1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0); 32 if (!delayed_node_cache) 33 return -ENOMEM; 34 return 0; 35 } 36 37 void __cold btrfs_delayed_inode_exit(void) 38 { 39 kmem_cache_destroy(delayed_node_cache); 40 } 41 42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root) 43 { 44 atomic_set(&delayed_root->items, 0); 45 atomic_set(&delayed_root->items_seq, 0); 46 delayed_root->nodes = 0; 47 spin_lock_init(&delayed_root->lock); 48 init_waitqueue_head(&delayed_root->wait); 49 INIT_LIST_HEAD(&delayed_root->node_list); 50 INIT_LIST_HEAD(&delayed_root->prepare_list); 51 } 52 53 static inline void btrfs_init_delayed_node( 54 struct btrfs_delayed_node *delayed_node, 55 struct btrfs_root *root, u64 inode_id) 56 { 57 delayed_node->root = root; 58 delayed_node->inode_id = inode_id; 59 refcount_set(&delayed_node->refs, 0); 60 delayed_node->ins_root = RB_ROOT_CACHED; 61 delayed_node->del_root = RB_ROOT_CACHED; 62 mutex_init(&delayed_node->mutex); 63 INIT_LIST_HEAD(&delayed_node->n_list); 64 INIT_LIST_HEAD(&delayed_node->p_list); 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 spin_lock(&root->inode_lock); 81 node = xa_load(&root->delayed_nodes, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 spin_unlock(&root->inode_lock); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the xarray. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the xarray at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the xarray, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 spin_unlock(&root->inode_lock); 115 return node; 116 } 117 spin_unlock(&root->inode_lock); 118 119 return NULL; 120 } 121 122 /* Will return either the node or PTR_ERR(-ENOMEM) */ 123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 124 struct btrfs_inode *btrfs_inode) 125 { 126 struct btrfs_delayed_node *node; 127 struct btrfs_root *root = btrfs_inode->root; 128 u64 ino = btrfs_ino(btrfs_inode); 129 int ret; 130 void *ptr; 131 132 again: 133 node = btrfs_get_delayed_node(btrfs_inode); 134 if (node) 135 return node; 136 137 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 138 if (!node) 139 return ERR_PTR(-ENOMEM); 140 btrfs_init_delayed_node(node, root, ino); 141 142 /* Cached in the inode and can be accessed. */ 143 refcount_set(&node->refs, 2); 144 145 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ 146 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); 147 if (ret == -ENOMEM) { 148 kmem_cache_free(delayed_node_cache, node); 149 return ERR_PTR(-ENOMEM); 150 } 151 spin_lock(&root->inode_lock); 152 ptr = xa_load(&root->delayed_nodes, ino); 153 if (ptr) { 154 /* Somebody inserted it, go back and read it. */ 155 spin_unlock(&root->inode_lock); 156 kmem_cache_free(delayed_node_cache, node); 157 node = NULL; 158 goto again; 159 } 160 ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); 161 ASSERT(xa_err(ptr) != -EINVAL); 162 ASSERT(xa_err(ptr) != -ENOMEM); 163 ASSERT(ptr == NULL); 164 btrfs_inode->delayed_node = node; 165 spin_unlock(&root->inode_lock); 166 167 return node; 168 } 169 170 /* 171 * Call it when holding delayed_node->mutex 172 * 173 * If mod = 1, add this node into the prepared list. 174 */ 175 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 176 struct btrfs_delayed_node *node, 177 int mod) 178 { 179 spin_lock(&root->lock); 180 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 181 if (!list_empty(&node->p_list)) 182 list_move_tail(&node->p_list, &root->prepare_list); 183 else if (mod) 184 list_add_tail(&node->p_list, &root->prepare_list); 185 } else { 186 list_add_tail(&node->n_list, &root->node_list); 187 list_add_tail(&node->p_list, &root->prepare_list); 188 refcount_inc(&node->refs); /* inserted into list */ 189 root->nodes++; 190 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 191 } 192 spin_unlock(&root->lock); 193 } 194 195 /* Call it when holding delayed_node->mutex */ 196 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 197 struct btrfs_delayed_node *node) 198 { 199 spin_lock(&root->lock); 200 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 201 root->nodes--; 202 refcount_dec(&node->refs); /* not in the list */ 203 list_del_init(&node->n_list); 204 if (!list_empty(&node->p_list)) 205 list_del_init(&node->p_list); 206 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 207 } 208 spin_unlock(&root->lock); 209 } 210 211 static struct btrfs_delayed_node *btrfs_first_delayed_node( 212 struct btrfs_delayed_root *delayed_root) 213 { 214 struct list_head *p; 215 struct btrfs_delayed_node *node = NULL; 216 217 spin_lock(&delayed_root->lock); 218 if (list_empty(&delayed_root->node_list)) 219 goto out; 220 221 p = delayed_root->node_list.next; 222 node = list_entry(p, struct btrfs_delayed_node, n_list); 223 refcount_inc(&node->refs); 224 out: 225 spin_unlock(&delayed_root->lock); 226 227 return node; 228 } 229 230 static struct btrfs_delayed_node *btrfs_next_delayed_node( 231 struct btrfs_delayed_node *node) 232 { 233 struct btrfs_delayed_root *delayed_root; 234 struct list_head *p; 235 struct btrfs_delayed_node *next = NULL; 236 237 delayed_root = node->root->fs_info->delayed_root; 238 spin_lock(&delayed_root->lock); 239 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 240 /* not in the list */ 241 if (list_empty(&delayed_root->node_list)) 242 goto out; 243 p = delayed_root->node_list.next; 244 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 245 goto out; 246 else 247 p = node->n_list.next; 248 249 next = list_entry(p, struct btrfs_delayed_node, n_list); 250 refcount_inc(&next->refs); 251 out: 252 spin_unlock(&delayed_root->lock); 253 254 return next; 255 } 256 257 static void __btrfs_release_delayed_node( 258 struct btrfs_delayed_node *delayed_node, 259 int mod) 260 { 261 struct btrfs_delayed_root *delayed_root; 262 263 if (!delayed_node) 264 return; 265 266 delayed_root = delayed_node->root->fs_info->delayed_root; 267 268 mutex_lock(&delayed_node->mutex); 269 if (delayed_node->count) 270 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 271 else 272 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 273 mutex_unlock(&delayed_node->mutex); 274 275 if (refcount_dec_and_test(&delayed_node->refs)) { 276 struct btrfs_root *root = delayed_node->root; 277 278 spin_lock(&root->inode_lock); 279 /* 280 * Once our refcount goes to zero, nobody is allowed to bump it 281 * back up. We can delete it now. 282 */ 283 ASSERT(refcount_read(&delayed_node->refs) == 0); 284 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 285 spin_unlock(&root->inode_lock); 286 kmem_cache_free(delayed_node_cache, delayed_node); 287 } 288 } 289 290 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 291 { 292 __btrfs_release_delayed_node(node, 0); 293 } 294 295 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 296 struct btrfs_delayed_root *delayed_root) 297 { 298 struct list_head *p; 299 struct btrfs_delayed_node *node = NULL; 300 301 spin_lock(&delayed_root->lock); 302 if (list_empty(&delayed_root->prepare_list)) 303 goto out; 304 305 p = delayed_root->prepare_list.next; 306 list_del_init(p); 307 node = list_entry(p, struct btrfs_delayed_node, p_list); 308 refcount_inc(&node->refs); 309 out: 310 spin_unlock(&delayed_root->lock); 311 312 return node; 313 } 314 315 static inline void btrfs_release_prepared_delayed_node( 316 struct btrfs_delayed_node *node) 317 { 318 __btrfs_release_delayed_node(node, 1); 319 } 320 321 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 322 struct btrfs_delayed_node *node, 323 enum btrfs_delayed_item_type type) 324 { 325 struct btrfs_delayed_item *item; 326 327 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 328 if (item) { 329 item->data_len = data_len; 330 item->type = type; 331 item->bytes_reserved = 0; 332 item->delayed_node = node; 333 RB_CLEAR_NODE(&item->rb_node); 334 INIT_LIST_HEAD(&item->log_list); 335 item->logged = false; 336 refcount_set(&item->refs, 1); 337 } 338 return item; 339 } 340 341 /* 342 * Look up the delayed item by key. 343 * 344 * @delayed_node: pointer to the delayed node 345 * @index: the dir index value to lookup (offset of a dir index key) 346 * 347 * Note: if we don't find the right item, we will return the prev item and 348 * the next item. 349 */ 350 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 351 struct rb_root *root, 352 u64 index) 353 { 354 struct rb_node *node = root->rb_node; 355 struct btrfs_delayed_item *delayed_item = NULL; 356 357 while (node) { 358 delayed_item = rb_entry(node, struct btrfs_delayed_item, 359 rb_node); 360 if (delayed_item->index < index) 361 node = node->rb_right; 362 else if (delayed_item->index > index) 363 node = node->rb_left; 364 else 365 return delayed_item; 366 } 367 368 return NULL; 369 } 370 371 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 372 struct btrfs_delayed_item *ins) 373 { 374 struct rb_node **p, *node; 375 struct rb_node *parent_node = NULL; 376 struct rb_root_cached *root; 377 struct btrfs_delayed_item *item; 378 bool leftmost = true; 379 380 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 381 root = &delayed_node->ins_root; 382 else 383 root = &delayed_node->del_root; 384 385 p = &root->rb_root.rb_node; 386 node = &ins->rb_node; 387 388 while (*p) { 389 parent_node = *p; 390 item = rb_entry(parent_node, struct btrfs_delayed_item, 391 rb_node); 392 393 if (item->index < ins->index) { 394 p = &(*p)->rb_right; 395 leftmost = false; 396 } else if (item->index > ins->index) { 397 p = &(*p)->rb_left; 398 } else { 399 return -EEXIST; 400 } 401 } 402 403 rb_link_node(node, parent_node, p); 404 rb_insert_color_cached(node, root, leftmost); 405 406 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 407 ins->index >= delayed_node->index_cnt) 408 delayed_node->index_cnt = ins->index + 1; 409 410 delayed_node->count++; 411 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 412 return 0; 413 } 414 415 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 416 { 417 int seq = atomic_inc_return(&delayed_root->items_seq); 418 419 /* atomic_dec_return implies a barrier */ 420 if ((atomic_dec_return(&delayed_root->items) < 421 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 422 cond_wake_up_nomb(&delayed_root->wait); 423 } 424 425 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 426 { 427 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 428 struct rb_root_cached *root; 429 struct btrfs_delayed_root *delayed_root; 430 431 /* Not inserted, ignore it. */ 432 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 433 return; 434 435 /* If it's in a rbtree, then we need to have delayed node locked. */ 436 lockdep_assert_held(&delayed_node->mutex); 437 438 delayed_root = delayed_node->root->fs_info->delayed_root; 439 440 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 441 root = &delayed_node->ins_root; 442 else 443 root = &delayed_node->del_root; 444 445 rb_erase_cached(&delayed_item->rb_node, root); 446 RB_CLEAR_NODE(&delayed_item->rb_node); 447 delayed_node->count--; 448 449 finish_one_item(delayed_root); 450 } 451 452 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 453 { 454 if (item) { 455 __btrfs_remove_delayed_item(item); 456 if (refcount_dec_and_test(&item->refs)) 457 kfree(item); 458 } 459 } 460 461 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 462 struct btrfs_delayed_node *delayed_node) 463 { 464 struct rb_node *p; 465 struct btrfs_delayed_item *item = NULL; 466 467 p = rb_first_cached(&delayed_node->ins_root); 468 if (p) 469 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 470 471 return item; 472 } 473 474 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 475 struct btrfs_delayed_node *delayed_node) 476 { 477 struct rb_node *p; 478 struct btrfs_delayed_item *item = NULL; 479 480 p = rb_first_cached(&delayed_node->del_root); 481 if (p) 482 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 483 484 return item; 485 } 486 487 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 488 struct btrfs_delayed_item *item) 489 { 490 struct rb_node *p; 491 struct btrfs_delayed_item *next = NULL; 492 493 p = rb_next(&item->rb_node); 494 if (p) 495 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 496 497 return next; 498 } 499 500 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 501 struct btrfs_delayed_item *item) 502 { 503 struct btrfs_block_rsv *src_rsv; 504 struct btrfs_block_rsv *dst_rsv; 505 struct btrfs_fs_info *fs_info = trans->fs_info; 506 u64 num_bytes; 507 int ret; 508 509 if (!trans->bytes_reserved) 510 return 0; 511 512 src_rsv = trans->block_rsv; 513 dst_rsv = &fs_info->delayed_block_rsv; 514 515 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 516 517 /* 518 * Here we migrate space rsv from transaction rsv, since have already 519 * reserved space when starting a transaction. So no need to reserve 520 * qgroup space here. 521 */ 522 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 523 if (!ret) { 524 trace_btrfs_space_reservation(fs_info, "delayed_item", 525 item->delayed_node->inode_id, 526 num_bytes, 1); 527 /* 528 * For insertions we track reserved metadata space by accounting 529 * for the number of leaves that will be used, based on the delayed 530 * node's curr_index_batch_size and index_item_leaves fields. 531 */ 532 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 533 item->bytes_reserved = num_bytes; 534 } 535 536 return ret; 537 } 538 539 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 540 struct btrfs_delayed_item *item) 541 { 542 struct btrfs_block_rsv *rsv; 543 struct btrfs_fs_info *fs_info = root->fs_info; 544 545 if (!item->bytes_reserved) 546 return; 547 548 rsv = &fs_info->delayed_block_rsv; 549 /* 550 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 551 * to release/reserve qgroup space. 552 */ 553 trace_btrfs_space_reservation(fs_info, "delayed_item", 554 item->delayed_node->inode_id, 555 item->bytes_reserved, 0); 556 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 557 } 558 559 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 560 unsigned int num_leaves) 561 { 562 struct btrfs_fs_info *fs_info = node->root->fs_info; 563 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 564 565 /* There are no space reservations during log replay, bail out. */ 566 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 567 return; 568 569 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 570 bytes, 0); 571 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 572 } 573 574 static int btrfs_delayed_inode_reserve_metadata( 575 struct btrfs_trans_handle *trans, 576 struct btrfs_root *root, 577 struct btrfs_delayed_node *node) 578 { 579 struct btrfs_fs_info *fs_info = root->fs_info; 580 struct btrfs_block_rsv *src_rsv; 581 struct btrfs_block_rsv *dst_rsv; 582 u64 num_bytes; 583 int ret; 584 585 src_rsv = trans->block_rsv; 586 dst_rsv = &fs_info->delayed_block_rsv; 587 588 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 589 590 /* 591 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 592 * which doesn't reserve space for speed. This is a problem since we 593 * still need to reserve space for this update, so try to reserve the 594 * space. 595 * 596 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 597 * we always reserve enough to update the inode item. 598 */ 599 if (!src_rsv || (!trans->bytes_reserved && 600 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 601 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 602 BTRFS_QGROUP_RSV_META_PREALLOC, true); 603 if (ret < 0) 604 return ret; 605 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 606 BTRFS_RESERVE_NO_FLUSH); 607 /* NO_FLUSH could only fail with -ENOSPC */ 608 ASSERT(ret == 0 || ret == -ENOSPC); 609 if (ret) 610 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 611 } else { 612 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 613 } 614 615 if (!ret) { 616 trace_btrfs_space_reservation(fs_info, "delayed_inode", 617 node->inode_id, num_bytes, 1); 618 node->bytes_reserved = num_bytes; 619 } 620 621 return ret; 622 } 623 624 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 625 struct btrfs_delayed_node *node, 626 bool qgroup_free) 627 { 628 struct btrfs_block_rsv *rsv; 629 630 if (!node->bytes_reserved) 631 return; 632 633 rsv = &fs_info->delayed_block_rsv; 634 trace_btrfs_space_reservation(fs_info, "delayed_inode", 635 node->inode_id, node->bytes_reserved, 0); 636 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 637 if (qgroup_free) 638 btrfs_qgroup_free_meta_prealloc(node->root, 639 node->bytes_reserved); 640 else 641 btrfs_qgroup_convert_reserved_meta(node->root, 642 node->bytes_reserved); 643 node->bytes_reserved = 0; 644 } 645 646 /* 647 * Insert a single delayed item or a batch of delayed items, as many as possible 648 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 649 * in the rbtree, and if there's a gap between two consecutive dir index items, 650 * then it means at some point we had delayed dir indexes to add but they got 651 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 652 * into the subvolume tree. Dir index keys also have their offsets coming from a 653 * monotonically increasing counter, so we can't get new keys with an offset that 654 * fits within a gap between delayed dir index items. 655 */ 656 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 657 struct btrfs_root *root, 658 struct btrfs_path *path, 659 struct btrfs_delayed_item *first_item) 660 { 661 struct btrfs_fs_info *fs_info = root->fs_info; 662 struct btrfs_delayed_node *node = first_item->delayed_node; 663 LIST_HEAD(item_list); 664 struct btrfs_delayed_item *curr; 665 struct btrfs_delayed_item *next; 666 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 667 struct btrfs_item_batch batch; 668 struct btrfs_key first_key; 669 const u32 first_data_size = first_item->data_len; 670 int total_size; 671 char *ins_data = NULL; 672 int ret; 673 bool continuous_keys_only = false; 674 675 lockdep_assert_held(&node->mutex); 676 677 /* 678 * During normal operation the delayed index offset is continuously 679 * increasing, so we can batch insert all items as there will not be any 680 * overlapping keys in the tree. 681 * 682 * The exception to this is log replay, where we may have interleaved 683 * offsets in the tree, so our batch needs to be continuous keys only in 684 * order to ensure we do not end up with out of order items in our leaf. 685 */ 686 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 687 continuous_keys_only = true; 688 689 /* 690 * For delayed items to insert, we track reserved metadata bytes based 691 * on the number of leaves that we will use. 692 * See btrfs_insert_delayed_dir_index() and 693 * btrfs_delayed_item_reserve_metadata()). 694 */ 695 ASSERT(first_item->bytes_reserved == 0); 696 697 list_add_tail(&first_item->tree_list, &item_list); 698 batch.total_data_size = first_data_size; 699 batch.nr = 1; 700 total_size = first_data_size + sizeof(struct btrfs_item); 701 curr = first_item; 702 703 while (true) { 704 int next_size; 705 706 next = __btrfs_next_delayed_item(curr); 707 if (!next) 708 break; 709 710 /* 711 * We cannot allow gaps in the key space if we're doing log 712 * replay. 713 */ 714 if (continuous_keys_only && (next->index != curr->index + 1)) 715 break; 716 717 ASSERT(next->bytes_reserved == 0); 718 719 next_size = next->data_len + sizeof(struct btrfs_item); 720 if (total_size + next_size > max_size) 721 break; 722 723 list_add_tail(&next->tree_list, &item_list); 724 batch.nr++; 725 total_size += next_size; 726 batch.total_data_size += next->data_len; 727 curr = next; 728 } 729 730 if (batch.nr == 1) { 731 first_key.objectid = node->inode_id; 732 first_key.type = BTRFS_DIR_INDEX_KEY; 733 first_key.offset = first_item->index; 734 batch.keys = &first_key; 735 batch.data_sizes = &first_data_size; 736 } else { 737 struct btrfs_key *ins_keys; 738 u32 *ins_sizes; 739 int i = 0; 740 741 ins_data = kmalloc(batch.nr * sizeof(u32) + 742 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 743 if (!ins_data) { 744 ret = -ENOMEM; 745 goto out; 746 } 747 ins_sizes = (u32 *)ins_data; 748 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 749 batch.keys = ins_keys; 750 batch.data_sizes = ins_sizes; 751 list_for_each_entry(curr, &item_list, tree_list) { 752 ins_keys[i].objectid = node->inode_id; 753 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 754 ins_keys[i].offset = curr->index; 755 ins_sizes[i] = curr->data_len; 756 i++; 757 } 758 } 759 760 ret = btrfs_insert_empty_items(trans, root, path, &batch); 761 if (ret) 762 goto out; 763 764 list_for_each_entry(curr, &item_list, tree_list) { 765 char *data_ptr; 766 767 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 768 write_extent_buffer(path->nodes[0], &curr->data, 769 (unsigned long)data_ptr, curr->data_len); 770 path->slots[0]++; 771 } 772 773 /* 774 * Now release our path before releasing the delayed items and their 775 * metadata reservations, so that we don't block other tasks for more 776 * time than needed. 777 */ 778 btrfs_release_path(path); 779 780 ASSERT(node->index_item_leaves > 0); 781 782 /* 783 * For normal operations we will batch an entire leaf's worth of delayed 784 * items, so if there are more items to process we can decrement 785 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 786 * 787 * However for log replay we may not have inserted an entire leaf's 788 * worth of items, we may have not had continuous items, so decrementing 789 * here would mess up the index_item_leaves accounting. For this case 790 * only clean up the accounting when there are no items left. 791 */ 792 if (next && !continuous_keys_only) { 793 /* 794 * We inserted one batch of items into a leaf a there are more 795 * items to flush in a future batch, now release one unit of 796 * metadata space from the delayed block reserve, corresponding 797 * the leaf we just flushed to. 798 */ 799 btrfs_delayed_item_release_leaves(node, 1); 800 node->index_item_leaves--; 801 } else if (!next) { 802 /* 803 * There are no more items to insert. We can have a number of 804 * reserved leaves > 1 here - this happens when many dir index 805 * items are added and then removed before they are flushed (file 806 * names with a very short life, never span a transaction). So 807 * release all remaining leaves. 808 */ 809 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 810 node->index_item_leaves = 0; 811 } 812 813 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 814 list_del(&curr->tree_list); 815 btrfs_release_delayed_item(curr); 816 } 817 out: 818 kfree(ins_data); 819 return ret; 820 } 821 822 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 823 struct btrfs_path *path, 824 struct btrfs_root *root, 825 struct btrfs_delayed_node *node) 826 { 827 int ret = 0; 828 829 while (ret == 0) { 830 struct btrfs_delayed_item *curr; 831 832 mutex_lock(&node->mutex); 833 curr = __btrfs_first_delayed_insertion_item(node); 834 if (!curr) { 835 mutex_unlock(&node->mutex); 836 break; 837 } 838 ret = btrfs_insert_delayed_item(trans, root, path, curr); 839 mutex_unlock(&node->mutex); 840 } 841 842 return ret; 843 } 844 845 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 846 struct btrfs_root *root, 847 struct btrfs_path *path, 848 struct btrfs_delayed_item *item) 849 { 850 const u64 ino = item->delayed_node->inode_id; 851 struct btrfs_fs_info *fs_info = root->fs_info; 852 struct btrfs_delayed_item *curr, *next; 853 struct extent_buffer *leaf = path->nodes[0]; 854 LIST_HEAD(batch_list); 855 int nitems, slot, last_slot; 856 int ret; 857 u64 total_reserved_size = item->bytes_reserved; 858 859 ASSERT(leaf != NULL); 860 861 slot = path->slots[0]; 862 last_slot = btrfs_header_nritems(leaf) - 1; 863 /* 864 * Our caller always gives us a path pointing to an existing item, so 865 * this can not happen. 866 */ 867 ASSERT(slot <= last_slot); 868 if (WARN_ON(slot > last_slot)) 869 return -ENOENT; 870 871 nitems = 1; 872 curr = item; 873 list_add_tail(&curr->tree_list, &batch_list); 874 875 /* 876 * Keep checking if the next delayed item matches the next item in the 877 * leaf - if so, we can add it to the batch of items to delete from the 878 * leaf. 879 */ 880 while (slot < last_slot) { 881 struct btrfs_key key; 882 883 next = __btrfs_next_delayed_item(curr); 884 if (!next) 885 break; 886 887 slot++; 888 btrfs_item_key_to_cpu(leaf, &key, slot); 889 if (key.objectid != ino || 890 key.type != BTRFS_DIR_INDEX_KEY || 891 key.offset != next->index) 892 break; 893 nitems++; 894 curr = next; 895 list_add_tail(&curr->tree_list, &batch_list); 896 total_reserved_size += curr->bytes_reserved; 897 } 898 899 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 900 if (ret) 901 return ret; 902 903 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 904 if (total_reserved_size > 0) { 905 /* 906 * Check btrfs_delayed_item_reserve_metadata() to see why we 907 * don't need to release/reserve qgroup space. 908 */ 909 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 910 total_reserved_size, 0); 911 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 912 total_reserved_size, NULL); 913 } 914 915 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 916 list_del(&curr->tree_list); 917 btrfs_release_delayed_item(curr); 918 } 919 920 return 0; 921 } 922 923 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 924 struct btrfs_path *path, 925 struct btrfs_root *root, 926 struct btrfs_delayed_node *node) 927 { 928 struct btrfs_key key; 929 int ret = 0; 930 931 key.objectid = node->inode_id; 932 key.type = BTRFS_DIR_INDEX_KEY; 933 934 while (ret == 0) { 935 struct btrfs_delayed_item *item; 936 937 mutex_lock(&node->mutex); 938 item = __btrfs_first_delayed_deletion_item(node); 939 if (!item) { 940 mutex_unlock(&node->mutex); 941 break; 942 } 943 944 key.offset = item->index; 945 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 946 if (ret > 0) { 947 /* 948 * There's no matching item in the leaf. This means we 949 * have already deleted this item in a past run of the 950 * delayed items. We ignore errors when running delayed 951 * items from an async context, through a work queue job 952 * running btrfs_async_run_delayed_root(), and don't 953 * release delayed items that failed to complete. This 954 * is because we will retry later, and at transaction 955 * commit time we always run delayed items and will 956 * then deal with errors if they fail to run again. 957 * 958 * So just release delayed items for which we can't find 959 * an item in the tree, and move to the next item. 960 */ 961 btrfs_release_path(path); 962 btrfs_release_delayed_item(item); 963 ret = 0; 964 } else if (ret == 0) { 965 ret = btrfs_batch_delete_items(trans, root, path, item); 966 btrfs_release_path(path); 967 } 968 969 /* 970 * We unlock and relock on each iteration, this is to prevent 971 * blocking other tasks for too long while we are being run from 972 * the async context (work queue job). Those tasks are typically 973 * running system calls like creat/mkdir/rename/unlink/etc which 974 * need to add delayed items to this delayed node. 975 */ 976 mutex_unlock(&node->mutex); 977 } 978 979 return ret; 980 } 981 982 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 983 { 984 struct btrfs_delayed_root *delayed_root; 985 986 if (delayed_node && 987 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 988 ASSERT(delayed_node->root); 989 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 990 delayed_node->count--; 991 992 delayed_root = delayed_node->root->fs_info->delayed_root; 993 finish_one_item(delayed_root); 994 } 995 } 996 997 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 998 { 999 1000 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 1001 struct btrfs_delayed_root *delayed_root; 1002 1003 ASSERT(delayed_node->root); 1004 delayed_node->count--; 1005 1006 delayed_root = delayed_node->root->fs_info->delayed_root; 1007 finish_one_item(delayed_root); 1008 } 1009 } 1010 1011 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1012 struct btrfs_root *root, 1013 struct btrfs_path *path, 1014 struct btrfs_delayed_node *node) 1015 { 1016 struct btrfs_fs_info *fs_info = root->fs_info; 1017 struct btrfs_key key; 1018 struct btrfs_inode_item *inode_item; 1019 struct extent_buffer *leaf; 1020 int mod; 1021 int ret; 1022 1023 key.objectid = node->inode_id; 1024 key.type = BTRFS_INODE_ITEM_KEY; 1025 key.offset = 0; 1026 1027 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1028 mod = -1; 1029 else 1030 mod = 1; 1031 1032 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1033 if (ret > 0) 1034 ret = -ENOENT; 1035 if (ret < 0) 1036 goto out; 1037 1038 leaf = path->nodes[0]; 1039 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1040 struct btrfs_inode_item); 1041 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1042 sizeof(struct btrfs_inode_item)); 1043 btrfs_mark_buffer_dirty(trans, leaf); 1044 1045 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1046 goto out; 1047 1048 /* 1049 * Now we're going to delete the INODE_REF/EXTREF, which should be the 1050 * only one ref left. Check if the next item is an INODE_REF/EXTREF. 1051 * 1052 * But if we're the last item already, release and search for the last 1053 * INODE_REF/EXTREF. 1054 */ 1055 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { 1056 key.objectid = node->inode_id; 1057 key.type = BTRFS_INODE_EXTREF_KEY; 1058 key.offset = (u64)-1; 1059 1060 btrfs_release_path(path); 1061 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1062 if (ret < 0) 1063 goto err_out; 1064 ASSERT(ret > 0); 1065 ASSERT(path->slots[0] > 0); 1066 ret = 0; 1067 path->slots[0]--; 1068 leaf = path->nodes[0]; 1069 } else { 1070 path->slots[0]++; 1071 } 1072 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1073 if (key.objectid != node->inode_id) 1074 goto out; 1075 if (key.type != BTRFS_INODE_REF_KEY && 1076 key.type != BTRFS_INODE_EXTREF_KEY) 1077 goto out; 1078 1079 /* 1080 * Delayed iref deletion is for the inode who has only one link, 1081 * so there is only one iref. The case that several irefs are 1082 * in the same item doesn't exist. 1083 */ 1084 ret = btrfs_del_item(trans, root, path); 1085 out: 1086 btrfs_release_delayed_iref(node); 1087 btrfs_release_path(path); 1088 err_out: 1089 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1090 btrfs_release_delayed_inode(node); 1091 1092 /* 1093 * If we fail to update the delayed inode we need to abort the 1094 * transaction, because we could leave the inode with the improper 1095 * counts behind. 1096 */ 1097 if (ret && ret != -ENOENT) 1098 btrfs_abort_transaction(trans, ret); 1099 1100 return ret; 1101 } 1102 1103 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1104 struct btrfs_root *root, 1105 struct btrfs_path *path, 1106 struct btrfs_delayed_node *node) 1107 { 1108 int ret; 1109 1110 mutex_lock(&node->mutex); 1111 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1112 mutex_unlock(&node->mutex); 1113 return 0; 1114 } 1115 1116 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1117 mutex_unlock(&node->mutex); 1118 return ret; 1119 } 1120 1121 static inline int 1122 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1123 struct btrfs_path *path, 1124 struct btrfs_delayed_node *node) 1125 { 1126 int ret; 1127 1128 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1129 if (ret) 1130 return ret; 1131 1132 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1133 if (ret) 1134 return ret; 1135 1136 ret = btrfs_record_root_in_trans(trans, node->root); 1137 if (ret) 1138 return ret; 1139 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1140 return ret; 1141 } 1142 1143 /* 1144 * Called when committing the transaction. 1145 * Returns 0 on success. 1146 * Returns < 0 on error and returns with an aborted transaction with any 1147 * outstanding delayed items cleaned up. 1148 */ 1149 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1150 { 1151 struct btrfs_fs_info *fs_info = trans->fs_info; 1152 struct btrfs_delayed_root *delayed_root; 1153 struct btrfs_delayed_node *curr_node, *prev_node; 1154 struct btrfs_path *path; 1155 struct btrfs_block_rsv *block_rsv; 1156 int ret = 0; 1157 bool count = (nr > 0); 1158 1159 if (TRANS_ABORTED(trans)) 1160 return -EIO; 1161 1162 path = btrfs_alloc_path(); 1163 if (!path) 1164 return -ENOMEM; 1165 1166 block_rsv = trans->block_rsv; 1167 trans->block_rsv = &fs_info->delayed_block_rsv; 1168 1169 delayed_root = fs_info->delayed_root; 1170 1171 curr_node = btrfs_first_delayed_node(delayed_root); 1172 while (curr_node && (!count || nr--)) { 1173 ret = __btrfs_commit_inode_delayed_items(trans, path, 1174 curr_node); 1175 if (ret) { 1176 btrfs_abort_transaction(trans, ret); 1177 break; 1178 } 1179 1180 prev_node = curr_node; 1181 curr_node = btrfs_next_delayed_node(curr_node); 1182 /* 1183 * See the comment below about releasing path before releasing 1184 * node. If the commit of delayed items was successful the path 1185 * should always be released, but in case of an error, it may 1186 * point to locked extent buffers (a leaf at the very least). 1187 */ 1188 ASSERT(path->nodes[0] == NULL); 1189 btrfs_release_delayed_node(prev_node); 1190 } 1191 1192 /* 1193 * Release the path to avoid a potential deadlock and lockdep splat when 1194 * releasing the delayed node, as that requires taking the delayed node's 1195 * mutex. If another task starts running delayed items before we take 1196 * the mutex, it will first lock the mutex and then it may try to lock 1197 * the same btree path (leaf). 1198 */ 1199 btrfs_free_path(path); 1200 1201 if (curr_node) 1202 btrfs_release_delayed_node(curr_node); 1203 trans->block_rsv = block_rsv; 1204 1205 return ret; 1206 } 1207 1208 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1209 { 1210 return __btrfs_run_delayed_items(trans, -1); 1211 } 1212 1213 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1214 { 1215 return __btrfs_run_delayed_items(trans, nr); 1216 } 1217 1218 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1219 struct btrfs_inode *inode) 1220 { 1221 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1222 struct btrfs_path *path; 1223 struct btrfs_block_rsv *block_rsv; 1224 int ret; 1225 1226 if (!delayed_node) 1227 return 0; 1228 1229 mutex_lock(&delayed_node->mutex); 1230 if (!delayed_node->count) { 1231 mutex_unlock(&delayed_node->mutex); 1232 btrfs_release_delayed_node(delayed_node); 1233 return 0; 1234 } 1235 mutex_unlock(&delayed_node->mutex); 1236 1237 path = btrfs_alloc_path(); 1238 if (!path) { 1239 btrfs_release_delayed_node(delayed_node); 1240 return -ENOMEM; 1241 } 1242 1243 block_rsv = trans->block_rsv; 1244 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1245 1246 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1247 1248 btrfs_release_delayed_node(delayed_node); 1249 btrfs_free_path(path); 1250 trans->block_rsv = block_rsv; 1251 1252 return ret; 1253 } 1254 1255 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1256 { 1257 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1258 struct btrfs_trans_handle *trans; 1259 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1260 struct btrfs_path *path; 1261 struct btrfs_block_rsv *block_rsv; 1262 int ret; 1263 1264 if (!delayed_node) 1265 return 0; 1266 1267 mutex_lock(&delayed_node->mutex); 1268 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1269 mutex_unlock(&delayed_node->mutex); 1270 btrfs_release_delayed_node(delayed_node); 1271 return 0; 1272 } 1273 mutex_unlock(&delayed_node->mutex); 1274 1275 trans = btrfs_join_transaction(delayed_node->root); 1276 if (IS_ERR(trans)) { 1277 ret = PTR_ERR(trans); 1278 goto out; 1279 } 1280 1281 path = btrfs_alloc_path(); 1282 if (!path) { 1283 ret = -ENOMEM; 1284 goto trans_out; 1285 } 1286 1287 block_rsv = trans->block_rsv; 1288 trans->block_rsv = &fs_info->delayed_block_rsv; 1289 1290 mutex_lock(&delayed_node->mutex); 1291 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1292 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1293 path, delayed_node); 1294 else 1295 ret = 0; 1296 mutex_unlock(&delayed_node->mutex); 1297 1298 btrfs_free_path(path); 1299 trans->block_rsv = block_rsv; 1300 trans_out: 1301 btrfs_end_transaction(trans); 1302 btrfs_btree_balance_dirty(fs_info); 1303 out: 1304 btrfs_release_delayed_node(delayed_node); 1305 1306 return ret; 1307 } 1308 1309 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1310 { 1311 struct btrfs_delayed_node *delayed_node; 1312 1313 delayed_node = READ_ONCE(inode->delayed_node); 1314 if (!delayed_node) 1315 return; 1316 1317 inode->delayed_node = NULL; 1318 btrfs_release_delayed_node(delayed_node); 1319 } 1320 1321 struct btrfs_async_delayed_work { 1322 struct btrfs_delayed_root *delayed_root; 1323 int nr; 1324 struct btrfs_work work; 1325 }; 1326 1327 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1328 { 1329 struct btrfs_async_delayed_work *async_work; 1330 struct btrfs_delayed_root *delayed_root; 1331 struct btrfs_trans_handle *trans; 1332 struct btrfs_path *path; 1333 struct btrfs_delayed_node *delayed_node = NULL; 1334 struct btrfs_root *root; 1335 struct btrfs_block_rsv *block_rsv; 1336 int total_done = 0; 1337 1338 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1339 delayed_root = async_work->delayed_root; 1340 1341 path = btrfs_alloc_path(); 1342 if (!path) 1343 goto out; 1344 1345 do { 1346 if (atomic_read(&delayed_root->items) < 1347 BTRFS_DELAYED_BACKGROUND / 2) 1348 break; 1349 1350 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1351 if (!delayed_node) 1352 break; 1353 1354 root = delayed_node->root; 1355 1356 trans = btrfs_join_transaction(root); 1357 if (IS_ERR(trans)) { 1358 btrfs_release_path(path); 1359 btrfs_release_prepared_delayed_node(delayed_node); 1360 total_done++; 1361 continue; 1362 } 1363 1364 block_rsv = trans->block_rsv; 1365 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1366 1367 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1368 1369 trans->block_rsv = block_rsv; 1370 btrfs_end_transaction(trans); 1371 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1372 1373 btrfs_release_path(path); 1374 btrfs_release_prepared_delayed_node(delayed_node); 1375 total_done++; 1376 1377 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1378 || total_done < async_work->nr); 1379 1380 btrfs_free_path(path); 1381 out: 1382 wake_up(&delayed_root->wait); 1383 kfree(async_work); 1384 } 1385 1386 1387 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1388 struct btrfs_fs_info *fs_info, int nr) 1389 { 1390 struct btrfs_async_delayed_work *async_work; 1391 1392 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1393 if (!async_work) 1394 return -ENOMEM; 1395 1396 async_work->delayed_root = delayed_root; 1397 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); 1398 async_work->nr = nr; 1399 1400 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1401 return 0; 1402 } 1403 1404 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1405 { 1406 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1407 } 1408 1409 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1410 { 1411 int val = atomic_read(&delayed_root->items_seq); 1412 1413 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1414 return 1; 1415 1416 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1417 return 1; 1418 1419 return 0; 1420 } 1421 1422 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1423 { 1424 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1425 1426 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1427 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1428 return; 1429 1430 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1431 int seq; 1432 int ret; 1433 1434 seq = atomic_read(&delayed_root->items_seq); 1435 1436 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1437 if (ret) 1438 return; 1439 1440 wait_event_interruptible(delayed_root->wait, 1441 could_end_wait(delayed_root, seq)); 1442 return; 1443 } 1444 1445 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1446 } 1447 1448 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1449 { 1450 struct btrfs_fs_info *fs_info = trans->fs_info; 1451 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1452 1453 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1454 return; 1455 1456 /* 1457 * Adding the new dir index item does not require touching another 1458 * leaf, so we can release 1 unit of metadata that was previously 1459 * reserved when starting the transaction. This applies only to 1460 * the case where we had a transaction start and excludes the 1461 * transaction join case (when replaying log trees). 1462 */ 1463 trace_btrfs_space_reservation(fs_info, "transaction", 1464 trans->transid, bytes, 0); 1465 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1466 ASSERT(trans->bytes_reserved >= bytes); 1467 trans->bytes_reserved -= bytes; 1468 } 1469 1470 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1471 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1472 const char *name, int name_len, 1473 struct btrfs_inode *dir, 1474 struct btrfs_disk_key *disk_key, u8 flags, 1475 u64 index) 1476 { 1477 struct btrfs_fs_info *fs_info = trans->fs_info; 1478 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1479 struct btrfs_delayed_node *delayed_node; 1480 struct btrfs_delayed_item *delayed_item; 1481 struct btrfs_dir_item *dir_item; 1482 bool reserve_leaf_space; 1483 u32 data_len; 1484 int ret; 1485 1486 delayed_node = btrfs_get_or_create_delayed_node(dir); 1487 if (IS_ERR(delayed_node)) 1488 return PTR_ERR(delayed_node); 1489 1490 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1491 delayed_node, 1492 BTRFS_DELAYED_INSERTION_ITEM); 1493 if (!delayed_item) { 1494 ret = -ENOMEM; 1495 goto release_node; 1496 } 1497 1498 delayed_item->index = index; 1499 1500 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1501 dir_item->location = *disk_key; 1502 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1503 btrfs_set_stack_dir_data_len(dir_item, 0); 1504 btrfs_set_stack_dir_name_len(dir_item, name_len); 1505 btrfs_set_stack_dir_flags(dir_item, flags); 1506 memcpy((char *)(dir_item + 1), name, name_len); 1507 1508 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1509 1510 mutex_lock(&delayed_node->mutex); 1511 1512 /* 1513 * First attempt to insert the delayed item. This is to make the error 1514 * handling path simpler in case we fail (-EEXIST). There's no risk of 1515 * any other task coming in and running the delayed item before we do 1516 * the metadata space reservation below, because we are holding the 1517 * delayed node's mutex and that mutex must also be locked before the 1518 * node's delayed items can be run. 1519 */ 1520 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1521 if (unlikely(ret)) { 1522 btrfs_err(trans->fs_info, 1523 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1524 name_len, name, index, btrfs_root_id(delayed_node->root), 1525 delayed_node->inode_id, dir->index_cnt, 1526 delayed_node->index_cnt, ret); 1527 btrfs_release_delayed_item(delayed_item); 1528 btrfs_release_dir_index_item_space(trans); 1529 mutex_unlock(&delayed_node->mutex); 1530 goto release_node; 1531 } 1532 1533 if (delayed_node->index_item_leaves == 0 || 1534 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1535 delayed_node->curr_index_batch_size = data_len; 1536 reserve_leaf_space = true; 1537 } else { 1538 delayed_node->curr_index_batch_size += data_len; 1539 reserve_leaf_space = false; 1540 } 1541 1542 if (reserve_leaf_space) { 1543 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1544 /* 1545 * Space was reserved for a dir index item insertion when we 1546 * started the transaction, so getting a failure here should be 1547 * impossible. 1548 */ 1549 if (WARN_ON(ret)) { 1550 btrfs_release_delayed_item(delayed_item); 1551 mutex_unlock(&delayed_node->mutex); 1552 goto release_node; 1553 } 1554 1555 delayed_node->index_item_leaves++; 1556 } else { 1557 btrfs_release_dir_index_item_space(trans); 1558 } 1559 mutex_unlock(&delayed_node->mutex); 1560 1561 release_node: 1562 btrfs_release_delayed_node(delayed_node); 1563 return ret; 1564 } 1565 1566 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1567 struct btrfs_delayed_node *node, 1568 u64 index) 1569 { 1570 struct btrfs_delayed_item *item; 1571 1572 mutex_lock(&node->mutex); 1573 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1574 if (!item) { 1575 mutex_unlock(&node->mutex); 1576 return 1; 1577 } 1578 1579 /* 1580 * For delayed items to insert, we track reserved metadata bytes based 1581 * on the number of leaves that we will use. 1582 * See btrfs_insert_delayed_dir_index() and 1583 * btrfs_delayed_item_reserve_metadata()). 1584 */ 1585 ASSERT(item->bytes_reserved == 0); 1586 ASSERT(node->index_item_leaves > 0); 1587 1588 /* 1589 * If there's only one leaf reserved, we can decrement this item from the 1590 * current batch, otherwise we can not because we don't know which leaf 1591 * it belongs to. With the current limit on delayed items, we rarely 1592 * accumulate enough dir index items to fill more than one leaf (even 1593 * when using a leaf size of 4K). 1594 */ 1595 if (node->index_item_leaves == 1) { 1596 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1597 1598 ASSERT(node->curr_index_batch_size >= data_len); 1599 node->curr_index_batch_size -= data_len; 1600 } 1601 1602 btrfs_release_delayed_item(item); 1603 1604 /* If we now have no more dir index items, we can release all leaves. */ 1605 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1606 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1607 node->index_item_leaves = 0; 1608 } 1609 1610 mutex_unlock(&node->mutex); 1611 return 0; 1612 } 1613 1614 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1615 struct btrfs_inode *dir, u64 index) 1616 { 1617 struct btrfs_delayed_node *node; 1618 struct btrfs_delayed_item *item; 1619 int ret; 1620 1621 node = btrfs_get_or_create_delayed_node(dir); 1622 if (IS_ERR(node)) 1623 return PTR_ERR(node); 1624 1625 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index); 1626 if (!ret) 1627 goto end; 1628 1629 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1630 if (!item) { 1631 ret = -ENOMEM; 1632 goto end; 1633 } 1634 1635 item->index = index; 1636 1637 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1638 /* 1639 * we have reserved enough space when we start a new transaction, 1640 * so reserving metadata failure is impossible. 1641 */ 1642 if (ret < 0) { 1643 btrfs_err(trans->fs_info, 1644 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1645 btrfs_release_delayed_item(item); 1646 goto end; 1647 } 1648 1649 mutex_lock(&node->mutex); 1650 ret = __btrfs_add_delayed_item(node, item); 1651 if (unlikely(ret)) { 1652 btrfs_err(trans->fs_info, 1653 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1654 index, node->root->root_key.objectid, 1655 node->inode_id, ret); 1656 btrfs_delayed_item_release_metadata(dir->root, item); 1657 btrfs_release_delayed_item(item); 1658 } 1659 mutex_unlock(&node->mutex); 1660 end: 1661 btrfs_release_delayed_node(node); 1662 return ret; 1663 } 1664 1665 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1666 { 1667 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1668 1669 if (!delayed_node) 1670 return -ENOENT; 1671 1672 /* 1673 * Since we have held i_mutex of this directory, it is impossible that 1674 * a new directory index is added into the delayed node and index_cnt 1675 * is updated now. So we needn't lock the delayed node. 1676 */ 1677 if (!delayed_node->index_cnt) { 1678 btrfs_release_delayed_node(delayed_node); 1679 return -EINVAL; 1680 } 1681 1682 inode->index_cnt = delayed_node->index_cnt; 1683 btrfs_release_delayed_node(delayed_node); 1684 return 0; 1685 } 1686 1687 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1688 u64 last_index, 1689 struct list_head *ins_list, 1690 struct list_head *del_list) 1691 { 1692 struct btrfs_delayed_node *delayed_node; 1693 struct btrfs_delayed_item *item; 1694 1695 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1696 if (!delayed_node) 1697 return false; 1698 1699 /* 1700 * We can only do one readdir with delayed items at a time because of 1701 * item->readdir_list. 1702 */ 1703 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 1704 btrfs_inode_lock(BTRFS_I(inode), 0); 1705 1706 mutex_lock(&delayed_node->mutex); 1707 item = __btrfs_first_delayed_insertion_item(delayed_node); 1708 while (item && item->index <= last_index) { 1709 refcount_inc(&item->refs); 1710 list_add_tail(&item->readdir_list, ins_list); 1711 item = __btrfs_next_delayed_item(item); 1712 } 1713 1714 item = __btrfs_first_delayed_deletion_item(delayed_node); 1715 while (item && item->index <= last_index) { 1716 refcount_inc(&item->refs); 1717 list_add_tail(&item->readdir_list, del_list); 1718 item = __btrfs_next_delayed_item(item); 1719 } 1720 mutex_unlock(&delayed_node->mutex); 1721 /* 1722 * This delayed node is still cached in the btrfs inode, so refs 1723 * must be > 1 now, and we needn't check it is going to be freed 1724 * or not. 1725 * 1726 * Besides that, this function is used to read dir, we do not 1727 * insert/delete delayed items in this period. So we also needn't 1728 * requeue or dequeue this delayed node. 1729 */ 1730 refcount_dec(&delayed_node->refs); 1731 1732 return true; 1733 } 1734 1735 void btrfs_readdir_put_delayed_items(struct inode *inode, 1736 struct list_head *ins_list, 1737 struct list_head *del_list) 1738 { 1739 struct btrfs_delayed_item *curr, *next; 1740 1741 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1742 list_del(&curr->readdir_list); 1743 if (refcount_dec_and_test(&curr->refs)) 1744 kfree(curr); 1745 } 1746 1747 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1748 list_del(&curr->readdir_list); 1749 if (refcount_dec_and_test(&curr->refs)) 1750 kfree(curr); 1751 } 1752 1753 /* 1754 * The VFS is going to do up_read(), so we need to downgrade back to a 1755 * read lock. 1756 */ 1757 downgrade_write(&inode->i_rwsem); 1758 } 1759 1760 int btrfs_should_delete_dir_index(struct list_head *del_list, 1761 u64 index) 1762 { 1763 struct btrfs_delayed_item *curr; 1764 int ret = 0; 1765 1766 list_for_each_entry(curr, del_list, readdir_list) { 1767 if (curr->index > index) 1768 break; 1769 if (curr->index == index) { 1770 ret = 1; 1771 break; 1772 } 1773 } 1774 return ret; 1775 } 1776 1777 /* 1778 * Read dir info stored in the delayed tree. 1779 */ 1780 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1781 struct list_head *ins_list) 1782 { 1783 struct btrfs_dir_item *di; 1784 struct btrfs_delayed_item *curr, *next; 1785 struct btrfs_key location; 1786 char *name; 1787 int name_len; 1788 int over = 0; 1789 unsigned char d_type; 1790 1791 /* 1792 * Changing the data of the delayed item is impossible. So 1793 * we needn't lock them. And we have held i_mutex of the 1794 * directory, nobody can delete any directory indexes now. 1795 */ 1796 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1797 list_del(&curr->readdir_list); 1798 1799 if (curr->index < ctx->pos) { 1800 if (refcount_dec_and_test(&curr->refs)) 1801 kfree(curr); 1802 continue; 1803 } 1804 1805 ctx->pos = curr->index; 1806 1807 di = (struct btrfs_dir_item *)curr->data; 1808 name = (char *)(di + 1); 1809 name_len = btrfs_stack_dir_name_len(di); 1810 1811 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1812 btrfs_disk_key_to_cpu(&location, &di->location); 1813 1814 over = !dir_emit(ctx, name, name_len, 1815 location.objectid, d_type); 1816 1817 if (refcount_dec_and_test(&curr->refs)) 1818 kfree(curr); 1819 1820 if (over) 1821 return 1; 1822 ctx->pos++; 1823 } 1824 return 0; 1825 } 1826 1827 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1828 struct btrfs_inode_item *inode_item, 1829 struct inode *inode) 1830 { 1831 u64 flags; 1832 1833 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1834 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1835 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1836 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1837 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1838 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1839 btrfs_set_stack_inode_generation(inode_item, 1840 BTRFS_I(inode)->generation); 1841 btrfs_set_stack_inode_sequence(inode_item, 1842 inode_peek_iversion(inode)); 1843 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1844 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1845 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 1846 BTRFS_I(inode)->ro_flags); 1847 btrfs_set_stack_inode_flags(inode_item, flags); 1848 btrfs_set_stack_inode_block_group(inode_item, 0); 1849 1850 btrfs_set_stack_timespec_sec(&inode_item->atime, 1851 inode_get_atime_sec(inode)); 1852 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1853 inode_get_atime_nsec(inode)); 1854 1855 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1856 inode_get_mtime_sec(inode)); 1857 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1858 inode_get_mtime_nsec(inode)); 1859 1860 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1861 inode_get_ctime_sec(inode)); 1862 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1863 inode_get_ctime_nsec(inode)); 1864 1865 btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec); 1866 btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec); 1867 } 1868 1869 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1870 { 1871 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1872 struct btrfs_delayed_node *delayed_node; 1873 struct btrfs_inode_item *inode_item; 1874 1875 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1876 if (!delayed_node) 1877 return -ENOENT; 1878 1879 mutex_lock(&delayed_node->mutex); 1880 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1881 mutex_unlock(&delayed_node->mutex); 1882 btrfs_release_delayed_node(delayed_node); 1883 return -ENOENT; 1884 } 1885 1886 inode_item = &delayed_node->inode_item; 1887 1888 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1889 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1890 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1891 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1892 round_up(i_size_read(inode), fs_info->sectorsize)); 1893 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1894 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1895 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1896 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1897 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1898 1899 inode_set_iversion_queried(inode, 1900 btrfs_stack_inode_sequence(inode_item)); 1901 inode->i_rdev = 0; 1902 *rdev = btrfs_stack_inode_rdev(inode_item); 1903 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1904 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 1905 1906 inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime), 1907 btrfs_stack_timespec_nsec(&inode_item->atime)); 1908 1909 inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime), 1910 btrfs_stack_timespec_nsec(&inode_item->mtime)); 1911 1912 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1913 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1914 1915 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); 1916 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); 1917 1918 inode->i_generation = BTRFS_I(inode)->generation; 1919 BTRFS_I(inode)->index_cnt = (u64)-1; 1920 1921 mutex_unlock(&delayed_node->mutex); 1922 btrfs_release_delayed_node(delayed_node); 1923 return 0; 1924 } 1925 1926 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1927 struct btrfs_inode *inode) 1928 { 1929 struct btrfs_root *root = inode->root; 1930 struct btrfs_delayed_node *delayed_node; 1931 int ret = 0; 1932 1933 delayed_node = btrfs_get_or_create_delayed_node(inode); 1934 if (IS_ERR(delayed_node)) 1935 return PTR_ERR(delayed_node); 1936 1937 mutex_lock(&delayed_node->mutex); 1938 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1939 fill_stack_inode_item(trans, &delayed_node->inode_item, 1940 &inode->vfs_inode); 1941 goto release_node; 1942 } 1943 1944 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1945 if (ret) 1946 goto release_node; 1947 1948 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1949 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1950 delayed_node->count++; 1951 atomic_inc(&root->fs_info->delayed_root->items); 1952 release_node: 1953 mutex_unlock(&delayed_node->mutex); 1954 btrfs_release_delayed_node(delayed_node); 1955 return ret; 1956 } 1957 1958 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1959 { 1960 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1961 struct btrfs_delayed_node *delayed_node; 1962 1963 /* 1964 * we don't do delayed inode updates during log recovery because it 1965 * leads to enospc problems. This means we also can't do 1966 * delayed inode refs 1967 */ 1968 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1969 return -EAGAIN; 1970 1971 delayed_node = btrfs_get_or_create_delayed_node(inode); 1972 if (IS_ERR(delayed_node)) 1973 return PTR_ERR(delayed_node); 1974 1975 /* 1976 * We don't reserve space for inode ref deletion is because: 1977 * - We ONLY do async inode ref deletion for the inode who has only 1978 * one link(i_nlink == 1), it means there is only one inode ref. 1979 * And in most case, the inode ref and the inode item are in the 1980 * same leaf, and we will deal with them at the same time. 1981 * Since we are sure we will reserve the space for the inode item, 1982 * it is unnecessary to reserve space for inode ref deletion. 1983 * - If the inode ref and the inode item are not in the same leaf, 1984 * We also needn't worry about enospc problem, because we reserve 1985 * much more space for the inode update than it needs. 1986 * - At the worst, we can steal some space from the global reservation. 1987 * It is very rare. 1988 */ 1989 mutex_lock(&delayed_node->mutex); 1990 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1991 goto release_node; 1992 1993 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1994 delayed_node->count++; 1995 atomic_inc(&fs_info->delayed_root->items); 1996 release_node: 1997 mutex_unlock(&delayed_node->mutex); 1998 btrfs_release_delayed_node(delayed_node); 1999 return 0; 2000 } 2001 2002 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 2003 { 2004 struct btrfs_root *root = delayed_node->root; 2005 struct btrfs_fs_info *fs_info = root->fs_info; 2006 struct btrfs_delayed_item *curr_item, *prev_item; 2007 2008 mutex_lock(&delayed_node->mutex); 2009 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 2010 while (curr_item) { 2011 prev_item = curr_item; 2012 curr_item = __btrfs_next_delayed_item(prev_item); 2013 btrfs_release_delayed_item(prev_item); 2014 } 2015 2016 if (delayed_node->index_item_leaves > 0) { 2017 btrfs_delayed_item_release_leaves(delayed_node, 2018 delayed_node->index_item_leaves); 2019 delayed_node->index_item_leaves = 0; 2020 } 2021 2022 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2023 while (curr_item) { 2024 btrfs_delayed_item_release_metadata(root, curr_item); 2025 prev_item = curr_item; 2026 curr_item = __btrfs_next_delayed_item(prev_item); 2027 btrfs_release_delayed_item(prev_item); 2028 } 2029 2030 btrfs_release_delayed_iref(delayed_node); 2031 2032 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2033 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2034 btrfs_release_delayed_inode(delayed_node); 2035 } 2036 mutex_unlock(&delayed_node->mutex); 2037 } 2038 2039 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2040 { 2041 struct btrfs_delayed_node *delayed_node; 2042 2043 delayed_node = btrfs_get_delayed_node(inode); 2044 if (!delayed_node) 2045 return; 2046 2047 __btrfs_kill_delayed_node(delayed_node); 2048 btrfs_release_delayed_node(delayed_node); 2049 } 2050 2051 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2052 { 2053 unsigned long index = 0; 2054 struct btrfs_delayed_node *delayed_nodes[8]; 2055 2056 while (1) { 2057 struct btrfs_delayed_node *node; 2058 int count; 2059 2060 spin_lock(&root->inode_lock); 2061 if (xa_empty(&root->delayed_nodes)) { 2062 spin_unlock(&root->inode_lock); 2063 return; 2064 } 2065 2066 count = 0; 2067 xa_for_each_start(&root->delayed_nodes, index, node, index) { 2068 /* 2069 * Don't increase refs in case the node is dead and 2070 * about to be removed from the tree in the loop below 2071 */ 2072 if (refcount_inc_not_zero(&node->refs)) { 2073 delayed_nodes[count] = node; 2074 count++; 2075 } 2076 if (count >= ARRAY_SIZE(delayed_nodes)) 2077 break; 2078 } 2079 spin_unlock(&root->inode_lock); 2080 index++; 2081 2082 for (int i = 0; i < count; i++) { 2083 __btrfs_kill_delayed_node(delayed_nodes[i]); 2084 btrfs_release_delayed_node(delayed_nodes[i]); 2085 } 2086 } 2087 } 2088 2089 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2090 { 2091 struct btrfs_delayed_node *curr_node, *prev_node; 2092 2093 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 2094 while (curr_node) { 2095 __btrfs_kill_delayed_node(curr_node); 2096 2097 prev_node = curr_node; 2098 curr_node = btrfs_next_delayed_node(curr_node); 2099 btrfs_release_delayed_node(prev_node); 2100 } 2101 } 2102 2103 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2104 struct list_head *ins_list, 2105 struct list_head *del_list) 2106 { 2107 struct btrfs_delayed_node *node; 2108 struct btrfs_delayed_item *item; 2109 2110 node = btrfs_get_delayed_node(inode); 2111 if (!node) 2112 return; 2113 2114 mutex_lock(&node->mutex); 2115 item = __btrfs_first_delayed_insertion_item(node); 2116 while (item) { 2117 /* 2118 * It's possible that the item is already in a log list. This 2119 * can happen in case two tasks are trying to log the same 2120 * directory. For example if we have tasks A and task B: 2121 * 2122 * Task A collected the delayed items into a log list while 2123 * under the inode's log_mutex (at btrfs_log_inode()), but it 2124 * only releases the items after logging the inodes they point 2125 * to (if they are new inodes), which happens after unlocking 2126 * the log mutex; 2127 * 2128 * Task B enters btrfs_log_inode() and acquires the log_mutex 2129 * of the same directory inode, before task B releases the 2130 * delayed items. This can happen for example when logging some 2131 * inode we need to trigger logging of its parent directory, so 2132 * logging two files that have the same parent directory can 2133 * lead to this. 2134 * 2135 * If this happens, just ignore delayed items already in a log 2136 * list. All the tasks logging the directory are under a log 2137 * transaction and whichever finishes first can not sync the log 2138 * before the other completes and leaves the log transaction. 2139 */ 2140 if (!item->logged && list_empty(&item->log_list)) { 2141 refcount_inc(&item->refs); 2142 list_add_tail(&item->log_list, ins_list); 2143 } 2144 item = __btrfs_next_delayed_item(item); 2145 } 2146 2147 item = __btrfs_first_delayed_deletion_item(node); 2148 while (item) { 2149 /* It may be non-empty, for the same reason mentioned above. */ 2150 if (!item->logged && list_empty(&item->log_list)) { 2151 refcount_inc(&item->refs); 2152 list_add_tail(&item->log_list, del_list); 2153 } 2154 item = __btrfs_next_delayed_item(item); 2155 } 2156 mutex_unlock(&node->mutex); 2157 2158 /* 2159 * We are called during inode logging, which means the inode is in use 2160 * and can not be evicted before we finish logging the inode. So we never 2161 * have the last reference on the delayed inode. 2162 * Also, we don't use btrfs_release_delayed_node() because that would 2163 * requeue the delayed inode (change its order in the list of prepared 2164 * nodes) and we don't want to do such change because we don't create or 2165 * delete delayed items. 2166 */ 2167 ASSERT(refcount_read(&node->refs) > 1); 2168 refcount_dec(&node->refs); 2169 } 2170 2171 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2172 struct list_head *ins_list, 2173 struct list_head *del_list) 2174 { 2175 struct btrfs_delayed_node *node; 2176 struct btrfs_delayed_item *item; 2177 struct btrfs_delayed_item *next; 2178 2179 node = btrfs_get_delayed_node(inode); 2180 if (!node) 2181 return; 2182 2183 mutex_lock(&node->mutex); 2184 2185 list_for_each_entry_safe(item, next, ins_list, log_list) { 2186 item->logged = true; 2187 list_del_init(&item->log_list); 2188 if (refcount_dec_and_test(&item->refs)) 2189 kfree(item); 2190 } 2191 2192 list_for_each_entry_safe(item, next, del_list, log_list) { 2193 item->logged = true; 2194 list_del_init(&item->log_list); 2195 if (refcount_dec_and_test(&item->refs)) 2196 kfree(item); 2197 } 2198 2199 mutex_unlock(&node->mutex); 2200 2201 /* 2202 * We are called during inode logging, which means the inode is in use 2203 * and can not be evicted before we finish logging the inode. So we never 2204 * have the last reference on the delayed inode. 2205 * Also, we don't use btrfs_release_delayed_node() because that would 2206 * requeue the delayed inode (change its order in the list of prepared 2207 * nodes) and we don't want to do such change because we don't create or 2208 * delete delayed items. 2209 */ 2210 ASSERT(refcount_read(&node->refs) > 1); 2211 refcount_dec(&node->refs); 2212 } 2213