs_delayed_item_release_metadata(root, curr); 757 btrfs_release_delayed_item(curr); 758 } 759 out: 760 kfree(ins_data); 761 return ret; 762 } 763 764 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 765 struct btrfs_path *path, 766 struct btrfs_root *root, 767 struct btrfs_delayed_node *node) 768 { 769 int ret = 0; 770 771 while (ret == 0) { 772 struct btrfs_delayed_item *curr; 773 774 mutex_lock(&node->mutex); 775 curr = __btrfs_first_delayed_insertion_item(node); 776 if (!curr) { 777 mutex_unlock(&node->mutex); 778 break; 779 } 780 ret = btrfs_insert_delayed_item(trans, root, path, curr); 781 mutex_unlock(&node->mutex); 782 } 783 784 return ret; 785 } 786 787 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 788 struct btrfs_root *root, 789 struct btrfs_path *path, 790 struct btrfs_delayed_item *item) 791 { 792 struct btrfs_delayed_item *curr, *next; 793 struct extent_buffer *leaf; 794 struct btrfs_key key; 795 struct list_head head; 796 int nitems, i, last_item; 797 int ret = 0; 798 799 BUG_ON(!path->nodes[0]); 800 801 leaf = path->nodes[0]; 802 803 i = path->slots[0]; 804 last_item = btrfs_header_nritems(leaf) - 1; 805 if (i > last_item) 806 return -ENOENT; /* FIXME: Is errno suitable? */ 807 808 next = item; 809 INIT_LIST_HEAD(&head); 810 btrfs_item_key_to_cpu(leaf, &key, i); 811 nitems = 0; 812 /* 813 * count the number of the dir index items that we can delete in batch 814 */ 815 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 816 list_add_tail(&next->tree_list, &head); 817 nitems++; 818 819 curr = next; 820 next = __btrfs_next_delayed_item(curr); 821 if (!next) 822 break; 823 824 if (!btrfs_is_continuous_delayed_item(curr, next)) 825 break; 826 827 i++; 828 if (i > last_item) 829 break; 830 btrfs_item_key_to_cpu(leaf, &key, i); 831 } 832 833 if (!nitems) 834 return 0; 835 836 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 837 if (ret) 838 goto out; 839 840 list_for_each_entry_safe(curr, next, &head, tree_list) { 841 btrfs_delayed_item_release_metadata(root, curr); 842 list_del(&curr->tree_list); 843 btrfs_release_delayed_item(curr); 844 } 845 846 out: 847 return ret; 848 } 849 850 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 851 struct btrfs_path *path, 852 struct btrfs_root *root, 853 struct btrfs_delayed_node *node) 854 { 855 struct btrfs_delayed_item *curr, *prev; 856 int ret = 0; 857 858 do_again: 859 mutex_lock(&node->mutex); 860 curr = __btrfs_first_delayed_deletion_item(node); 861 if (!curr) 862 goto delete_fail; 863 864 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 865 if (ret < 0) 866 goto delete_fail; 867 else if (ret > 0) { 868 /* 869 * can't find the item which the node points to, so this node 870 * is invalid, just drop it. 871 */ 872 prev = curr; 873 curr = __btrfs_next_delayed_item(prev); 874 btrfs_release_delayed_item(prev); 875 ret = 0; 876 btrfs_release_path(path); 877 if (curr) { 878 mutex_unlock(&node->mutex); 879 goto do_again; 880 } else 881 goto delete_fail; 882 } 883 884 btrfs_batch_delete_items(trans, root, path, curr); 885 btrfs_release_path(path); 886 mutex_unlock(&node->mutex); 887 goto do_again; 888 889 delete_fail: 890 btrfs_release_path(path); 891 mutex_unlock(&node->mutex); 892 return ret; 893 } 894 895 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 896 { 897 struct btrfs_delayed_root *delayed_root; 898 899 if (delayed_node && 900 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 901 BUG_ON(!delayed_node->root); 902 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 903 delayed_node->count--; 904 905 delayed_root = delayed_node->root->fs_info->delayed_root; 906 finish_one_item(delayed_root); 907 } 908 } 909 910 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 911 { 912 913 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 914 struct btrfs_delayed_root *delayed_root; 915 916 ASSERT(delayed_node->root); 917 delayed_node->count--; 918 919 delayed_root = delayed_node->root->fs_info->delayed_root; 920 finish_one_item(delayed_root); 921 } 922 } 923 924 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 925 struct btrfs_root *root, 926 struct btrfs_path *path, 927 struct btrfs_delayed_node *node) 928 { 929 struct btrfs_fs_info *fs_info = root->fs_info; 930 struct btrfs_key key; 931 struct btrfs_inode_item *inode_item; 932 struct extent_buffer *leaf; 933 int mod; 934 int ret; 935 936 key.objectid = node->inode_id; 937 key.type = BTRFS_INODE_ITEM_KEY; 938 key.offset = 0; 939 940 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 941 mod = -1; 942 else 943 mod = 1; 944 945 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 946 if (ret > 0) 947 ret = -ENOENT; 948 if (ret < 0) 949 goto out; 950 951 leaf = path->nodes[0]; 952 inode_item = btrfs_item_ptr(leaf, path->slots[0], 953 struct btrfs_inode_item); 954 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 955 sizeof(struct btrfs_inode_item)); 956 btrfs_mark_buffer_dirty(leaf); 957 958 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 959 goto out; 960 961 path->slots[0]++; 962 if (path->slots[0] >= btrfs_header_nritems(leaf)) 963 goto search; 964 again: 965 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 966 if (key.objectid != node->inode_id) 967 goto out; 968 969 if (key.type != BTRFS_INODE_REF_KEY && 970 key.type != BTRFS_INODE_EXTREF_KEY) 971 goto out; 972 973 /* 974 * Delayed iref deletion is for the inode who has only one link, 975 * so there is only one iref. The case that several irefs are 976 * in the same item doesn't exist. 977 */ 978 btrfs_del_item(trans, root, path); 979 out: 980 btrfs_release_delayed_iref(node); 981 btrfs_release_path(path); 982 err_out: 983 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 984 btrfs_release_delayed_inode(node); 985 986 /* 987 * If we fail to update the delayed inode we need to abort the 988 * transaction, because we could leave the inode with the improper 989 * counts behind. 990 */ 991 if (ret && ret != -ENOENT) 992 btrfs_abort_transaction(trans, ret); 993 994 return ret; 995 996 search: 997 btrfs_release_path(path); 998 999 key.type = BTRFS_INODE_EXTREF_KEY; 1000 key.offset = -1; 1001 1002 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1003 if (ret < 0) 1004 goto err_out; 1005 ASSERT(ret); 1006 1007 ret = 0; 1008 leaf = path->nodes[0]; 1009 path->slots[0]--; 1010 goto again; 1011 } 1012 1013 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1014 struct btrfs_root *root, 1015 struct btrfs_path *path, 1016 struct btrfs_delayed_node *node) 1017 { 1018 int ret; 1019 1020 mutex_lock(&node->mutex); 1021 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1022 mutex_unlock(&node->mutex); 1023 return 0; 1024 } 1025 1026 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1027 mutex_unlock(&node->mutex); 1028 return ret; 1029 } 1030 1031 static inline int 1032 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1033 struct btrfs_path *path, 1034 struct btrfs_delayed_node *node) 1035 { 1036 int ret; 1037 1038 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1039 if (ret) 1040 return ret; 1041 1042 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1043 if (ret) 1044 return ret; 1045 1046 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1047 return ret; 1048 } 1049 1050 /* 1051 * Called when committing the transaction. 1052 * Returns 0 on success. 1053 * Returns < 0 on error and returns with an aborted transaction with any 1054 * outstanding delayed items cleaned up. 1055 */ 1056 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1057 { 1058 struct btrfs_fs_info *fs_info = trans->fs_info; 1059 struct btrfs_delayed_root *delayed_root; 1060 struct btrfs_delayed_node *curr_node, *prev_node; 1061 struct btrfs_path *path; 1062 struct btrfs_block_rsv *block_rsv; 1063 int ret = 0; 1064 bool count = (nr > 0); 1065 1066 if (TRANS_ABORTED(trans)) 1067 return -EIO; 1068 1069 path = btrfs_alloc_path(); 1070 if (!path) 1071 return -ENOMEM; 1072 1073 block_rsv = trans->block_rsv; 1074 trans->block_rsv = &fs_info->delayed_block_rsv; 1075 1076 delayed_root = fs_info->delayed_root; 1077 1078 curr_node = btrfs_first_delayed_node(delayed_root); 1079 while (curr_node && (!count || nr--)) { 1080 ret = __btrfs_commit_inode_delayed_items(trans, path, 1081 curr_node); 1082 if (ret) { 1083 btrfs_release_delayed_node(curr_node); 1084 curr_node = NULL; 1085 btrfs_abort_transaction(trans, ret); 1086 break; 1087 } 1088 1089 prev_node = curr_node; 1090 curr_node = btrfs_next_delayed_node(curr_node); 1091 btrfs_release_delayed_node(prev_node); 1092 } 1093 1094 if (curr_node) 1095 btrfs_release_delayed_node(curr_node); 1096 btrfs_free_path(path); 1097 trans->block_rsv = block_rsv; 1098 1099 return ret; 1100 } 1101 1102 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1103 { 1104 return __btrfs_run_delayed_items(trans, -1); 1105 } 1106 1107 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1108 { 1109 return __btrfs_run_delayed_items(trans, nr); 1110 } 1111 1112 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1113 struct btrfs_inode *inode) 1114 { 1115 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1116 struct btrfs_path *path; 1117 struct btrfs_block_rsv *block_rsv; 1118 int ret; 1119 1120 if (!delayed_node) 1121 return 0; 1122 1123 mutex_lock(&delayed_node->mutex); 1124 if (!delayed_node->count) { 1125 mutex_unlock(&delayed_node->mutex); 1126 btrfs_release_delayed_node(delayed_node); 1127 return 0; 1128 } 1129 mutex_unlock(&delayed_node->mutex); 1130 1131 path = btrfs_alloc_path(); 1132 if (!path) { 1133 btrfs_release_delayed_node(delayed_node); 1134 return -ENOMEM; 1135 } 1136 1137 block_rsv = trans->block_rsv; 1138 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1139 1140 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1141 1142 btrfs_release_delayed_node(delayed_node); 1143 btrfs_free_path(path); 1144 trans->block_rsv = block_rsv; 1145 1146 return ret; 1147 } 1148 1149 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1150 { 1151 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1152 struct btrfs_trans_handle *trans; 1153 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1154 struct btrfs_path *path; 1155 struct btrfs_block_rsv *block_rsv; 1156 int ret; 1157 1158 if (!delayed_node) 1159 return 0; 1160 1161 mutex_lock(&delayed_node->mutex); 1162 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1163 mutex_unlock(&delayed_node->mutex); 1164 btrfs_release_delayed_node(delayed_node); 1165 return 0; 1166 } 1167 mutex_unlock(&delayed_node->mutex); 1168 1169 trans = btrfs_join_transaction(delayed_node->root); 1170 if (IS_ERR(trans)) { 1171 ret = PTR_ERR(trans); 1172 goto out; 1173 } 1174 1175 path = btrfs_alloc_path(); 1176 if (!path) { 1177 ret = -ENOMEM; 1178 goto trans_out; 1179 } 1180 1181 block_rsv = trans->block_rsv; 1182 trans->block_rsv = &fs_info->delayed_block_rsv; 1183 1184 mutex_lock(&delayed_node->mutex); 1185 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1186 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1187 path, delayed_node); 1188 else 1189 ret = 0; 1190 mutex_unlock(&delayed_node->mutex); 1191 1192 btrfs_free_path(path); 1193 trans->block_rsv = block_rsv; 1194 trans_out: 1195 btrfs_end_transaction(trans); 1196 btrfs_btree_balance_dirty(fs_info); 1197 out: 1198 btrfs_release_delayed_node(delayed_node); 1199 1200 return ret; 1201 } 1202 1203 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1204 { 1205 struct btrfs_delayed_node *delayed_node; 1206 1207 delayed_node = READ_ONCE(inode->delayed_node); 1208 if (!delayed_node) 1209 return; 1210 1211 inode->delayed_node = NULL; 1212 btrfs_release_delayed_node(delayed_node); 1213 } 1214 1215 struct btrfs_async_delayed_work { 1216 struct btrfs_delayed_root *delayed_root; 1217 int nr; 1218 struct btrfs_work work; 1219 }; 1220 1221 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1222 { 1223 struct btrfs_async_delayed_work *async_work; 1224 struct btrfs_delayed_root *delayed_root; 1225 struct btrfs_trans_handle *trans; 1226 struct btrfs_path *path; 1227 struct btrfs_delayed_node *delayed_node = NULL; 1228 struct btrfs_root *root; 1229 struct btrfs_block_rsv *block_rsv; 1230 int total_done = 0; 1231 1232 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1233 delayed_root = async_work->delayed_root; 1234 1235 path = btrfs_alloc_path(); 1236 if (!path) 1237 goto out; 1238 1239 do { 1240 if (atomic_read(&delayed_root->items) < 1241 BTRFS_DELAYED_BACKGROUND / 2) 1242 break; 1243 1244 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1245 if (!delayed_node) 1246 break; 1247 1248 root = delayed_node->root; 1249 1250 trans = btrfs_join_transaction(root); 1251 if (IS_ERR(trans)) { 1252 btrfs_release_path(path); 1253 btrfs_release_prepared_delayed_node(delayed_node); 1254 total_done++; 1255 continue; 1256 } 1257 1258 block_rsv = trans->block_rsv; 1259 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1260 1261 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1262 1263 trans->block_rsv = block_rsv; 1264 btrfs_end_transaction(trans); 1265 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1266 1267 btrfs_release_path(path); 1268 btrfs_release_prepared_delayed_node(delayed_node); 1269 total_done++; 1270 1271 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1272 || total_done < async_work->nr); 1273 1274 btrfs_free_path(path); 1275 out: 1276 wake_up(&delayed_root->wait); 1277 kfree(async_work); 1278 } 1279 1280 1281 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1282 struct btrfs_fs_info *fs_info, int nr) 1283 { 1284 struct btrfs_async_delayed_work *async_work; 1285 1286 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1287 if (!async_work) 1288 return -ENOMEM; 1289 1290 async_work->delayed_root = delayed_root; 1291 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1292 NULL); 1293 async_work->nr = nr; 1294 1295 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1296 return 0; 1297 } 1298 1299 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1300 { 1301 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1302 } 1303 1304 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1305 { 1306 int val = atomic_read(&delayed_root->items_seq); 1307 1308 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1309 return 1; 1310 1311 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1312 return 1; 1313 1314 return 0; 1315 } 1316 1317 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1318 { 1319 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1320 1321 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1322 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1323 return; 1324 1325 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1326 int seq; 1327 int ret; 1328 1329 seq = atomic_read(&delayed_root->items_seq); 1330 1331 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1332 if (ret) 1333 return; 1334 1335 wait_event_interruptible(delayed_root->wait, 1336 could_end_wait(delayed_root, seq)); 1337 return; 1338 } 1339 1340 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1341 } 1342 1343 /* Will return 0 or -ENOMEM */ 1344 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1345 const char *name, int name_len, 1346 struct btrfs_inode *dir, 1347 struct btrfs_disk_key *disk_key, u8 type, 1348 u64 index) 1349 { 1350 struct btrfs_delayed_node *delayed_node; 1351 struct btrfs_delayed_item *delayed_item; 1352 struct btrfs_dir_item *dir_item; 1353 int ret; 1354 1355 delayed_node = btrfs_get_or_create_delayed_node(dir); 1356 if (IS_ERR(delayed_node)) 1357 return PTR_ERR(delayed_node); 1358 1359 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1360 if (!delayed_item) { 1361 ret = -ENOMEM; 1362 goto release_node; 1363 } 1364 1365 delayed_item->key.objectid = btrfs_ino(dir); 1366 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1367 delayed_item->key.offset = index; 1368 1369 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1370 dir_item->location = *disk_key; 1371 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1372 btrfs_set_stack_dir_data_len(dir_item, 0); 1373 btrfs_set_stack_dir_name_len(dir_item, name_len); 1374 btrfs_set_stack_dir_type(dir_item, type); 1375 memcpy((char *)(dir_item + 1), name, name_len); 1376 1377 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1378 /* 1379 * we have reserved enough space when we start a new transaction, 1380 * so reserving metadata failure is impossible 1381 */ 1382 BUG_ON(ret); 1383 1384 mutex_lock(&delayed_node->mutex); 1385 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1386 if (unlikely(ret)) { 1387 btrfs_err(trans->fs_info, 1388 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1389 name_len, name, delayed_node->root->root_key.objectid, 1390 delayed_node->inode_id, ret); 1391 BUG(); 1392 } 1393 mutex_unlock(&delayed_node->mutex); 1394 1395 release_node: 1396 btrfs_release_delayed_node(delayed_node); 1397 return ret; 1398 } 1399 1400 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1401 struct btrfs_delayed_node *node, 1402 struct btrfs_key *key) 1403 { 1404 struct btrfs_delayed_item *item; 1405 1406 mutex_lock(&node->mutex); 1407 item = __btrfs_lookup_delayed_insertion_item(node, key); 1408 if (!item) { 1409 mutex_unlock(&node->mutex); 1410 return 1; 1411 } 1412 1413 btrfs_delayed_item_release_metadata(node->root, item); 1414 btrfs_release_delayed_item(item); 1415 mutex_unlock(&node->mutex); 1416 return 0; 1417 } 1418 1419 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1420 struct btrfs_inode *dir, u64 index) 1421 { 1422 struct btrfs_delayed_node *node; 1423 struct btrfs_delayed_item *item; 1424 struct btrfs_key item_key; 1425 int ret; 1426 1427 node = btrfs_get_or_create_delayed_node(dir); 1428 if (IS_ERR(node)) 1429 return PTR_ERR(node); 1430 1431 item_key.objectid = btrfs_ino(dir); 1432 item_key.type = BTRFS_DIR_INDEX_KEY; 1433 item_key.offset = index; 1434 1435 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1436 &item_key); 1437 if (!ret) 1438 goto end; 1439 1440 item = btrfs_alloc_delayed_item(0); 1441 if (!item) { 1442 ret = -ENOMEM; 1443 goto end; 1444 } 1445 1446 item->key = item_key; 1447 1448 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1449 /* 1450 * we have reserved enough space when we start a new transaction, 1451 * so reserving metadata failure is impossible. 1452 */ 1453 if (ret < 0) { 1454 btrfs_err(trans->fs_info, 1455 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1456 btrfs_release_delayed_item(item); 1457 goto end; 1458 } 1459 1460 mutex_lock(&node->mutex); 1461 ret = __btrfs_add_delayed_deletion_item(node, item); 1462 if (unlikely(ret)) { 1463 btrfs_err(trans->fs_info, 1464 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1465 index, node->root->root_key.objectid, 1466 node->inode_id, ret); 1467 btrfs_delayed_item_release_metadata(dir->root, item); 1468 btrfs_release_delayed_item(item); 1469 } 1470 mutex_unlock(&node->mutex); 1471 end: 1472 btrfs_release_delayed_node(node); 1473 return ret; 1474 } 1475 1476 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1477 { 1478 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1479 1480 if (!delayed_node) 1481 return -ENOENT; 1482 1483 /* 1484 * Since we have held i_mutex of this directory, it is impossible that 1485 * a new directory index is added into the delayed node and index_cnt 1486 * is updated now. So we needn't lock the delayed node. 1487 */ 1488 if (!delayed_node->index_cnt) { 1489 btrfs_release_delayed_node(delayed_node); 1490 return -EINVAL; 1491 } 1492 1493 inode->index_cnt = delayed_node->index_cnt; 1494 btrfs_release_delayed_node(delayed_node); 1495 return 0; 1496 } 1497 1498 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1499 struct list_head *ins_list, 1500 struct list_head *del_list) 1501 { 1502 struct btrfs_delayed_node *delayed_node; 1503 struct btrfs_delayed_item *item; 1504 1505 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1506 if (!delayed_node) 1507 return false; 1508 1509 /* 1510 * We can only do one readdir with delayed items at a time because of 1511 * item->readdir_list. 1512 */ 1513 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1514 btrfs_inode_lock(inode, 0); 1515 1516 mutex_lock(&delayed_node->mutex); 1517 item = __btrfs_first_delayed_insertion_item(delayed_node); 1518 while (item) { 1519 refcount_inc(&item->refs); 1520 list_add_tail(&item->readdir_list, ins_list); 1521 item = __btrfs_next_delayed_item(item); 1522 } 1523 1524 item = __btrfs_first_delayed_deletion_item(delayed_node); 1525 while (item) { 1526 refcount_inc(&item->refs); 1527 list_add_tail(&item->readdir_list, del_list); 1528 item = __btrfs_next_delayed_item(item); 1529 } 1530 mutex_unlock(&delayed_node->mutex); 1531 /* 1532 * This delayed node is still cached in the btrfs inode, so refs 1533 * must be > 1 now, and we needn't check it is going to be freed 1534 * or not. 1535 * 1536 * Besides that, this function is used to read dir, we do not 1537 * insert/delete delayed items in this period. So we also needn't 1538 * requeue or dequeue this delayed node. 1539 */ 1540 refcount_dec(&delayed_node->refs); 1541 1542 return true; 1543 } 1544 1545 void btrfs_readdir_put_delayed_items(struct inode *inode, 1546 struct list_head *ins_list, 1547 struct list_head *del_list) 1548 { 1549 struct btrfs_delayed_item *curr, *next; 1550 1551 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1552 list_del(&curr->readdir_list); 1553 if (refcount_dec_and_test(&curr->refs)) 1554 kfree(curr); 1555 } 1556 1557 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1558 list_del(&curr->readdir_list); 1559 if (refcount_dec_and_test(&curr->refs)) 1560 kfree(curr); 1561 } 1562 1563 /* 1564 * The VFS is going to do up_read(), so we need to downgrade back to a 1565 * read lock. 1566 */ 1567 downgrade_write(&inode->i_rwsem); 1568 } 1569 1570 int btrfs_should_delete_dir_index(struct list_head *del_list, 1571 u64 index) 1572 { 1573 struct btrfs_delayed_item *curr; 1574 int ret = 0; 1575 1576 list_for_each_entry(curr, del_list, readdir_list) { 1577 if (curr->key.offset > index) 1578 break; 1579 if (curr->key.offset == index) { 1580 ret = 1; 1581 break; 1582 } 1583 } 1584 return ret; 1585 } 1586 1587 /* 1588 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1589 * 1590 */ 1591 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1592 struct list_head *ins_list) 1593 { 1594 struct btrfs_dir_item *di; 1595 struct btrfs_delayed_item *curr, *next; 1596 struct btrfs_key location; 1597 char *name; 1598 int name_len; 1599 int over = 0; 1600 unsigned char d_type; 1601 1602 if (list_empty(ins_list)) 1603 return 0; 1604 1605 /* 1606 * Changing the data of the delayed item is impossible. So 1607 * we needn't lock them. And we have held i_mutex of the 1608 * directory, nobody can delete any directory indexes now. 1609 */ 1610 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1611 list_del(&curr->readdir_list); 1612 1613 if (curr->key.offset < ctx->pos) { 1614 if (refcount_dec_and_test(&curr->refs)) 1615 kfree(curr); 1616 continue; 1617 } 1618 1619 ctx->pos = curr->key.offset; 1620 1621 di = (struct btrfs_dir_item *)curr->data; 1622 name = (char *)(di + 1); 1623 name_len = btrfs_stack_dir_name_len(di); 1624 1625 d_type = fs_ftype_to_dtype(di->type); 1626 btrfs_disk_key_to_cpu(&location, &di->location); 1627 1628 over = !dir_emit(ctx, name, name_len, 1629 location.objectid, d_type); 1630 1631 if (refcount_dec_and_test(&curr->refs)) 1632 kfree(curr); 1633 1634 if (over) 1635 return 1; 1636 ctx->pos++; 1637 } 1638 return 0; 1639 } 1640 1641 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1642 struct btrfs_inode_item *inode_item, 1643 struct inode *inode) 1644 { 1645 u64 flags; 1646 1647 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1648 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1649 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1650 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1651 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1652 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1653 btrfs_set_stack_inode_generation(inode_item, 1654 BTRFS_I(inode)->generation); 1655 btrfs_set_stack_inode_sequence(inode_item, 1656 inode_peek_iversion(inode)); 1657 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1658 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1659 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 1660 BTRFS_I(inode)->ro_flags); 1661 btrfs_set_stack_inode_flags(inode_item, flags); 1662 btrfs_set_stack_inode_block_group(inode_item, 0); 1663 1664 btrfs_set_stack_timespec_sec(&inode_item->atime, 1665 inode->i_atime.tv_sec); 1666 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1667 inode->i_atime.tv_nsec); 1668 1669 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1670 inode->i_mtime.tv_sec); 1671 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1672 inode->i_mtime.tv_nsec); 1673 1674 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1675 inode->i_ctime.tv_sec); 1676 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1677 inode->i_ctime.tv_nsec); 1678 1679 btrfs_set_stack_timespec_sec(&inode_item->otime, 1680 BTRFS_I(inode)->i_otime.tv_sec); 1681 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1682 BTRFS_I(inode)->i_otime.tv_nsec); 1683 } 1684 1685 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1686 { 1687 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1688 struct btrfs_delayed_node *delayed_node; 1689 struct btrfs_inode_item *inode_item; 1690 1691 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1692 if (!delayed_node) 1693 return -ENOENT; 1694 1695 mutex_lock(&delayed_node->mutex); 1696 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1697 mutex_unlock(&delayed_node->mutex); 1698 btrfs_release_delayed_node(delayed_node); 1699 return -ENOENT; 1700 } 1701 1702 inode_item = &delayed_node->inode_item; 1703 1704 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1705 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1706 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1707 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1708 round_up(i_size_read(inode), fs_info->sectorsize)); 1709 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1710 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1711 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1712 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1713 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1714 1715 inode_set_iversion_queried(inode, 1716 btrfs_stack_inode_sequence(inode_item)); 1717 inode->i_rdev = 0; 1718 *rdev = btrfs_stack_inode_rdev(inode_item); 1719 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1720 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 1721 1722 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1723 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1724 1725 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1726 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1727 1728 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1729 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1730 1731 BTRFS_I(inode)->i_otime.tv_sec = 1732 btrfs_stack_timespec_sec(&inode_item->otime); 1733 BTRFS_I(inode)->i_otime.tv_nsec = 1734 btrfs_stack_timespec_nsec(&inode_item->otime); 1735 1736 inode->i_generation = BTRFS_I(inode)->generation; 1737 BTRFS_I(inode)->index_cnt = (u64)-1; 1738 1739 mutex_unlock(&delayed_node->mutex); 1740 btrfs_release_delayed_node(delayed_node); 1741 return 0; 1742 } 1743 1744 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1745 struct btrfs_root *root, 1746 struct btrfs_inode *inode) 1747 { 1748 struct btrfs_delayed_node *delayed_node; 1749 int ret = 0; 1750 1751 delayed_node = btrfs_get_or_create_delayed_node(inode); 1752 if (IS_ERR(delayed_node)) 1753 return PTR_ERR(delayed_node); 1754 1755 mutex_lock(&delayed_node->mutex); 1756 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1757 fill_stack_inode_item(trans, &delayed_node->inode_item, 1758 &inode->vfs_inode); 1759 goto release_node; 1760 } 1761 1762 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1763 if (ret) 1764 goto release_node; 1765 1766 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1767 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1768 delayed_node->count++; 1769 atomic_inc(&root->fs_info->delayed_root->items); 1770 release_node: 1771 mutex_unlock(&delayed_node->mutex); 1772 btrfs_release_delayed_node(delayed_node); 1773 return ret; 1774 } 1775 1776 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1777 { 1778 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1779 struct btrfs_delayed_node *delayed_node; 1780 1781 /* 1782 * we don't do delayed inode updates during log recovery because it 1783 * leads to enospc problems. This means we also can't do 1784 * delayed inode refs 1785 */ 1786 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1787 return -EAGAIN; 1788 1789 delayed_node = btrfs_get_or_create_delayed_node(inode); 1790 if (IS_ERR(delayed_node)) 1791 return PTR_ERR(delayed_node); 1792 1793 /* 1794 * We don't reserve space for inode ref deletion is because: 1795 * - We ONLY do async inode ref deletion for the inode who has only 1796 * one link(i_nlink == 1), it means there is only one inode ref. 1797 * And in most case, the inode ref and the inode item are in the 1798 * same leaf, and we will deal with them at the same time. 1799 * Since we are sure we will reserve the space for the inode item, 1800 * it is unnecessary to reserve space for inode ref deletion. 1801 * - If the inode ref and the inode item are not in the same leaf, 1802 * We also needn't worry about enospc problem, because we reserve 1803 * much more space for the inode update than it needs. 1804 * - At the worst, we can steal some space from the global reservation. 1805 * It is very rare. 1806 */ 1807 mutex_lock(&delayed_node->mutex); 1808 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1809 goto release_node; 1810 1811 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1812 delayed_node->count++; 1813 atomic_inc(&fs_info->delayed_root->items); 1814 release_node: 1815 mutex_unlock(&delayed_node->mutex); 1816 btrfs_release_delayed_node(delayed_node); 1817 return 0; 1818 } 1819 1820 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1821 { 1822 struct btrfs_root *root = delayed_node->root; 1823 struct btrfs_fs_info *fs_info = root->fs_info; 1824 struct btrfs_delayed_item *curr_item, *prev_item; 1825 1826 mutex_lock(&delayed_node->mutex); 1827 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1828 while (curr_item) { 1829 btrfs_delayed_item_release_metadata(root, curr_item); 1830 prev_item = curr_item; 1831 curr_item = __btrfs_next_delayed_item(prev_item); 1832 btrfs_release_delayed_item(prev_item); 1833 } 1834 1835 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1836 while (curr_item) { 1837 btrfs_delayed_item_release_metadata(root, curr_item); 1838 prev_item = curr_item; 1839 curr_item = __btrfs_next_delayed_item(prev_item); 1840 btrfs_release_delayed_item(prev_item); 1841 } 1842 1843 btrfs_release_delayed_iref(delayed_node); 1844 1845 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1846 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1847 btrfs_release_delayed_inode(delayed_node); 1848 } 1849 mutex_unlock(&delayed_node->mutex); 1850 } 1851 1852 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1853 { 1854 struct btrfs_delayed_node *delayed_node; 1855 1856 delayed_node = btrfs_get_delayed_node(inode); 1857 if (!delayed_node) 1858 return; 1859 1860 __btrfs_kill_delayed_node(delayed_node); 1861 btrfs_release_delayed_node(delayed_node); 1862 } 1863 1864 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1865 { 1866 unsigned long index = 0; 1867 struct btrfs_delayed_node *delayed_node; 1868 struct btrfs_delayed_node *delayed_nodes[8]; 1869 1870 while (1) { 1871 int n = 0; 1872 1873 spin_lock(&root->inode_lock); 1874 if (xa_empty(&root->delayed_nodes)) { 1875 spin_unlock(&root->inode_lock); 1876 return; 1877 } 1878 1879 xa_for_each_start(&root->delayed_nodes, index, delayed_node, index) { 1880 /* 1881 * Don't increase refs in case the node is dead and 1882 * about to be removed from the tree in the loop below 1883 */ 1884 if (refcount_inc_not_zero(&delayed_node->refs)) { 1885 delayed_nodes[n] = delayed_node; 1886 n++; 1887 } 1888 if (n >= ARRAY_SIZE(delayed_nodes)) 1889 break; 1890 } 1891 index++; 1892 spin_unlock(&root->inode_lock); 1893 1894 for (int i = 0; i < n; i++) { 1895 __btrfs_kill_delayed_node(delayed_nodes[i]); 1896 btrfs_release_delayed_node(delayed_nodes[i]); 1897 } 1898 } 1899 } 1900 1901 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1902 { 1903 struct btrfs_delayed_node *curr_node, *prev_node; 1904 1905 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1906 while (curr_node) { 1907 __btrfs_kill_delayed_node(curr_node); 1908 1909 prev_node = curr_node; 1910 curr_node = btrfs_next_delayed_node(curr_node); 1911 btrfs_release_delayed_node(prev_node); 1912 } 1913 } 1914 1915