1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include "delayed-inode.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "ctree.h" 25 26 #define BTRFS_DELAYED_WRITEBACK 512 27 #define BTRFS_DELAYED_BACKGROUND 128 28 #define BTRFS_DELAYED_BATCH 16 29 30 static struct kmem_cache *delayed_node_cache; 31 32 int __init btrfs_delayed_inode_init(void) 33 { 34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 35 sizeof(struct btrfs_delayed_node), 36 0, 37 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 38 NULL); 39 if (!delayed_node_cache) 40 return -ENOMEM; 41 return 0; 42 } 43 44 void btrfs_delayed_inode_exit(void) 45 { 46 kmem_cache_destroy(delayed_node_cache); 47 } 48 49 static inline void btrfs_init_delayed_node( 50 struct btrfs_delayed_node *delayed_node, 51 struct btrfs_root *root, u64 inode_id) 52 { 53 delayed_node->root = root; 54 delayed_node->inode_id = inode_id; 55 atomic_set(&delayed_node->refs, 0); 56 delayed_node->ins_root = RB_ROOT; 57 delayed_node->del_root = RB_ROOT; 58 mutex_init(&delayed_node->mutex); 59 INIT_LIST_HEAD(&delayed_node->n_list); 60 INIT_LIST_HEAD(&delayed_node->p_list); 61 } 62 63 static inline int btrfs_is_continuous_delayed_item( 64 struct btrfs_delayed_item *item1, 65 struct btrfs_delayed_item *item2) 66 { 67 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 68 item1->key.objectid == item2->key.objectid && 69 item1->key.type == item2->key.type && 70 item1->key.offset + 1 == item2->key.offset) 71 return 1; 72 return 0; 73 } 74 75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root( 76 struct btrfs_root *root) 77 { 78 return root->fs_info->delayed_root; 79 } 80 81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) 82 { 83 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 84 struct btrfs_root *root = btrfs_inode->root; 85 u64 ino = btrfs_ino(inode); 86 struct btrfs_delayed_node *node; 87 88 node = ACCESS_ONCE(btrfs_inode->delayed_node); 89 if (node) { 90 atomic_inc(&node->refs); 91 return node; 92 } 93 94 spin_lock(&root->inode_lock); 95 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 96 if (node) { 97 if (btrfs_inode->delayed_node) { 98 atomic_inc(&node->refs); /* can be accessed */ 99 BUG_ON(btrfs_inode->delayed_node != node); 100 spin_unlock(&root->inode_lock); 101 return node; 102 } 103 btrfs_inode->delayed_node = node; 104 /* can be accessed and cached in the inode */ 105 atomic_add(2, &node->refs); 106 spin_unlock(&root->inode_lock); 107 return node; 108 } 109 spin_unlock(&root->inode_lock); 110 111 return NULL; 112 } 113 114 /* Will return either the node or PTR_ERR(-ENOMEM) */ 115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 116 struct inode *inode) 117 { 118 struct btrfs_delayed_node *node; 119 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 120 struct btrfs_root *root = btrfs_inode->root; 121 u64 ino = btrfs_ino(inode); 122 int ret; 123 124 again: 125 node = btrfs_get_delayed_node(inode); 126 if (node) 127 return node; 128 129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 130 if (!node) 131 return ERR_PTR(-ENOMEM); 132 btrfs_init_delayed_node(node, root, ino); 133 134 /* cached in the btrfs inode and can be accessed */ 135 atomic_add(2, &node->refs); 136 137 ret = radix_tree_preload(GFP_NOFS); 138 if (ret) { 139 kmem_cache_free(delayed_node_cache, node); 140 return ERR_PTR(ret); 141 } 142 143 spin_lock(&root->inode_lock); 144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 145 if (ret == -EEXIST) { 146 spin_unlock(&root->inode_lock); 147 kmem_cache_free(delayed_node_cache, node); 148 radix_tree_preload_end(); 149 goto again; 150 } 151 btrfs_inode->delayed_node = node; 152 spin_unlock(&root->inode_lock); 153 radix_tree_preload_end(); 154 155 return node; 156 } 157 158 /* 159 * Call it when holding delayed_node->mutex 160 * 161 * If mod = 1, add this node into the prepared list. 162 */ 163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 164 struct btrfs_delayed_node *node, 165 int mod) 166 { 167 spin_lock(&root->lock); 168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 169 if (!list_empty(&node->p_list)) 170 list_move_tail(&node->p_list, &root->prepare_list); 171 else if (mod) 172 list_add_tail(&node->p_list, &root->prepare_list); 173 } else { 174 list_add_tail(&node->n_list, &root->node_list); 175 list_add_tail(&node->p_list, &root->prepare_list); 176 atomic_inc(&node->refs); /* inserted into list */ 177 root->nodes++; 178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 179 } 180 spin_unlock(&root->lock); 181 } 182 183 /* Call it when holding delayed_node->mutex */ 184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 185 struct btrfs_delayed_node *node) 186 { 187 spin_lock(&root->lock); 188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 189 root->nodes--; 190 atomic_dec(&node->refs); /* not in the list */ 191 list_del_init(&node->n_list); 192 if (!list_empty(&node->p_list)) 193 list_del_init(&node->p_list); 194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 195 } 196 spin_unlock(&root->lock); 197 } 198 199 static struct btrfs_delayed_node *btrfs_first_delayed_node( 200 struct btrfs_delayed_root *delayed_root) 201 { 202 struct list_head *p; 203 struct btrfs_delayed_node *node = NULL; 204 205 spin_lock(&delayed_root->lock); 206 if (list_empty(&delayed_root->node_list)) 207 goto out; 208 209 p = delayed_root->node_list.next; 210 node = list_entry(p, struct btrfs_delayed_node, n_list); 211 atomic_inc(&node->refs); 212 out: 213 spin_unlock(&delayed_root->lock); 214 215 return node; 216 } 217 218 static struct btrfs_delayed_node *btrfs_next_delayed_node( 219 struct btrfs_delayed_node *node) 220 { 221 struct btrfs_delayed_root *delayed_root; 222 struct list_head *p; 223 struct btrfs_delayed_node *next = NULL; 224 225 delayed_root = node->root->fs_info->delayed_root; 226 spin_lock(&delayed_root->lock); 227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 228 /* not in the list */ 229 if (list_empty(&delayed_root->node_list)) 230 goto out; 231 p = delayed_root->node_list.next; 232 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 233 goto out; 234 else 235 p = node->n_list.next; 236 237 next = list_entry(p, struct btrfs_delayed_node, n_list); 238 atomic_inc(&next->refs); 239 out: 240 spin_unlock(&delayed_root->lock); 241 242 return next; 243 } 244 245 static void __btrfs_release_delayed_node( 246 struct btrfs_delayed_node *delayed_node, 247 int mod) 248 { 249 struct btrfs_delayed_root *delayed_root; 250 251 if (!delayed_node) 252 return; 253 254 delayed_root = delayed_node->root->fs_info->delayed_root; 255 256 mutex_lock(&delayed_node->mutex); 257 if (delayed_node->count) 258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 259 else 260 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 261 mutex_unlock(&delayed_node->mutex); 262 263 if (atomic_dec_and_test(&delayed_node->refs)) { 264 bool free = false; 265 struct btrfs_root *root = delayed_node->root; 266 spin_lock(&root->inode_lock); 267 if (atomic_read(&delayed_node->refs) == 0) { 268 radix_tree_delete(&root->delayed_nodes_tree, 269 delayed_node->inode_id); 270 free = true; 271 } 272 spin_unlock(&root->inode_lock); 273 if (free) 274 kmem_cache_free(delayed_node_cache, delayed_node); 275 } 276 } 277 278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 279 { 280 __btrfs_release_delayed_node(node, 0); 281 } 282 283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 284 struct btrfs_delayed_root *delayed_root) 285 { 286 struct list_head *p; 287 struct btrfs_delayed_node *node = NULL; 288 289 spin_lock(&delayed_root->lock); 290 if (list_empty(&delayed_root->prepare_list)) 291 goto out; 292 293 p = delayed_root->prepare_list.next; 294 list_del_init(p); 295 node = list_entry(p, struct btrfs_delayed_node, p_list); 296 atomic_inc(&node->refs); 297 out: 298 spin_unlock(&delayed_root->lock); 299 300 return node; 301 } 302 303 static inline void btrfs_release_prepared_delayed_node( 304 struct btrfs_delayed_node *node) 305 { 306 __btrfs_release_delayed_node(node, 1); 307 } 308 309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 310 { 311 struct btrfs_delayed_item *item; 312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 313 if (item) { 314 item->data_len = data_len; 315 item->ins_or_del = 0; 316 item->bytes_reserved = 0; 317 item->delayed_node = NULL; 318 atomic_set(&item->refs, 1); 319 } 320 return item; 321 } 322 323 /* 324 * __btrfs_lookup_delayed_item - look up the delayed item by key 325 * @delayed_node: pointer to the delayed node 326 * @key: the key to look up 327 * @prev: used to store the prev item if the right item isn't found 328 * @next: used to store the next item if the right item isn't found 329 * 330 * Note: if we don't find the right item, we will return the prev item and 331 * the next item. 332 */ 333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 334 struct rb_root *root, 335 struct btrfs_key *key, 336 struct btrfs_delayed_item **prev, 337 struct btrfs_delayed_item **next) 338 { 339 struct rb_node *node, *prev_node = NULL; 340 struct btrfs_delayed_item *delayed_item = NULL; 341 int ret = 0; 342 343 node = root->rb_node; 344 345 while (node) { 346 delayed_item = rb_entry(node, struct btrfs_delayed_item, 347 rb_node); 348 prev_node = node; 349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 350 if (ret < 0) 351 node = node->rb_right; 352 else if (ret > 0) 353 node = node->rb_left; 354 else 355 return delayed_item; 356 } 357 358 if (prev) { 359 if (!prev_node) 360 *prev = NULL; 361 else if (ret < 0) 362 *prev = delayed_item; 363 else if ((node = rb_prev(prev_node)) != NULL) { 364 *prev = rb_entry(node, struct btrfs_delayed_item, 365 rb_node); 366 } else 367 *prev = NULL; 368 } 369 370 if (next) { 371 if (!prev_node) 372 *next = NULL; 373 else if (ret > 0) 374 *next = delayed_item; 375 else if ((node = rb_next(prev_node)) != NULL) { 376 *next = rb_entry(node, struct btrfs_delayed_item, 377 rb_node); 378 } else 379 *next = NULL; 380 } 381 return NULL; 382 } 383 384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 385 struct btrfs_delayed_node *delayed_node, 386 struct btrfs_key *key) 387 { 388 struct btrfs_delayed_item *item; 389 390 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 391 NULL, NULL); 392 return item; 393 } 394 395 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 396 struct btrfs_delayed_item *ins, 397 int action) 398 { 399 struct rb_node **p, *node; 400 struct rb_node *parent_node = NULL; 401 struct rb_root *root; 402 struct btrfs_delayed_item *item; 403 int cmp; 404 405 if (action == BTRFS_DELAYED_INSERTION_ITEM) 406 root = &delayed_node->ins_root; 407 else if (action == BTRFS_DELAYED_DELETION_ITEM) 408 root = &delayed_node->del_root; 409 else 410 BUG(); 411 p = &root->rb_node; 412 node = &ins->rb_node; 413 414 while (*p) { 415 parent_node = *p; 416 item = rb_entry(parent_node, struct btrfs_delayed_item, 417 rb_node); 418 419 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 420 if (cmp < 0) 421 p = &(*p)->rb_right; 422 else if (cmp > 0) 423 p = &(*p)->rb_left; 424 else 425 return -EEXIST; 426 } 427 428 rb_link_node(node, parent_node, p); 429 rb_insert_color(node, root); 430 ins->delayed_node = delayed_node; 431 ins->ins_or_del = action; 432 433 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 434 action == BTRFS_DELAYED_INSERTION_ITEM && 435 ins->key.offset >= delayed_node->index_cnt) 436 delayed_node->index_cnt = ins->key.offset + 1; 437 438 delayed_node->count++; 439 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 440 return 0; 441 } 442 443 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 444 struct btrfs_delayed_item *item) 445 { 446 return __btrfs_add_delayed_item(node, item, 447 BTRFS_DELAYED_INSERTION_ITEM); 448 } 449 450 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 451 struct btrfs_delayed_item *item) 452 { 453 return __btrfs_add_delayed_item(node, item, 454 BTRFS_DELAYED_DELETION_ITEM); 455 } 456 457 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 458 { 459 int seq = atomic_inc_return(&delayed_root->items_seq); 460 461 /* 462 * atomic_dec_return implies a barrier for waitqueue_active 463 */ 464 if ((atomic_dec_return(&delayed_root->items) < 465 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && 466 waitqueue_active(&delayed_root->wait)) 467 wake_up(&delayed_root->wait); 468 } 469 470 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 471 { 472 struct rb_root *root; 473 struct btrfs_delayed_root *delayed_root; 474 475 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 476 477 BUG_ON(!delayed_root); 478 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 479 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 480 481 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 482 root = &delayed_item->delayed_node->ins_root; 483 else 484 root = &delayed_item->delayed_node->del_root; 485 486 rb_erase(&delayed_item->rb_node, root); 487 delayed_item->delayed_node->count--; 488 489 finish_one_item(delayed_root); 490 } 491 492 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 493 { 494 if (item) { 495 __btrfs_remove_delayed_item(item); 496 if (atomic_dec_and_test(&item->refs)) 497 kfree(item); 498 } 499 } 500 501 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 502 struct btrfs_delayed_node *delayed_node) 503 { 504 struct rb_node *p; 505 struct btrfs_delayed_item *item = NULL; 506 507 p = rb_first(&delayed_node->ins_root); 508 if (p) 509 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 510 511 return item; 512 } 513 514 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 515 struct btrfs_delayed_node *delayed_node) 516 { 517 struct rb_node *p; 518 struct btrfs_delayed_item *item = NULL; 519 520 p = rb_first(&delayed_node->del_root); 521 if (p) 522 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 523 524 return item; 525 } 526 527 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 528 struct btrfs_delayed_item *item) 529 { 530 struct rb_node *p; 531 struct btrfs_delayed_item *next = NULL; 532 533 p = rb_next(&item->rb_node); 534 if (p) 535 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 536 537 return next; 538 } 539 540 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 541 struct btrfs_root *root, 542 struct btrfs_delayed_item *item) 543 { 544 struct btrfs_block_rsv *src_rsv; 545 struct btrfs_block_rsv *dst_rsv; 546 u64 num_bytes; 547 int ret; 548 549 if (!trans->bytes_reserved) 550 return 0; 551 552 src_rsv = trans->block_rsv; 553 dst_rsv = &root->fs_info->delayed_block_rsv; 554 555 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 556 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 557 if (!ret) { 558 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 559 item->key.objectid, 560 num_bytes, 1); 561 item->bytes_reserved = num_bytes; 562 } 563 564 return ret; 565 } 566 567 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 568 struct btrfs_delayed_item *item) 569 { 570 struct btrfs_block_rsv *rsv; 571 572 if (!item->bytes_reserved) 573 return; 574 575 rsv = &root->fs_info->delayed_block_rsv; 576 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 577 item->key.objectid, item->bytes_reserved, 578 0); 579 btrfs_block_rsv_release(root, rsv, 580 item->bytes_reserved); 581 } 582 583 static int btrfs_delayed_inode_reserve_metadata( 584 struct btrfs_trans_handle *trans, 585 struct btrfs_root *root, 586 struct inode *inode, 587 struct btrfs_delayed_node *node) 588 { 589 struct btrfs_block_rsv *src_rsv; 590 struct btrfs_block_rsv *dst_rsv; 591 u64 num_bytes; 592 int ret; 593 bool release = false; 594 595 src_rsv = trans->block_rsv; 596 dst_rsv = &root->fs_info->delayed_block_rsv; 597 598 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 599 600 /* 601 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 602 * which doesn't reserve space for speed. This is a problem since we 603 * still need to reserve space for this update, so try to reserve the 604 * space. 605 * 606 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 607 * we're accounted for. 608 */ 609 if (!src_rsv || (!trans->bytes_reserved && 610 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 611 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 612 BTRFS_RESERVE_NO_FLUSH); 613 /* 614 * Since we're under a transaction reserve_metadata_bytes could 615 * try to commit the transaction which will make it return 616 * EAGAIN to make us stop the transaction we have, so return 617 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 618 */ 619 if (ret == -EAGAIN) 620 ret = -ENOSPC; 621 if (!ret) { 622 node->bytes_reserved = num_bytes; 623 trace_btrfs_space_reservation(root->fs_info, 624 "delayed_inode", 625 btrfs_ino(inode), 626 num_bytes, 1); 627 } 628 return ret; 629 } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) { 630 spin_lock(&BTRFS_I(inode)->lock); 631 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 632 &BTRFS_I(inode)->runtime_flags)) { 633 spin_unlock(&BTRFS_I(inode)->lock); 634 release = true; 635 goto migrate; 636 } 637 spin_unlock(&BTRFS_I(inode)->lock); 638 639 /* Ok we didn't have space pre-reserved. This shouldn't happen 640 * too often but it can happen if we do delalloc to an existing 641 * inode which gets dirtied because of the time update, and then 642 * isn't touched again until after the transaction commits and 643 * then we try to write out the data. First try to be nice and 644 * reserve something strictly for us. If not be a pain and try 645 * to steal from the delalloc block rsv. 646 */ 647 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 648 BTRFS_RESERVE_NO_FLUSH); 649 if (!ret) 650 goto out; 651 652 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 653 if (!ret) 654 goto out; 655 656 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 657 btrfs_debug(root->fs_info, 658 "block rsv migrate returned %d", ret); 659 WARN_ON(1); 660 } 661 /* 662 * Ok this is a problem, let's just steal from the global rsv 663 * since this really shouldn't happen that often. 664 */ 665 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv, 666 dst_rsv, num_bytes); 667 goto out; 668 } 669 670 migrate: 671 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 672 673 out: 674 /* 675 * Migrate only takes a reservation, it doesn't touch the size of the 676 * block_rsv. This is to simplify people who don't normally have things 677 * migrated from their block rsv. If they go to release their 678 * reservation, that will decrease the size as well, so if migrate 679 * reduced size we'd end up with a negative size. But for the 680 * delalloc_meta_reserved stuff we will only know to drop 1 reservation, 681 * but we could in fact do this reserve/migrate dance several times 682 * between the time we did the original reservation and we'd clean it 683 * up. So to take care of this, release the space for the meta 684 * reservation here. I think it may be time for a documentation page on 685 * how block rsvs. work. 686 */ 687 if (!ret) { 688 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 689 btrfs_ino(inode), num_bytes, 1); 690 node->bytes_reserved = num_bytes; 691 } 692 693 if (release) { 694 trace_btrfs_space_reservation(root->fs_info, "delalloc", 695 btrfs_ino(inode), num_bytes, 0); 696 btrfs_block_rsv_release(root, src_rsv, num_bytes); 697 } 698 699 return ret; 700 } 701 702 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, 703 struct btrfs_delayed_node *node) 704 { 705 struct btrfs_block_rsv *rsv; 706 707 if (!node->bytes_reserved) 708 return; 709 710 rsv = &root->fs_info->delayed_block_rsv; 711 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 712 node->inode_id, node->bytes_reserved, 0); 713 btrfs_block_rsv_release(root, rsv, 714 node->bytes_reserved); 715 node->bytes_reserved = 0; 716 } 717 718 /* 719 * This helper will insert some continuous items into the same leaf according 720 * to the free space of the leaf. 721 */ 722 static int btrfs_batch_insert_items(struct btrfs_root *root, 723 struct btrfs_path *path, 724 struct btrfs_delayed_item *item) 725 { 726 struct btrfs_delayed_item *curr, *next; 727 int free_space; 728 int total_data_size = 0, total_size = 0; 729 struct extent_buffer *leaf; 730 char *data_ptr; 731 struct btrfs_key *keys; 732 u32 *data_size; 733 struct list_head head; 734 int slot; 735 int nitems; 736 int i; 737 int ret = 0; 738 739 BUG_ON(!path->nodes[0]); 740 741 leaf = path->nodes[0]; 742 free_space = btrfs_leaf_free_space(root, leaf); 743 INIT_LIST_HEAD(&head); 744 745 next = item; 746 nitems = 0; 747 748 /* 749 * count the number of the continuous items that we can insert in batch 750 */ 751 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 752 free_space) { 753 total_data_size += next->data_len; 754 total_size += next->data_len + sizeof(struct btrfs_item); 755 list_add_tail(&next->tree_list, &head); 756 nitems++; 757 758 curr = next; 759 next = __btrfs_next_delayed_item(curr); 760 if (!next) 761 break; 762 763 if (!btrfs_is_continuous_delayed_item(curr, next)) 764 break; 765 } 766 767 if (!nitems) { 768 ret = 0; 769 goto out; 770 } 771 772 /* 773 * we need allocate some memory space, but it might cause the task 774 * to sleep, so we set all locked nodes in the path to blocking locks 775 * first. 776 */ 777 btrfs_set_path_blocking(path); 778 779 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 780 if (!keys) { 781 ret = -ENOMEM; 782 goto out; 783 } 784 785 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 786 if (!data_size) { 787 ret = -ENOMEM; 788 goto error; 789 } 790 791 /* get keys of all the delayed items */ 792 i = 0; 793 list_for_each_entry(next, &head, tree_list) { 794 keys[i] = next->key; 795 data_size[i] = next->data_len; 796 i++; 797 } 798 799 /* reset all the locked nodes in the patch to spinning locks. */ 800 btrfs_clear_path_blocking(path, NULL, 0); 801 802 /* insert the keys of the items */ 803 setup_items_for_insert(root, path, keys, data_size, 804 total_data_size, total_size, nitems); 805 806 /* insert the dir index items */ 807 slot = path->slots[0]; 808 list_for_each_entry_safe(curr, next, &head, tree_list) { 809 data_ptr = btrfs_item_ptr(leaf, slot, char); 810 write_extent_buffer(leaf, &curr->data, 811 (unsigned long)data_ptr, 812 curr->data_len); 813 slot++; 814 815 btrfs_delayed_item_release_metadata(root, curr); 816 817 list_del(&curr->tree_list); 818 btrfs_release_delayed_item(curr); 819 } 820 821 error: 822 kfree(data_size); 823 kfree(keys); 824 out: 825 return ret; 826 } 827 828 /* 829 * This helper can just do simple insertion that needn't extend item for new 830 * data, such as directory name index insertion, inode insertion. 831 */ 832 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 833 struct btrfs_root *root, 834 struct btrfs_path *path, 835 struct btrfs_delayed_item *delayed_item) 836 { 837 struct extent_buffer *leaf; 838 char *ptr; 839 int ret; 840 841 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 842 delayed_item->data_len); 843 if (ret < 0 && ret != -EEXIST) 844 return ret; 845 846 leaf = path->nodes[0]; 847 848 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 849 850 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 851 delayed_item->data_len); 852 btrfs_mark_buffer_dirty(leaf); 853 854 btrfs_delayed_item_release_metadata(root, delayed_item); 855 return 0; 856 } 857 858 /* 859 * we insert an item first, then if there are some continuous items, we try 860 * to insert those items into the same leaf. 861 */ 862 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 863 struct btrfs_path *path, 864 struct btrfs_root *root, 865 struct btrfs_delayed_node *node) 866 { 867 struct btrfs_delayed_item *curr, *prev; 868 int ret = 0; 869 870 do_again: 871 mutex_lock(&node->mutex); 872 curr = __btrfs_first_delayed_insertion_item(node); 873 if (!curr) 874 goto insert_end; 875 876 ret = btrfs_insert_delayed_item(trans, root, path, curr); 877 if (ret < 0) { 878 btrfs_release_path(path); 879 goto insert_end; 880 } 881 882 prev = curr; 883 curr = __btrfs_next_delayed_item(prev); 884 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 885 /* insert the continuous items into the same leaf */ 886 path->slots[0]++; 887 btrfs_batch_insert_items(root, path, curr); 888 } 889 btrfs_release_delayed_item(prev); 890 btrfs_mark_buffer_dirty(path->nodes[0]); 891 892 btrfs_release_path(path); 893 mutex_unlock(&node->mutex); 894 goto do_again; 895 896 insert_end: 897 mutex_unlock(&node->mutex); 898 return ret; 899 } 900 901 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 902 struct btrfs_root *root, 903 struct btrfs_path *path, 904 struct btrfs_delayed_item *item) 905 { 906 struct btrfs_delayed_item *curr, *next; 907 struct extent_buffer *leaf; 908 struct btrfs_key key; 909 struct list_head head; 910 int nitems, i, last_item; 911 int ret = 0; 912 913 BUG_ON(!path->nodes[0]); 914 915 leaf = path->nodes[0]; 916 917 i = path->slots[0]; 918 last_item = btrfs_header_nritems(leaf) - 1; 919 if (i > last_item) 920 return -ENOENT; /* FIXME: Is errno suitable? */ 921 922 next = item; 923 INIT_LIST_HEAD(&head); 924 btrfs_item_key_to_cpu(leaf, &key, i); 925 nitems = 0; 926 /* 927 * count the number of the dir index items that we can delete in batch 928 */ 929 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 930 list_add_tail(&next->tree_list, &head); 931 nitems++; 932 933 curr = next; 934 next = __btrfs_next_delayed_item(curr); 935 if (!next) 936 break; 937 938 if (!btrfs_is_continuous_delayed_item(curr, next)) 939 break; 940 941 i++; 942 if (i > last_item) 943 break; 944 btrfs_item_key_to_cpu(leaf, &key, i); 945 } 946 947 if (!nitems) 948 return 0; 949 950 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 951 if (ret) 952 goto out; 953 954 list_for_each_entry_safe(curr, next, &head, tree_list) { 955 btrfs_delayed_item_release_metadata(root, curr); 956 list_del(&curr->tree_list); 957 btrfs_release_delayed_item(curr); 958 } 959 960 out: 961 return ret; 962 } 963 964 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 965 struct btrfs_path *path, 966 struct btrfs_root *root, 967 struct btrfs_delayed_node *node) 968 { 969 struct btrfs_delayed_item *curr, *prev; 970 int ret = 0; 971 972 do_again: 973 mutex_lock(&node->mutex); 974 curr = __btrfs_first_delayed_deletion_item(node); 975 if (!curr) 976 goto delete_fail; 977 978 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 979 if (ret < 0) 980 goto delete_fail; 981 else if (ret > 0) { 982 /* 983 * can't find the item which the node points to, so this node 984 * is invalid, just drop it. 985 */ 986 prev = curr; 987 curr = __btrfs_next_delayed_item(prev); 988 btrfs_release_delayed_item(prev); 989 ret = 0; 990 btrfs_release_path(path); 991 if (curr) { 992 mutex_unlock(&node->mutex); 993 goto do_again; 994 } else 995 goto delete_fail; 996 } 997 998 btrfs_batch_delete_items(trans, root, path, curr); 999 btrfs_release_path(path); 1000 mutex_unlock(&node->mutex); 1001 goto do_again; 1002 1003 delete_fail: 1004 btrfs_release_path(path); 1005 mutex_unlock(&node->mutex); 1006 return ret; 1007 } 1008 1009 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 1010 { 1011 struct btrfs_delayed_root *delayed_root; 1012 1013 if (delayed_node && 1014 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1015 BUG_ON(!delayed_node->root); 1016 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1017 delayed_node->count--; 1018 1019 delayed_root = delayed_node->root->fs_info->delayed_root; 1020 finish_one_item(delayed_root); 1021 } 1022 } 1023 1024 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 1025 { 1026 struct btrfs_delayed_root *delayed_root; 1027 1028 ASSERT(delayed_node->root); 1029 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1030 delayed_node->count--; 1031 1032 delayed_root = delayed_node->root->fs_info->delayed_root; 1033 finish_one_item(delayed_root); 1034 } 1035 1036 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1037 struct btrfs_root *root, 1038 struct btrfs_path *path, 1039 struct btrfs_delayed_node *node) 1040 { 1041 struct btrfs_key key; 1042 struct btrfs_inode_item *inode_item; 1043 struct extent_buffer *leaf; 1044 int mod; 1045 int ret; 1046 1047 key.objectid = node->inode_id; 1048 key.type = BTRFS_INODE_ITEM_KEY; 1049 key.offset = 0; 1050 1051 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1052 mod = -1; 1053 else 1054 mod = 1; 1055 1056 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1057 if (ret > 0) { 1058 btrfs_release_path(path); 1059 return -ENOENT; 1060 } else if (ret < 0) { 1061 return ret; 1062 } 1063 1064 leaf = path->nodes[0]; 1065 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1066 struct btrfs_inode_item); 1067 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1068 sizeof(struct btrfs_inode_item)); 1069 btrfs_mark_buffer_dirty(leaf); 1070 1071 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1072 goto no_iref; 1073 1074 path->slots[0]++; 1075 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1076 goto search; 1077 again: 1078 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1079 if (key.objectid != node->inode_id) 1080 goto out; 1081 1082 if (key.type != BTRFS_INODE_REF_KEY && 1083 key.type != BTRFS_INODE_EXTREF_KEY) 1084 goto out; 1085 1086 /* 1087 * Delayed iref deletion is for the inode who has only one link, 1088 * so there is only one iref. The case that several irefs are 1089 * in the same item doesn't exist. 1090 */ 1091 btrfs_del_item(trans, root, path); 1092 out: 1093 btrfs_release_delayed_iref(node); 1094 no_iref: 1095 btrfs_release_path(path); 1096 err_out: 1097 btrfs_delayed_inode_release_metadata(root, node); 1098 btrfs_release_delayed_inode(node); 1099 1100 return ret; 1101 1102 search: 1103 btrfs_release_path(path); 1104 1105 key.type = BTRFS_INODE_EXTREF_KEY; 1106 key.offset = -1; 1107 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1108 if (ret < 0) 1109 goto err_out; 1110 ASSERT(ret); 1111 1112 ret = 0; 1113 leaf = path->nodes[0]; 1114 path->slots[0]--; 1115 goto again; 1116 } 1117 1118 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1119 struct btrfs_root *root, 1120 struct btrfs_path *path, 1121 struct btrfs_delayed_node *node) 1122 { 1123 int ret; 1124 1125 mutex_lock(&node->mutex); 1126 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1127 mutex_unlock(&node->mutex); 1128 return 0; 1129 } 1130 1131 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1132 mutex_unlock(&node->mutex); 1133 return ret; 1134 } 1135 1136 static inline int 1137 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1138 struct btrfs_path *path, 1139 struct btrfs_delayed_node *node) 1140 { 1141 int ret; 1142 1143 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1144 if (ret) 1145 return ret; 1146 1147 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1148 if (ret) 1149 return ret; 1150 1151 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1152 return ret; 1153 } 1154 1155 /* 1156 * Called when committing the transaction. 1157 * Returns 0 on success. 1158 * Returns < 0 on error and returns with an aborted transaction with any 1159 * outstanding delayed items cleaned up. 1160 */ 1161 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1162 struct btrfs_root *root, int nr) 1163 { 1164 struct btrfs_delayed_root *delayed_root; 1165 struct btrfs_delayed_node *curr_node, *prev_node; 1166 struct btrfs_path *path; 1167 struct btrfs_block_rsv *block_rsv; 1168 int ret = 0; 1169 bool count = (nr > 0); 1170 1171 if (trans->aborted) 1172 return -EIO; 1173 1174 path = btrfs_alloc_path(); 1175 if (!path) 1176 return -ENOMEM; 1177 path->leave_spinning = 1; 1178 1179 block_rsv = trans->block_rsv; 1180 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1181 1182 delayed_root = btrfs_get_delayed_root(root); 1183 1184 curr_node = btrfs_first_delayed_node(delayed_root); 1185 while (curr_node && (!count || (count && nr--))) { 1186 ret = __btrfs_commit_inode_delayed_items(trans, path, 1187 curr_node); 1188 if (ret) { 1189 btrfs_release_delayed_node(curr_node); 1190 curr_node = NULL; 1191 btrfs_abort_transaction(trans, root, ret); 1192 break; 1193 } 1194 1195 prev_node = curr_node; 1196 curr_node = btrfs_next_delayed_node(curr_node); 1197 btrfs_release_delayed_node(prev_node); 1198 } 1199 1200 if (curr_node) 1201 btrfs_release_delayed_node(curr_node); 1202 btrfs_free_path(path); 1203 trans->block_rsv = block_rsv; 1204 1205 return ret; 1206 } 1207 1208 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1209 struct btrfs_root *root) 1210 { 1211 return __btrfs_run_delayed_items(trans, root, -1); 1212 } 1213 1214 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, 1215 struct btrfs_root *root, int nr) 1216 { 1217 return __btrfs_run_delayed_items(trans, root, nr); 1218 } 1219 1220 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1221 struct inode *inode) 1222 { 1223 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1224 struct btrfs_path *path; 1225 struct btrfs_block_rsv *block_rsv; 1226 int ret; 1227 1228 if (!delayed_node) 1229 return 0; 1230 1231 mutex_lock(&delayed_node->mutex); 1232 if (!delayed_node->count) { 1233 mutex_unlock(&delayed_node->mutex); 1234 btrfs_release_delayed_node(delayed_node); 1235 return 0; 1236 } 1237 mutex_unlock(&delayed_node->mutex); 1238 1239 path = btrfs_alloc_path(); 1240 if (!path) { 1241 btrfs_release_delayed_node(delayed_node); 1242 return -ENOMEM; 1243 } 1244 path->leave_spinning = 1; 1245 1246 block_rsv = trans->block_rsv; 1247 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1248 1249 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1250 1251 btrfs_release_delayed_node(delayed_node); 1252 btrfs_free_path(path); 1253 trans->block_rsv = block_rsv; 1254 1255 return ret; 1256 } 1257 1258 int btrfs_commit_inode_delayed_inode(struct inode *inode) 1259 { 1260 struct btrfs_trans_handle *trans; 1261 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1262 struct btrfs_path *path; 1263 struct btrfs_block_rsv *block_rsv; 1264 int ret; 1265 1266 if (!delayed_node) 1267 return 0; 1268 1269 mutex_lock(&delayed_node->mutex); 1270 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1271 mutex_unlock(&delayed_node->mutex); 1272 btrfs_release_delayed_node(delayed_node); 1273 return 0; 1274 } 1275 mutex_unlock(&delayed_node->mutex); 1276 1277 trans = btrfs_join_transaction(delayed_node->root); 1278 if (IS_ERR(trans)) { 1279 ret = PTR_ERR(trans); 1280 goto out; 1281 } 1282 1283 path = btrfs_alloc_path(); 1284 if (!path) { 1285 ret = -ENOMEM; 1286 goto trans_out; 1287 } 1288 path->leave_spinning = 1; 1289 1290 block_rsv = trans->block_rsv; 1291 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1292 1293 mutex_lock(&delayed_node->mutex); 1294 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1295 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1296 path, delayed_node); 1297 else 1298 ret = 0; 1299 mutex_unlock(&delayed_node->mutex); 1300 1301 btrfs_free_path(path); 1302 trans->block_rsv = block_rsv; 1303 trans_out: 1304 btrfs_end_transaction(trans, delayed_node->root); 1305 btrfs_btree_balance_dirty(delayed_node->root); 1306 out: 1307 btrfs_release_delayed_node(delayed_node); 1308 1309 return ret; 1310 } 1311 1312 void btrfs_remove_delayed_node(struct inode *inode) 1313 { 1314 struct btrfs_delayed_node *delayed_node; 1315 1316 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); 1317 if (!delayed_node) 1318 return; 1319 1320 BTRFS_I(inode)->delayed_node = NULL; 1321 btrfs_release_delayed_node(delayed_node); 1322 } 1323 1324 struct btrfs_async_delayed_work { 1325 struct btrfs_delayed_root *delayed_root; 1326 int nr; 1327 struct btrfs_work work; 1328 }; 1329 1330 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1331 { 1332 struct btrfs_async_delayed_work *async_work; 1333 struct btrfs_delayed_root *delayed_root; 1334 struct btrfs_trans_handle *trans; 1335 struct btrfs_path *path; 1336 struct btrfs_delayed_node *delayed_node = NULL; 1337 struct btrfs_root *root; 1338 struct btrfs_block_rsv *block_rsv; 1339 int total_done = 0; 1340 1341 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1342 delayed_root = async_work->delayed_root; 1343 1344 path = btrfs_alloc_path(); 1345 if (!path) 1346 goto out; 1347 1348 again: 1349 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) 1350 goto free_path; 1351 1352 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1353 if (!delayed_node) 1354 goto free_path; 1355 1356 path->leave_spinning = 1; 1357 root = delayed_node->root; 1358 1359 trans = btrfs_join_transaction(root); 1360 if (IS_ERR(trans)) 1361 goto release_path; 1362 1363 block_rsv = trans->block_rsv; 1364 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1365 1366 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1367 1368 trans->block_rsv = block_rsv; 1369 btrfs_end_transaction(trans, root); 1370 btrfs_btree_balance_dirty_nodelay(root); 1371 1372 release_path: 1373 btrfs_release_path(path); 1374 total_done++; 1375 1376 btrfs_release_prepared_delayed_node(delayed_node); 1377 if (async_work->nr == 0 || total_done < async_work->nr) 1378 goto again; 1379 1380 free_path: 1381 btrfs_free_path(path); 1382 out: 1383 wake_up(&delayed_root->wait); 1384 kfree(async_work); 1385 } 1386 1387 1388 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1389 struct btrfs_fs_info *fs_info, int nr) 1390 { 1391 struct btrfs_async_delayed_work *async_work; 1392 1393 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1394 return 0; 1395 1396 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1397 if (!async_work) 1398 return -ENOMEM; 1399 1400 async_work->delayed_root = delayed_root; 1401 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, 1402 btrfs_async_run_delayed_root, NULL, NULL); 1403 async_work->nr = nr; 1404 1405 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1406 return 0; 1407 } 1408 1409 void btrfs_assert_delayed_root_empty(struct btrfs_root *root) 1410 { 1411 struct btrfs_delayed_root *delayed_root; 1412 delayed_root = btrfs_get_delayed_root(root); 1413 WARN_ON(btrfs_first_delayed_node(delayed_root)); 1414 } 1415 1416 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1417 { 1418 int val = atomic_read(&delayed_root->items_seq); 1419 1420 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1421 return 1; 1422 1423 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1424 return 1; 1425 1426 return 0; 1427 } 1428 1429 void btrfs_balance_delayed_items(struct btrfs_root *root) 1430 { 1431 struct btrfs_delayed_root *delayed_root; 1432 struct btrfs_fs_info *fs_info = root->fs_info; 1433 1434 delayed_root = btrfs_get_delayed_root(root); 1435 1436 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1437 return; 1438 1439 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1440 int seq; 1441 int ret; 1442 1443 seq = atomic_read(&delayed_root->items_seq); 1444 1445 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1446 if (ret) 1447 return; 1448 1449 wait_event_interruptible(delayed_root->wait, 1450 could_end_wait(delayed_root, seq)); 1451 return; 1452 } 1453 1454 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1455 } 1456 1457 /* Will return 0 or -ENOMEM */ 1458 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1459 struct btrfs_root *root, const char *name, 1460 int name_len, struct inode *dir, 1461 struct btrfs_disk_key *disk_key, u8 type, 1462 u64 index) 1463 { 1464 struct btrfs_delayed_node *delayed_node; 1465 struct btrfs_delayed_item *delayed_item; 1466 struct btrfs_dir_item *dir_item; 1467 int ret; 1468 1469 delayed_node = btrfs_get_or_create_delayed_node(dir); 1470 if (IS_ERR(delayed_node)) 1471 return PTR_ERR(delayed_node); 1472 1473 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1474 if (!delayed_item) { 1475 ret = -ENOMEM; 1476 goto release_node; 1477 } 1478 1479 delayed_item->key.objectid = btrfs_ino(dir); 1480 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1481 delayed_item->key.offset = index; 1482 1483 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1484 dir_item->location = *disk_key; 1485 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1486 btrfs_set_stack_dir_data_len(dir_item, 0); 1487 btrfs_set_stack_dir_name_len(dir_item, name_len); 1488 btrfs_set_stack_dir_type(dir_item, type); 1489 memcpy((char *)(dir_item + 1), name, name_len); 1490 1491 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); 1492 /* 1493 * we have reserved enough space when we start a new transaction, 1494 * so reserving metadata failure is impossible 1495 */ 1496 BUG_ON(ret); 1497 1498 1499 mutex_lock(&delayed_node->mutex); 1500 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1501 if (unlikely(ret)) { 1502 btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) " 1503 "into the insertion tree of the delayed node" 1504 "(root id: %llu, inode id: %llu, errno: %d)", 1505 name_len, name, delayed_node->root->objectid, 1506 delayed_node->inode_id, ret); 1507 BUG(); 1508 } 1509 mutex_unlock(&delayed_node->mutex); 1510 1511 release_node: 1512 btrfs_release_delayed_node(delayed_node); 1513 return ret; 1514 } 1515 1516 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, 1517 struct btrfs_delayed_node *node, 1518 struct btrfs_key *key) 1519 { 1520 struct btrfs_delayed_item *item; 1521 1522 mutex_lock(&node->mutex); 1523 item = __btrfs_lookup_delayed_insertion_item(node, key); 1524 if (!item) { 1525 mutex_unlock(&node->mutex); 1526 return 1; 1527 } 1528 1529 btrfs_delayed_item_release_metadata(root, item); 1530 btrfs_release_delayed_item(item); 1531 mutex_unlock(&node->mutex); 1532 return 0; 1533 } 1534 1535 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1536 struct btrfs_root *root, struct inode *dir, 1537 u64 index) 1538 { 1539 struct btrfs_delayed_node *node; 1540 struct btrfs_delayed_item *item; 1541 struct btrfs_key item_key; 1542 int ret; 1543 1544 node = btrfs_get_or_create_delayed_node(dir); 1545 if (IS_ERR(node)) 1546 return PTR_ERR(node); 1547 1548 item_key.objectid = btrfs_ino(dir); 1549 item_key.type = BTRFS_DIR_INDEX_KEY; 1550 item_key.offset = index; 1551 1552 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); 1553 if (!ret) 1554 goto end; 1555 1556 item = btrfs_alloc_delayed_item(0); 1557 if (!item) { 1558 ret = -ENOMEM; 1559 goto end; 1560 } 1561 1562 item->key = item_key; 1563 1564 ret = btrfs_delayed_item_reserve_metadata(trans, root, item); 1565 /* 1566 * we have reserved enough space when we start a new transaction, 1567 * so reserving metadata failure is impossible. 1568 */ 1569 BUG_ON(ret); 1570 1571 mutex_lock(&node->mutex); 1572 ret = __btrfs_add_delayed_deletion_item(node, item); 1573 if (unlikely(ret)) { 1574 btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) " 1575 "into the deletion tree of the delayed node" 1576 "(root id: %llu, inode id: %llu, errno: %d)", 1577 index, node->root->objectid, node->inode_id, 1578 ret); 1579 BUG(); 1580 } 1581 mutex_unlock(&node->mutex); 1582 end: 1583 btrfs_release_delayed_node(node); 1584 return ret; 1585 } 1586 1587 int btrfs_inode_delayed_dir_index_count(struct inode *inode) 1588 { 1589 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1590 1591 if (!delayed_node) 1592 return -ENOENT; 1593 1594 /* 1595 * Since we have held i_mutex of this directory, it is impossible that 1596 * a new directory index is added into the delayed node and index_cnt 1597 * is updated now. So we needn't lock the delayed node. 1598 */ 1599 if (!delayed_node->index_cnt) { 1600 btrfs_release_delayed_node(delayed_node); 1601 return -EINVAL; 1602 } 1603 1604 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; 1605 btrfs_release_delayed_node(delayed_node); 1606 return 0; 1607 } 1608 1609 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1610 struct list_head *ins_list, 1611 struct list_head *del_list) 1612 { 1613 struct btrfs_delayed_node *delayed_node; 1614 struct btrfs_delayed_item *item; 1615 1616 delayed_node = btrfs_get_delayed_node(inode); 1617 if (!delayed_node) 1618 return false; 1619 1620 /* 1621 * We can only do one readdir with delayed items at a time because of 1622 * item->readdir_list. 1623 */ 1624 inode_unlock_shared(inode); 1625 inode_lock(inode); 1626 1627 mutex_lock(&delayed_node->mutex); 1628 item = __btrfs_first_delayed_insertion_item(delayed_node); 1629 while (item) { 1630 atomic_inc(&item->refs); 1631 list_add_tail(&item->readdir_list, ins_list); 1632 item = __btrfs_next_delayed_item(item); 1633 } 1634 1635 item = __btrfs_first_delayed_deletion_item(delayed_node); 1636 while (item) { 1637 atomic_inc(&item->refs); 1638 list_add_tail(&item->readdir_list, del_list); 1639 item = __btrfs_next_delayed_item(item); 1640 } 1641 mutex_unlock(&delayed_node->mutex); 1642 /* 1643 * This delayed node is still cached in the btrfs inode, so refs 1644 * must be > 1 now, and we needn't check it is going to be freed 1645 * or not. 1646 * 1647 * Besides that, this function is used to read dir, we do not 1648 * insert/delete delayed items in this period. So we also needn't 1649 * requeue or dequeue this delayed node. 1650 */ 1651 atomic_dec(&delayed_node->refs); 1652 1653 return true; 1654 } 1655 1656 void btrfs_readdir_put_delayed_items(struct inode *inode, 1657 struct list_head *ins_list, 1658 struct list_head *del_list) 1659 { 1660 struct btrfs_delayed_item *curr, *next; 1661 1662 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1663 list_del(&curr->readdir_list); 1664 if (atomic_dec_and_test(&curr->refs)) 1665 kfree(curr); 1666 } 1667 1668 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1669 list_del(&curr->readdir_list); 1670 if (atomic_dec_and_test(&curr->refs)) 1671 kfree(curr); 1672 } 1673 1674 /* 1675 * The VFS is going to do up_read(), so we need to downgrade back to a 1676 * read lock. 1677 */ 1678 downgrade_write(&inode->i_rwsem); 1679 } 1680 1681 int btrfs_should_delete_dir_index(struct list_head *del_list, 1682 u64 index) 1683 { 1684 struct btrfs_delayed_item *curr, *next; 1685 int ret; 1686 1687 if (list_empty(del_list)) 1688 return 0; 1689 1690 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1691 if (curr->key.offset > index) 1692 break; 1693 1694 list_del(&curr->readdir_list); 1695 ret = (curr->key.offset == index); 1696 1697 if (atomic_dec_and_test(&curr->refs)) 1698 kfree(curr); 1699 1700 if (ret) 1701 return 1; 1702 else 1703 continue; 1704 } 1705 return 0; 1706 } 1707 1708 /* 1709 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1710 * 1711 */ 1712 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1713 struct list_head *ins_list, bool *emitted) 1714 { 1715 struct btrfs_dir_item *di; 1716 struct btrfs_delayed_item *curr, *next; 1717 struct btrfs_key location; 1718 char *name; 1719 int name_len; 1720 int over = 0; 1721 unsigned char d_type; 1722 1723 if (list_empty(ins_list)) 1724 return 0; 1725 1726 /* 1727 * Changing the data of the delayed item is impossible. So 1728 * we needn't lock them. And we have held i_mutex of the 1729 * directory, nobody can delete any directory indexes now. 1730 */ 1731 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1732 list_del(&curr->readdir_list); 1733 1734 if (curr->key.offset < ctx->pos) { 1735 if (atomic_dec_and_test(&curr->refs)) 1736 kfree(curr); 1737 continue; 1738 } 1739 1740 ctx->pos = curr->key.offset; 1741 1742 di = (struct btrfs_dir_item *)curr->data; 1743 name = (char *)(di + 1); 1744 name_len = btrfs_stack_dir_name_len(di); 1745 1746 d_type = btrfs_filetype_table[di->type]; 1747 btrfs_disk_key_to_cpu(&location, &di->location); 1748 1749 over = !dir_emit(ctx, name, name_len, 1750 location.objectid, d_type); 1751 1752 if (atomic_dec_and_test(&curr->refs)) 1753 kfree(curr); 1754 1755 if (over) 1756 return 1; 1757 *emitted = true; 1758 } 1759 return 0; 1760 } 1761 1762 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1763 struct btrfs_inode_item *inode_item, 1764 struct inode *inode) 1765 { 1766 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1767 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1768 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1769 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1770 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1771 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1772 btrfs_set_stack_inode_generation(inode_item, 1773 BTRFS_I(inode)->generation); 1774 btrfs_set_stack_inode_sequence(inode_item, inode->i_version); 1775 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1776 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1777 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1778 btrfs_set_stack_inode_block_group(inode_item, 0); 1779 1780 btrfs_set_stack_timespec_sec(&inode_item->atime, 1781 inode->i_atime.tv_sec); 1782 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1783 inode->i_atime.tv_nsec); 1784 1785 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1786 inode->i_mtime.tv_sec); 1787 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1788 inode->i_mtime.tv_nsec); 1789 1790 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1791 inode->i_ctime.tv_sec); 1792 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1793 inode->i_ctime.tv_nsec); 1794 1795 btrfs_set_stack_timespec_sec(&inode_item->otime, 1796 BTRFS_I(inode)->i_otime.tv_sec); 1797 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1798 BTRFS_I(inode)->i_otime.tv_nsec); 1799 } 1800 1801 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1802 { 1803 struct btrfs_delayed_node *delayed_node; 1804 struct btrfs_inode_item *inode_item; 1805 1806 delayed_node = btrfs_get_delayed_node(inode); 1807 if (!delayed_node) 1808 return -ENOENT; 1809 1810 mutex_lock(&delayed_node->mutex); 1811 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1812 mutex_unlock(&delayed_node->mutex); 1813 btrfs_release_delayed_node(delayed_node); 1814 return -ENOENT; 1815 } 1816 1817 inode_item = &delayed_node->inode_item; 1818 1819 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1820 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1821 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1822 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1823 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1824 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1825 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1826 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1827 1828 inode->i_version = btrfs_stack_inode_sequence(inode_item); 1829 inode->i_rdev = 0; 1830 *rdev = btrfs_stack_inode_rdev(inode_item); 1831 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1832 1833 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1834 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1835 1836 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1837 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1838 1839 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1840 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1841 1842 BTRFS_I(inode)->i_otime.tv_sec = 1843 btrfs_stack_timespec_sec(&inode_item->otime); 1844 BTRFS_I(inode)->i_otime.tv_nsec = 1845 btrfs_stack_timespec_nsec(&inode_item->otime); 1846 1847 inode->i_generation = BTRFS_I(inode)->generation; 1848 BTRFS_I(inode)->index_cnt = (u64)-1; 1849 1850 mutex_unlock(&delayed_node->mutex); 1851 btrfs_release_delayed_node(delayed_node); 1852 return 0; 1853 } 1854 1855 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1856 struct btrfs_root *root, struct inode *inode) 1857 { 1858 struct btrfs_delayed_node *delayed_node; 1859 int ret = 0; 1860 1861 delayed_node = btrfs_get_or_create_delayed_node(inode); 1862 if (IS_ERR(delayed_node)) 1863 return PTR_ERR(delayed_node); 1864 1865 mutex_lock(&delayed_node->mutex); 1866 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1867 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1868 goto release_node; 1869 } 1870 1871 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1872 delayed_node); 1873 if (ret) 1874 goto release_node; 1875 1876 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1877 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1878 delayed_node->count++; 1879 atomic_inc(&root->fs_info->delayed_root->items); 1880 release_node: 1881 mutex_unlock(&delayed_node->mutex); 1882 btrfs_release_delayed_node(delayed_node); 1883 return ret; 1884 } 1885 1886 int btrfs_delayed_delete_inode_ref(struct inode *inode) 1887 { 1888 struct btrfs_delayed_node *delayed_node; 1889 1890 /* 1891 * we don't do delayed inode updates during log recovery because it 1892 * leads to enospc problems. This means we also can't do 1893 * delayed inode refs 1894 */ 1895 if (BTRFS_I(inode)->root->fs_info->log_root_recovering) 1896 return -EAGAIN; 1897 1898 delayed_node = btrfs_get_or_create_delayed_node(inode); 1899 if (IS_ERR(delayed_node)) 1900 return PTR_ERR(delayed_node); 1901 1902 /* 1903 * We don't reserve space for inode ref deletion is because: 1904 * - We ONLY do async inode ref deletion for the inode who has only 1905 * one link(i_nlink == 1), it means there is only one inode ref. 1906 * And in most case, the inode ref and the inode item are in the 1907 * same leaf, and we will deal with them at the same time. 1908 * Since we are sure we will reserve the space for the inode item, 1909 * it is unnecessary to reserve space for inode ref deletion. 1910 * - If the inode ref and the inode item are not in the same leaf, 1911 * We also needn't worry about enospc problem, because we reserve 1912 * much more space for the inode update than it needs. 1913 * - At the worst, we can steal some space from the global reservation. 1914 * It is very rare. 1915 */ 1916 mutex_lock(&delayed_node->mutex); 1917 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1918 goto release_node; 1919 1920 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1921 delayed_node->count++; 1922 atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items); 1923 release_node: 1924 mutex_unlock(&delayed_node->mutex); 1925 btrfs_release_delayed_node(delayed_node); 1926 return 0; 1927 } 1928 1929 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1930 { 1931 struct btrfs_root *root = delayed_node->root; 1932 struct btrfs_delayed_item *curr_item, *prev_item; 1933 1934 mutex_lock(&delayed_node->mutex); 1935 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1936 while (curr_item) { 1937 btrfs_delayed_item_release_metadata(root, curr_item); 1938 prev_item = curr_item; 1939 curr_item = __btrfs_next_delayed_item(prev_item); 1940 btrfs_release_delayed_item(prev_item); 1941 } 1942 1943 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1944 while (curr_item) { 1945 btrfs_delayed_item_release_metadata(root, curr_item); 1946 prev_item = curr_item; 1947 curr_item = __btrfs_next_delayed_item(prev_item); 1948 btrfs_release_delayed_item(prev_item); 1949 } 1950 1951 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1952 btrfs_release_delayed_iref(delayed_node); 1953 1954 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1955 btrfs_delayed_inode_release_metadata(root, delayed_node); 1956 btrfs_release_delayed_inode(delayed_node); 1957 } 1958 mutex_unlock(&delayed_node->mutex); 1959 } 1960 1961 void btrfs_kill_delayed_inode_items(struct inode *inode) 1962 { 1963 struct btrfs_delayed_node *delayed_node; 1964 1965 delayed_node = btrfs_get_delayed_node(inode); 1966 if (!delayed_node) 1967 return; 1968 1969 __btrfs_kill_delayed_node(delayed_node); 1970 btrfs_release_delayed_node(delayed_node); 1971 } 1972 1973 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1974 { 1975 u64 inode_id = 0; 1976 struct btrfs_delayed_node *delayed_nodes[8]; 1977 int i, n; 1978 1979 while (1) { 1980 spin_lock(&root->inode_lock); 1981 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1982 (void **)delayed_nodes, inode_id, 1983 ARRAY_SIZE(delayed_nodes)); 1984 if (!n) { 1985 spin_unlock(&root->inode_lock); 1986 break; 1987 } 1988 1989 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1990 1991 for (i = 0; i < n; i++) 1992 atomic_inc(&delayed_nodes[i]->refs); 1993 spin_unlock(&root->inode_lock); 1994 1995 for (i = 0; i < n; i++) { 1996 __btrfs_kill_delayed_node(delayed_nodes[i]); 1997 btrfs_release_delayed_node(delayed_nodes[i]); 1998 } 1999 } 2000 } 2001 2002 void btrfs_destroy_delayed_inodes(struct btrfs_root *root) 2003 { 2004 struct btrfs_delayed_root *delayed_root; 2005 struct btrfs_delayed_node *curr_node, *prev_node; 2006 2007 delayed_root = btrfs_get_delayed_root(root); 2008 2009 curr_node = btrfs_first_delayed_node(delayed_root); 2010 while (curr_node) { 2011 __btrfs_kill_delayed_node(curr_node); 2012 2013 prev_node = curr_node; 2014 curr_node = btrfs_next_delayed_node(curr_node); 2015 btrfs_release_delayed_node(prev_node); 2016 } 2017 } 2018 2019