xref: /linux/fs/btrfs/delayed-inode.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 
25 #define BTRFS_DELAYED_WRITEBACK		400
26 #define BTRFS_DELAYED_BACKGROUND	100
27 
28 static struct kmem_cache *delayed_node_cache;
29 
30 int __init btrfs_delayed_inode_init(void)
31 {
32 	delayed_node_cache = kmem_cache_create("delayed_node",
33 					sizeof(struct btrfs_delayed_node),
34 					0,
35 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 					NULL);
37 	if (!delayed_node_cache)
38 		return -ENOMEM;
39 	return 0;
40 }
41 
42 void btrfs_delayed_inode_exit(void)
43 {
44 	if (delayed_node_cache)
45 		kmem_cache_destroy(delayed_node_cache);
46 }
47 
48 static inline void btrfs_init_delayed_node(
49 				struct btrfs_delayed_node *delayed_node,
50 				struct btrfs_root *root, u64 inode_id)
51 {
52 	delayed_node->root = root;
53 	delayed_node->inode_id = inode_id;
54 	atomic_set(&delayed_node->refs, 0);
55 	delayed_node->count = 0;
56 	delayed_node->in_list = 0;
57 	delayed_node->inode_dirty = 0;
58 	delayed_node->ins_root = RB_ROOT;
59 	delayed_node->del_root = RB_ROOT;
60 	mutex_init(&delayed_node->mutex);
61 	delayed_node->index_cnt = 0;
62 	INIT_LIST_HEAD(&delayed_node->n_list);
63 	INIT_LIST_HEAD(&delayed_node->p_list);
64 	delayed_node->bytes_reserved = 0;
65 }
66 
67 static inline int btrfs_is_continuous_delayed_item(
68 					struct btrfs_delayed_item *item1,
69 					struct btrfs_delayed_item *item2)
70 {
71 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 	    item1->key.objectid == item2->key.objectid &&
73 	    item1->key.type == item2->key.type &&
74 	    item1->key.offset + 1 == item2->key.offset)
75 		return 1;
76 	return 0;
77 }
78 
79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 							struct btrfs_root *root)
81 {
82 	return root->fs_info->delayed_root;
83 }
84 
85 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
86 {
87 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 	struct btrfs_root *root = btrfs_inode->root;
89 	u64 ino = btrfs_ino(inode);
90 	struct btrfs_delayed_node *node;
91 
92 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 	if (node) {
94 		atomic_inc(&node->refs);
95 		return node;
96 	}
97 
98 	spin_lock(&root->inode_lock);
99 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 	if (node) {
101 		if (btrfs_inode->delayed_node) {
102 			atomic_inc(&node->refs);	/* can be accessed */
103 			BUG_ON(btrfs_inode->delayed_node != node);
104 			spin_unlock(&root->inode_lock);
105 			return node;
106 		}
107 		btrfs_inode->delayed_node = node;
108 		atomic_inc(&node->refs);	/* can be accessed */
109 		atomic_inc(&node->refs);	/* cached in the inode */
110 		spin_unlock(&root->inode_lock);
111 		return node;
112 	}
113 	spin_unlock(&root->inode_lock);
114 
115 	return NULL;
116 }
117 
118 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
119 							struct inode *inode)
120 {
121 	struct btrfs_delayed_node *node;
122 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
123 	struct btrfs_root *root = btrfs_inode->root;
124 	u64 ino = btrfs_ino(inode);
125 	int ret;
126 
127 again:
128 	node = btrfs_get_delayed_node(inode);
129 	if (node)
130 		return node;
131 
132 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
133 	if (!node)
134 		return ERR_PTR(-ENOMEM);
135 	btrfs_init_delayed_node(node, root, ino);
136 
137 	atomic_inc(&node->refs);	/* cached in the btrfs inode */
138 	atomic_inc(&node->refs);	/* can be accessed */
139 
140 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
141 	if (ret) {
142 		kmem_cache_free(delayed_node_cache, node);
143 		return ERR_PTR(ret);
144 	}
145 
146 	spin_lock(&root->inode_lock);
147 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
148 	if (ret == -EEXIST) {
149 		kmem_cache_free(delayed_node_cache, node);
150 		spin_unlock(&root->inode_lock);
151 		radix_tree_preload_end();
152 		goto again;
153 	}
154 	btrfs_inode->delayed_node = node;
155 	spin_unlock(&root->inode_lock);
156 	radix_tree_preload_end();
157 
158 	return node;
159 }
160 
161 /*
162  * Call it when holding delayed_node->mutex
163  *
164  * If mod = 1, add this node into the prepared list.
165  */
166 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
167 				     struct btrfs_delayed_node *node,
168 				     int mod)
169 {
170 	spin_lock(&root->lock);
171 	if (node->in_list) {
172 		if (!list_empty(&node->p_list))
173 			list_move_tail(&node->p_list, &root->prepare_list);
174 		else if (mod)
175 			list_add_tail(&node->p_list, &root->prepare_list);
176 	} else {
177 		list_add_tail(&node->n_list, &root->node_list);
178 		list_add_tail(&node->p_list, &root->prepare_list);
179 		atomic_inc(&node->refs);	/* inserted into list */
180 		root->nodes++;
181 		node->in_list = 1;
182 	}
183 	spin_unlock(&root->lock);
184 }
185 
186 /* Call it when holding delayed_node->mutex */
187 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
188 				       struct btrfs_delayed_node *node)
189 {
190 	spin_lock(&root->lock);
191 	if (node->in_list) {
192 		root->nodes--;
193 		atomic_dec(&node->refs);	/* not in the list */
194 		list_del_init(&node->n_list);
195 		if (!list_empty(&node->p_list))
196 			list_del_init(&node->p_list);
197 		node->in_list = 0;
198 	}
199 	spin_unlock(&root->lock);
200 }
201 
202 struct btrfs_delayed_node *btrfs_first_delayed_node(
203 			struct btrfs_delayed_root *delayed_root)
204 {
205 	struct list_head *p;
206 	struct btrfs_delayed_node *node = NULL;
207 
208 	spin_lock(&delayed_root->lock);
209 	if (list_empty(&delayed_root->node_list))
210 		goto out;
211 
212 	p = delayed_root->node_list.next;
213 	node = list_entry(p, struct btrfs_delayed_node, n_list);
214 	atomic_inc(&node->refs);
215 out:
216 	spin_unlock(&delayed_root->lock);
217 
218 	return node;
219 }
220 
221 struct btrfs_delayed_node *btrfs_next_delayed_node(
222 						struct btrfs_delayed_node *node)
223 {
224 	struct btrfs_delayed_root *delayed_root;
225 	struct list_head *p;
226 	struct btrfs_delayed_node *next = NULL;
227 
228 	delayed_root = node->root->fs_info->delayed_root;
229 	spin_lock(&delayed_root->lock);
230 	if (!node->in_list) {	/* not in the list */
231 		if (list_empty(&delayed_root->node_list))
232 			goto out;
233 		p = delayed_root->node_list.next;
234 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 		goto out;
236 	else
237 		p = node->n_list.next;
238 
239 	next = list_entry(p, struct btrfs_delayed_node, n_list);
240 	atomic_inc(&next->refs);
241 out:
242 	spin_unlock(&delayed_root->lock);
243 
244 	return next;
245 }
246 
247 static void __btrfs_release_delayed_node(
248 				struct btrfs_delayed_node *delayed_node,
249 				int mod)
250 {
251 	struct btrfs_delayed_root *delayed_root;
252 
253 	if (!delayed_node)
254 		return;
255 
256 	delayed_root = delayed_node->root->fs_info->delayed_root;
257 
258 	mutex_lock(&delayed_node->mutex);
259 	if (delayed_node->count)
260 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
261 	else
262 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
263 	mutex_unlock(&delayed_node->mutex);
264 
265 	if (atomic_dec_and_test(&delayed_node->refs)) {
266 		struct btrfs_root *root = delayed_node->root;
267 		spin_lock(&root->inode_lock);
268 		if (atomic_read(&delayed_node->refs) == 0) {
269 			radix_tree_delete(&root->delayed_nodes_tree,
270 					  delayed_node->inode_id);
271 			kmem_cache_free(delayed_node_cache, delayed_node);
272 		}
273 		spin_unlock(&root->inode_lock);
274 	}
275 }
276 
277 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
278 {
279 	__btrfs_release_delayed_node(node, 0);
280 }
281 
282 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
283 					struct btrfs_delayed_root *delayed_root)
284 {
285 	struct list_head *p;
286 	struct btrfs_delayed_node *node = NULL;
287 
288 	spin_lock(&delayed_root->lock);
289 	if (list_empty(&delayed_root->prepare_list))
290 		goto out;
291 
292 	p = delayed_root->prepare_list.next;
293 	list_del_init(p);
294 	node = list_entry(p, struct btrfs_delayed_node, p_list);
295 	atomic_inc(&node->refs);
296 out:
297 	spin_unlock(&delayed_root->lock);
298 
299 	return node;
300 }
301 
302 static inline void btrfs_release_prepared_delayed_node(
303 					struct btrfs_delayed_node *node)
304 {
305 	__btrfs_release_delayed_node(node, 1);
306 }
307 
308 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
309 {
310 	struct btrfs_delayed_item *item;
311 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
312 	if (item) {
313 		item->data_len = data_len;
314 		item->ins_or_del = 0;
315 		item->bytes_reserved = 0;
316 		item->delayed_node = NULL;
317 		atomic_set(&item->refs, 1);
318 	}
319 	return item;
320 }
321 
322 /*
323  * __btrfs_lookup_delayed_item - look up the delayed item by key
324  * @delayed_node: pointer to the delayed node
325  * @key:	  the key to look up
326  * @prev:	  used to store the prev item if the right item isn't found
327  * @next:	  used to store the next item if the right item isn't found
328  *
329  * Note: if we don't find the right item, we will return the prev item and
330  * the next item.
331  */
332 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
333 				struct rb_root *root,
334 				struct btrfs_key *key,
335 				struct btrfs_delayed_item **prev,
336 				struct btrfs_delayed_item **next)
337 {
338 	struct rb_node *node, *prev_node = NULL;
339 	struct btrfs_delayed_item *delayed_item = NULL;
340 	int ret = 0;
341 
342 	node = root->rb_node;
343 
344 	while (node) {
345 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
346 					rb_node);
347 		prev_node = node;
348 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
349 		if (ret < 0)
350 			node = node->rb_right;
351 		else if (ret > 0)
352 			node = node->rb_left;
353 		else
354 			return delayed_item;
355 	}
356 
357 	if (prev) {
358 		if (!prev_node)
359 			*prev = NULL;
360 		else if (ret < 0)
361 			*prev = delayed_item;
362 		else if ((node = rb_prev(prev_node)) != NULL) {
363 			*prev = rb_entry(node, struct btrfs_delayed_item,
364 					 rb_node);
365 		} else
366 			*prev = NULL;
367 	}
368 
369 	if (next) {
370 		if (!prev_node)
371 			*next = NULL;
372 		else if (ret > 0)
373 			*next = delayed_item;
374 		else if ((node = rb_next(prev_node)) != NULL) {
375 			*next = rb_entry(node, struct btrfs_delayed_item,
376 					 rb_node);
377 		} else
378 			*next = NULL;
379 	}
380 	return NULL;
381 }
382 
383 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
384 					struct btrfs_delayed_node *delayed_node,
385 					struct btrfs_key *key)
386 {
387 	struct btrfs_delayed_item *item;
388 
389 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
390 					   NULL, NULL);
391 	return item;
392 }
393 
394 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
395 					struct btrfs_delayed_node *delayed_node,
396 					struct btrfs_key *key)
397 {
398 	struct btrfs_delayed_item *item;
399 
400 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
401 					   NULL, NULL);
402 	return item;
403 }
404 
405 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
406 					struct btrfs_delayed_node *delayed_node,
407 					struct btrfs_key *key)
408 {
409 	struct btrfs_delayed_item *item, *next;
410 
411 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
412 					   NULL, &next);
413 	if (!item)
414 		item = next;
415 
416 	return item;
417 }
418 
419 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
420 					struct btrfs_delayed_node *delayed_node,
421 					struct btrfs_key *key)
422 {
423 	struct btrfs_delayed_item *item, *next;
424 
425 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
426 					   NULL, &next);
427 	if (!item)
428 		item = next;
429 
430 	return item;
431 }
432 
433 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
434 				    struct btrfs_delayed_item *ins,
435 				    int action)
436 {
437 	struct rb_node **p, *node;
438 	struct rb_node *parent_node = NULL;
439 	struct rb_root *root;
440 	struct btrfs_delayed_item *item;
441 	int cmp;
442 
443 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
444 		root = &delayed_node->ins_root;
445 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
446 		root = &delayed_node->del_root;
447 	else
448 		BUG();
449 	p = &root->rb_node;
450 	node = &ins->rb_node;
451 
452 	while (*p) {
453 		parent_node = *p;
454 		item = rb_entry(parent_node, struct btrfs_delayed_item,
455 				 rb_node);
456 
457 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
458 		if (cmp < 0)
459 			p = &(*p)->rb_right;
460 		else if (cmp > 0)
461 			p = &(*p)->rb_left;
462 		else
463 			return -EEXIST;
464 	}
465 
466 	rb_link_node(node, parent_node, p);
467 	rb_insert_color(node, root);
468 	ins->delayed_node = delayed_node;
469 	ins->ins_or_del = action;
470 
471 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
472 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
473 	    ins->key.offset >= delayed_node->index_cnt)
474 			delayed_node->index_cnt = ins->key.offset + 1;
475 
476 	delayed_node->count++;
477 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
478 	return 0;
479 }
480 
481 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
482 					      struct btrfs_delayed_item *item)
483 {
484 	return __btrfs_add_delayed_item(node, item,
485 					BTRFS_DELAYED_INSERTION_ITEM);
486 }
487 
488 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
489 					     struct btrfs_delayed_item *item)
490 {
491 	return __btrfs_add_delayed_item(node, item,
492 					BTRFS_DELAYED_DELETION_ITEM);
493 }
494 
495 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
496 {
497 	struct rb_root *root;
498 	struct btrfs_delayed_root *delayed_root;
499 
500 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
501 
502 	BUG_ON(!delayed_root);
503 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
504 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
505 
506 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
507 		root = &delayed_item->delayed_node->ins_root;
508 	else
509 		root = &delayed_item->delayed_node->del_root;
510 
511 	rb_erase(&delayed_item->rb_node, root);
512 	delayed_item->delayed_node->count--;
513 	atomic_dec(&delayed_root->items);
514 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
515 	    waitqueue_active(&delayed_root->wait))
516 		wake_up(&delayed_root->wait);
517 }
518 
519 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
520 {
521 	if (item) {
522 		__btrfs_remove_delayed_item(item);
523 		if (atomic_dec_and_test(&item->refs))
524 			kfree(item);
525 	}
526 }
527 
528 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
529 					struct btrfs_delayed_node *delayed_node)
530 {
531 	struct rb_node *p;
532 	struct btrfs_delayed_item *item = NULL;
533 
534 	p = rb_first(&delayed_node->ins_root);
535 	if (p)
536 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
537 
538 	return item;
539 }
540 
541 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
542 					struct btrfs_delayed_node *delayed_node)
543 {
544 	struct rb_node *p;
545 	struct btrfs_delayed_item *item = NULL;
546 
547 	p = rb_first(&delayed_node->del_root);
548 	if (p)
549 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
550 
551 	return item;
552 }
553 
554 struct btrfs_delayed_item *__btrfs_next_delayed_item(
555 						struct btrfs_delayed_item *item)
556 {
557 	struct rb_node *p;
558 	struct btrfs_delayed_item *next = NULL;
559 
560 	p = rb_next(&item->rb_node);
561 	if (p)
562 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
563 
564 	return next;
565 }
566 
567 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
568 						   u64 root_id)
569 {
570 	struct btrfs_key root_key;
571 
572 	if (root->objectid == root_id)
573 		return root;
574 
575 	root_key.objectid = root_id;
576 	root_key.type = BTRFS_ROOT_ITEM_KEY;
577 	root_key.offset = (u64)-1;
578 	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
579 }
580 
581 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
582 					       struct btrfs_root *root,
583 					       struct btrfs_delayed_item *item)
584 {
585 	struct btrfs_block_rsv *src_rsv;
586 	struct btrfs_block_rsv *dst_rsv;
587 	u64 num_bytes;
588 	int ret;
589 
590 	if (!trans->bytes_reserved)
591 		return 0;
592 
593 	src_rsv = trans->block_rsv;
594 	dst_rsv = &root->fs_info->global_block_rsv;
595 
596 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
597 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
598 	if (!ret)
599 		item->bytes_reserved = num_bytes;
600 
601 	return ret;
602 }
603 
604 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
605 						struct btrfs_delayed_item *item)
606 {
607 	struct btrfs_block_rsv *rsv;
608 
609 	if (!item->bytes_reserved)
610 		return;
611 
612 	rsv = &root->fs_info->global_block_rsv;
613 	btrfs_block_rsv_release(root, rsv,
614 				item->bytes_reserved);
615 }
616 
617 static int btrfs_delayed_inode_reserve_metadata(
618 					struct btrfs_trans_handle *trans,
619 					struct btrfs_root *root,
620 					struct btrfs_delayed_node *node)
621 {
622 	struct btrfs_block_rsv *src_rsv;
623 	struct btrfs_block_rsv *dst_rsv;
624 	u64 num_bytes;
625 	int ret;
626 
627 	if (!trans->bytes_reserved)
628 		return 0;
629 
630 	src_rsv = trans->block_rsv;
631 	dst_rsv = &root->fs_info->global_block_rsv;
632 
633 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
634 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
635 	if (!ret)
636 		node->bytes_reserved = num_bytes;
637 
638 	return ret;
639 }
640 
641 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
642 						struct btrfs_delayed_node *node)
643 {
644 	struct btrfs_block_rsv *rsv;
645 
646 	if (!node->bytes_reserved)
647 		return;
648 
649 	rsv = &root->fs_info->global_block_rsv;
650 	btrfs_block_rsv_release(root, rsv,
651 				node->bytes_reserved);
652 	node->bytes_reserved = 0;
653 }
654 
655 /*
656  * This helper will insert some continuous items into the same leaf according
657  * to the free space of the leaf.
658  */
659 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
660 				struct btrfs_root *root,
661 				struct btrfs_path *path,
662 				struct btrfs_delayed_item *item)
663 {
664 	struct btrfs_delayed_item *curr, *next;
665 	int free_space;
666 	int total_data_size = 0, total_size = 0;
667 	struct extent_buffer *leaf;
668 	char *data_ptr;
669 	struct btrfs_key *keys;
670 	u32 *data_size;
671 	struct list_head head;
672 	int slot;
673 	int nitems;
674 	int i;
675 	int ret = 0;
676 
677 	BUG_ON(!path->nodes[0]);
678 
679 	leaf = path->nodes[0];
680 	free_space = btrfs_leaf_free_space(root, leaf);
681 	INIT_LIST_HEAD(&head);
682 
683 	next = item;
684 	nitems = 0;
685 
686 	/*
687 	 * count the number of the continuous items that we can insert in batch
688 	 */
689 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
690 	       free_space) {
691 		total_data_size += next->data_len;
692 		total_size += next->data_len + sizeof(struct btrfs_item);
693 		list_add_tail(&next->tree_list, &head);
694 		nitems++;
695 
696 		curr = next;
697 		next = __btrfs_next_delayed_item(curr);
698 		if (!next)
699 			break;
700 
701 		if (!btrfs_is_continuous_delayed_item(curr, next))
702 			break;
703 	}
704 
705 	if (!nitems) {
706 		ret = 0;
707 		goto out;
708 	}
709 
710 	/*
711 	 * we need allocate some memory space, but it might cause the task
712 	 * to sleep, so we set all locked nodes in the path to blocking locks
713 	 * first.
714 	 */
715 	btrfs_set_path_blocking(path);
716 
717 	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
718 	if (!keys) {
719 		ret = -ENOMEM;
720 		goto out;
721 	}
722 
723 	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
724 	if (!data_size) {
725 		ret = -ENOMEM;
726 		goto error;
727 	}
728 
729 	/* get keys of all the delayed items */
730 	i = 0;
731 	list_for_each_entry(next, &head, tree_list) {
732 		keys[i] = next->key;
733 		data_size[i] = next->data_len;
734 		i++;
735 	}
736 
737 	/* reset all the locked nodes in the patch to spinning locks. */
738 	btrfs_clear_path_blocking(path, NULL, 0);
739 
740 	/* insert the keys of the items */
741 	ret = setup_items_for_insert(trans, root, path, keys, data_size,
742 				     total_data_size, total_size, nitems);
743 	if (ret)
744 		goto error;
745 
746 	/* insert the dir index items */
747 	slot = path->slots[0];
748 	list_for_each_entry_safe(curr, next, &head, tree_list) {
749 		data_ptr = btrfs_item_ptr(leaf, slot, char);
750 		write_extent_buffer(leaf, &curr->data,
751 				    (unsigned long)data_ptr,
752 				    curr->data_len);
753 		slot++;
754 
755 		btrfs_delayed_item_release_metadata(root, curr);
756 
757 		list_del(&curr->tree_list);
758 		btrfs_release_delayed_item(curr);
759 	}
760 
761 error:
762 	kfree(data_size);
763 	kfree(keys);
764 out:
765 	return ret;
766 }
767 
768 /*
769  * This helper can just do simple insertion that needn't extend item for new
770  * data, such as directory name index insertion, inode insertion.
771  */
772 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
773 				     struct btrfs_root *root,
774 				     struct btrfs_path *path,
775 				     struct btrfs_delayed_item *delayed_item)
776 {
777 	struct extent_buffer *leaf;
778 	struct btrfs_item *item;
779 	char *ptr;
780 	int ret;
781 
782 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
783 				      delayed_item->data_len);
784 	if (ret < 0 && ret != -EEXIST)
785 		return ret;
786 
787 	leaf = path->nodes[0];
788 
789 	item = btrfs_item_nr(leaf, path->slots[0]);
790 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
791 
792 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
793 			    delayed_item->data_len);
794 	btrfs_mark_buffer_dirty(leaf);
795 
796 	btrfs_delayed_item_release_metadata(root, delayed_item);
797 	return 0;
798 }
799 
800 /*
801  * we insert an item first, then if there are some continuous items, we try
802  * to insert those items into the same leaf.
803  */
804 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
805 				      struct btrfs_path *path,
806 				      struct btrfs_root *root,
807 				      struct btrfs_delayed_node *node)
808 {
809 	struct btrfs_delayed_item *curr, *prev;
810 	int ret = 0;
811 
812 do_again:
813 	mutex_lock(&node->mutex);
814 	curr = __btrfs_first_delayed_insertion_item(node);
815 	if (!curr)
816 		goto insert_end;
817 
818 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
819 	if (ret < 0) {
820 		btrfs_release_path(path);
821 		goto insert_end;
822 	}
823 
824 	prev = curr;
825 	curr = __btrfs_next_delayed_item(prev);
826 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
827 		/* insert the continuous items into the same leaf */
828 		path->slots[0]++;
829 		btrfs_batch_insert_items(trans, root, path, curr);
830 	}
831 	btrfs_release_delayed_item(prev);
832 	btrfs_mark_buffer_dirty(path->nodes[0]);
833 
834 	btrfs_release_path(path);
835 	mutex_unlock(&node->mutex);
836 	goto do_again;
837 
838 insert_end:
839 	mutex_unlock(&node->mutex);
840 	return ret;
841 }
842 
843 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
844 				    struct btrfs_root *root,
845 				    struct btrfs_path *path,
846 				    struct btrfs_delayed_item *item)
847 {
848 	struct btrfs_delayed_item *curr, *next;
849 	struct extent_buffer *leaf;
850 	struct btrfs_key key;
851 	struct list_head head;
852 	int nitems, i, last_item;
853 	int ret = 0;
854 
855 	BUG_ON(!path->nodes[0]);
856 
857 	leaf = path->nodes[0];
858 
859 	i = path->slots[0];
860 	last_item = btrfs_header_nritems(leaf) - 1;
861 	if (i > last_item)
862 		return -ENOENT;	/* FIXME: Is errno suitable? */
863 
864 	next = item;
865 	INIT_LIST_HEAD(&head);
866 	btrfs_item_key_to_cpu(leaf, &key, i);
867 	nitems = 0;
868 	/*
869 	 * count the number of the dir index items that we can delete in batch
870 	 */
871 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
872 		list_add_tail(&next->tree_list, &head);
873 		nitems++;
874 
875 		curr = next;
876 		next = __btrfs_next_delayed_item(curr);
877 		if (!next)
878 			break;
879 
880 		if (!btrfs_is_continuous_delayed_item(curr, next))
881 			break;
882 
883 		i++;
884 		if (i > last_item)
885 			break;
886 		btrfs_item_key_to_cpu(leaf, &key, i);
887 	}
888 
889 	if (!nitems)
890 		return 0;
891 
892 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
893 	if (ret)
894 		goto out;
895 
896 	list_for_each_entry_safe(curr, next, &head, tree_list) {
897 		btrfs_delayed_item_release_metadata(root, curr);
898 		list_del(&curr->tree_list);
899 		btrfs_release_delayed_item(curr);
900 	}
901 
902 out:
903 	return ret;
904 }
905 
906 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
907 				      struct btrfs_path *path,
908 				      struct btrfs_root *root,
909 				      struct btrfs_delayed_node *node)
910 {
911 	struct btrfs_delayed_item *curr, *prev;
912 	int ret = 0;
913 
914 do_again:
915 	mutex_lock(&node->mutex);
916 	curr = __btrfs_first_delayed_deletion_item(node);
917 	if (!curr)
918 		goto delete_fail;
919 
920 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
921 	if (ret < 0)
922 		goto delete_fail;
923 	else if (ret > 0) {
924 		/*
925 		 * can't find the item which the node points to, so this node
926 		 * is invalid, just drop it.
927 		 */
928 		prev = curr;
929 		curr = __btrfs_next_delayed_item(prev);
930 		btrfs_release_delayed_item(prev);
931 		ret = 0;
932 		btrfs_release_path(path);
933 		if (curr)
934 			goto do_again;
935 		else
936 			goto delete_fail;
937 	}
938 
939 	btrfs_batch_delete_items(trans, root, path, curr);
940 	btrfs_release_path(path);
941 	mutex_unlock(&node->mutex);
942 	goto do_again;
943 
944 delete_fail:
945 	btrfs_release_path(path);
946 	mutex_unlock(&node->mutex);
947 	return ret;
948 }
949 
950 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
951 {
952 	struct btrfs_delayed_root *delayed_root;
953 
954 	if (delayed_node && delayed_node->inode_dirty) {
955 		BUG_ON(!delayed_node->root);
956 		delayed_node->inode_dirty = 0;
957 		delayed_node->count--;
958 
959 		delayed_root = delayed_node->root->fs_info->delayed_root;
960 		atomic_dec(&delayed_root->items);
961 		if (atomic_read(&delayed_root->items) <
962 		    BTRFS_DELAYED_BACKGROUND &&
963 		    waitqueue_active(&delayed_root->wait))
964 			wake_up(&delayed_root->wait);
965 	}
966 }
967 
968 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
969 				      struct btrfs_root *root,
970 				      struct btrfs_path *path,
971 				      struct btrfs_delayed_node *node)
972 {
973 	struct btrfs_key key;
974 	struct btrfs_inode_item *inode_item;
975 	struct extent_buffer *leaf;
976 	int ret;
977 
978 	mutex_lock(&node->mutex);
979 	if (!node->inode_dirty) {
980 		mutex_unlock(&node->mutex);
981 		return 0;
982 	}
983 
984 	key.objectid = node->inode_id;
985 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
986 	key.offset = 0;
987 	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
988 	if (ret > 0) {
989 		btrfs_release_path(path);
990 		mutex_unlock(&node->mutex);
991 		return -ENOENT;
992 	} else if (ret < 0) {
993 		mutex_unlock(&node->mutex);
994 		return ret;
995 	}
996 
997 	btrfs_unlock_up_safe(path, 1);
998 	leaf = path->nodes[0];
999 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1000 				    struct btrfs_inode_item);
1001 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1002 			    sizeof(struct btrfs_inode_item));
1003 	btrfs_mark_buffer_dirty(leaf);
1004 	btrfs_release_path(path);
1005 
1006 	btrfs_delayed_inode_release_metadata(root, node);
1007 	btrfs_release_delayed_inode(node);
1008 	mutex_unlock(&node->mutex);
1009 
1010 	return 0;
1011 }
1012 
1013 /* Called when committing the transaction. */
1014 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1015 			    struct btrfs_root *root)
1016 {
1017 	struct btrfs_delayed_root *delayed_root;
1018 	struct btrfs_delayed_node *curr_node, *prev_node;
1019 	struct btrfs_path *path;
1020 	struct btrfs_block_rsv *block_rsv;
1021 	int ret = 0;
1022 
1023 	path = btrfs_alloc_path();
1024 	if (!path)
1025 		return -ENOMEM;
1026 	path->leave_spinning = 1;
1027 
1028 	block_rsv = trans->block_rsv;
1029 	trans->block_rsv = &root->fs_info->global_block_rsv;
1030 
1031 	delayed_root = btrfs_get_delayed_root(root);
1032 
1033 	curr_node = btrfs_first_delayed_node(delayed_root);
1034 	while (curr_node) {
1035 		root = curr_node->root;
1036 		ret = btrfs_insert_delayed_items(trans, path, root,
1037 						 curr_node);
1038 		if (!ret)
1039 			ret = btrfs_delete_delayed_items(trans, path, root,
1040 							 curr_node);
1041 		if (!ret)
1042 			ret = btrfs_update_delayed_inode(trans, root, path,
1043 							 curr_node);
1044 		if (ret) {
1045 			btrfs_release_delayed_node(curr_node);
1046 			break;
1047 		}
1048 
1049 		prev_node = curr_node;
1050 		curr_node = btrfs_next_delayed_node(curr_node);
1051 		btrfs_release_delayed_node(prev_node);
1052 	}
1053 
1054 	btrfs_free_path(path);
1055 	trans->block_rsv = block_rsv;
1056 	return ret;
1057 }
1058 
1059 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1060 					      struct btrfs_delayed_node *node)
1061 {
1062 	struct btrfs_path *path;
1063 	struct btrfs_block_rsv *block_rsv;
1064 	int ret;
1065 
1066 	path = btrfs_alloc_path();
1067 	if (!path)
1068 		return -ENOMEM;
1069 	path->leave_spinning = 1;
1070 
1071 	block_rsv = trans->block_rsv;
1072 	trans->block_rsv = &node->root->fs_info->global_block_rsv;
1073 
1074 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1075 	if (!ret)
1076 		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1077 	if (!ret)
1078 		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1079 	btrfs_free_path(path);
1080 
1081 	trans->block_rsv = block_rsv;
1082 	return ret;
1083 }
1084 
1085 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1086 				     struct inode *inode)
1087 {
1088 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1089 	int ret;
1090 
1091 	if (!delayed_node)
1092 		return 0;
1093 
1094 	mutex_lock(&delayed_node->mutex);
1095 	if (!delayed_node->count) {
1096 		mutex_unlock(&delayed_node->mutex);
1097 		btrfs_release_delayed_node(delayed_node);
1098 		return 0;
1099 	}
1100 	mutex_unlock(&delayed_node->mutex);
1101 
1102 	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1103 	btrfs_release_delayed_node(delayed_node);
1104 	return ret;
1105 }
1106 
1107 void btrfs_remove_delayed_node(struct inode *inode)
1108 {
1109 	struct btrfs_delayed_node *delayed_node;
1110 
1111 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1112 	if (!delayed_node)
1113 		return;
1114 
1115 	BTRFS_I(inode)->delayed_node = NULL;
1116 	btrfs_release_delayed_node(delayed_node);
1117 }
1118 
1119 struct btrfs_async_delayed_node {
1120 	struct btrfs_root *root;
1121 	struct btrfs_delayed_node *delayed_node;
1122 	struct btrfs_work work;
1123 };
1124 
1125 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1126 {
1127 	struct btrfs_async_delayed_node *async_node;
1128 	struct btrfs_trans_handle *trans;
1129 	struct btrfs_path *path;
1130 	struct btrfs_delayed_node *delayed_node = NULL;
1131 	struct btrfs_root *root;
1132 	struct btrfs_block_rsv *block_rsv;
1133 	unsigned long nr = 0;
1134 	int need_requeue = 0;
1135 	int ret;
1136 
1137 	async_node = container_of(work, struct btrfs_async_delayed_node, work);
1138 
1139 	path = btrfs_alloc_path();
1140 	if (!path)
1141 		goto out;
1142 	path->leave_spinning = 1;
1143 
1144 	delayed_node = async_node->delayed_node;
1145 	root = delayed_node->root;
1146 
1147 	trans = btrfs_join_transaction(root);
1148 	if (IS_ERR(trans))
1149 		goto free_path;
1150 
1151 	block_rsv = trans->block_rsv;
1152 	trans->block_rsv = &root->fs_info->global_block_rsv;
1153 
1154 	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1155 	if (!ret)
1156 		ret = btrfs_delete_delayed_items(trans, path, root,
1157 						 delayed_node);
1158 
1159 	if (!ret)
1160 		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1161 
1162 	/*
1163 	 * Maybe new delayed items have been inserted, so we need requeue
1164 	 * the work. Besides that, we must dequeue the empty delayed nodes
1165 	 * to avoid the race between delayed items balance and the worker.
1166 	 * The race like this:
1167 	 * 	Task1				Worker thread
1168 	 * 					count == 0, needn't requeue
1169 	 * 					  also needn't insert the
1170 	 * 					  delayed node into prepare
1171 	 * 					  list again.
1172 	 * 	add lots of delayed items
1173 	 * 	queue the delayed node
1174 	 * 	  already in the list,
1175 	 * 	  and not in the prepare
1176 	 * 	  list, it means the delayed
1177 	 * 	  node is being dealt with
1178 	 * 	  by the worker.
1179 	 * 	do delayed items balance
1180 	 * 	  the delayed node is being
1181 	 * 	  dealt with by the worker
1182 	 * 	  now, just wait.
1183 	 * 	  				the worker goto idle.
1184 	 * Task1 will sleep until the transaction is commited.
1185 	 */
1186 	mutex_lock(&delayed_node->mutex);
1187 	if (delayed_node->count)
1188 		need_requeue = 1;
1189 	else
1190 		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1191 					   delayed_node);
1192 	mutex_unlock(&delayed_node->mutex);
1193 
1194 	nr = trans->blocks_used;
1195 
1196 	trans->block_rsv = block_rsv;
1197 	btrfs_end_transaction_dmeta(trans, root);
1198 	__btrfs_btree_balance_dirty(root, nr);
1199 free_path:
1200 	btrfs_free_path(path);
1201 out:
1202 	if (need_requeue)
1203 		btrfs_requeue_work(&async_node->work);
1204 	else {
1205 		btrfs_release_prepared_delayed_node(delayed_node);
1206 		kfree(async_node);
1207 	}
1208 }
1209 
1210 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1211 				     struct btrfs_root *root, int all)
1212 {
1213 	struct btrfs_async_delayed_node *async_node;
1214 	struct btrfs_delayed_node *curr;
1215 	int count = 0;
1216 
1217 again:
1218 	curr = btrfs_first_prepared_delayed_node(delayed_root);
1219 	if (!curr)
1220 		return 0;
1221 
1222 	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1223 	if (!async_node) {
1224 		btrfs_release_prepared_delayed_node(curr);
1225 		return -ENOMEM;
1226 	}
1227 
1228 	async_node->root = root;
1229 	async_node->delayed_node = curr;
1230 
1231 	async_node->work.func = btrfs_async_run_delayed_node_done;
1232 	async_node->work.flags = 0;
1233 
1234 	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1235 	count++;
1236 
1237 	if (all || count < 4)
1238 		goto again;
1239 
1240 	return 0;
1241 }
1242 
1243 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1244 {
1245 	struct btrfs_delayed_root *delayed_root;
1246 	delayed_root = btrfs_get_delayed_root(root);
1247 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1248 }
1249 
1250 void btrfs_balance_delayed_items(struct btrfs_root *root)
1251 {
1252 	struct btrfs_delayed_root *delayed_root;
1253 
1254 	delayed_root = btrfs_get_delayed_root(root);
1255 
1256 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1257 		return;
1258 
1259 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1260 		int ret;
1261 		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1262 		if (ret)
1263 			return;
1264 
1265 		wait_event_interruptible_timeout(
1266 				delayed_root->wait,
1267 				(atomic_read(&delayed_root->items) <
1268 				 BTRFS_DELAYED_BACKGROUND),
1269 				HZ);
1270 		return;
1271 	}
1272 
1273 	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1274 }
1275 
1276 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1277 				   struct btrfs_root *root, const char *name,
1278 				   int name_len, struct inode *dir,
1279 				   struct btrfs_disk_key *disk_key, u8 type,
1280 				   u64 index)
1281 {
1282 	struct btrfs_delayed_node *delayed_node;
1283 	struct btrfs_delayed_item *delayed_item;
1284 	struct btrfs_dir_item *dir_item;
1285 	int ret;
1286 
1287 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1288 	if (IS_ERR(delayed_node))
1289 		return PTR_ERR(delayed_node);
1290 
1291 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1292 	if (!delayed_item) {
1293 		ret = -ENOMEM;
1294 		goto release_node;
1295 	}
1296 
1297 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1298 	/*
1299 	 * we have reserved enough space when we start a new transaction,
1300 	 * so reserving metadata failure is impossible
1301 	 */
1302 	BUG_ON(ret);
1303 
1304 	delayed_item->key.objectid = btrfs_ino(dir);
1305 	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1306 	delayed_item->key.offset = index;
1307 
1308 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1309 	dir_item->location = *disk_key;
1310 	dir_item->transid = cpu_to_le64(trans->transid);
1311 	dir_item->data_len = 0;
1312 	dir_item->name_len = cpu_to_le16(name_len);
1313 	dir_item->type = type;
1314 	memcpy((char *)(dir_item + 1), name, name_len);
1315 
1316 	mutex_lock(&delayed_node->mutex);
1317 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1318 	if (unlikely(ret)) {
1319 		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1320 				"the insertion tree of the delayed node"
1321 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1322 				name,
1323 				(unsigned long long)delayed_node->root->objectid,
1324 				(unsigned long long)delayed_node->inode_id,
1325 				ret);
1326 		BUG();
1327 	}
1328 	mutex_unlock(&delayed_node->mutex);
1329 
1330 release_node:
1331 	btrfs_release_delayed_node(delayed_node);
1332 	return ret;
1333 }
1334 
1335 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1336 					       struct btrfs_delayed_node *node,
1337 					       struct btrfs_key *key)
1338 {
1339 	struct btrfs_delayed_item *item;
1340 
1341 	mutex_lock(&node->mutex);
1342 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1343 	if (!item) {
1344 		mutex_unlock(&node->mutex);
1345 		return 1;
1346 	}
1347 
1348 	btrfs_delayed_item_release_metadata(root, item);
1349 	btrfs_release_delayed_item(item);
1350 	mutex_unlock(&node->mutex);
1351 	return 0;
1352 }
1353 
1354 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1355 				   struct btrfs_root *root, struct inode *dir,
1356 				   u64 index)
1357 {
1358 	struct btrfs_delayed_node *node;
1359 	struct btrfs_delayed_item *item;
1360 	struct btrfs_key item_key;
1361 	int ret;
1362 
1363 	node = btrfs_get_or_create_delayed_node(dir);
1364 	if (IS_ERR(node))
1365 		return PTR_ERR(node);
1366 
1367 	item_key.objectid = btrfs_ino(dir);
1368 	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1369 	item_key.offset = index;
1370 
1371 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1372 	if (!ret)
1373 		goto end;
1374 
1375 	item = btrfs_alloc_delayed_item(0);
1376 	if (!item) {
1377 		ret = -ENOMEM;
1378 		goto end;
1379 	}
1380 
1381 	item->key = item_key;
1382 
1383 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1384 	/*
1385 	 * we have reserved enough space when we start a new transaction,
1386 	 * so reserving metadata failure is impossible.
1387 	 */
1388 	BUG_ON(ret);
1389 
1390 	mutex_lock(&node->mutex);
1391 	ret = __btrfs_add_delayed_deletion_item(node, item);
1392 	if (unlikely(ret)) {
1393 		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1394 				"into the deletion tree of the delayed node"
1395 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1396 				(unsigned long long)index,
1397 				(unsigned long long)node->root->objectid,
1398 				(unsigned long long)node->inode_id,
1399 				ret);
1400 		BUG();
1401 	}
1402 	mutex_unlock(&node->mutex);
1403 end:
1404 	btrfs_release_delayed_node(node);
1405 	return ret;
1406 }
1407 
1408 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1409 {
1410 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1411 
1412 	if (!delayed_node)
1413 		return -ENOENT;
1414 
1415 	/*
1416 	 * Since we have held i_mutex of this directory, it is impossible that
1417 	 * a new directory index is added into the delayed node and index_cnt
1418 	 * is updated now. So we needn't lock the delayed node.
1419 	 */
1420 	if (!delayed_node->index_cnt) {
1421 		btrfs_release_delayed_node(delayed_node);
1422 		return -EINVAL;
1423 	}
1424 
1425 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1426 	btrfs_release_delayed_node(delayed_node);
1427 	return 0;
1428 }
1429 
1430 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1431 			     struct list_head *del_list)
1432 {
1433 	struct btrfs_delayed_node *delayed_node;
1434 	struct btrfs_delayed_item *item;
1435 
1436 	delayed_node = btrfs_get_delayed_node(inode);
1437 	if (!delayed_node)
1438 		return;
1439 
1440 	mutex_lock(&delayed_node->mutex);
1441 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1442 	while (item) {
1443 		atomic_inc(&item->refs);
1444 		list_add_tail(&item->readdir_list, ins_list);
1445 		item = __btrfs_next_delayed_item(item);
1446 	}
1447 
1448 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1449 	while (item) {
1450 		atomic_inc(&item->refs);
1451 		list_add_tail(&item->readdir_list, del_list);
1452 		item = __btrfs_next_delayed_item(item);
1453 	}
1454 	mutex_unlock(&delayed_node->mutex);
1455 	/*
1456 	 * This delayed node is still cached in the btrfs inode, so refs
1457 	 * must be > 1 now, and we needn't check it is going to be freed
1458 	 * or not.
1459 	 *
1460 	 * Besides that, this function is used to read dir, we do not
1461 	 * insert/delete delayed items in this period. So we also needn't
1462 	 * requeue or dequeue this delayed node.
1463 	 */
1464 	atomic_dec(&delayed_node->refs);
1465 }
1466 
1467 void btrfs_put_delayed_items(struct list_head *ins_list,
1468 			     struct list_head *del_list)
1469 {
1470 	struct btrfs_delayed_item *curr, *next;
1471 
1472 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1473 		list_del(&curr->readdir_list);
1474 		if (atomic_dec_and_test(&curr->refs))
1475 			kfree(curr);
1476 	}
1477 
1478 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1479 		list_del(&curr->readdir_list);
1480 		if (atomic_dec_and_test(&curr->refs))
1481 			kfree(curr);
1482 	}
1483 }
1484 
1485 int btrfs_should_delete_dir_index(struct list_head *del_list,
1486 				  u64 index)
1487 {
1488 	struct btrfs_delayed_item *curr, *next;
1489 	int ret;
1490 
1491 	if (list_empty(del_list))
1492 		return 0;
1493 
1494 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1495 		if (curr->key.offset > index)
1496 			break;
1497 
1498 		list_del(&curr->readdir_list);
1499 		ret = (curr->key.offset == index);
1500 
1501 		if (atomic_dec_and_test(&curr->refs))
1502 			kfree(curr);
1503 
1504 		if (ret)
1505 			return 1;
1506 		else
1507 			continue;
1508 	}
1509 	return 0;
1510 }
1511 
1512 /*
1513  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1514  *
1515  */
1516 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1517 				    filldir_t filldir,
1518 				    struct list_head *ins_list)
1519 {
1520 	struct btrfs_dir_item *di;
1521 	struct btrfs_delayed_item *curr, *next;
1522 	struct btrfs_key location;
1523 	char *name;
1524 	int name_len;
1525 	int over = 0;
1526 	unsigned char d_type;
1527 
1528 	if (list_empty(ins_list))
1529 		return 0;
1530 
1531 	/*
1532 	 * Changing the data of the delayed item is impossible. So
1533 	 * we needn't lock them. And we have held i_mutex of the
1534 	 * directory, nobody can delete any directory indexes now.
1535 	 */
1536 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1537 		list_del(&curr->readdir_list);
1538 
1539 		if (curr->key.offset < filp->f_pos) {
1540 			if (atomic_dec_and_test(&curr->refs))
1541 				kfree(curr);
1542 			continue;
1543 		}
1544 
1545 		filp->f_pos = curr->key.offset;
1546 
1547 		di = (struct btrfs_dir_item *)curr->data;
1548 		name = (char *)(di + 1);
1549 		name_len = le16_to_cpu(di->name_len);
1550 
1551 		d_type = btrfs_filetype_table[di->type];
1552 		btrfs_disk_key_to_cpu(&location, &di->location);
1553 
1554 		over = filldir(dirent, name, name_len, curr->key.offset,
1555 			       location.objectid, d_type);
1556 
1557 		if (atomic_dec_and_test(&curr->refs))
1558 			kfree(curr);
1559 
1560 		if (over)
1561 			return 1;
1562 	}
1563 	return 0;
1564 }
1565 
1566 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1567 			 generation, 64);
1568 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1569 			 sequence, 64);
1570 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1571 			 transid, 64);
1572 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1573 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1574 			 nbytes, 64);
1575 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1576 			 block_group, 64);
1577 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1578 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1579 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1580 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1581 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1582 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1583 
1584 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1585 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1586 
1587 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1588 				  struct btrfs_inode_item *inode_item,
1589 				  struct inode *inode)
1590 {
1591 	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1592 	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1593 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1594 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1595 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1596 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1597 	btrfs_set_stack_inode_generation(inode_item,
1598 					 BTRFS_I(inode)->generation);
1599 	btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1600 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1601 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1602 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1603 	btrfs_set_stack_inode_block_group(inode_item, 0);
1604 
1605 	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1606 				     inode->i_atime.tv_sec);
1607 	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1608 				      inode->i_atime.tv_nsec);
1609 
1610 	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1611 				     inode->i_mtime.tv_sec);
1612 	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1613 				      inode->i_mtime.tv_nsec);
1614 
1615 	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1616 				     inode->i_ctime.tv_sec);
1617 	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1618 				      inode->i_ctime.tv_nsec);
1619 }
1620 
1621 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1622 {
1623 	struct btrfs_delayed_node *delayed_node;
1624 	struct btrfs_inode_item *inode_item;
1625 	struct btrfs_timespec *tspec;
1626 
1627 	delayed_node = btrfs_get_delayed_node(inode);
1628 	if (!delayed_node)
1629 		return -ENOENT;
1630 
1631 	mutex_lock(&delayed_node->mutex);
1632 	if (!delayed_node->inode_dirty) {
1633 		mutex_unlock(&delayed_node->mutex);
1634 		btrfs_release_delayed_node(delayed_node);
1635 		return -ENOENT;
1636 	}
1637 
1638 	inode_item = &delayed_node->inode_item;
1639 
1640 	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1641 	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1642 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1643 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1644 	inode->i_nlink = btrfs_stack_inode_nlink(inode_item);
1645 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1646 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1647 	BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
1648 	inode->i_rdev = 0;
1649 	*rdev = btrfs_stack_inode_rdev(inode_item);
1650 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1651 
1652 	tspec = btrfs_inode_atime(inode_item);
1653 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1654 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1655 
1656 	tspec = btrfs_inode_mtime(inode_item);
1657 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1658 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1659 
1660 	tspec = btrfs_inode_ctime(inode_item);
1661 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1662 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1663 
1664 	inode->i_generation = BTRFS_I(inode)->generation;
1665 	BTRFS_I(inode)->index_cnt = (u64)-1;
1666 
1667 	mutex_unlock(&delayed_node->mutex);
1668 	btrfs_release_delayed_node(delayed_node);
1669 	return 0;
1670 }
1671 
1672 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1673 			       struct btrfs_root *root, struct inode *inode)
1674 {
1675 	struct btrfs_delayed_node *delayed_node;
1676 	int ret = 0;
1677 
1678 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1679 	if (IS_ERR(delayed_node))
1680 		return PTR_ERR(delayed_node);
1681 
1682 	mutex_lock(&delayed_node->mutex);
1683 	if (delayed_node->inode_dirty) {
1684 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1685 		goto release_node;
1686 	}
1687 
1688 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1689 	/*
1690 	 * we must reserve enough space when we start a new transaction,
1691 	 * so reserving metadata failure is impossible
1692 	 */
1693 	BUG_ON(ret);
1694 
1695 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1696 	delayed_node->inode_dirty = 1;
1697 	delayed_node->count++;
1698 	atomic_inc(&root->fs_info->delayed_root->items);
1699 release_node:
1700 	mutex_unlock(&delayed_node->mutex);
1701 	btrfs_release_delayed_node(delayed_node);
1702 	return ret;
1703 }
1704 
1705 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1706 {
1707 	struct btrfs_root *root = delayed_node->root;
1708 	struct btrfs_delayed_item *curr_item, *prev_item;
1709 
1710 	mutex_lock(&delayed_node->mutex);
1711 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1712 	while (curr_item) {
1713 		btrfs_delayed_item_release_metadata(root, curr_item);
1714 		prev_item = curr_item;
1715 		curr_item = __btrfs_next_delayed_item(prev_item);
1716 		btrfs_release_delayed_item(prev_item);
1717 	}
1718 
1719 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1720 	while (curr_item) {
1721 		btrfs_delayed_item_release_metadata(root, curr_item);
1722 		prev_item = curr_item;
1723 		curr_item = __btrfs_next_delayed_item(prev_item);
1724 		btrfs_release_delayed_item(prev_item);
1725 	}
1726 
1727 	if (delayed_node->inode_dirty) {
1728 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1729 		btrfs_release_delayed_inode(delayed_node);
1730 	}
1731 	mutex_unlock(&delayed_node->mutex);
1732 }
1733 
1734 void btrfs_kill_delayed_inode_items(struct inode *inode)
1735 {
1736 	struct btrfs_delayed_node *delayed_node;
1737 
1738 	delayed_node = btrfs_get_delayed_node(inode);
1739 	if (!delayed_node)
1740 		return;
1741 
1742 	__btrfs_kill_delayed_node(delayed_node);
1743 	btrfs_release_delayed_node(delayed_node);
1744 }
1745 
1746 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1747 {
1748 	u64 inode_id = 0;
1749 	struct btrfs_delayed_node *delayed_nodes[8];
1750 	int i, n;
1751 
1752 	while (1) {
1753 		spin_lock(&root->inode_lock);
1754 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1755 					   (void **)delayed_nodes, inode_id,
1756 					   ARRAY_SIZE(delayed_nodes));
1757 		if (!n) {
1758 			spin_unlock(&root->inode_lock);
1759 			break;
1760 		}
1761 
1762 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1763 
1764 		for (i = 0; i < n; i++)
1765 			atomic_inc(&delayed_nodes[i]->refs);
1766 		spin_unlock(&root->inode_lock);
1767 
1768 		for (i = 0; i < n; i++) {
1769 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1770 			btrfs_release_delayed_node(delayed_nodes[i]);
1771 		}
1772 	}
1773 }
1774