xref: /linux/fs/btrfs/delayed-inode.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 	if (!delayed_node_cache)
33 		return -ENOMEM;
34 	return 0;
35 }
36 
37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 	kmem_cache_destroy(delayed_node_cache);
40 }
41 
42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 	atomic_set(&delayed_root->items, 0);
45 	atomic_set(&delayed_root->items_seq, 0);
46 	delayed_root->nodes = 0;
47 	spin_lock_init(&delayed_root->lock);
48 	init_waitqueue_head(&delayed_root->wait);
49 	INIT_LIST_HEAD(&delayed_root->node_list);
50 	INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52 
53 static inline void btrfs_init_delayed_node(
54 				struct btrfs_delayed_node *delayed_node,
55 				struct btrfs_root *root, u64 inode_id)
56 {
57 	delayed_node->root = root;
58 	delayed_node->inode_id = inode_id;
59 	refcount_set(&delayed_node->refs, 0);
60 	delayed_node->ins_root = RB_ROOT_CACHED;
61 	delayed_node->del_root = RB_ROOT_CACHED;
62 	mutex_init(&delayed_node->mutex);
63 	INIT_LIST_HEAD(&delayed_node->n_list);
64 	INIT_LIST_HEAD(&delayed_node->p_list);
65 }
66 
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 		struct btrfs_inode *btrfs_inode)
69 {
70 	struct btrfs_root *root = btrfs_inode->root;
71 	u64 ino = btrfs_ino(btrfs_inode);
72 	struct btrfs_delayed_node *node;
73 
74 	node = READ_ONCE(btrfs_inode->delayed_node);
75 	if (node) {
76 		refcount_inc(&node->refs);
77 		return node;
78 	}
79 
80 	spin_lock(&root->inode_lock);
81 	node = xa_load(&root->delayed_nodes, ino);
82 
83 	if (node) {
84 		if (btrfs_inode->delayed_node) {
85 			refcount_inc(&node->refs);	/* can be accessed */
86 			BUG_ON(btrfs_inode->delayed_node != node);
87 			spin_unlock(&root->inode_lock);
88 			return node;
89 		}
90 
91 		/*
92 		 * It's possible that we're racing into the middle of removing
93 		 * this node from the xarray.  In this case, the refcount
94 		 * was zero and it should never go back to one.  Just return
95 		 * NULL like it was never in the xarray at all; our release
96 		 * function is in the process of removing it.
97 		 *
98 		 * Some implementations of refcount_inc refuse to bump the
99 		 * refcount once it has hit zero.  If we don't do this dance
100 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 		 * of actually bumping the refcount.
102 		 *
103 		 * If this node is properly in the xarray, we want to bump the
104 		 * refcount twice, once for the inode and once for this get
105 		 * operation.
106 		 */
107 		if (refcount_inc_not_zero(&node->refs)) {
108 			refcount_inc(&node->refs);
109 			btrfs_inode->delayed_node = node;
110 		} else {
111 			node = NULL;
112 		}
113 
114 		spin_unlock(&root->inode_lock);
115 		return node;
116 	}
117 	spin_unlock(&root->inode_lock);
118 
119 	return NULL;
120 }
121 
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 		struct btrfs_inode *btrfs_inode)
125 {
126 	struct btrfs_delayed_node *node;
127 	struct btrfs_root *root = btrfs_inode->root;
128 	u64 ino = btrfs_ino(btrfs_inode);
129 	int ret;
130 	void *ptr;
131 
132 again:
133 	node = btrfs_get_delayed_node(btrfs_inode);
134 	if (node)
135 		return node;
136 
137 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
138 	if (!node)
139 		return ERR_PTR(-ENOMEM);
140 	btrfs_init_delayed_node(node, root, ino);
141 
142 	/* Cached in the inode and can be accessed. */
143 	refcount_set(&node->refs, 2);
144 
145 	/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
146 	ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
147 	if (ret == -ENOMEM) {
148 		kmem_cache_free(delayed_node_cache, node);
149 		return ERR_PTR(-ENOMEM);
150 	}
151 	spin_lock(&root->inode_lock);
152 	ptr = xa_load(&root->delayed_nodes, ino);
153 	if (ptr) {
154 		/* Somebody inserted it, go back and read it. */
155 		spin_unlock(&root->inode_lock);
156 		kmem_cache_free(delayed_node_cache, node);
157 		node = NULL;
158 		goto again;
159 	}
160 	ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
161 	ASSERT(xa_err(ptr) != -EINVAL);
162 	ASSERT(xa_err(ptr) != -ENOMEM);
163 	ASSERT(ptr == NULL);
164 	btrfs_inode->delayed_node = node;
165 	spin_unlock(&root->inode_lock);
166 
167 	return node;
168 }
169 
170 /*
171  * Call it when holding delayed_node->mutex
172  *
173  * If mod = 1, add this node into the prepared list.
174  */
175 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
176 				     struct btrfs_delayed_node *node,
177 				     int mod)
178 {
179 	spin_lock(&root->lock);
180 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
181 		if (!list_empty(&node->p_list))
182 			list_move_tail(&node->p_list, &root->prepare_list);
183 		else if (mod)
184 			list_add_tail(&node->p_list, &root->prepare_list);
185 	} else {
186 		list_add_tail(&node->n_list, &root->node_list);
187 		list_add_tail(&node->p_list, &root->prepare_list);
188 		refcount_inc(&node->refs);	/* inserted into list */
189 		root->nodes++;
190 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
191 	}
192 	spin_unlock(&root->lock);
193 }
194 
195 /* Call it when holding delayed_node->mutex */
196 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
197 				       struct btrfs_delayed_node *node)
198 {
199 	spin_lock(&root->lock);
200 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201 		root->nodes--;
202 		refcount_dec(&node->refs);	/* not in the list */
203 		list_del_init(&node->n_list);
204 		if (!list_empty(&node->p_list))
205 			list_del_init(&node->p_list);
206 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
207 	}
208 	spin_unlock(&root->lock);
209 }
210 
211 static struct btrfs_delayed_node *btrfs_first_delayed_node(
212 			struct btrfs_delayed_root *delayed_root)
213 {
214 	struct list_head *p;
215 	struct btrfs_delayed_node *node = NULL;
216 
217 	spin_lock(&delayed_root->lock);
218 	if (list_empty(&delayed_root->node_list))
219 		goto out;
220 
221 	p = delayed_root->node_list.next;
222 	node = list_entry(p, struct btrfs_delayed_node, n_list);
223 	refcount_inc(&node->refs);
224 out:
225 	spin_unlock(&delayed_root->lock);
226 
227 	return node;
228 }
229 
230 static struct btrfs_delayed_node *btrfs_next_delayed_node(
231 						struct btrfs_delayed_node *node)
232 {
233 	struct btrfs_delayed_root *delayed_root;
234 	struct list_head *p;
235 	struct btrfs_delayed_node *next = NULL;
236 
237 	delayed_root = node->root->fs_info->delayed_root;
238 	spin_lock(&delayed_root->lock);
239 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
240 		/* not in the list */
241 		if (list_empty(&delayed_root->node_list))
242 			goto out;
243 		p = delayed_root->node_list.next;
244 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
245 		goto out;
246 	else
247 		p = node->n_list.next;
248 
249 	next = list_entry(p, struct btrfs_delayed_node, n_list);
250 	refcount_inc(&next->refs);
251 out:
252 	spin_unlock(&delayed_root->lock);
253 
254 	return next;
255 }
256 
257 static void __btrfs_release_delayed_node(
258 				struct btrfs_delayed_node *delayed_node,
259 				int mod)
260 {
261 	struct btrfs_delayed_root *delayed_root;
262 
263 	if (!delayed_node)
264 		return;
265 
266 	delayed_root = delayed_node->root->fs_info->delayed_root;
267 
268 	mutex_lock(&delayed_node->mutex);
269 	if (delayed_node->count)
270 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
271 	else
272 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
273 	mutex_unlock(&delayed_node->mutex);
274 
275 	if (refcount_dec_and_test(&delayed_node->refs)) {
276 		struct btrfs_root *root = delayed_node->root;
277 
278 		spin_lock(&root->inode_lock);
279 		/*
280 		 * Once our refcount goes to zero, nobody is allowed to bump it
281 		 * back up.  We can delete it now.
282 		 */
283 		ASSERT(refcount_read(&delayed_node->refs) == 0);
284 		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
285 		spin_unlock(&root->inode_lock);
286 		kmem_cache_free(delayed_node_cache, delayed_node);
287 	}
288 }
289 
290 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
291 {
292 	__btrfs_release_delayed_node(node, 0);
293 }
294 
295 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
296 					struct btrfs_delayed_root *delayed_root)
297 {
298 	struct list_head *p;
299 	struct btrfs_delayed_node *node = NULL;
300 
301 	spin_lock(&delayed_root->lock);
302 	if (list_empty(&delayed_root->prepare_list))
303 		goto out;
304 
305 	p = delayed_root->prepare_list.next;
306 	list_del_init(p);
307 	node = list_entry(p, struct btrfs_delayed_node, p_list);
308 	refcount_inc(&node->refs);
309 out:
310 	spin_unlock(&delayed_root->lock);
311 
312 	return node;
313 }
314 
315 static inline void btrfs_release_prepared_delayed_node(
316 					struct btrfs_delayed_node *node)
317 {
318 	__btrfs_release_delayed_node(node, 1);
319 }
320 
321 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
322 					   struct btrfs_delayed_node *node,
323 					   enum btrfs_delayed_item_type type)
324 {
325 	struct btrfs_delayed_item *item;
326 
327 	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
328 	if (item) {
329 		item->data_len = data_len;
330 		item->type = type;
331 		item->bytes_reserved = 0;
332 		item->delayed_node = node;
333 		RB_CLEAR_NODE(&item->rb_node);
334 		INIT_LIST_HEAD(&item->log_list);
335 		item->logged = false;
336 		refcount_set(&item->refs, 1);
337 	}
338 	return item;
339 }
340 
341 /*
342  * Look up the delayed item by key.
343  *
344  * @delayed_node: pointer to the delayed node
345  * @index:	  the dir index value to lookup (offset of a dir index key)
346  *
347  * Note: if we don't find the right item, we will return the prev item and
348  * the next item.
349  */
350 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
351 				struct rb_root *root,
352 				u64 index)
353 {
354 	struct rb_node *node = root->rb_node;
355 	struct btrfs_delayed_item *delayed_item = NULL;
356 
357 	while (node) {
358 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
359 					rb_node);
360 		if (delayed_item->index < index)
361 			node = node->rb_right;
362 		else if (delayed_item->index > index)
363 			node = node->rb_left;
364 		else
365 			return delayed_item;
366 	}
367 
368 	return NULL;
369 }
370 
371 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
372 				    struct btrfs_delayed_item *ins)
373 {
374 	struct rb_node **p, *node;
375 	struct rb_node *parent_node = NULL;
376 	struct rb_root_cached *root;
377 	struct btrfs_delayed_item *item;
378 	bool leftmost = true;
379 
380 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
381 		root = &delayed_node->ins_root;
382 	else
383 		root = &delayed_node->del_root;
384 
385 	p = &root->rb_root.rb_node;
386 	node = &ins->rb_node;
387 
388 	while (*p) {
389 		parent_node = *p;
390 		item = rb_entry(parent_node, struct btrfs_delayed_item,
391 				 rb_node);
392 
393 		if (item->index < ins->index) {
394 			p = &(*p)->rb_right;
395 			leftmost = false;
396 		} else if (item->index > ins->index) {
397 			p = &(*p)->rb_left;
398 		} else {
399 			return -EEXIST;
400 		}
401 	}
402 
403 	rb_link_node(node, parent_node, p);
404 	rb_insert_color_cached(node, root, leftmost);
405 
406 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
407 	    ins->index >= delayed_node->index_cnt)
408 		delayed_node->index_cnt = ins->index + 1;
409 
410 	delayed_node->count++;
411 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
412 	return 0;
413 }
414 
415 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
416 {
417 	int seq = atomic_inc_return(&delayed_root->items_seq);
418 
419 	/* atomic_dec_return implies a barrier */
420 	if ((atomic_dec_return(&delayed_root->items) <
421 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
422 		cond_wake_up_nomb(&delayed_root->wait);
423 }
424 
425 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
426 {
427 	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
428 	struct rb_root_cached *root;
429 	struct btrfs_delayed_root *delayed_root;
430 
431 	/* Not inserted, ignore it. */
432 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
433 		return;
434 
435 	/* If it's in a rbtree, then we need to have delayed node locked. */
436 	lockdep_assert_held(&delayed_node->mutex);
437 
438 	delayed_root = delayed_node->root->fs_info->delayed_root;
439 
440 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
441 		root = &delayed_node->ins_root;
442 	else
443 		root = &delayed_node->del_root;
444 
445 	rb_erase_cached(&delayed_item->rb_node, root);
446 	RB_CLEAR_NODE(&delayed_item->rb_node);
447 	delayed_node->count--;
448 
449 	finish_one_item(delayed_root);
450 }
451 
452 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
453 {
454 	if (item) {
455 		__btrfs_remove_delayed_item(item);
456 		if (refcount_dec_and_test(&item->refs))
457 			kfree(item);
458 	}
459 }
460 
461 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
462 					struct btrfs_delayed_node *delayed_node)
463 {
464 	struct rb_node *p;
465 	struct btrfs_delayed_item *item = NULL;
466 
467 	p = rb_first_cached(&delayed_node->ins_root);
468 	if (p)
469 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
470 
471 	return item;
472 }
473 
474 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
475 					struct btrfs_delayed_node *delayed_node)
476 {
477 	struct rb_node *p;
478 	struct btrfs_delayed_item *item = NULL;
479 
480 	p = rb_first_cached(&delayed_node->del_root);
481 	if (p)
482 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
483 
484 	return item;
485 }
486 
487 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
488 						struct btrfs_delayed_item *item)
489 {
490 	struct rb_node *p;
491 	struct btrfs_delayed_item *next = NULL;
492 
493 	p = rb_next(&item->rb_node);
494 	if (p)
495 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
496 
497 	return next;
498 }
499 
500 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
501 					       struct btrfs_delayed_item *item)
502 {
503 	struct btrfs_block_rsv *src_rsv;
504 	struct btrfs_block_rsv *dst_rsv;
505 	struct btrfs_fs_info *fs_info = trans->fs_info;
506 	u64 num_bytes;
507 	int ret;
508 
509 	if (!trans->bytes_reserved)
510 		return 0;
511 
512 	src_rsv = trans->block_rsv;
513 	dst_rsv = &fs_info->delayed_block_rsv;
514 
515 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
516 
517 	/*
518 	 * Here we migrate space rsv from transaction rsv, since have already
519 	 * reserved space when starting a transaction.  So no need to reserve
520 	 * qgroup space here.
521 	 */
522 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
523 	if (!ret) {
524 		trace_btrfs_space_reservation(fs_info, "delayed_item",
525 					      item->delayed_node->inode_id,
526 					      num_bytes, 1);
527 		/*
528 		 * For insertions we track reserved metadata space by accounting
529 		 * for the number of leaves that will be used, based on the delayed
530 		 * node's curr_index_batch_size and index_item_leaves fields.
531 		 */
532 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
533 			item->bytes_reserved = num_bytes;
534 	}
535 
536 	return ret;
537 }
538 
539 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
540 						struct btrfs_delayed_item *item)
541 {
542 	struct btrfs_block_rsv *rsv;
543 	struct btrfs_fs_info *fs_info = root->fs_info;
544 
545 	if (!item->bytes_reserved)
546 		return;
547 
548 	rsv = &fs_info->delayed_block_rsv;
549 	/*
550 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
551 	 * to release/reserve qgroup space.
552 	 */
553 	trace_btrfs_space_reservation(fs_info, "delayed_item",
554 				      item->delayed_node->inode_id,
555 				      item->bytes_reserved, 0);
556 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
557 }
558 
559 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
560 					      unsigned int num_leaves)
561 {
562 	struct btrfs_fs_info *fs_info = node->root->fs_info;
563 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
564 
565 	/* There are no space reservations during log replay, bail out. */
566 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
567 		return;
568 
569 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
570 				      bytes, 0);
571 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
572 }
573 
574 static int btrfs_delayed_inode_reserve_metadata(
575 					struct btrfs_trans_handle *trans,
576 					struct btrfs_root *root,
577 					struct btrfs_delayed_node *node)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	struct btrfs_block_rsv *src_rsv;
581 	struct btrfs_block_rsv *dst_rsv;
582 	u64 num_bytes;
583 	int ret;
584 
585 	src_rsv = trans->block_rsv;
586 	dst_rsv = &fs_info->delayed_block_rsv;
587 
588 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
589 
590 	/*
591 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
592 	 * which doesn't reserve space for speed.  This is a problem since we
593 	 * still need to reserve space for this update, so try to reserve the
594 	 * space.
595 	 *
596 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
597 	 * we always reserve enough to update the inode item.
598 	 */
599 	if (!src_rsv || (!trans->bytes_reserved &&
600 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
601 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
602 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
603 		if (ret < 0)
604 			return ret;
605 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
606 					  BTRFS_RESERVE_NO_FLUSH);
607 		/* NO_FLUSH could only fail with -ENOSPC */
608 		ASSERT(ret == 0 || ret == -ENOSPC);
609 		if (ret)
610 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
611 	} else {
612 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
613 	}
614 
615 	if (!ret) {
616 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
617 					      node->inode_id, num_bytes, 1);
618 		node->bytes_reserved = num_bytes;
619 	}
620 
621 	return ret;
622 }
623 
624 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
625 						struct btrfs_delayed_node *node,
626 						bool qgroup_free)
627 {
628 	struct btrfs_block_rsv *rsv;
629 
630 	if (!node->bytes_reserved)
631 		return;
632 
633 	rsv = &fs_info->delayed_block_rsv;
634 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
635 				      node->inode_id, node->bytes_reserved, 0);
636 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
637 	if (qgroup_free)
638 		btrfs_qgroup_free_meta_prealloc(node->root,
639 				node->bytes_reserved);
640 	else
641 		btrfs_qgroup_convert_reserved_meta(node->root,
642 				node->bytes_reserved);
643 	node->bytes_reserved = 0;
644 }
645 
646 /*
647  * Insert a single delayed item or a batch of delayed items, as many as possible
648  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
649  * in the rbtree, and if there's a gap between two consecutive dir index items,
650  * then it means at some point we had delayed dir indexes to add but they got
651  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
652  * into the subvolume tree. Dir index keys also have their offsets coming from a
653  * monotonically increasing counter, so we can't get new keys with an offset that
654  * fits within a gap between delayed dir index items.
655  */
656 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
657 				     struct btrfs_root *root,
658 				     struct btrfs_path *path,
659 				     struct btrfs_delayed_item *first_item)
660 {
661 	struct btrfs_fs_info *fs_info = root->fs_info;
662 	struct btrfs_delayed_node *node = first_item->delayed_node;
663 	LIST_HEAD(item_list);
664 	struct btrfs_delayed_item *curr;
665 	struct btrfs_delayed_item *next;
666 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
667 	struct btrfs_item_batch batch;
668 	struct btrfs_key first_key;
669 	const u32 first_data_size = first_item->data_len;
670 	int total_size;
671 	char *ins_data = NULL;
672 	int ret;
673 	bool continuous_keys_only = false;
674 
675 	lockdep_assert_held(&node->mutex);
676 
677 	/*
678 	 * During normal operation the delayed index offset is continuously
679 	 * increasing, so we can batch insert all items as there will not be any
680 	 * overlapping keys in the tree.
681 	 *
682 	 * The exception to this is log replay, where we may have interleaved
683 	 * offsets in the tree, so our batch needs to be continuous keys only in
684 	 * order to ensure we do not end up with out of order items in our leaf.
685 	 */
686 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
687 		continuous_keys_only = true;
688 
689 	/*
690 	 * For delayed items to insert, we track reserved metadata bytes based
691 	 * on the number of leaves that we will use.
692 	 * See btrfs_insert_delayed_dir_index() and
693 	 * btrfs_delayed_item_reserve_metadata()).
694 	 */
695 	ASSERT(first_item->bytes_reserved == 0);
696 
697 	list_add_tail(&first_item->tree_list, &item_list);
698 	batch.total_data_size = first_data_size;
699 	batch.nr = 1;
700 	total_size = first_data_size + sizeof(struct btrfs_item);
701 	curr = first_item;
702 
703 	while (true) {
704 		int next_size;
705 
706 		next = __btrfs_next_delayed_item(curr);
707 		if (!next)
708 			break;
709 
710 		/*
711 		 * We cannot allow gaps in the key space if we're doing log
712 		 * replay.
713 		 */
714 		if (continuous_keys_only && (next->index != curr->index + 1))
715 			break;
716 
717 		ASSERT(next->bytes_reserved == 0);
718 
719 		next_size = next->data_len + sizeof(struct btrfs_item);
720 		if (total_size + next_size > max_size)
721 			break;
722 
723 		list_add_tail(&next->tree_list, &item_list);
724 		batch.nr++;
725 		total_size += next_size;
726 		batch.total_data_size += next->data_len;
727 		curr = next;
728 	}
729 
730 	if (batch.nr == 1) {
731 		first_key.objectid = node->inode_id;
732 		first_key.type = BTRFS_DIR_INDEX_KEY;
733 		first_key.offset = first_item->index;
734 		batch.keys = &first_key;
735 		batch.data_sizes = &first_data_size;
736 	} else {
737 		struct btrfs_key *ins_keys;
738 		u32 *ins_sizes;
739 		int i = 0;
740 
741 		ins_data = kmalloc(batch.nr * sizeof(u32) +
742 				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
743 		if (!ins_data) {
744 			ret = -ENOMEM;
745 			goto out;
746 		}
747 		ins_sizes = (u32 *)ins_data;
748 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
749 		batch.keys = ins_keys;
750 		batch.data_sizes = ins_sizes;
751 		list_for_each_entry(curr, &item_list, tree_list) {
752 			ins_keys[i].objectid = node->inode_id;
753 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
754 			ins_keys[i].offset = curr->index;
755 			ins_sizes[i] = curr->data_len;
756 			i++;
757 		}
758 	}
759 
760 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
761 	if (ret)
762 		goto out;
763 
764 	list_for_each_entry(curr, &item_list, tree_list) {
765 		char *data_ptr;
766 
767 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
768 		write_extent_buffer(path->nodes[0], &curr->data,
769 				    (unsigned long)data_ptr, curr->data_len);
770 		path->slots[0]++;
771 	}
772 
773 	/*
774 	 * Now release our path before releasing the delayed items and their
775 	 * metadata reservations, so that we don't block other tasks for more
776 	 * time than needed.
777 	 */
778 	btrfs_release_path(path);
779 
780 	ASSERT(node->index_item_leaves > 0);
781 
782 	/*
783 	 * For normal operations we will batch an entire leaf's worth of delayed
784 	 * items, so if there are more items to process we can decrement
785 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
786 	 *
787 	 * However for log replay we may not have inserted an entire leaf's
788 	 * worth of items, we may have not had continuous items, so decrementing
789 	 * here would mess up the index_item_leaves accounting.  For this case
790 	 * only clean up the accounting when there are no items left.
791 	 */
792 	if (next && !continuous_keys_only) {
793 		/*
794 		 * We inserted one batch of items into a leaf a there are more
795 		 * items to flush in a future batch, now release one unit of
796 		 * metadata space from the delayed block reserve, corresponding
797 		 * the leaf we just flushed to.
798 		 */
799 		btrfs_delayed_item_release_leaves(node, 1);
800 		node->index_item_leaves--;
801 	} else if (!next) {
802 		/*
803 		 * There are no more items to insert. We can have a number of
804 		 * reserved leaves > 1 here - this happens when many dir index
805 		 * items are added and then removed before they are flushed (file
806 		 * names with a very short life, never span a transaction). So
807 		 * release all remaining leaves.
808 		 */
809 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
810 		node->index_item_leaves = 0;
811 	}
812 
813 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
814 		list_del(&curr->tree_list);
815 		btrfs_release_delayed_item(curr);
816 	}
817 out:
818 	kfree(ins_data);
819 	return ret;
820 }
821 
822 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
823 				      struct btrfs_path *path,
824 				      struct btrfs_root *root,
825 				      struct btrfs_delayed_node *node)
826 {
827 	int ret = 0;
828 
829 	while (ret == 0) {
830 		struct btrfs_delayed_item *curr;
831 
832 		mutex_lock(&node->mutex);
833 		curr = __btrfs_first_delayed_insertion_item(node);
834 		if (!curr) {
835 			mutex_unlock(&node->mutex);
836 			break;
837 		}
838 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
839 		mutex_unlock(&node->mutex);
840 	}
841 
842 	return ret;
843 }
844 
845 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
846 				    struct btrfs_root *root,
847 				    struct btrfs_path *path,
848 				    struct btrfs_delayed_item *item)
849 {
850 	const u64 ino = item->delayed_node->inode_id;
851 	struct btrfs_fs_info *fs_info = root->fs_info;
852 	struct btrfs_delayed_item *curr, *next;
853 	struct extent_buffer *leaf = path->nodes[0];
854 	LIST_HEAD(batch_list);
855 	int nitems, slot, last_slot;
856 	int ret;
857 	u64 total_reserved_size = item->bytes_reserved;
858 
859 	ASSERT(leaf != NULL);
860 
861 	slot = path->slots[0];
862 	last_slot = btrfs_header_nritems(leaf) - 1;
863 	/*
864 	 * Our caller always gives us a path pointing to an existing item, so
865 	 * this can not happen.
866 	 */
867 	ASSERT(slot <= last_slot);
868 	if (WARN_ON(slot > last_slot))
869 		return -ENOENT;
870 
871 	nitems = 1;
872 	curr = item;
873 	list_add_tail(&curr->tree_list, &batch_list);
874 
875 	/*
876 	 * Keep checking if the next delayed item matches the next item in the
877 	 * leaf - if so, we can add it to the batch of items to delete from the
878 	 * leaf.
879 	 */
880 	while (slot < last_slot) {
881 		struct btrfs_key key;
882 
883 		next = __btrfs_next_delayed_item(curr);
884 		if (!next)
885 			break;
886 
887 		slot++;
888 		btrfs_item_key_to_cpu(leaf, &key, slot);
889 		if (key.objectid != ino ||
890 		    key.type != BTRFS_DIR_INDEX_KEY ||
891 		    key.offset != next->index)
892 			break;
893 		nitems++;
894 		curr = next;
895 		list_add_tail(&curr->tree_list, &batch_list);
896 		total_reserved_size += curr->bytes_reserved;
897 	}
898 
899 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
900 	if (ret)
901 		return ret;
902 
903 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
904 	if (total_reserved_size > 0) {
905 		/*
906 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
907 		 * don't need to release/reserve qgroup space.
908 		 */
909 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
910 					      total_reserved_size, 0);
911 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
912 					total_reserved_size, NULL);
913 	}
914 
915 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
916 		list_del(&curr->tree_list);
917 		btrfs_release_delayed_item(curr);
918 	}
919 
920 	return 0;
921 }
922 
923 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
924 				      struct btrfs_path *path,
925 				      struct btrfs_root *root,
926 				      struct btrfs_delayed_node *node)
927 {
928 	struct btrfs_key key;
929 	int ret = 0;
930 
931 	key.objectid = node->inode_id;
932 	key.type = BTRFS_DIR_INDEX_KEY;
933 
934 	while (ret == 0) {
935 		struct btrfs_delayed_item *item;
936 
937 		mutex_lock(&node->mutex);
938 		item = __btrfs_first_delayed_deletion_item(node);
939 		if (!item) {
940 			mutex_unlock(&node->mutex);
941 			break;
942 		}
943 
944 		key.offset = item->index;
945 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
946 		if (ret > 0) {
947 			/*
948 			 * There's no matching item in the leaf. This means we
949 			 * have already deleted this item in a past run of the
950 			 * delayed items. We ignore errors when running delayed
951 			 * items from an async context, through a work queue job
952 			 * running btrfs_async_run_delayed_root(), and don't
953 			 * release delayed items that failed to complete. This
954 			 * is because we will retry later, and at transaction
955 			 * commit time we always run delayed items and will
956 			 * then deal with errors if they fail to run again.
957 			 *
958 			 * So just release delayed items for which we can't find
959 			 * an item in the tree, and move to the next item.
960 			 */
961 			btrfs_release_path(path);
962 			btrfs_release_delayed_item(item);
963 			ret = 0;
964 		} else if (ret == 0) {
965 			ret = btrfs_batch_delete_items(trans, root, path, item);
966 			btrfs_release_path(path);
967 		}
968 
969 		/*
970 		 * We unlock and relock on each iteration, this is to prevent
971 		 * blocking other tasks for too long while we are being run from
972 		 * the async context (work queue job). Those tasks are typically
973 		 * running system calls like creat/mkdir/rename/unlink/etc which
974 		 * need to add delayed items to this delayed node.
975 		 */
976 		mutex_unlock(&node->mutex);
977 	}
978 
979 	return ret;
980 }
981 
982 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
983 {
984 	struct btrfs_delayed_root *delayed_root;
985 
986 	if (delayed_node &&
987 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
988 		ASSERT(delayed_node->root);
989 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
990 		delayed_node->count--;
991 
992 		delayed_root = delayed_node->root->fs_info->delayed_root;
993 		finish_one_item(delayed_root);
994 	}
995 }
996 
997 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
998 {
999 
1000 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1001 		struct btrfs_delayed_root *delayed_root;
1002 
1003 		ASSERT(delayed_node->root);
1004 		delayed_node->count--;
1005 
1006 		delayed_root = delayed_node->root->fs_info->delayed_root;
1007 		finish_one_item(delayed_root);
1008 	}
1009 }
1010 
1011 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012 					struct btrfs_root *root,
1013 					struct btrfs_path *path,
1014 					struct btrfs_delayed_node *node)
1015 {
1016 	struct btrfs_fs_info *fs_info = root->fs_info;
1017 	struct btrfs_key key;
1018 	struct btrfs_inode_item *inode_item;
1019 	struct extent_buffer *leaf;
1020 	int mod;
1021 	int ret;
1022 
1023 	key.objectid = node->inode_id;
1024 	key.type = BTRFS_INODE_ITEM_KEY;
1025 	key.offset = 0;
1026 
1027 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028 		mod = -1;
1029 	else
1030 		mod = 1;
1031 
1032 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033 	if (ret > 0)
1034 		ret = -ENOENT;
1035 	if (ret < 0)
1036 		goto out;
1037 
1038 	leaf = path->nodes[0];
1039 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1040 				    struct btrfs_inode_item);
1041 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1042 			    sizeof(struct btrfs_inode_item));
1043 	btrfs_mark_buffer_dirty(trans, leaf);
1044 
1045 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1046 		goto out;
1047 
1048 	/*
1049 	 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1050 	 * only one ref left.  Check if the next item is an INODE_REF/EXTREF.
1051 	 *
1052 	 * But if we're the last item already, release and search for the last
1053 	 * INODE_REF/EXTREF.
1054 	 */
1055 	if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1056 		key.objectid = node->inode_id;
1057 		key.type = BTRFS_INODE_EXTREF_KEY;
1058 		key.offset = (u64)-1;
1059 
1060 		btrfs_release_path(path);
1061 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1062 		if (ret < 0)
1063 			goto err_out;
1064 		ASSERT(ret > 0);
1065 		ASSERT(path->slots[0] > 0);
1066 		ret = 0;
1067 		path->slots[0]--;
1068 		leaf = path->nodes[0];
1069 	} else {
1070 		path->slots[0]++;
1071 	}
1072 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1073 	if (key.objectid != node->inode_id)
1074 		goto out;
1075 	if (key.type != BTRFS_INODE_REF_KEY &&
1076 	    key.type != BTRFS_INODE_EXTREF_KEY)
1077 		goto out;
1078 
1079 	/*
1080 	 * Delayed iref deletion is for the inode who has only one link,
1081 	 * so there is only one iref. The case that several irefs are
1082 	 * in the same item doesn't exist.
1083 	 */
1084 	ret = btrfs_del_item(trans, root, path);
1085 out:
1086 	btrfs_release_delayed_iref(node);
1087 	btrfs_release_path(path);
1088 err_out:
1089 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1090 	btrfs_release_delayed_inode(node);
1091 
1092 	/*
1093 	 * If we fail to update the delayed inode we need to abort the
1094 	 * transaction, because we could leave the inode with the improper
1095 	 * counts behind.
1096 	 */
1097 	if (ret && ret != -ENOENT)
1098 		btrfs_abort_transaction(trans, ret);
1099 
1100 	return ret;
1101 }
1102 
1103 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1104 					     struct btrfs_root *root,
1105 					     struct btrfs_path *path,
1106 					     struct btrfs_delayed_node *node)
1107 {
1108 	int ret;
1109 
1110 	mutex_lock(&node->mutex);
1111 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1112 		mutex_unlock(&node->mutex);
1113 		return 0;
1114 	}
1115 
1116 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1117 	mutex_unlock(&node->mutex);
1118 	return ret;
1119 }
1120 
1121 static inline int
1122 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1123 				   struct btrfs_path *path,
1124 				   struct btrfs_delayed_node *node)
1125 {
1126 	int ret;
1127 
1128 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1129 	if (ret)
1130 		return ret;
1131 
1132 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1133 	if (ret)
1134 		return ret;
1135 
1136 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1137 	return ret;
1138 }
1139 
1140 /*
1141  * Called when committing the transaction.
1142  * Returns 0 on success.
1143  * Returns < 0 on error and returns with an aborted transaction with any
1144  * outstanding delayed items cleaned up.
1145  */
1146 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1147 {
1148 	struct btrfs_fs_info *fs_info = trans->fs_info;
1149 	struct btrfs_delayed_root *delayed_root;
1150 	struct btrfs_delayed_node *curr_node, *prev_node;
1151 	struct btrfs_path *path;
1152 	struct btrfs_block_rsv *block_rsv;
1153 	int ret = 0;
1154 	bool count = (nr > 0);
1155 
1156 	if (TRANS_ABORTED(trans))
1157 		return -EIO;
1158 
1159 	path = btrfs_alloc_path();
1160 	if (!path)
1161 		return -ENOMEM;
1162 
1163 	block_rsv = trans->block_rsv;
1164 	trans->block_rsv = &fs_info->delayed_block_rsv;
1165 
1166 	delayed_root = fs_info->delayed_root;
1167 
1168 	curr_node = btrfs_first_delayed_node(delayed_root);
1169 	while (curr_node && (!count || nr--)) {
1170 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1171 							 curr_node);
1172 		if (ret) {
1173 			btrfs_abort_transaction(trans, ret);
1174 			break;
1175 		}
1176 
1177 		prev_node = curr_node;
1178 		curr_node = btrfs_next_delayed_node(curr_node);
1179 		/*
1180 		 * See the comment below about releasing path before releasing
1181 		 * node. If the commit of delayed items was successful the path
1182 		 * should always be released, but in case of an error, it may
1183 		 * point to locked extent buffers (a leaf at the very least).
1184 		 */
1185 		ASSERT(path->nodes[0] == NULL);
1186 		btrfs_release_delayed_node(prev_node);
1187 	}
1188 
1189 	/*
1190 	 * Release the path to avoid a potential deadlock and lockdep splat when
1191 	 * releasing the delayed node, as that requires taking the delayed node's
1192 	 * mutex. If another task starts running delayed items before we take
1193 	 * the mutex, it will first lock the mutex and then it may try to lock
1194 	 * the same btree path (leaf).
1195 	 */
1196 	btrfs_free_path(path);
1197 
1198 	if (curr_node)
1199 		btrfs_release_delayed_node(curr_node);
1200 	trans->block_rsv = block_rsv;
1201 
1202 	return ret;
1203 }
1204 
1205 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1206 {
1207 	return __btrfs_run_delayed_items(trans, -1);
1208 }
1209 
1210 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1211 {
1212 	return __btrfs_run_delayed_items(trans, nr);
1213 }
1214 
1215 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1216 				     struct btrfs_inode *inode)
1217 {
1218 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1219 	struct btrfs_path *path;
1220 	struct btrfs_block_rsv *block_rsv;
1221 	int ret;
1222 
1223 	if (!delayed_node)
1224 		return 0;
1225 
1226 	mutex_lock(&delayed_node->mutex);
1227 	if (!delayed_node->count) {
1228 		mutex_unlock(&delayed_node->mutex);
1229 		btrfs_release_delayed_node(delayed_node);
1230 		return 0;
1231 	}
1232 	mutex_unlock(&delayed_node->mutex);
1233 
1234 	path = btrfs_alloc_path();
1235 	if (!path) {
1236 		btrfs_release_delayed_node(delayed_node);
1237 		return -ENOMEM;
1238 	}
1239 
1240 	block_rsv = trans->block_rsv;
1241 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1242 
1243 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1244 
1245 	btrfs_release_delayed_node(delayed_node);
1246 	btrfs_free_path(path);
1247 	trans->block_rsv = block_rsv;
1248 
1249 	return ret;
1250 }
1251 
1252 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1253 {
1254 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1255 	struct btrfs_trans_handle *trans;
1256 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1257 	struct btrfs_path *path;
1258 	struct btrfs_block_rsv *block_rsv;
1259 	int ret;
1260 
1261 	if (!delayed_node)
1262 		return 0;
1263 
1264 	mutex_lock(&delayed_node->mutex);
1265 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1266 		mutex_unlock(&delayed_node->mutex);
1267 		btrfs_release_delayed_node(delayed_node);
1268 		return 0;
1269 	}
1270 	mutex_unlock(&delayed_node->mutex);
1271 
1272 	trans = btrfs_join_transaction(delayed_node->root);
1273 	if (IS_ERR(trans)) {
1274 		ret = PTR_ERR(trans);
1275 		goto out;
1276 	}
1277 
1278 	path = btrfs_alloc_path();
1279 	if (!path) {
1280 		ret = -ENOMEM;
1281 		goto trans_out;
1282 	}
1283 
1284 	block_rsv = trans->block_rsv;
1285 	trans->block_rsv = &fs_info->delayed_block_rsv;
1286 
1287 	mutex_lock(&delayed_node->mutex);
1288 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1289 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1290 						   path, delayed_node);
1291 	else
1292 		ret = 0;
1293 	mutex_unlock(&delayed_node->mutex);
1294 
1295 	btrfs_free_path(path);
1296 	trans->block_rsv = block_rsv;
1297 trans_out:
1298 	btrfs_end_transaction(trans);
1299 	btrfs_btree_balance_dirty(fs_info);
1300 out:
1301 	btrfs_release_delayed_node(delayed_node);
1302 
1303 	return ret;
1304 }
1305 
1306 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1307 {
1308 	struct btrfs_delayed_node *delayed_node;
1309 
1310 	delayed_node = READ_ONCE(inode->delayed_node);
1311 	if (!delayed_node)
1312 		return;
1313 
1314 	inode->delayed_node = NULL;
1315 	btrfs_release_delayed_node(delayed_node);
1316 }
1317 
1318 struct btrfs_async_delayed_work {
1319 	struct btrfs_delayed_root *delayed_root;
1320 	int nr;
1321 	struct btrfs_work work;
1322 };
1323 
1324 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1325 {
1326 	struct btrfs_async_delayed_work *async_work;
1327 	struct btrfs_delayed_root *delayed_root;
1328 	struct btrfs_trans_handle *trans;
1329 	struct btrfs_path *path;
1330 	struct btrfs_delayed_node *delayed_node = NULL;
1331 	struct btrfs_root *root;
1332 	struct btrfs_block_rsv *block_rsv;
1333 	int total_done = 0;
1334 
1335 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1336 	delayed_root = async_work->delayed_root;
1337 
1338 	path = btrfs_alloc_path();
1339 	if (!path)
1340 		goto out;
1341 
1342 	do {
1343 		if (atomic_read(&delayed_root->items) <
1344 		    BTRFS_DELAYED_BACKGROUND / 2)
1345 			break;
1346 
1347 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1348 		if (!delayed_node)
1349 			break;
1350 
1351 		root = delayed_node->root;
1352 
1353 		trans = btrfs_join_transaction(root);
1354 		if (IS_ERR(trans)) {
1355 			btrfs_release_path(path);
1356 			btrfs_release_prepared_delayed_node(delayed_node);
1357 			total_done++;
1358 			continue;
1359 		}
1360 
1361 		block_rsv = trans->block_rsv;
1362 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1363 
1364 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1365 
1366 		trans->block_rsv = block_rsv;
1367 		btrfs_end_transaction(trans);
1368 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1369 
1370 		btrfs_release_path(path);
1371 		btrfs_release_prepared_delayed_node(delayed_node);
1372 		total_done++;
1373 
1374 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1375 		 || total_done < async_work->nr);
1376 
1377 	btrfs_free_path(path);
1378 out:
1379 	wake_up(&delayed_root->wait);
1380 	kfree(async_work);
1381 }
1382 
1383 
1384 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1385 				     struct btrfs_fs_info *fs_info, int nr)
1386 {
1387 	struct btrfs_async_delayed_work *async_work;
1388 
1389 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1390 	if (!async_work)
1391 		return -ENOMEM;
1392 
1393 	async_work->delayed_root = delayed_root;
1394 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1395 	async_work->nr = nr;
1396 
1397 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1398 	return 0;
1399 }
1400 
1401 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1402 {
1403 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1404 }
1405 
1406 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1407 {
1408 	int val = atomic_read(&delayed_root->items_seq);
1409 
1410 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1411 		return 1;
1412 
1413 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1414 		return 1;
1415 
1416 	return 0;
1417 }
1418 
1419 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1420 {
1421 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1422 
1423 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1424 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1425 		return;
1426 
1427 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1428 		int seq;
1429 		int ret;
1430 
1431 		seq = atomic_read(&delayed_root->items_seq);
1432 
1433 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1434 		if (ret)
1435 			return;
1436 
1437 		wait_event_interruptible(delayed_root->wait,
1438 					 could_end_wait(delayed_root, seq));
1439 		return;
1440 	}
1441 
1442 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1443 }
1444 
1445 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1446 {
1447 	struct btrfs_fs_info *fs_info = trans->fs_info;
1448 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1449 
1450 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1451 		return;
1452 
1453 	/*
1454 	 * Adding the new dir index item does not require touching another
1455 	 * leaf, so we can release 1 unit of metadata that was previously
1456 	 * reserved when starting the transaction. This applies only to
1457 	 * the case where we had a transaction start and excludes the
1458 	 * transaction join case (when replaying log trees).
1459 	 */
1460 	trace_btrfs_space_reservation(fs_info, "transaction",
1461 				      trans->transid, bytes, 0);
1462 	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1463 	ASSERT(trans->bytes_reserved >= bytes);
1464 	trans->bytes_reserved -= bytes;
1465 }
1466 
1467 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1468 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1469 				   const char *name, int name_len,
1470 				   struct btrfs_inode *dir,
1471 				   struct btrfs_disk_key *disk_key, u8 flags,
1472 				   u64 index)
1473 {
1474 	struct btrfs_fs_info *fs_info = trans->fs_info;
1475 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1476 	struct btrfs_delayed_node *delayed_node;
1477 	struct btrfs_delayed_item *delayed_item;
1478 	struct btrfs_dir_item *dir_item;
1479 	bool reserve_leaf_space;
1480 	u32 data_len;
1481 	int ret;
1482 
1483 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1484 	if (IS_ERR(delayed_node))
1485 		return PTR_ERR(delayed_node);
1486 
1487 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1488 						delayed_node,
1489 						BTRFS_DELAYED_INSERTION_ITEM);
1490 	if (!delayed_item) {
1491 		ret = -ENOMEM;
1492 		goto release_node;
1493 	}
1494 
1495 	delayed_item->index = index;
1496 
1497 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1498 	dir_item->location = *disk_key;
1499 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1500 	btrfs_set_stack_dir_data_len(dir_item, 0);
1501 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1502 	btrfs_set_stack_dir_flags(dir_item, flags);
1503 	memcpy((char *)(dir_item + 1), name, name_len);
1504 
1505 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1506 
1507 	mutex_lock(&delayed_node->mutex);
1508 
1509 	/*
1510 	 * First attempt to insert the delayed item. This is to make the error
1511 	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1512 	 * any other task coming in and running the delayed item before we do
1513 	 * the metadata space reservation below, because we are holding the
1514 	 * delayed node's mutex and that mutex must also be locked before the
1515 	 * node's delayed items can be run.
1516 	 */
1517 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1518 	if (unlikely(ret)) {
1519 		btrfs_err(trans->fs_info,
1520 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1521 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1522 			  delayed_node->inode_id, dir->index_cnt,
1523 			  delayed_node->index_cnt, ret);
1524 		btrfs_release_delayed_item(delayed_item);
1525 		btrfs_release_dir_index_item_space(trans);
1526 		mutex_unlock(&delayed_node->mutex);
1527 		goto release_node;
1528 	}
1529 
1530 	if (delayed_node->index_item_leaves == 0 ||
1531 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1532 		delayed_node->curr_index_batch_size = data_len;
1533 		reserve_leaf_space = true;
1534 	} else {
1535 		delayed_node->curr_index_batch_size += data_len;
1536 		reserve_leaf_space = false;
1537 	}
1538 
1539 	if (reserve_leaf_space) {
1540 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1541 		/*
1542 		 * Space was reserved for a dir index item insertion when we
1543 		 * started the transaction, so getting a failure here should be
1544 		 * impossible.
1545 		 */
1546 		if (WARN_ON(ret)) {
1547 			btrfs_release_delayed_item(delayed_item);
1548 			mutex_unlock(&delayed_node->mutex);
1549 			goto release_node;
1550 		}
1551 
1552 		delayed_node->index_item_leaves++;
1553 	} else {
1554 		btrfs_release_dir_index_item_space(trans);
1555 	}
1556 	mutex_unlock(&delayed_node->mutex);
1557 
1558 release_node:
1559 	btrfs_release_delayed_node(delayed_node);
1560 	return ret;
1561 }
1562 
1563 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1564 					       struct btrfs_delayed_node *node,
1565 					       u64 index)
1566 {
1567 	struct btrfs_delayed_item *item;
1568 
1569 	mutex_lock(&node->mutex);
1570 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1571 	if (!item) {
1572 		mutex_unlock(&node->mutex);
1573 		return 1;
1574 	}
1575 
1576 	/*
1577 	 * For delayed items to insert, we track reserved metadata bytes based
1578 	 * on the number of leaves that we will use.
1579 	 * See btrfs_insert_delayed_dir_index() and
1580 	 * btrfs_delayed_item_reserve_metadata()).
1581 	 */
1582 	ASSERT(item->bytes_reserved == 0);
1583 	ASSERT(node->index_item_leaves > 0);
1584 
1585 	/*
1586 	 * If there's only one leaf reserved, we can decrement this item from the
1587 	 * current batch, otherwise we can not because we don't know which leaf
1588 	 * it belongs to. With the current limit on delayed items, we rarely
1589 	 * accumulate enough dir index items to fill more than one leaf (even
1590 	 * when using a leaf size of 4K).
1591 	 */
1592 	if (node->index_item_leaves == 1) {
1593 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1594 
1595 		ASSERT(node->curr_index_batch_size >= data_len);
1596 		node->curr_index_batch_size -= data_len;
1597 	}
1598 
1599 	btrfs_release_delayed_item(item);
1600 
1601 	/* If we now have no more dir index items, we can release all leaves. */
1602 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1603 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1604 		node->index_item_leaves = 0;
1605 	}
1606 
1607 	mutex_unlock(&node->mutex);
1608 	return 0;
1609 }
1610 
1611 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1612 				   struct btrfs_inode *dir, u64 index)
1613 {
1614 	struct btrfs_delayed_node *node;
1615 	struct btrfs_delayed_item *item;
1616 	int ret;
1617 
1618 	node = btrfs_get_or_create_delayed_node(dir);
1619 	if (IS_ERR(node))
1620 		return PTR_ERR(node);
1621 
1622 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1623 	if (!ret)
1624 		goto end;
1625 
1626 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1627 	if (!item) {
1628 		ret = -ENOMEM;
1629 		goto end;
1630 	}
1631 
1632 	item->index = index;
1633 
1634 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1635 	/*
1636 	 * we have reserved enough space when we start a new transaction,
1637 	 * so reserving metadata failure is impossible.
1638 	 */
1639 	if (ret < 0) {
1640 		btrfs_err(trans->fs_info,
1641 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1642 		btrfs_release_delayed_item(item);
1643 		goto end;
1644 	}
1645 
1646 	mutex_lock(&node->mutex);
1647 	ret = __btrfs_add_delayed_item(node, item);
1648 	if (unlikely(ret)) {
1649 		btrfs_err(trans->fs_info,
1650 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1651 			  index, node->root->root_key.objectid,
1652 			  node->inode_id, ret);
1653 		btrfs_delayed_item_release_metadata(dir->root, item);
1654 		btrfs_release_delayed_item(item);
1655 	}
1656 	mutex_unlock(&node->mutex);
1657 end:
1658 	btrfs_release_delayed_node(node);
1659 	return ret;
1660 }
1661 
1662 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1663 {
1664 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1665 
1666 	if (!delayed_node)
1667 		return -ENOENT;
1668 
1669 	/*
1670 	 * Since we have held i_mutex of this directory, it is impossible that
1671 	 * a new directory index is added into the delayed node and index_cnt
1672 	 * is updated now. So we needn't lock the delayed node.
1673 	 */
1674 	if (!delayed_node->index_cnt) {
1675 		btrfs_release_delayed_node(delayed_node);
1676 		return -EINVAL;
1677 	}
1678 
1679 	inode->index_cnt = delayed_node->index_cnt;
1680 	btrfs_release_delayed_node(delayed_node);
1681 	return 0;
1682 }
1683 
1684 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1685 				     u64 last_index,
1686 				     struct list_head *ins_list,
1687 				     struct list_head *del_list)
1688 {
1689 	struct btrfs_delayed_node *delayed_node;
1690 	struct btrfs_delayed_item *item;
1691 
1692 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1693 	if (!delayed_node)
1694 		return false;
1695 
1696 	/*
1697 	 * We can only do one readdir with delayed items at a time because of
1698 	 * item->readdir_list.
1699 	 */
1700 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1701 	btrfs_inode_lock(BTRFS_I(inode), 0);
1702 
1703 	mutex_lock(&delayed_node->mutex);
1704 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1705 	while (item && item->index <= last_index) {
1706 		refcount_inc(&item->refs);
1707 		list_add_tail(&item->readdir_list, ins_list);
1708 		item = __btrfs_next_delayed_item(item);
1709 	}
1710 
1711 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1712 	while (item && item->index <= last_index) {
1713 		refcount_inc(&item->refs);
1714 		list_add_tail(&item->readdir_list, del_list);
1715 		item = __btrfs_next_delayed_item(item);
1716 	}
1717 	mutex_unlock(&delayed_node->mutex);
1718 	/*
1719 	 * This delayed node is still cached in the btrfs inode, so refs
1720 	 * must be > 1 now, and we needn't check it is going to be freed
1721 	 * or not.
1722 	 *
1723 	 * Besides that, this function is used to read dir, we do not
1724 	 * insert/delete delayed items in this period. So we also needn't
1725 	 * requeue or dequeue this delayed node.
1726 	 */
1727 	refcount_dec(&delayed_node->refs);
1728 
1729 	return true;
1730 }
1731 
1732 void btrfs_readdir_put_delayed_items(struct inode *inode,
1733 				     struct list_head *ins_list,
1734 				     struct list_head *del_list)
1735 {
1736 	struct btrfs_delayed_item *curr, *next;
1737 
1738 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1739 		list_del(&curr->readdir_list);
1740 		if (refcount_dec_and_test(&curr->refs))
1741 			kfree(curr);
1742 	}
1743 
1744 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1745 		list_del(&curr->readdir_list);
1746 		if (refcount_dec_and_test(&curr->refs))
1747 			kfree(curr);
1748 	}
1749 
1750 	/*
1751 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1752 	 * read lock.
1753 	 */
1754 	downgrade_write(&inode->i_rwsem);
1755 }
1756 
1757 int btrfs_should_delete_dir_index(struct list_head *del_list,
1758 				  u64 index)
1759 {
1760 	struct btrfs_delayed_item *curr;
1761 	int ret = 0;
1762 
1763 	list_for_each_entry(curr, del_list, readdir_list) {
1764 		if (curr->index > index)
1765 			break;
1766 		if (curr->index == index) {
1767 			ret = 1;
1768 			break;
1769 		}
1770 	}
1771 	return ret;
1772 }
1773 
1774 /*
1775  * Read dir info stored in the delayed tree.
1776  */
1777 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1778 				    struct list_head *ins_list)
1779 {
1780 	struct btrfs_dir_item *di;
1781 	struct btrfs_delayed_item *curr, *next;
1782 	struct btrfs_key location;
1783 	char *name;
1784 	int name_len;
1785 	int over = 0;
1786 	unsigned char d_type;
1787 
1788 	/*
1789 	 * Changing the data of the delayed item is impossible. So
1790 	 * we needn't lock them. And we have held i_mutex of the
1791 	 * directory, nobody can delete any directory indexes now.
1792 	 */
1793 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1794 		list_del(&curr->readdir_list);
1795 
1796 		if (curr->index < ctx->pos) {
1797 			if (refcount_dec_and_test(&curr->refs))
1798 				kfree(curr);
1799 			continue;
1800 		}
1801 
1802 		ctx->pos = curr->index;
1803 
1804 		di = (struct btrfs_dir_item *)curr->data;
1805 		name = (char *)(di + 1);
1806 		name_len = btrfs_stack_dir_name_len(di);
1807 
1808 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1809 		btrfs_disk_key_to_cpu(&location, &di->location);
1810 
1811 		over = !dir_emit(ctx, name, name_len,
1812 			       location.objectid, d_type);
1813 
1814 		if (refcount_dec_and_test(&curr->refs))
1815 			kfree(curr);
1816 
1817 		if (over)
1818 			return 1;
1819 		ctx->pos++;
1820 	}
1821 	return 0;
1822 }
1823 
1824 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1825 				  struct btrfs_inode_item *inode_item,
1826 				  struct inode *inode)
1827 {
1828 	u64 flags;
1829 
1830 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1831 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1832 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1833 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1834 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1835 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1836 	btrfs_set_stack_inode_generation(inode_item,
1837 					 BTRFS_I(inode)->generation);
1838 	btrfs_set_stack_inode_sequence(inode_item,
1839 				       inode_peek_iversion(inode));
1840 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1841 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1842 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1843 					  BTRFS_I(inode)->ro_flags);
1844 	btrfs_set_stack_inode_flags(inode_item, flags);
1845 	btrfs_set_stack_inode_block_group(inode_item, 0);
1846 
1847 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1848 				     inode_get_atime_sec(inode));
1849 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1850 				      inode_get_atime_nsec(inode));
1851 
1852 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1853 				     inode_get_mtime_sec(inode));
1854 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1855 				      inode_get_mtime_nsec(inode));
1856 
1857 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1858 				     inode_get_ctime_sec(inode));
1859 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1860 				      inode_get_ctime_nsec(inode));
1861 
1862 	btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1863 	btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1864 }
1865 
1866 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1867 {
1868 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1869 	struct btrfs_delayed_node *delayed_node;
1870 	struct btrfs_inode_item *inode_item;
1871 
1872 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1873 	if (!delayed_node)
1874 		return -ENOENT;
1875 
1876 	mutex_lock(&delayed_node->mutex);
1877 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1878 		mutex_unlock(&delayed_node->mutex);
1879 		btrfs_release_delayed_node(delayed_node);
1880 		return -ENOENT;
1881 	}
1882 
1883 	inode_item = &delayed_node->inode_item;
1884 
1885 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1886 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1887 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1888 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1889 			round_up(i_size_read(inode), fs_info->sectorsize));
1890 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1891 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1892 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1893 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1894         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1895 
1896 	inode_set_iversion_queried(inode,
1897 				   btrfs_stack_inode_sequence(inode_item));
1898 	inode->i_rdev = 0;
1899 	*rdev = btrfs_stack_inode_rdev(inode_item);
1900 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1901 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1902 
1903 	inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1904 			btrfs_stack_timespec_nsec(&inode_item->atime));
1905 
1906 	inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1907 			btrfs_stack_timespec_nsec(&inode_item->mtime));
1908 
1909 	inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1910 			btrfs_stack_timespec_nsec(&inode_item->ctime));
1911 
1912 	BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1913 	BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1914 
1915 	inode->i_generation = BTRFS_I(inode)->generation;
1916 	BTRFS_I(inode)->index_cnt = (u64)-1;
1917 
1918 	mutex_unlock(&delayed_node->mutex);
1919 	btrfs_release_delayed_node(delayed_node);
1920 	return 0;
1921 }
1922 
1923 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1924 			       struct btrfs_inode *inode)
1925 {
1926 	struct btrfs_root *root = inode->root;
1927 	struct btrfs_delayed_node *delayed_node;
1928 	int ret = 0;
1929 
1930 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1931 	if (IS_ERR(delayed_node))
1932 		return PTR_ERR(delayed_node);
1933 
1934 	mutex_lock(&delayed_node->mutex);
1935 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1936 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1937 				      &inode->vfs_inode);
1938 		goto release_node;
1939 	}
1940 
1941 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1942 	if (ret)
1943 		goto release_node;
1944 
1945 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1946 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1947 	delayed_node->count++;
1948 	atomic_inc(&root->fs_info->delayed_root->items);
1949 release_node:
1950 	mutex_unlock(&delayed_node->mutex);
1951 	btrfs_release_delayed_node(delayed_node);
1952 	return ret;
1953 }
1954 
1955 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1956 {
1957 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1958 	struct btrfs_delayed_node *delayed_node;
1959 
1960 	/*
1961 	 * we don't do delayed inode updates during log recovery because it
1962 	 * leads to enospc problems.  This means we also can't do
1963 	 * delayed inode refs
1964 	 */
1965 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1966 		return -EAGAIN;
1967 
1968 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1969 	if (IS_ERR(delayed_node))
1970 		return PTR_ERR(delayed_node);
1971 
1972 	/*
1973 	 * We don't reserve space for inode ref deletion is because:
1974 	 * - We ONLY do async inode ref deletion for the inode who has only
1975 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1976 	 *   And in most case, the inode ref and the inode item are in the
1977 	 *   same leaf, and we will deal with them at the same time.
1978 	 *   Since we are sure we will reserve the space for the inode item,
1979 	 *   it is unnecessary to reserve space for inode ref deletion.
1980 	 * - If the inode ref and the inode item are not in the same leaf,
1981 	 *   We also needn't worry about enospc problem, because we reserve
1982 	 *   much more space for the inode update than it needs.
1983 	 * - At the worst, we can steal some space from the global reservation.
1984 	 *   It is very rare.
1985 	 */
1986 	mutex_lock(&delayed_node->mutex);
1987 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1988 		goto release_node;
1989 
1990 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1991 	delayed_node->count++;
1992 	atomic_inc(&fs_info->delayed_root->items);
1993 release_node:
1994 	mutex_unlock(&delayed_node->mutex);
1995 	btrfs_release_delayed_node(delayed_node);
1996 	return 0;
1997 }
1998 
1999 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2000 {
2001 	struct btrfs_root *root = delayed_node->root;
2002 	struct btrfs_fs_info *fs_info = root->fs_info;
2003 	struct btrfs_delayed_item *curr_item, *prev_item;
2004 
2005 	mutex_lock(&delayed_node->mutex);
2006 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2007 	while (curr_item) {
2008 		prev_item = curr_item;
2009 		curr_item = __btrfs_next_delayed_item(prev_item);
2010 		btrfs_release_delayed_item(prev_item);
2011 	}
2012 
2013 	if (delayed_node->index_item_leaves > 0) {
2014 		btrfs_delayed_item_release_leaves(delayed_node,
2015 					  delayed_node->index_item_leaves);
2016 		delayed_node->index_item_leaves = 0;
2017 	}
2018 
2019 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2020 	while (curr_item) {
2021 		btrfs_delayed_item_release_metadata(root, curr_item);
2022 		prev_item = curr_item;
2023 		curr_item = __btrfs_next_delayed_item(prev_item);
2024 		btrfs_release_delayed_item(prev_item);
2025 	}
2026 
2027 	btrfs_release_delayed_iref(delayed_node);
2028 
2029 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2030 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2031 		btrfs_release_delayed_inode(delayed_node);
2032 	}
2033 	mutex_unlock(&delayed_node->mutex);
2034 }
2035 
2036 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2037 {
2038 	struct btrfs_delayed_node *delayed_node;
2039 
2040 	delayed_node = btrfs_get_delayed_node(inode);
2041 	if (!delayed_node)
2042 		return;
2043 
2044 	__btrfs_kill_delayed_node(delayed_node);
2045 	btrfs_release_delayed_node(delayed_node);
2046 }
2047 
2048 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2049 {
2050 	unsigned long index = 0;
2051 	struct btrfs_delayed_node *delayed_nodes[8];
2052 
2053 	while (1) {
2054 		struct btrfs_delayed_node *node;
2055 		int count;
2056 
2057 		spin_lock(&root->inode_lock);
2058 		if (xa_empty(&root->delayed_nodes)) {
2059 			spin_unlock(&root->inode_lock);
2060 			return;
2061 		}
2062 
2063 		count = 0;
2064 		xa_for_each_start(&root->delayed_nodes, index, node, index) {
2065 			/*
2066 			 * Don't increase refs in case the node is dead and
2067 			 * about to be removed from the tree in the loop below
2068 			 */
2069 			if (refcount_inc_not_zero(&node->refs)) {
2070 				delayed_nodes[count] = node;
2071 				count++;
2072 			}
2073 			if (count >= ARRAY_SIZE(delayed_nodes))
2074 				break;
2075 		}
2076 		spin_unlock(&root->inode_lock);
2077 		index++;
2078 
2079 		for (int i = 0; i < count; i++) {
2080 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2081 			btrfs_release_delayed_node(delayed_nodes[i]);
2082 		}
2083 	}
2084 }
2085 
2086 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2087 {
2088 	struct btrfs_delayed_node *curr_node, *prev_node;
2089 
2090 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2091 	while (curr_node) {
2092 		__btrfs_kill_delayed_node(curr_node);
2093 
2094 		prev_node = curr_node;
2095 		curr_node = btrfs_next_delayed_node(curr_node);
2096 		btrfs_release_delayed_node(prev_node);
2097 	}
2098 }
2099 
2100 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2101 				 struct list_head *ins_list,
2102 				 struct list_head *del_list)
2103 {
2104 	struct btrfs_delayed_node *node;
2105 	struct btrfs_delayed_item *item;
2106 
2107 	node = btrfs_get_delayed_node(inode);
2108 	if (!node)
2109 		return;
2110 
2111 	mutex_lock(&node->mutex);
2112 	item = __btrfs_first_delayed_insertion_item(node);
2113 	while (item) {
2114 		/*
2115 		 * It's possible that the item is already in a log list. This
2116 		 * can happen in case two tasks are trying to log the same
2117 		 * directory. For example if we have tasks A and task B:
2118 		 *
2119 		 * Task A collected the delayed items into a log list while
2120 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2121 		 * only releases the items after logging the inodes they point
2122 		 * to (if they are new inodes), which happens after unlocking
2123 		 * the log mutex;
2124 		 *
2125 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2126 		 * of the same directory inode, before task B releases the
2127 		 * delayed items. This can happen for example when logging some
2128 		 * inode we need to trigger logging of its parent directory, so
2129 		 * logging two files that have the same parent directory can
2130 		 * lead to this.
2131 		 *
2132 		 * If this happens, just ignore delayed items already in a log
2133 		 * list. All the tasks logging the directory are under a log
2134 		 * transaction and whichever finishes first can not sync the log
2135 		 * before the other completes and leaves the log transaction.
2136 		 */
2137 		if (!item->logged && list_empty(&item->log_list)) {
2138 			refcount_inc(&item->refs);
2139 			list_add_tail(&item->log_list, ins_list);
2140 		}
2141 		item = __btrfs_next_delayed_item(item);
2142 	}
2143 
2144 	item = __btrfs_first_delayed_deletion_item(node);
2145 	while (item) {
2146 		/* It may be non-empty, for the same reason mentioned above. */
2147 		if (!item->logged && list_empty(&item->log_list)) {
2148 			refcount_inc(&item->refs);
2149 			list_add_tail(&item->log_list, del_list);
2150 		}
2151 		item = __btrfs_next_delayed_item(item);
2152 	}
2153 	mutex_unlock(&node->mutex);
2154 
2155 	/*
2156 	 * We are called during inode logging, which means the inode is in use
2157 	 * and can not be evicted before we finish logging the inode. So we never
2158 	 * have the last reference on the delayed inode.
2159 	 * Also, we don't use btrfs_release_delayed_node() because that would
2160 	 * requeue the delayed inode (change its order in the list of prepared
2161 	 * nodes) and we don't want to do such change because we don't create or
2162 	 * delete delayed items.
2163 	 */
2164 	ASSERT(refcount_read(&node->refs) > 1);
2165 	refcount_dec(&node->refs);
2166 }
2167 
2168 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2169 				 struct list_head *ins_list,
2170 				 struct list_head *del_list)
2171 {
2172 	struct btrfs_delayed_node *node;
2173 	struct btrfs_delayed_item *item;
2174 	struct btrfs_delayed_item *next;
2175 
2176 	node = btrfs_get_delayed_node(inode);
2177 	if (!node)
2178 		return;
2179 
2180 	mutex_lock(&node->mutex);
2181 
2182 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2183 		item->logged = true;
2184 		list_del_init(&item->log_list);
2185 		if (refcount_dec_and_test(&item->refs))
2186 			kfree(item);
2187 	}
2188 
2189 	list_for_each_entry_safe(item, next, del_list, log_list) {
2190 		item->logged = true;
2191 		list_del_init(&item->log_list);
2192 		if (refcount_dec_and_test(&item->refs))
2193 			kfree(item);
2194 	}
2195 
2196 	mutex_unlock(&node->mutex);
2197 
2198 	/*
2199 	 * We are called during inode logging, which means the inode is in use
2200 	 * and can not be evicted before we finish logging the inode. So we never
2201 	 * have the last reference on the delayed inode.
2202 	 * Also, we don't use btrfs_release_delayed_node() because that would
2203 	 * requeue the delayed inode (change its order in the list of prepared
2204 	 * nodes) and we don't want to do such change because we don't create or
2205 	 * delete delayed items.
2206 	 */
2207 	ASSERT(refcount_read(&node->refs) > 1);
2208 	refcount_dec(&node->refs);
2209 }
2210