1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0); 32 if (!delayed_node_cache) 33 return -ENOMEM; 34 return 0; 35 } 36 37 void __cold btrfs_delayed_inode_exit(void) 38 { 39 kmem_cache_destroy(delayed_node_cache); 40 } 41 42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root) 43 { 44 atomic_set(&delayed_root->items, 0); 45 atomic_set(&delayed_root->items_seq, 0); 46 delayed_root->nodes = 0; 47 spin_lock_init(&delayed_root->lock); 48 init_waitqueue_head(&delayed_root->wait); 49 INIT_LIST_HEAD(&delayed_root->node_list); 50 INIT_LIST_HEAD(&delayed_root->prepare_list); 51 } 52 53 static inline void btrfs_init_delayed_node( 54 struct btrfs_delayed_node *delayed_node, 55 struct btrfs_root *root, u64 inode_id) 56 { 57 delayed_node->root = root; 58 delayed_node->inode_id = inode_id; 59 refcount_set(&delayed_node->refs, 0); 60 btrfs_delayed_node_ref_tracker_dir_init(delayed_node); 61 delayed_node->ins_root = RB_ROOT_CACHED; 62 delayed_node->del_root = RB_ROOT_CACHED; 63 mutex_init(&delayed_node->mutex); 64 INIT_LIST_HEAD(&delayed_node->n_list); 65 INIT_LIST_HEAD(&delayed_node->p_list); 66 } 67 68 static struct btrfs_delayed_node *btrfs_get_delayed_node( 69 struct btrfs_inode *btrfs_inode, 70 struct btrfs_ref_tracker *tracker) 71 { 72 struct btrfs_root *root = btrfs_inode->root; 73 u64 ino = btrfs_ino(btrfs_inode); 74 struct btrfs_delayed_node *node; 75 76 node = READ_ONCE(btrfs_inode->delayed_node); 77 if (node) { 78 refcount_inc(&node->refs); 79 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS); 80 return node; 81 } 82 83 xa_lock(&root->delayed_nodes); 84 node = xa_load(&root->delayed_nodes, ino); 85 86 if (node) { 87 if (btrfs_inode->delayed_node) { 88 refcount_inc(&node->refs); /* can be accessed */ 89 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 90 BUG_ON(btrfs_inode->delayed_node != node); 91 xa_unlock(&root->delayed_nodes); 92 return node; 93 } 94 95 /* 96 * It's possible that we're racing into the middle of removing 97 * this node from the xarray. In this case, the refcount 98 * was zero and it should never go back to one. Just return 99 * NULL like it was never in the xarray at all; our release 100 * function is in the process of removing it. 101 * 102 * Some implementations of refcount_inc refuse to bump the 103 * refcount once it has hit zero. If we don't do this dance 104 * here, refcount_inc() may decide to just WARN_ONCE() instead 105 * of actually bumping the refcount. 106 * 107 * If this node is properly in the xarray, we want to bump the 108 * refcount twice, once for the inode and once for this get 109 * operation. 110 */ 111 if (refcount_inc_not_zero(&node->refs)) { 112 refcount_inc(&node->refs); 113 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 114 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, 115 GFP_ATOMIC); 116 btrfs_inode->delayed_node = node; 117 } else { 118 node = NULL; 119 } 120 121 xa_unlock(&root->delayed_nodes); 122 return node; 123 } 124 xa_unlock(&root->delayed_nodes); 125 126 return NULL; 127 } 128 129 /* 130 * Look up an existing delayed node associated with @btrfs_inode or create a new 131 * one and insert it to the delayed nodes of the root. 132 * 133 * Return the delayed node, or error pointer on failure. 134 */ 135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 136 struct btrfs_inode *btrfs_inode, 137 struct btrfs_ref_tracker *tracker) 138 { 139 struct btrfs_delayed_node *node; 140 struct btrfs_root *root = btrfs_inode->root; 141 u64 ino = btrfs_ino(btrfs_inode); 142 int ret; 143 void *ptr; 144 145 again: 146 node = btrfs_get_delayed_node(btrfs_inode, tracker); 147 if (node) 148 return node; 149 150 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 151 if (!node) 152 return ERR_PTR(-ENOMEM); 153 btrfs_init_delayed_node(node, root, ino); 154 155 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ 156 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); 157 if (ret == -ENOMEM) { 158 btrfs_delayed_node_ref_tracker_dir_exit(node); 159 kmem_cache_free(delayed_node_cache, node); 160 return ERR_PTR(-ENOMEM); 161 } 162 xa_lock(&root->delayed_nodes); 163 ptr = xa_load(&root->delayed_nodes, ino); 164 if (ptr) { 165 /* Somebody inserted it, go back and read it. */ 166 xa_unlock(&root->delayed_nodes); 167 btrfs_delayed_node_ref_tracker_dir_exit(node); 168 kmem_cache_free(delayed_node_cache, node); 169 node = NULL; 170 goto again; 171 } 172 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); 173 ASSERT(xa_err(ptr) != -EINVAL); 174 ASSERT(xa_err(ptr) != -ENOMEM); 175 ASSERT(ptr == NULL); 176 177 /* Cached in the inode and can be accessed. */ 178 refcount_set(&node->refs, 2); 179 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 180 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_ATOMIC); 181 182 btrfs_inode->delayed_node = node; 183 xa_unlock(&root->delayed_nodes); 184 185 return node; 186 } 187 188 /* 189 * Call it when holding delayed_node->mutex 190 * 191 * If mod = 1, add this node into the prepared list. 192 */ 193 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 194 struct btrfs_delayed_node *node, 195 int mod) 196 { 197 spin_lock(&root->lock); 198 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 199 if (!list_empty(&node->p_list)) 200 list_move_tail(&node->p_list, &root->prepare_list); 201 else if (mod) 202 list_add_tail(&node->p_list, &root->prepare_list); 203 } else { 204 list_add_tail(&node->n_list, &root->node_list); 205 list_add_tail(&node->p_list, &root->prepare_list); 206 refcount_inc(&node->refs); /* inserted into list */ 207 btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker, 208 GFP_ATOMIC); 209 root->nodes++; 210 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 211 } 212 spin_unlock(&root->lock); 213 } 214 215 /* Call it when holding delayed_node->mutex */ 216 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 217 struct btrfs_delayed_node *node) 218 { 219 spin_lock(&root->lock); 220 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 221 root->nodes--; 222 btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker); 223 refcount_dec(&node->refs); /* not in the list */ 224 list_del_init(&node->n_list); 225 if (!list_empty(&node->p_list)) 226 list_del_init(&node->p_list); 227 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 228 } 229 spin_unlock(&root->lock); 230 } 231 232 static struct btrfs_delayed_node *btrfs_first_delayed_node( 233 struct btrfs_delayed_root *delayed_root, 234 struct btrfs_ref_tracker *tracker) 235 { 236 struct btrfs_delayed_node *node; 237 238 spin_lock(&delayed_root->lock); 239 node = list_first_entry_or_null(&delayed_root->node_list, 240 struct btrfs_delayed_node, n_list); 241 if (node) { 242 refcount_inc(&node->refs); 243 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 244 } 245 spin_unlock(&delayed_root->lock); 246 247 return node; 248 } 249 250 static struct btrfs_delayed_node *btrfs_next_delayed_node( 251 struct btrfs_delayed_node *node, 252 struct btrfs_ref_tracker *tracker) 253 { 254 struct btrfs_delayed_root *delayed_root; 255 struct list_head *p; 256 struct btrfs_delayed_node *next = NULL; 257 258 delayed_root = node->root->fs_info->delayed_root; 259 spin_lock(&delayed_root->lock); 260 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 261 /* not in the list */ 262 if (list_empty(&delayed_root->node_list)) 263 goto out; 264 p = delayed_root->node_list.next; 265 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 266 goto out; 267 else 268 p = node->n_list.next; 269 270 next = list_entry(p, struct btrfs_delayed_node, n_list); 271 refcount_inc(&next->refs); 272 btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC); 273 out: 274 spin_unlock(&delayed_root->lock); 275 276 return next; 277 } 278 279 static void __btrfs_release_delayed_node( 280 struct btrfs_delayed_node *delayed_node, 281 int mod, struct btrfs_ref_tracker *tracker) 282 { 283 struct btrfs_delayed_root *delayed_root; 284 285 if (!delayed_node) 286 return; 287 288 delayed_root = delayed_node->root->fs_info->delayed_root; 289 290 mutex_lock(&delayed_node->mutex); 291 if (delayed_node->count) 292 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 293 else 294 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 295 mutex_unlock(&delayed_node->mutex); 296 297 btrfs_delayed_node_ref_tracker_free(delayed_node, tracker); 298 if (refcount_dec_and_test(&delayed_node->refs)) { 299 struct btrfs_root *root = delayed_node->root; 300 301 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 302 /* 303 * Once our refcount goes to zero, nobody is allowed to bump it 304 * back up. We can delete it now. 305 */ 306 ASSERT(refcount_read(&delayed_node->refs) == 0); 307 btrfs_delayed_node_ref_tracker_dir_exit(delayed_node); 308 kmem_cache_free(delayed_node_cache, delayed_node); 309 } 310 } 311 312 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node, 313 struct btrfs_ref_tracker *tracker) 314 { 315 __btrfs_release_delayed_node(node, 0, tracker); 316 } 317 318 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 319 struct btrfs_delayed_root *delayed_root, 320 struct btrfs_ref_tracker *tracker) 321 { 322 struct btrfs_delayed_node *node; 323 324 spin_lock(&delayed_root->lock); 325 node = list_first_entry_or_null(&delayed_root->prepare_list, 326 struct btrfs_delayed_node, p_list); 327 if (node) { 328 list_del_init(&node->p_list); 329 refcount_inc(&node->refs); 330 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 331 } 332 spin_unlock(&delayed_root->lock); 333 334 return node; 335 } 336 337 static inline void btrfs_release_prepared_delayed_node( 338 struct btrfs_delayed_node *node, 339 struct btrfs_ref_tracker *tracker) 340 { 341 __btrfs_release_delayed_node(node, 1, tracker); 342 } 343 344 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 345 struct btrfs_delayed_node *node, 346 enum btrfs_delayed_item_type type) 347 { 348 struct btrfs_delayed_item *item; 349 350 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 351 if (item) { 352 item->data_len = data_len; 353 item->type = type; 354 item->bytes_reserved = 0; 355 item->delayed_node = node; 356 RB_CLEAR_NODE(&item->rb_node); 357 INIT_LIST_HEAD(&item->log_list); 358 item->logged = false; 359 refcount_set(&item->refs, 1); 360 } 361 return item; 362 } 363 364 static int delayed_item_index_cmp(const void *key, const struct rb_node *node) 365 { 366 const u64 *index = key; 367 const struct btrfs_delayed_item *delayed_item = rb_entry(node, 368 struct btrfs_delayed_item, rb_node); 369 370 if (delayed_item->index < *index) 371 return 1; 372 else if (delayed_item->index > *index) 373 return -1; 374 375 return 0; 376 } 377 378 /* 379 * Look up the delayed item by key. 380 * 381 * @delayed_node: pointer to the delayed node 382 * @index: the dir index value to lookup (offset of a dir index key) 383 * 384 * Note: if we don't find the right item, we will return the prev item and 385 * the next item. 386 */ 387 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 388 struct rb_root *root, 389 u64 index) 390 { 391 struct rb_node *node; 392 393 node = rb_find(&index, root, delayed_item_index_cmp); 394 return rb_entry_safe(node, struct btrfs_delayed_item, rb_node); 395 } 396 397 static int btrfs_delayed_item_cmp(const struct rb_node *new, 398 const struct rb_node *exist) 399 { 400 const struct btrfs_delayed_item *new_item = 401 rb_entry(new, struct btrfs_delayed_item, rb_node); 402 403 return delayed_item_index_cmp(&new_item->index, exist); 404 } 405 406 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 407 struct btrfs_delayed_item *ins) 408 { 409 struct rb_root_cached *root; 410 struct rb_node *exist; 411 412 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 413 root = &delayed_node->ins_root; 414 else 415 root = &delayed_node->del_root; 416 417 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp); 418 if (exist) 419 return -EEXIST; 420 421 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 422 ins->index >= delayed_node->index_cnt) 423 delayed_node->index_cnt = ins->index + 1; 424 425 delayed_node->count++; 426 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 427 return 0; 428 } 429 430 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 431 { 432 int seq = atomic_inc_return(&delayed_root->items_seq); 433 434 /* atomic_dec_return implies a barrier */ 435 if ((atomic_dec_return(&delayed_root->items) < 436 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 437 cond_wake_up_nomb(&delayed_root->wait); 438 } 439 440 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 441 { 442 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 443 struct rb_root_cached *root; 444 struct btrfs_delayed_root *delayed_root; 445 446 /* Not inserted, ignore it. */ 447 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 448 return; 449 450 /* If it's in a rbtree, then we need to have delayed node locked. */ 451 lockdep_assert_held(&delayed_node->mutex); 452 453 delayed_root = delayed_node->root->fs_info->delayed_root; 454 455 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 456 root = &delayed_node->ins_root; 457 else 458 root = &delayed_node->del_root; 459 460 rb_erase_cached(&delayed_item->rb_node, root); 461 RB_CLEAR_NODE(&delayed_item->rb_node); 462 delayed_node->count--; 463 464 finish_one_item(delayed_root); 465 } 466 467 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 468 { 469 if (item) { 470 __btrfs_remove_delayed_item(item); 471 if (refcount_dec_and_test(&item->refs)) 472 kfree(item); 473 } 474 } 475 476 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 477 struct btrfs_delayed_node *delayed_node) 478 { 479 struct rb_node *p = rb_first_cached(&delayed_node->ins_root); 480 481 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 482 } 483 484 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 485 struct btrfs_delayed_node *delayed_node) 486 { 487 struct rb_node *p = rb_first_cached(&delayed_node->del_root); 488 489 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 490 } 491 492 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 493 struct btrfs_delayed_item *item) 494 { 495 struct rb_node *p = rb_next(&item->rb_node); 496 497 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 498 } 499 500 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 501 struct btrfs_delayed_item *item) 502 { 503 struct btrfs_block_rsv *src_rsv; 504 struct btrfs_block_rsv *dst_rsv; 505 struct btrfs_fs_info *fs_info = trans->fs_info; 506 u64 num_bytes; 507 int ret; 508 509 if (!trans->bytes_reserved) 510 return 0; 511 512 src_rsv = trans->block_rsv; 513 dst_rsv = &fs_info->delayed_block_rsv; 514 515 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 516 517 /* 518 * Here we migrate space rsv from transaction rsv, since have already 519 * reserved space when starting a transaction. So no need to reserve 520 * qgroup space here. 521 */ 522 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 523 if (!ret) { 524 trace_btrfs_space_reservation(fs_info, "delayed_item", 525 item->delayed_node->inode_id, 526 num_bytes, 1); 527 /* 528 * For insertions we track reserved metadata space by accounting 529 * for the number of leaves that will be used, based on the delayed 530 * node's curr_index_batch_size and index_item_leaves fields. 531 */ 532 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 533 item->bytes_reserved = num_bytes; 534 } 535 536 return ret; 537 } 538 539 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 540 struct btrfs_delayed_item *item) 541 { 542 struct btrfs_block_rsv *rsv; 543 struct btrfs_fs_info *fs_info = root->fs_info; 544 545 if (!item->bytes_reserved) 546 return; 547 548 rsv = &fs_info->delayed_block_rsv; 549 /* 550 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 551 * to release/reserve qgroup space. 552 */ 553 trace_btrfs_space_reservation(fs_info, "delayed_item", 554 item->delayed_node->inode_id, 555 item->bytes_reserved, 0); 556 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 557 } 558 559 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 560 unsigned int num_leaves) 561 { 562 struct btrfs_fs_info *fs_info = node->root->fs_info; 563 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 564 565 /* There are no space reservations during log replay, bail out. */ 566 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 567 return; 568 569 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 570 bytes, 0); 571 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 572 } 573 574 static int btrfs_delayed_inode_reserve_metadata( 575 struct btrfs_trans_handle *trans, 576 struct btrfs_root *root, 577 struct btrfs_delayed_node *node) 578 { 579 struct btrfs_fs_info *fs_info = root->fs_info; 580 struct btrfs_block_rsv *src_rsv; 581 struct btrfs_block_rsv *dst_rsv; 582 u64 num_bytes; 583 int ret; 584 585 src_rsv = trans->block_rsv; 586 dst_rsv = &fs_info->delayed_block_rsv; 587 588 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 589 590 /* 591 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 592 * which doesn't reserve space for speed. This is a problem since we 593 * still need to reserve space for this update, so try to reserve the 594 * space. 595 * 596 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 597 * we always reserve enough to update the inode item. 598 */ 599 if (!src_rsv || (!trans->bytes_reserved && 600 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 601 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 602 BTRFS_QGROUP_RSV_META_PREALLOC, true); 603 if (ret < 0) 604 return ret; 605 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 606 BTRFS_RESERVE_NO_FLUSH); 607 /* NO_FLUSH could only fail with -ENOSPC */ 608 ASSERT(ret == 0 || ret == -ENOSPC); 609 if (ret) 610 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 611 } else { 612 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 613 } 614 615 if (!ret) { 616 trace_btrfs_space_reservation(fs_info, "delayed_inode", 617 node->inode_id, num_bytes, 1); 618 node->bytes_reserved = num_bytes; 619 } 620 621 return ret; 622 } 623 624 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 625 struct btrfs_delayed_node *node, 626 bool qgroup_free) 627 { 628 struct btrfs_block_rsv *rsv; 629 630 if (!node->bytes_reserved) 631 return; 632 633 rsv = &fs_info->delayed_block_rsv; 634 trace_btrfs_space_reservation(fs_info, "delayed_inode", 635 node->inode_id, node->bytes_reserved, 0); 636 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 637 if (qgroup_free) 638 btrfs_qgroup_free_meta_prealloc(node->root, 639 node->bytes_reserved); 640 else 641 btrfs_qgroup_convert_reserved_meta(node->root, 642 node->bytes_reserved); 643 node->bytes_reserved = 0; 644 } 645 646 /* 647 * Insert a single delayed item or a batch of delayed items, as many as possible 648 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 649 * in the rbtree, and if there's a gap between two consecutive dir index items, 650 * then it means at some point we had delayed dir indexes to add but they got 651 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 652 * into the subvolume tree. Dir index keys also have their offsets coming from a 653 * monotonically increasing counter, so we can't get new keys with an offset that 654 * fits within a gap between delayed dir index items. 655 */ 656 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 657 struct btrfs_root *root, 658 struct btrfs_path *path, 659 struct btrfs_delayed_item *first_item) 660 { 661 struct btrfs_fs_info *fs_info = root->fs_info; 662 struct btrfs_delayed_node *node = first_item->delayed_node; 663 LIST_HEAD(item_list); 664 struct btrfs_delayed_item *curr; 665 struct btrfs_delayed_item *next; 666 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 667 struct btrfs_item_batch batch; 668 struct btrfs_key first_key; 669 const u32 first_data_size = first_item->data_len; 670 int total_size; 671 char AUTO_KFREE(ins_data); 672 int ret; 673 bool continuous_keys_only = false; 674 675 lockdep_assert_held(&node->mutex); 676 677 /* 678 * During normal operation the delayed index offset is continuously 679 * increasing, so we can batch insert all items as there will not be any 680 * overlapping keys in the tree. 681 * 682 * The exception to this is log replay, where we may have interleaved 683 * offsets in the tree, so our batch needs to be continuous keys only in 684 * order to ensure we do not end up with out of order items in our leaf. 685 */ 686 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 687 continuous_keys_only = true; 688 689 /* 690 * For delayed items to insert, we track reserved metadata bytes based 691 * on the number of leaves that we will use. 692 * See btrfs_insert_delayed_dir_index() and 693 * btrfs_delayed_item_reserve_metadata()). 694 */ 695 ASSERT(first_item->bytes_reserved == 0); 696 697 list_add_tail(&first_item->tree_list, &item_list); 698 batch.total_data_size = first_data_size; 699 batch.nr = 1; 700 total_size = first_data_size + sizeof(struct btrfs_item); 701 curr = first_item; 702 703 while (true) { 704 int next_size; 705 706 next = __btrfs_next_delayed_item(curr); 707 if (!next) 708 break; 709 710 /* 711 * We cannot allow gaps in the key space if we're doing log 712 * replay. 713 */ 714 if (continuous_keys_only && (next->index != curr->index + 1)) 715 break; 716 717 ASSERT(next->bytes_reserved == 0); 718 719 next_size = next->data_len + sizeof(struct btrfs_item); 720 if (total_size + next_size > max_size) 721 break; 722 723 list_add_tail(&next->tree_list, &item_list); 724 batch.nr++; 725 total_size += next_size; 726 batch.total_data_size += next->data_len; 727 curr = next; 728 } 729 730 if (batch.nr == 1) { 731 first_key.objectid = node->inode_id; 732 first_key.type = BTRFS_DIR_INDEX_KEY; 733 first_key.offset = first_item->index; 734 batch.keys = &first_key; 735 batch.data_sizes = &first_data_size; 736 } else { 737 struct btrfs_key *ins_keys; 738 u32 *ins_sizes; 739 int i = 0; 740 741 ins_data = kmalloc_array(batch.nr, 742 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS); 743 if (!ins_data) 744 return -ENOMEM; 745 ins_sizes = (u32 *)ins_data; 746 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 747 batch.keys = ins_keys; 748 batch.data_sizes = ins_sizes; 749 list_for_each_entry(curr, &item_list, tree_list) { 750 ins_keys[i].objectid = node->inode_id; 751 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 752 ins_keys[i].offset = curr->index; 753 ins_sizes[i] = curr->data_len; 754 i++; 755 } 756 } 757 758 ret = btrfs_insert_empty_items(trans, root, path, &batch); 759 if (ret) 760 return ret; 761 762 list_for_each_entry(curr, &item_list, tree_list) { 763 char *data_ptr; 764 765 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 766 write_extent_buffer(path->nodes[0], &curr->data, 767 (unsigned long)data_ptr, curr->data_len); 768 path->slots[0]++; 769 } 770 771 /* 772 * Now release our path before releasing the delayed items and their 773 * metadata reservations, so that we don't block other tasks for more 774 * time than needed. 775 */ 776 btrfs_release_path(path); 777 778 ASSERT(node->index_item_leaves > 0); 779 780 /* 781 * For normal operations we will batch an entire leaf's worth of delayed 782 * items, so if there are more items to process we can decrement 783 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 784 * 785 * However for log replay we may not have inserted an entire leaf's 786 * worth of items, we may have not had continuous items, so decrementing 787 * here would mess up the index_item_leaves accounting. For this case 788 * only clean up the accounting when there are no items left. 789 */ 790 if (next && !continuous_keys_only) { 791 /* 792 * We inserted one batch of items into a leaf a there are more 793 * items to flush in a future batch, now release one unit of 794 * metadata space from the delayed block reserve, corresponding 795 * the leaf we just flushed to. 796 */ 797 btrfs_delayed_item_release_leaves(node, 1); 798 node->index_item_leaves--; 799 } else if (!next) { 800 /* 801 * There are no more items to insert. We can have a number of 802 * reserved leaves > 1 here - this happens when many dir index 803 * items are added and then removed before they are flushed (file 804 * names with a very short life, never span a transaction). So 805 * release all remaining leaves. 806 */ 807 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 808 node->index_item_leaves = 0; 809 } 810 811 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 812 list_del(&curr->tree_list); 813 btrfs_release_delayed_item(curr); 814 } 815 816 return 0; 817 } 818 819 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 820 struct btrfs_path *path, 821 struct btrfs_root *root, 822 struct btrfs_delayed_node *node) 823 { 824 int ret = 0; 825 826 while (ret == 0) { 827 struct btrfs_delayed_item *curr; 828 829 mutex_lock(&node->mutex); 830 curr = __btrfs_first_delayed_insertion_item(node); 831 if (!curr) { 832 mutex_unlock(&node->mutex); 833 break; 834 } 835 ret = btrfs_insert_delayed_item(trans, root, path, curr); 836 mutex_unlock(&node->mutex); 837 } 838 839 return ret; 840 } 841 842 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 843 struct btrfs_root *root, 844 struct btrfs_path *path, 845 struct btrfs_delayed_item *item) 846 { 847 const u64 ino = item->delayed_node->inode_id; 848 struct btrfs_fs_info *fs_info = root->fs_info; 849 struct btrfs_delayed_item *curr, *next; 850 struct extent_buffer *leaf = path->nodes[0]; 851 LIST_HEAD(batch_list); 852 int nitems, slot, last_slot; 853 int ret; 854 u64 total_reserved_size = item->bytes_reserved; 855 856 ASSERT(leaf != NULL); 857 858 slot = path->slots[0]; 859 last_slot = btrfs_header_nritems(leaf) - 1; 860 /* 861 * Our caller always gives us a path pointing to an existing item, so 862 * this can not happen. 863 */ 864 ASSERT(slot <= last_slot); 865 if (WARN_ON(slot > last_slot)) 866 return -ENOENT; 867 868 nitems = 1; 869 curr = item; 870 list_add_tail(&curr->tree_list, &batch_list); 871 872 /* 873 * Keep checking if the next delayed item matches the next item in the 874 * leaf - if so, we can add it to the batch of items to delete from the 875 * leaf. 876 */ 877 while (slot < last_slot) { 878 struct btrfs_key key; 879 880 next = __btrfs_next_delayed_item(curr); 881 if (!next) 882 break; 883 884 slot++; 885 btrfs_item_key_to_cpu(leaf, &key, slot); 886 if (key.objectid != ino || 887 key.type != BTRFS_DIR_INDEX_KEY || 888 key.offset != next->index) 889 break; 890 nitems++; 891 curr = next; 892 list_add_tail(&curr->tree_list, &batch_list); 893 total_reserved_size += curr->bytes_reserved; 894 } 895 896 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 897 if (ret) 898 return ret; 899 900 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 901 if (total_reserved_size > 0) { 902 /* 903 * Check btrfs_delayed_item_reserve_metadata() to see why we 904 * don't need to release/reserve qgroup space. 905 */ 906 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 907 total_reserved_size, 0); 908 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 909 total_reserved_size, NULL); 910 } 911 912 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 913 list_del(&curr->tree_list); 914 btrfs_release_delayed_item(curr); 915 } 916 917 return 0; 918 } 919 920 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 921 struct btrfs_path *path, 922 struct btrfs_root *root, 923 struct btrfs_delayed_node *node) 924 { 925 struct btrfs_key key; 926 int ret = 0; 927 928 key.objectid = node->inode_id; 929 key.type = BTRFS_DIR_INDEX_KEY; 930 931 while (ret == 0) { 932 struct btrfs_delayed_item *item; 933 934 mutex_lock(&node->mutex); 935 item = __btrfs_first_delayed_deletion_item(node); 936 if (!item) { 937 mutex_unlock(&node->mutex); 938 break; 939 } 940 941 key.offset = item->index; 942 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 943 if (ret > 0) { 944 /* 945 * There's no matching item in the leaf. This means we 946 * have already deleted this item in a past run of the 947 * delayed items. We ignore errors when running delayed 948 * items from an async context, through a work queue job 949 * running btrfs_async_run_delayed_root(), and don't 950 * release delayed items that failed to complete. This 951 * is because we will retry later, and at transaction 952 * commit time we always run delayed items and will 953 * then deal with errors if they fail to run again. 954 * 955 * So just release delayed items for which we can't find 956 * an item in the tree, and move to the next item. 957 */ 958 btrfs_release_path(path); 959 btrfs_release_delayed_item(item); 960 ret = 0; 961 } else if (ret == 0) { 962 ret = btrfs_batch_delete_items(trans, root, path, item); 963 btrfs_release_path(path); 964 } 965 966 /* 967 * We unlock and relock on each iteration, this is to prevent 968 * blocking other tasks for too long while we are being run from 969 * the async context (work queue job). Those tasks are typically 970 * running system calls like creat/mkdir/rename/unlink/etc which 971 * need to add delayed items to this delayed node. 972 */ 973 mutex_unlock(&node->mutex); 974 } 975 976 return ret; 977 } 978 979 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 980 { 981 struct btrfs_delayed_root *delayed_root; 982 983 if (delayed_node && 984 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 985 ASSERT(delayed_node->root); 986 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 987 delayed_node->count--; 988 989 delayed_root = delayed_node->root->fs_info->delayed_root; 990 finish_one_item(delayed_root); 991 } 992 } 993 994 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 995 { 996 997 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 998 struct btrfs_delayed_root *delayed_root; 999 1000 ASSERT(delayed_node->root); 1001 delayed_node->count--; 1002 1003 delayed_root = delayed_node->root->fs_info->delayed_root; 1004 finish_one_item(delayed_root); 1005 } 1006 } 1007 1008 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1009 struct btrfs_root *root, 1010 struct btrfs_path *path, 1011 struct btrfs_delayed_node *node) 1012 { 1013 struct btrfs_fs_info *fs_info = root->fs_info; 1014 struct btrfs_key key; 1015 struct btrfs_inode_item *inode_item; 1016 struct extent_buffer *leaf; 1017 int mod; 1018 int ret; 1019 1020 key.objectid = node->inode_id; 1021 key.type = BTRFS_INODE_ITEM_KEY; 1022 key.offset = 0; 1023 1024 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1025 mod = -1; 1026 else 1027 mod = 1; 1028 1029 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1030 if (ret > 0) 1031 ret = -ENOENT; 1032 if (ret < 0) { 1033 /* 1034 * If we fail to update the delayed inode we need to abort the 1035 * transaction, because we could leave the inode with the 1036 * improper counts behind. 1037 */ 1038 if (unlikely(ret != -ENOENT)) 1039 btrfs_abort_transaction(trans, ret); 1040 goto out; 1041 } 1042 1043 leaf = path->nodes[0]; 1044 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1045 struct btrfs_inode_item); 1046 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1047 sizeof(struct btrfs_inode_item)); 1048 1049 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1050 goto out; 1051 1052 /* 1053 * Now we're going to delete the INODE_REF/EXTREF, which should be the 1054 * only one ref left. Check if the next item is an INODE_REF/EXTREF. 1055 * 1056 * But if we're the last item already, release and search for the last 1057 * INODE_REF/EXTREF. 1058 */ 1059 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { 1060 key.objectid = node->inode_id; 1061 key.type = BTRFS_INODE_EXTREF_KEY; 1062 key.offset = (u64)-1; 1063 1064 btrfs_release_path(path); 1065 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1066 if (unlikely(ret < 0)) { 1067 btrfs_abort_transaction(trans, ret); 1068 goto err_out; 1069 } 1070 ASSERT(ret > 0); 1071 ASSERT(path->slots[0] > 0); 1072 ret = 0; 1073 path->slots[0]--; 1074 leaf = path->nodes[0]; 1075 } else { 1076 path->slots[0]++; 1077 } 1078 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1079 if (key.objectid != node->inode_id) 1080 goto out; 1081 if (key.type != BTRFS_INODE_REF_KEY && 1082 key.type != BTRFS_INODE_EXTREF_KEY) 1083 goto out; 1084 1085 /* 1086 * Delayed iref deletion is for the inode who has only one link, 1087 * so there is only one iref. The case that several irefs are 1088 * in the same item doesn't exist. 1089 */ 1090 ret = btrfs_del_item(trans, root, path); 1091 if (ret < 0) 1092 btrfs_abort_transaction(trans, ret); 1093 out: 1094 btrfs_release_delayed_iref(node); 1095 btrfs_release_path(path); 1096 err_out: 1097 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1098 btrfs_release_delayed_inode(node); 1099 return ret; 1100 } 1101 1102 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1103 struct btrfs_root *root, 1104 struct btrfs_path *path, 1105 struct btrfs_delayed_node *node) 1106 { 1107 int ret; 1108 1109 mutex_lock(&node->mutex); 1110 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1111 mutex_unlock(&node->mutex); 1112 return 0; 1113 } 1114 1115 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1116 mutex_unlock(&node->mutex); 1117 return ret; 1118 } 1119 1120 static inline int 1121 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1122 struct btrfs_path *path, 1123 struct btrfs_delayed_node *node) 1124 { 1125 int ret; 1126 1127 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1128 if (ret) 1129 return ret; 1130 1131 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1132 if (ret) 1133 return ret; 1134 1135 ret = btrfs_record_root_in_trans(trans, node->root); 1136 if (ret) 1137 return ret; 1138 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1139 return ret; 1140 } 1141 1142 /* 1143 * Called when committing the transaction. 1144 * Returns 0 on success. 1145 * Returns < 0 on error and returns with an aborted transaction with any 1146 * outstanding delayed items cleaned up. 1147 */ 1148 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1149 { 1150 struct btrfs_fs_info *fs_info = trans->fs_info; 1151 struct btrfs_delayed_root *delayed_root; 1152 struct btrfs_delayed_node *curr_node, *prev_node; 1153 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; 1154 struct btrfs_path *path; 1155 struct btrfs_block_rsv *block_rsv; 1156 int ret = 0; 1157 bool count = (nr > 0); 1158 1159 if (TRANS_ABORTED(trans)) 1160 return -EIO; 1161 1162 path = btrfs_alloc_path(); 1163 if (!path) 1164 return -ENOMEM; 1165 1166 block_rsv = trans->block_rsv; 1167 trans->block_rsv = &fs_info->delayed_block_rsv; 1168 1169 delayed_root = fs_info->delayed_root; 1170 1171 curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker); 1172 while (curr_node && (!count || nr--)) { 1173 ret = __btrfs_commit_inode_delayed_items(trans, path, 1174 curr_node); 1175 if (unlikely(ret)) { 1176 btrfs_abort_transaction(trans, ret); 1177 break; 1178 } 1179 1180 prev_node = curr_node; 1181 prev_delayed_node_tracker = curr_delayed_node_tracker; 1182 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); 1183 /* 1184 * See the comment below about releasing path before releasing 1185 * node. If the commit of delayed items was successful the path 1186 * should always be released, but in case of an error, it may 1187 * point to locked extent buffers (a leaf at the very least). 1188 */ 1189 ASSERT(path->nodes[0] == NULL); 1190 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); 1191 } 1192 1193 /* 1194 * Release the path to avoid a potential deadlock and lockdep splat when 1195 * releasing the delayed node, as that requires taking the delayed node's 1196 * mutex. If another task starts running delayed items before we take 1197 * the mutex, it will first lock the mutex and then it may try to lock 1198 * the same btree path (leaf). 1199 */ 1200 btrfs_free_path(path); 1201 1202 if (curr_node) 1203 btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker); 1204 trans->block_rsv = block_rsv; 1205 1206 return ret; 1207 } 1208 1209 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1210 { 1211 return __btrfs_run_delayed_items(trans, -1); 1212 } 1213 1214 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1215 { 1216 return __btrfs_run_delayed_items(trans, nr); 1217 } 1218 1219 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1220 struct btrfs_inode *inode) 1221 { 1222 struct btrfs_ref_tracker delayed_node_tracker; 1223 struct btrfs_delayed_node *delayed_node = 1224 btrfs_get_delayed_node(inode, &delayed_node_tracker); 1225 BTRFS_PATH_AUTO_FREE(path); 1226 struct btrfs_block_rsv *block_rsv; 1227 int ret; 1228 1229 if (!delayed_node) 1230 return 0; 1231 1232 mutex_lock(&delayed_node->mutex); 1233 if (!delayed_node->count) { 1234 mutex_unlock(&delayed_node->mutex); 1235 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1236 return 0; 1237 } 1238 mutex_unlock(&delayed_node->mutex); 1239 1240 path = btrfs_alloc_path(); 1241 if (!path) { 1242 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1243 return -ENOMEM; 1244 } 1245 1246 block_rsv = trans->block_rsv; 1247 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1248 1249 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1250 1251 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1252 trans->block_rsv = block_rsv; 1253 1254 return ret; 1255 } 1256 1257 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1258 { 1259 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1260 struct btrfs_trans_handle *trans; 1261 struct btrfs_ref_tracker delayed_node_tracker; 1262 struct btrfs_delayed_node *delayed_node; 1263 struct btrfs_path *path; 1264 struct btrfs_block_rsv *block_rsv; 1265 int ret; 1266 1267 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1268 if (!delayed_node) 1269 return 0; 1270 1271 mutex_lock(&delayed_node->mutex); 1272 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1273 mutex_unlock(&delayed_node->mutex); 1274 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1275 return 0; 1276 } 1277 mutex_unlock(&delayed_node->mutex); 1278 1279 trans = btrfs_join_transaction(delayed_node->root); 1280 if (IS_ERR(trans)) { 1281 ret = PTR_ERR(trans); 1282 goto out; 1283 } 1284 1285 path = btrfs_alloc_path(); 1286 if (!path) { 1287 ret = -ENOMEM; 1288 goto trans_out; 1289 } 1290 1291 block_rsv = trans->block_rsv; 1292 trans->block_rsv = &fs_info->delayed_block_rsv; 1293 1294 mutex_lock(&delayed_node->mutex); 1295 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1296 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1297 path, delayed_node); 1298 else 1299 ret = 0; 1300 mutex_unlock(&delayed_node->mutex); 1301 1302 btrfs_free_path(path); 1303 trans->block_rsv = block_rsv; 1304 trans_out: 1305 btrfs_end_transaction(trans); 1306 btrfs_btree_balance_dirty(fs_info); 1307 out: 1308 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1309 1310 return ret; 1311 } 1312 1313 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1314 { 1315 struct btrfs_delayed_node *delayed_node; 1316 1317 delayed_node = READ_ONCE(inode->delayed_node); 1318 if (!delayed_node) 1319 return; 1320 1321 inode->delayed_node = NULL; 1322 1323 btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker); 1324 } 1325 1326 struct btrfs_async_delayed_work { 1327 struct btrfs_delayed_root *delayed_root; 1328 int nr; 1329 struct btrfs_work work; 1330 }; 1331 1332 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1333 { 1334 struct btrfs_async_delayed_work *async_work; 1335 struct btrfs_delayed_root *delayed_root; 1336 struct btrfs_trans_handle *trans; 1337 struct btrfs_path *path; 1338 struct btrfs_delayed_node *delayed_node = NULL; 1339 struct btrfs_ref_tracker delayed_node_tracker; 1340 struct btrfs_root *root; 1341 struct btrfs_block_rsv *block_rsv; 1342 int total_done = 0; 1343 1344 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1345 delayed_root = async_work->delayed_root; 1346 1347 path = btrfs_alloc_path(); 1348 if (!path) 1349 goto out; 1350 1351 do { 1352 if (atomic_read(&delayed_root->items) < 1353 BTRFS_DELAYED_BACKGROUND / 2) 1354 break; 1355 1356 delayed_node = btrfs_first_prepared_delayed_node(delayed_root, 1357 &delayed_node_tracker); 1358 if (!delayed_node) 1359 break; 1360 1361 root = delayed_node->root; 1362 1363 trans = btrfs_join_transaction(root); 1364 if (IS_ERR(trans)) { 1365 btrfs_release_path(path); 1366 btrfs_release_prepared_delayed_node(delayed_node, 1367 &delayed_node_tracker); 1368 total_done++; 1369 continue; 1370 } 1371 1372 block_rsv = trans->block_rsv; 1373 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1374 1375 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1376 1377 trans->block_rsv = block_rsv; 1378 btrfs_end_transaction(trans); 1379 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1380 1381 btrfs_release_path(path); 1382 btrfs_release_prepared_delayed_node(delayed_node, 1383 &delayed_node_tracker); 1384 total_done++; 1385 1386 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1387 || total_done < async_work->nr); 1388 1389 btrfs_free_path(path); 1390 out: 1391 wake_up(&delayed_root->wait); 1392 kfree(async_work); 1393 } 1394 1395 1396 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1397 struct btrfs_fs_info *fs_info, int nr) 1398 { 1399 struct btrfs_async_delayed_work *async_work; 1400 1401 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1402 if (!async_work) 1403 return -ENOMEM; 1404 1405 async_work->delayed_root = delayed_root; 1406 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); 1407 async_work->nr = nr; 1408 1409 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1410 return 0; 1411 } 1412 1413 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1414 { 1415 struct btrfs_ref_tracker delayed_node_tracker; 1416 struct btrfs_delayed_node *node; 1417 1418 node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker); 1419 if (WARN_ON(node)) { 1420 btrfs_delayed_node_ref_tracker_free(node, 1421 &delayed_node_tracker); 1422 refcount_dec(&node->refs); 1423 } 1424 } 1425 1426 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1427 { 1428 int val = atomic_read(&delayed_root->items_seq); 1429 1430 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1431 return true; 1432 1433 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1434 return true; 1435 1436 return false; 1437 } 1438 1439 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1440 { 1441 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1442 1443 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1444 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1445 return; 1446 1447 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1448 int seq; 1449 int ret; 1450 1451 seq = atomic_read(&delayed_root->items_seq); 1452 1453 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1454 if (ret) 1455 return; 1456 1457 wait_event_interruptible(delayed_root->wait, 1458 could_end_wait(delayed_root, seq)); 1459 return; 1460 } 1461 1462 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1463 } 1464 1465 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1466 { 1467 struct btrfs_fs_info *fs_info = trans->fs_info; 1468 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1469 1470 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1471 return; 1472 1473 /* 1474 * Adding the new dir index item does not require touching another 1475 * leaf, so we can release 1 unit of metadata that was previously 1476 * reserved when starting the transaction. This applies only to 1477 * the case where we had a transaction start and excludes the 1478 * transaction join case (when replaying log trees). 1479 */ 1480 trace_btrfs_space_reservation(fs_info, "transaction", 1481 trans->transid, bytes, 0); 1482 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1483 ASSERT(trans->bytes_reserved >= bytes); 1484 trans->bytes_reserved -= bytes; 1485 } 1486 1487 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1488 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1489 const char *name, int name_len, 1490 struct btrfs_inode *dir, 1491 const struct btrfs_disk_key *disk_key, u8 flags, 1492 u64 index) 1493 { 1494 struct btrfs_fs_info *fs_info = trans->fs_info; 1495 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1496 struct btrfs_delayed_node *delayed_node; 1497 struct btrfs_ref_tracker delayed_node_tracker; 1498 struct btrfs_delayed_item *delayed_item; 1499 struct btrfs_dir_item *dir_item; 1500 bool reserve_leaf_space; 1501 u32 data_len; 1502 int ret; 1503 1504 delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); 1505 if (IS_ERR(delayed_node)) 1506 return PTR_ERR(delayed_node); 1507 1508 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1509 delayed_node, 1510 BTRFS_DELAYED_INSERTION_ITEM); 1511 if (!delayed_item) { 1512 ret = -ENOMEM; 1513 goto release_node; 1514 } 1515 1516 delayed_item->index = index; 1517 1518 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1519 dir_item->location = *disk_key; 1520 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1521 btrfs_set_stack_dir_data_len(dir_item, 0); 1522 btrfs_set_stack_dir_name_len(dir_item, name_len); 1523 btrfs_set_stack_dir_flags(dir_item, flags); 1524 memcpy((char *)(dir_item + 1), name, name_len); 1525 1526 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1527 1528 mutex_lock(&delayed_node->mutex); 1529 1530 /* 1531 * First attempt to insert the delayed item. This is to make the error 1532 * handling path simpler in case we fail (-EEXIST). There's no risk of 1533 * any other task coming in and running the delayed item before we do 1534 * the metadata space reservation below, because we are holding the 1535 * delayed node's mutex and that mutex must also be locked before the 1536 * node's delayed items can be run. 1537 */ 1538 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1539 if (unlikely(ret)) { 1540 btrfs_err(trans->fs_info, 1541 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1542 name_len, name, index, btrfs_root_id(delayed_node->root), 1543 delayed_node->inode_id, dir->index_cnt, 1544 delayed_node->index_cnt, ret); 1545 btrfs_release_delayed_item(delayed_item); 1546 btrfs_release_dir_index_item_space(trans); 1547 mutex_unlock(&delayed_node->mutex); 1548 goto release_node; 1549 } 1550 1551 if (delayed_node->index_item_leaves == 0 || 1552 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1553 delayed_node->curr_index_batch_size = data_len; 1554 reserve_leaf_space = true; 1555 } else { 1556 delayed_node->curr_index_batch_size += data_len; 1557 reserve_leaf_space = false; 1558 } 1559 1560 if (reserve_leaf_space) { 1561 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1562 /* 1563 * Space was reserved for a dir index item insertion when we 1564 * started the transaction, so getting a failure here should be 1565 * impossible. 1566 */ 1567 if (WARN_ON(ret)) { 1568 btrfs_release_delayed_item(delayed_item); 1569 mutex_unlock(&delayed_node->mutex); 1570 goto release_node; 1571 } 1572 1573 delayed_node->index_item_leaves++; 1574 } else { 1575 btrfs_release_dir_index_item_space(trans); 1576 } 1577 mutex_unlock(&delayed_node->mutex); 1578 1579 release_node: 1580 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1581 return ret; 1582 } 1583 1584 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node, 1585 u64 index) 1586 { 1587 struct btrfs_delayed_item *item; 1588 1589 mutex_lock(&node->mutex); 1590 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1591 if (!item) { 1592 mutex_unlock(&node->mutex); 1593 return false; 1594 } 1595 1596 /* 1597 * For delayed items to insert, we track reserved metadata bytes based 1598 * on the number of leaves that we will use. 1599 * See btrfs_insert_delayed_dir_index() and 1600 * btrfs_delayed_item_reserve_metadata()). 1601 */ 1602 ASSERT(item->bytes_reserved == 0); 1603 ASSERT(node->index_item_leaves > 0); 1604 1605 /* 1606 * If there's only one leaf reserved, we can decrement this item from the 1607 * current batch, otherwise we can not because we don't know which leaf 1608 * it belongs to. With the current limit on delayed items, we rarely 1609 * accumulate enough dir index items to fill more than one leaf (even 1610 * when using a leaf size of 4K). 1611 */ 1612 if (node->index_item_leaves == 1) { 1613 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1614 1615 ASSERT(node->curr_index_batch_size >= data_len); 1616 node->curr_index_batch_size -= data_len; 1617 } 1618 1619 btrfs_release_delayed_item(item); 1620 1621 /* If we now have no more dir index items, we can release all leaves. */ 1622 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1623 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1624 node->index_item_leaves = 0; 1625 } 1626 1627 mutex_unlock(&node->mutex); 1628 return true; 1629 } 1630 1631 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1632 struct btrfs_inode *dir, u64 index) 1633 { 1634 struct btrfs_delayed_node *node; 1635 struct btrfs_ref_tracker delayed_node_tracker; 1636 struct btrfs_delayed_item *item; 1637 int ret; 1638 1639 node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); 1640 if (IS_ERR(node)) 1641 return PTR_ERR(node); 1642 1643 if (btrfs_delete_delayed_insertion_item(node, index)) { 1644 ret = 0; 1645 goto end; 1646 } 1647 1648 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1649 if (!item) { 1650 ret = -ENOMEM; 1651 goto end; 1652 } 1653 1654 item->index = index; 1655 1656 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1657 /* 1658 * we have reserved enough space when we start a new transaction, 1659 * so reserving metadata failure is impossible. 1660 */ 1661 if (ret < 0) { 1662 btrfs_err(trans->fs_info, 1663 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d", 1664 index, btrfs_root_id(node->root), node->inode_id, ret); 1665 btrfs_release_delayed_item(item); 1666 goto end; 1667 } 1668 1669 mutex_lock(&node->mutex); 1670 ret = __btrfs_add_delayed_item(node, item); 1671 if (unlikely(ret)) { 1672 btrfs_err(trans->fs_info, 1673 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d", 1674 index, btrfs_root_id(node->root), node->inode_id, ret); 1675 btrfs_delayed_item_release_metadata(dir->root, item); 1676 btrfs_release_delayed_item(item); 1677 } 1678 mutex_unlock(&node->mutex); 1679 end: 1680 btrfs_release_delayed_node(node, &delayed_node_tracker); 1681 return ret; 1682 } 1683 1684 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1685 { 1686 struct btrfs_ref_tracker delayed_node_tracker; 1687 struct btrfs_delayed_node *delayed_node; 1688 1689 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1690 if (!delayed_node) 1691 return -ENOENT; 1692 1693 /* 1694 * Since we have held i_mutex of this directory, it is impossible that 1695 * a new directory index is added into the delayed node and index_cnt 1696 * is updated now. So we needn't lock the delayed node. 1697 */ 1698 if (!delayed_node->index_cnt) { 1699 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1700 return -EINVAL; 1701 } 1702 1703 inode->index_cnt = delayed_node->index_cnt; 1704 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1705 return 0; 1706 } 1707 1708 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode, 1709 u64 last_index, 1710 struct list_head *ins_list, 1711 struct list_head *del_list) 1712 { 1713 struct btrfs_delayed_node *delayed_node; 1714 struct btrfs_delayed_item *item; 1715 struct btrfs_ref_tracker delayed_node_tracker; 1716 1717 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1718 if (!delayed_node) 1719 return false; 1720 1721 /* 1722 * We can only do one readdir with delayed items at a time because of 1723 * item->readdir_list. 1724 */ 1725 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1726 btrfs_inode_lock(inode, 0); 1727 1728 mutex_lock(&delayed_node->mutex); 1729 item = __btrfs_first_delayed_insertion_item(delayed_node); 1730 while (item && item->index <= last_index) { 1731 refcount_inc(&item->refs); 1732 list_add_tail(&item->readdir_list, ins_list); 1733 item = __btrfs_next_delayed_item(item); 1734 } 1735 1736 item = __btrfs_first_delayed_deletion_item(delayed_node); 1737 while (item && item->index <= last_index) { 1738 refcount_inc(&item->refs); 1739 list_add_tail(&item->readdir_list, del_list); 1740 item = __btrfs_next_delayed_item(item); 1741 } 1742 mutex_unlock(&delayed_node->mutex); 1743 /* 1744 * This delayed node is still cached in the btrfs inode, so refs 1745 * must be > 1 now, and we needn't check it is going to be freed 1746 * or not. 1747 * 1748 * Besides that, this function is used to read dir, we do not 1749 * insert/delete delayed items in this period. So we also needn't 1750 * requeue or dequeue this delayed node. 1751 */ 1752 btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker); 1753 refcount_dec(&delayed_node->refs); 1754 1755 return true; 1756 } 1757 1758 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode, 1759 struct list_head *ins_list, 1760 struct list_head *del_list) 1761 { 1762 struct btrfs_delayed_item *curr, *next; 1763 1764 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1765 list_del(&curr->readdir_list); 1766 if (refcount_dec_and_test(&curr->refs)) 1767 kfree(curr); 1768 } 1769 1770 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1771 list_del(&curr->readdir_list); 1772 if (refcount_dec_and_test(&curr->refs)) 1773 kfree(curr); 1774 } 1775 1776 /* 1777 * The VFS is going to do up_read(), so we need to downgrade back to a 1778 * read lock. 1779 */ 1780 downgrade_write(&inode->vfs_inode.i_rwsem); 1781 } 1782 1783 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index) 1784 { 1785 struct btrfs_delayed_item *curr; 1786 bool ret = false; 1787 1788 list_for_each_entry(curr, del_list, readdir_list) { 1789 if (curr->index > index) 1790 break; 1791 if (curr->index == index) { 1792 ret = true; 1793 break; 1794 } 1795 } 1796 return ret; 1797 } 1798 1799 /* 1800 * Read dir info stored in the delayed tree. 1801 */ 1802 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1803 const struct list_head *ins_list) 1804 { 1805 struct btrfs_dir_item *di; 1806 struct btrfs_delayed_item *curr, *next; 1807 struct btrfs_key location; 1808 char *name; 1809 int name_len; 1810 unsigned char d_type; 1811 1812 /* 1813 * Changing the data of the delayed item is impossible. So 1814 * we needn't lock them. And we have held i_mutex of the 1815 * directory, nobody can delete any directory indexes now. 1816 */ 1817 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1818 bool over; 1819 1820 list_del(&curr->readdir_list); 1821 1822 if (curr->index < ctx->pos) { 1823 if (refcount_dec_and_test(&curr->refs)) 1824 kfree(curr); 1825 continue; 1826 } 1827 1828 ctx->pos = curr->index; 1829 1830 di = (struct btrfs_dir_item *)curr->data; 1831 name = (char *)(di + 1); 1832 name_len = btrfs_stack_dir_name_len(di); 1833 1834 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1835 btrfs_disk_key_to_cpu(&location, &di->location); 1836 1837 over = !dir_emit(ctx, name, name_len, location.objectid, d_type); 1838 1839 if (refcount_dec_and_test(&curr->refs)) 1840 kfree(curr); 1841 1842 if (over) 1843 return true; 1844 ctx->pos++; 1845 } 1846 return false; 1847 } 1848 1849 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1850 struct btrfs_inode_item *inode_item, 1851 struct btrfs_inode *inode) 1852 { 1853 struct inode *vfs_inode = &inode->vfs_inode; 1854 u64 flags; 1855 1856 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode)); 1857 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode)); 1858 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size); 1859 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode); 1860 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink); 1861 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode)); 1862 btrfs_set_stack_inode_generation(inode_item, inode->generation); 1863 btrfs_set_stack_inode_sequence(inode_item, 1864 inode_peek_iversion(vfs_inode)); 1865 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1866 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev); 1867 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags); 1868 btrfs_set_stack_inode_flags(inode_item, flags); 1869 btrfs_set_stack_inode_block_group(inode_item, 0); 1870 1871 btrfs_set_stack_timespec_sec(&inode_item->atime, 1872 inode_get_atime_sec(vfs_inode)); 1873 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1874 inode_get_atime_nsec(vfs_inode)); 1875 1876 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1877 inode_get_mtime_sec(vfs_inode)); 1878 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1879 inode_get_mtime_nsec(vfs_inode)); 1880 1881 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1882 inode_get_ctime_sec(vfs_inode)); 1883 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1884 inode_get_ctime_nsec(vfs_inode)); 1885 1886 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec); 1887 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec); 1888 } 1889 1890 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev) 1891 { 1892 struct btrfs_delayed_node *delayed_node; 1893 struct btrfs_ref_tracker delayed_node_tracker; 1894 struct btrfs_inode_item *inode_item; 1895 struct inode *vfs_inode = &inode->vfs_inode; 1896 1897 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1898 if (!delayed_node) 1899 return -ENOENT; 1900 1901 mutex_lock(&delayed_node->mutex); 1902 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1903 mutex_unlock(&delayed_node->mutex); 1904 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1905 return -ENOENT; 1906 } 1907 1908 inode_item = &delayed_node->inode_item; 1909 1910 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item)); 1911 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item)); 1912 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1913 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item); 1914 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item)); 1915 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item)); 1916 inode->generation = btrfs_stack_inode_generation(inode_item); 1917 inode->last_trans = btrfs_stack_inode_transid(inode_item); 1918 1919 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item)); 1920 vfs_inode->i_rdev = 0; 1921 *rdev = btrfs_stack_inode_rdev(inode_item); 1922 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1923 &inode->flags, &inode->ro_flags); 1924 1925 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime), 1926 btrfs_stack_timespec_nsec(&inode_item->atime)); 1927 1928 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime), 1929 btrfs_stack_timespec_nsec(&inode_item->mtime)); 1930 1931 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1932 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1933 1934 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); 1935 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); 1936 1937 vfs_inode->i_generation = inode->generation; 1938 if (S_ISDIR(vfs_inode->i_mode)) 1939 inode->index_cnt = (u64)-1; 1940 1941 mutex_unlock(&delayed_node->mutex); 1942 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1943 return 0; 1944 } 1945 1946 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1947 struct btrfs_inode *inode) 1948 { 1949 struct btrfs_root *root = inode->root; 1950 struct btrfs_delayed_node *delayed_node; 1951 struct btrfs_ref_tracker delayed_node_tracker; 1952 int ret = 0; 1953 1954 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); 1955 if (IS_ERR(delayed_node)) 1956 return PTR_ERR(delayed_node); 1957 1958 mutex_lock(&delayed_node->mutex); 1959 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1960 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1961 goto release_node; 1962 } 1963 1964 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1965 if (ret) 1966 goto release_node; 1967 1968 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1969 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1970 delayed_node->count++; 1971 atomic_inc(&root->fs_info->delayed_root->items); 1972 release_node: 1973 mutex_unlock(&delayed_node->mutex); 1974 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1975 return ret; 1976 } 1977 1978 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1979 { 1980 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1981 struct btrfs_delayed_node *delayed_node; 1982 struct btrfs_ref_tracker delayed_node_tracker; 1983 1984 /* 1985 * we don't do delayed inode updates during log recovery because it 1986 * leads to enospc problems. This means we also can't do 1987 * delayed inode refs 1988 */ 1989 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1990 return -EAGAIN; 1991 1992 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); 1993 if (IS_ERR(delayed_node)) 1994 return PTR_ERR(delayed_node); 1995 1996 /* 1997 * We don't reserve space for inode ref deletion is because: 1998 * - We ONLY do async inode ref deletion for the inode who has only 1999 * one link(i_nlink == 1), it means there is only one inode ref. 2000 * And in most case, the inode ref and the inode item are in the 2001 * same leaf, and we will deal with them at the same time. 2002 * Since we are sure we will reserve the space for the inode item, 2003 * it is unnecessary to reserve space for inode ref deletion. 2004 * - If the inode ref and the inode item are not in the same leaf, 2005 * We also needn't worry about enospc problem, because we reserve 2006 * much more space for the inode update than it needs. 2007 * - At the worst, we can steal some space from the global reservation. 2008 * It is very rare. 2009 */ 2010 mutex_lock(&delayed_node->mutex); 2011 if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 2012 delayed_node->count++; 2013 atomic_inc(&fs_info->delayed_root->items); 2014 } 2015 mutex_unlock(&delayed_node->mutex); 2016 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 2017 return 0; 2018 } 2019 2020 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 2021 { 2022 struct btrfs_root *root = delayed_node->root; 2023 struct btrfs_fs_info *fs_info = root->fs_info; 2024 struct btrfs_delayed_item *curr_item, *prev_item; 2025 2026 mutex_lock(&delayed_node->mutex); 2027 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 2028 while (curr_item) { 2029 prev_item = curr_item; 2030 curr_item = __btrfs_next_delayed_item(prev_item); 2031 btrfs_release_delayed_item(prev_item); 2032 } 2033 2034 if (delayed_node->index_item_leaves > 0) { 2035 btrfs_delayed_item_release_leaves(delayed_node, 2036 delayed_node->index_item_leaves); 2037 delayed_node->index_item_leaves = 0; 2038 } 2039 2040 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2041 while (curr_item) { 2042 btrfs_delayed_item_release_metadata(root, curr_item); 2043 prev_item = curr_item; 2044 curr_item = __btrfs_next_delayed_item(prev_item); 2045 btrfs_release_delayed_item(prev_item); 2046 } 2047 2048 btrfs_release_delayed_iref(delayed_node); 2049 2050 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2051 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2052 btrfs_release_delayed_inode(delayed_node); 2053 } 2054 mutex_unlock(&delayed_node->mutex); 2055 } 2056 2057 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2058 { 2059 struct btrfs_delayed_node *delayed_node; 2060 struct btrfs_ref_tracker delayed_node_tracker; 2061 2062 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2063 if (!delayed_node) 2064 return; 2065 2066 __btrfs_kill_delayed_node(delayed_node); 2067 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 2068 } 2069 2070 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2071 { 2072 unsigned long index = 0; 2073 struct btrfs_delayed_node *delayed_nodes[8]; 2074 struct btrfs_ref_tracker delayed_node_trackers[8]; 2075 2076 while (1) { 2077 struct btrfs_delayed_node *node; 2078 int count; 2079 2080 xa_lock(&root->delayed_nodes); 2081 if (xa_empty(&root->delayed_nodes)) { 2082 xa_unlock(&root->delayed_nodes); 2083 return; 2084 } 2085 2086 count = 0; 2087 xa_for_each_start(&root->delayed_nodes, index, node, index) { 2088 /* 2089 * Don't increase refs in case the node is dead and 2090 * about to be removed from the tree in the loop below 2091 */ 2092 if (refcount_inc_not_zero(&node->refs)) { 2093 btrfs_delayed_node_ref_tracker_alloc(node, 2094 &delayed_node_trackers[count], 2095 GFP_ATOMIC); 2096 delayed_nodes[count] = node; 2097 count++; 2098 } 2099 if (count >= ARRAY_SIZE(delayed_nodes)) 2100 break; 2101 } 2102 xa_unlock(&root->delayed_nodes); 2103 index++; 2104 2105 for (int i = 0; i < count; i++) { 2106 __btrfs_kill_delayed_node(delayed_nodes[i]); 2107 btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]); 2108 btrfs_release_delayed_node(delayed_nodes[i], 2109 &delayed_node_trackers[i]); 2110 } 2111 } 2112 } 2113 2114 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2115 { 2116 struct btrfs_delayed_node *curr_node, *prev_node; 2117 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; 2118 2119 curr_node = btrfs_first_delayed_node(fs_info->delayed_root, 2120 &curr_delayed_node_tracker); 2121 while (curr_node) { 2122 __btrfs_kill_delayed_node(curr_node); 2123 2124 prev_node = curr_node; 2125 prev_delayed_node_tracker = curr_delayed_node_tracker; 2126 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); 2127 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); 2128 } 2129 } 2130 2131 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2132 struct list_head *ins_list, 2133 struct list_head *del_list) 2134 { 2135 struct btrfs_delayed_node *node; 2136 struct btrfs_delayed_item *item; 2137 struct btrfs_ref_tracker delayed_node_tracker; 2138 2139 node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2140 if (!node) 2141 return; 2142 2143 mutex_lock(&node->mutex); 2144 item = __btrfs_first_delayed_insertion_item(node); 2145 while (item) { 2146 /* 2147 * It's possible that the item is already in a log list. This 2148 * can happen in case two tasks are trying to log the same 2149 * directory. For example if we have tasks A and task B: 2150 * 2151 * Task A collected the delayed items into a log list while 2152 * under the inode's log_mutex (at btrfs_log_inode()), but it 2153 * only releases the items after logging the inodes they point 2154 * to (if they are new inodes), which happens after unlocking 2155 * the log mutex; 2156 * 2157 * Task B enters btrfs_log_inode() and acquires the log_mutex 2158 * of the same directory inode, before task B releases the 2159 * delayed items. This can happen for example when logging some 2160 * inode we need to trigger logging of its parent directory, so 2161 * logging two files that have the same parent directory can 2162 * lead to this. 2163 * 2164 * If this happens, just ignore delayed items already in a log 2165 * list. All the tasks logging the directory are under a log 2166 * transaction and whichever finishes first can not sync the log 2167 * before the other completes and leaves the log transaction. 2168 */ 2169 if (!item->logged && list_empty(&item->log_list)) { 2170 refcount_inc(&item->refs); 2171 list_add_tail(&item->log_list, ins_list); 2172 } 2173 item = __btrfs_next_delayed_item(item); 2174 } 2175 2176 item = __btrfs_first_delayed_deletion_item(node); 2177 while (item) { 2178 /* It may be non-empty, for the same reason mentioned above. */ 2179 if (!item->logged && list_empty(&item->log_list)) { 2180 refcount_inc(&item->refs); 2181 list_add_tail(&item->log_list, del_list); 2182 } 2183 item = __btrfs_next_delayed_item(item); 2184 } 2185 mutex_unlock(&node->mutex); 2186 2187 /* 2188 * We are called during inode logging, which means the inode is in use 2189 * and can not be evicted before we finish logging the inode. So we never 2190 * have the last reference on the delayed inode. 2191 * Also, we don't use btrfs_release_delayed_node() because that would 2192 * requeue the delayed inode (change its order in the list of prepared 2193 * nodes) and we don't want to do such change because we don't create or 2194 * delete delayed items. 2195 */ 2196 ASSERT(refcount_read(&node->refs) > 1); 2197 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); 2198 refcount_dec(&node->refs); 2199 } 2200 2201 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2202 struct list_head *ins_list, 2203 struct list_head *del_list) 2204 { 2205 struct btrfs_delayed_node *node; 2206 struct btrfs_delayed_item *item; 2207 struct btrfs_delayed_item *next; 2208 struct btrfs_ref_tracker delayed_node_tracker; 2209 2210 node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2211 if (!node) 2212 return; 2213 2214 mutex_lock(&node->mutex); 2215 2216 list_for_each_entry_safe(item, next, ins_list, log_list) { 2217 item->logged = true; 2218 list_del_init(&item->log_list); 2219 if (refcount_dec_and_test(&item->refs)) 2220 kfree(item); 2221 } 2222 2223 list_for_each_entry_safe(item, next, del_list, log_list) { 2224 item->logged = true; 2225 list_del_init(&item->log_list); 2226 if (refcount_dec_and_test(&item->refs)) 2227 kfree(item); 2228 } 2229 2230 mutex_unlock(&node->mutex); 2231 2232 /* 2233 * We are called during inode logging, which means the inode is in use 2234 * and can not be evicted before we finish logging the inode. So we never 2235 * have the last reference on the delayed inode. 2236 * Also, we don't use btrfs_release_delayed_node() because that would 2237 * requeue the delayed inode (change its order in the list of prepared 2238 * nodes) and we don't want to do such change because we don't create or 2239 * delete delayed items. 2240 */ 2241 ASSERT(refcount_read(&node->refs) > 1); 2242 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); 2243 refcount_dec(&node->refs); 2244 } 2245