xref: /linux/fs/btrfs/delayed-inode.c (revision 3c4fc7bf4c9e66fe71abcbf93f62f4ddb89b7f15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "misc.h"
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
15 #include "locking.h"
16 #include "inode-item.h"
17 
18 #define BTRFS_DELAYED_WRITEBACK		512
19 #define BTRFS_DELAYED_BACKGROUND	128
20 #define BTRFS_DELAYED_BATCH		16
21 
22 static struct kmem_cache *delayed_node_cache;
23 
24 int __init btrfs_delayed_inode_init(void)
25 {
26 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 					sizeof(struct btrfs_delayed_node),
28 					0,
29 					SLAB_MEM_SPREAD,
30 					NULL);
31 	if (!delayed_node_cache)
32 		return -ENOMEM;
33 	return 0;
34 }
35 
36 void __cold btrfs_delayed_inode_exit(void)
37 {
38 	kmem_cache_destroy(delayed_node_cache);
39 }
40 
41 static inline void btrfs_init_delayed_node(
42 				struct btrfs_delayed_node *delayed_node,
43 				struct btrfs_root *root, u64 inode_id)
44 {
45 	delayed_node->root = root;
46 	delayed_node->inode_id = inode_id;
47 	refcount_set(&delayed_node->refs, 0);
48 	delayed_node->ins_root = RB_ROOT_CACHED;
49 	delayed_node->del_root = RB_ROOT_CACHED;
50 	mutex_init(&delayed_node->mutex);
51 	INIT_LIST_HEAD(&delayed_node->n_list);
52 	INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54 
55 static struct btrfs_delayed_node *btrfs_get_delayed_node(
56 		struct btrfs_inode *btrfs_inode)
57 {
58 	struct btrfs_root *root = btrfs_inode->root;
59 	u64 ino = btrfs_ino(btrfs_inode);
60 	struct btrfs_delayed_node *node;
61 
62 	node = READ_ONCE(btrfs_inode->delayed_node);
63 	if (node) {
64 		refcount_inc(&node->refs);
65 		return node;
66 	}
67 
68 	spin_lock(&root->inode_lock);
69 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
70 
71 	if (node) {
72 		if (btrfs_inode->delayed_node) {
73 			refcount_inc(&node->refs);	/* can be accessed */
74 			BUG_ON(btrfs_inode->delayed_node != node);
75 			spin_unlock(&root->inode_lock);
76 			return node;
77 		}
78 
79 		/*
80 		 * It's possible that we're racing into the middle of removing
81 		 * this node from the radix tree.  In this case, the refcount
82 		 * was zero and it should never go back to one.  Just return
83 		 * NULL like it was never in the radix at all; our release
84 		 * function is in the process of removing it.
85 		 *
86 		 * Some implementations of refcount_inc refuse to bump the
87 		 * refcount once it has hit zero.  If we don't do this dance
88 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
89 		 * of actually bumping the refcount.
90 		 *
91 		 * If this node is properly in the radix, we want to bump the
92 		 * refcount twice, once for the inode and once for this get
93 		 * operation.
94 		 */
95 		if (refcount_inc_not_zero(&node->refs)) {
96 			refcount_inc(&node->refs);
97 			btrfs_inode->delayed_node = node;
98 		} else {
99 			node = NULL;
100 		}
101 
102 		spin_unlock(&root->inode_lock);
103 		return node;
104 	}
105 	spin_unlock(&root->inode_lock);
106 
107 	return NULL;
108 }
109 
110 /* Will return either the node or PTR_ERR(-ENOMEM) */
111 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
112 		struct btrfs_inode *btrfs_inode)
113 {
114 	struct btrfs_delayed_node *node;
115 	struct btrfs_root *root = btrfs_inode->root;
116 	u64 ino = btrfs_ino(btrfs_inode);
117 	int ret;
118 
119 again:
120 	node = btrfs_get_delayed_node(btrfs_inode);
121 	if (node)
122 		return node;
123 
124 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
125 	if (!node)
126 		return ERR_PTR(-ENOMEM);
127 	btrfs_init_delayed_node(node, root, ino);
128 
129 	/* cached in the btrfs inode and can be accessed */
130 	refcount_set(&node->refs, 2);
131 
132 	ret = radix_tree_preload(GFP_NOFS);
133 	if (ret) {
134 		kmem_cache_free(delayed_node_cache, node);
135 		return ERR_PTR(ret);
136 	}
137 
138 	spin_lock(&root->inode_lock);
139 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
140 	if (ret == -EEXIST) {
141 		spin_unlock(&root->inode_lock);
142 		kmem_cache_free(delayed_node_cache, node);
143 		radix_tree_preload_end();
144 		goto again;
145 	}
146 	btrfs_inode->delayed_node = node;
147 	spin_unlock(&root->inode_lock);
148 	radix_tree_preload_end();
149 
150 	return node;
151 }
152 
153 /*
154  * Call it when holding delayed_node->mutex
155  *
156  * If mod = 1, add this node into the prepared list.
157  */
158 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
159 				     struct btrfs_delayed_node *node,
160 				     int mod)
161 {
162 	spin_lock(&root->lock);
163 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
164 		if (!list_empty(&node->p_list))
165 			list_move_tail(&node->p_list, &root->prepare_list);
166 		else if (mod)
167 			list_add_tail(&node->p_list, &root->prepare_list);
168 	} else {
169 		list_add_tail(&node->n_list, &root->node_list);
170 		list_add_tail(&node->p_list, &root->prepare_list);
171 		refcount_inc(&node->refs);	/* inserted into list */
172 		root->nodes++;
173 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
174 	}
175 	spin_unlock(&root->lock);
176 }
177 
178 /* Call it when holding delayed_node->mutex */
179 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
180 				       struct btrfs_delayed_node *node)
181 {
182 	spin_lock(&root->lock);
183 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
184 		root->nodes--;
185 		refcount_dec(&node->refs);	/* not in the list */
186 		list_del_init(&node->n_list);
187 		if (!list_empty(&node->p_list))
188 			list_del_init(&node->p_list);
189 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
190 	}
191 	spin_unlock(&root->lock);
192 }
193 
194 static struct btrfs_delayed_node *btrfs_first_delayed_node(
195 			struct btrfs_delayed_root *delayed_root)
196 {
197 	struct list_head *p;
198 	struct btrfs_delayed_node *node = NULL;
199 
200 	spin_lock(&delayed_root->lock);
201 	if (list_empty(&delayed_root->node_list))
202 		goto out;
203 
204 	p = delayed_root->node_list.next;
205 	node = list_entry(p, struct btrfs_delayed_node, n_list);
206 	refcount_inc(&node->refs);
207 out:
208 	spin_unlock(&delayed_root->lock);
209 
210 	return node;
211 }
212 
213 static struct btrfs_delayed_node *btrfs_next_delayed_node(
214 						struct btrfs_delayed_node *node)
215 {
216 	struct btrfs_delayed_root *delayed_root;
217 	struct list_head *p;
218 	struct btrfs_delayed_node *next = NULL;
219 
220 	delayed_root = node->root->fs_info->delayed_root;
221 	spin_lock(&delayed_root->lock);
222 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
223 		/* not in the list */
224 		if (list_empty(&delayed_root->node_list))
225 			goto out;
226 		p = delayed_root->node_list.next;
227 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
228 		goto out;
229 	else
230 		p = node->n_list.next;
231 
232 	next = list_entry(p, struct btrfs_delayed_node, n_list);
233 	refcount_inc(&next->refs);
234 out:
235 	spin_unlock(&delayed_root->lock);
236 
237 	return next;
238 }
239 
240 static void __btrfs_release_delayed_node(
241 				struct btrfs_delayed_node *delayed_node,
242 				int mod)
243 {
244 	struct btrfs_delayed_root *delayed_root;
245 
246 	if (!delayed_node)
247 		return;
248 
249 	delayed_root = delayed_node->root->fs_info->delayed_root;
250 
251 	mutex_lock(&delayed_node->mutex);
252 	if (delayed_node->count)
253 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
254 	else
255 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
256 	mutex_unlock(&delayed_node->mutex);
257 
258 	if (refcount_dec_and_test(&delayed_node->refs)) {
259 		struct btrfs_root *root = delayed_node->root;
260 
261 		spin_lock(&root->inode_lock);
262 		/*
263 		 * Once our refcount goes to zero, nobody is allowed to bump it
264 		 * back up.  We can delete it now.
265 		 */
266 		ASSERT(refcount_read(&delayed_node->refs) == 0);
267 		radix_tree_delete(&root->delayed_nodes_tree,
268 				  delayed_node->inode_id);
269 		spin_unlock(&root->inode_lock);
270 		kmem_cache_free(delayed_node_cache, delayed_node);
271 	}
272 }
273 
274 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
275 {
276 	__btrfs_release_delayed_node(node, 0);
277 }
278 
279 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
280 					struct btrfs_delayed_root *delayed_root)
281 {
282 	struct list_head *p;
283 	struct btrfs_delayed_node *node = NULL;
284 
285 	spin_lock(&delayed_root->lock);
286 	if (list_empty(&delayed_root->prepare_list))
287 		goto out;
288 
289 	p = delayed_root->prepare_list.next;
290 	list_del_init(p);
291 	node = list_entry(p, struct btrfs_delayed_node, p_list);
292 	refcount_inc(&node->refs);
293 out:
294 	spin_unlock(&delayed_root->lock);
295 
296 	return node;
297 }
298 
299 static inline void btrfs_release_prepared_delayed_node(
300 					struct btrfs_delayed_node *node)
301 {
302 	__btrfs_release_delayed_node(node, 1);
303 }
304 
305 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
306 {
307 	struct btrfs_delayed_item *item;
308 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
309 	if (item) {
310 		item->data_len = data_len;
311 		item->ins_or_del = 0;
312 		item->bytes_reserved = 0;
313 		item->delayed_node = NULL;
314 		refcount_set(&item->refs, 1);
315 	}
316 	return item;
317 }
318 
319 /*
320  * __btrfs_lookup_delayed_item - look up the delayed item by key
321  * @delayed_node: pointer to the delayed node
322  * @key:	  the key to look up
323  * @prev:	  used to store the prev item if the right item isn't found
324  * @next:	  used to store the next item if the right item isn't found
325  *
326  * Note: if we don't find the right item, we will return the prev item and
327  * the next item.
328  */
329 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
330 				struct rb_root *root,
331 				struct btrfs_key *key,
332 				struct btrfs_delayed_item **prev,
333 				struct btrfs_delayed_item **next)
334 {
335 	struct rb_node *node, *prev_node = NULL;
336 	struct btrfs_delayed_item *delayed_item = NULL;
337 	int ret = 0;
338 
339 	node = root->rb_node;
340 
341 	while (node) {
342 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
343 					rb_node);
344 		prev_node = node;
345 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
346 		if (ret < 0)
347 			node = node->rb_right;
348 		else if (ret > 0)
349 			node = node->rb_left;
350 		else
351 			return delayed_item;
352 	}
353 
354 	if (prev) {
355 		if (!prev_node)
356 			*prev = NULL;
357 		else if (ret < 0)
358 			*prev = delayed_item;
359 		else if ((node = rb_prev(prev_node)) != NULL) {
360 			*prev = rb_entry(node, struct btrfs_delayed_item,
361 					 rb_node);
362 		} else
363 			*prev = NULL;
364 	}
365 
366 	if (next) {
367 		if (!prev_node)
368 			*next = NULL;
369 		else if (ret > 0)
370 			*next = delayed_item;
371 		else if ((node = rb_next(prev_node)) != NULL) {
372 			*next = rb_entry(node, struct btrfs_delayed_item,
373 					 rb_node);
374 		} else
375 			*next = NULL;
376 	}
377 	return NULL;
378 }
379 
380 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
381 					struct btrfs_delayed_node *delayed_node,
382 					struct btrfs_key *key)
383 {
384 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
385 					   NULL, NULL);
386 }
387 
388 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
389 				    struct btrfs_delayed_item *ins)
390 {
391 	struct rb_node **p, *node;
392 	struct rb_node *parent_node = NULL;
393 	struct rb_root_cached *root;
394 	struct btrfs_delayed_item *item;
395 	int cmp;
396 	bool leftmost = true;
397 
398 	if (ins->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
399 		root = &delayed_node->ins_root;
400 	else if (ins->ins_or_del == BTRFS_DELAYED_DELETION_ITEM)
401 		root = &delayed_node->del_root;
402 	else
403 		BUG();
404 	p = &root->rb_root.rb_node;
405 	node = &ins->rb_node;
406 
407 	while (*p) {
408 		parent_node = *p;
409 		item = rb_entry(parent_node, struct btrfs_delayed_item,
410 				 rb_node);
411 
412 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
413 		if (cmp < 0) {
414 			p = &(*p)->rb_right;
415 			leftmost = false;
416 		} else if (cmp > 0) {
417 			p = &(*p)->rb_left;
418 		} else {
419 			return -EEXIST;
420 		}
421 	}
422 
423 	rb_link_node(node, parent_node, p);
424 	rb_insert_color_cached(node, root, leftmost);
425 	ins->delayed_node = delayed_node;
426 
427 	/* Delayed items are always for dir index items. */
428 	ASSERT(ins->key.type == BTRFS_DIR_INDEX_KEY);
429 
430 	if (ins->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM &&
431 	    ins->key.offset >= delayed_node->index_cnt)
432 		delayed_node->index_cnt = ins->key.offset + 1;
433 
434 	delayed_node->count++;
435 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
436 	return 0;
437 }
438 
439 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
440 {
441 	int seq = atomic_inc_return(&delayed_root->items_seq);
442 
443 	/* atomic_dec_return implies a barrier */
444 	if ((atomic_dec_return(&delayed_root->items) <
445 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
446 		cond_wake_up_nomb(&delayed_root->wait);
447 }
448 
449 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
450 {
451 	struct rb_root_cached *root;
452 	struct btrfs_delayed_root *delayed_root;
453 
454 	/* Not associated with any delayed_node */
455 	if (!delayed_item->delayed_node)
456 		return;
457 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
458 
459 	BUG_ON(!delayed_root);
460 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
461 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
462 
463 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
464 		root = &delayed_item->delayed_node->ins_root;
465 	else
466 		root = &delayed_item->delayed_node->del_root;
467 
468 	rb_erase_cached(&delayed_item->rb_node, root);
469 	delayed_item->delayed_node->count--;
470 
471 	finish_one_item(delayed_root);
472 }
473 
474 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
475 {
476 	if (item) {
477 		__btrfs_remove_delayed_item(item);
478 		if (refcount_dec_and_test(&item->refs))
479 			kfree(item);
480 	}
481 }
482 
483 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
484 					struct btrfs_delayed_node *delayed_node)
485 {
486 	struct rb_node *p;
487 	struct btrfs_delayed_item *item = NULL;
488 
489 	p = rb_first_cached(&delayed_node->ins_root);
490 	if (p)
491 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
492 
493 	return item;
494 }
495 
496 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
497 					struct btrfs_delayed_node *delayed_node)
498 {
499 	struct rb_node *p;
500 	struct btrfs_delayed_item *item = NULL;
501 
502 	p = rb_first_cached(&delayed_node->del_root);
503 	if (p)
504 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
505 
506 	return item;
507 }
508 
509 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
510 						struct btrfs_delayed_item *item)
511 {
512 	struct rb_node *p;
513 	struct btrfs_delayed_item *next = NULL;
514 
515 	p = rb_next(&item->rb_node);
516 	if (p)
517 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
518 
519 	return next;
520 }
521 
522 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
523 					       struct btrfs_root *root,
524 					       struct btrfs_delayed_item *item)
525 {
526 	struct btrfs_block_rsv *src_rsv;
527 	struct btrfs_block_rsv *dst_rsv;
528 	struct btrfs_fs_info *fs_info = root->fs_info;
529 	u64 num_bytes;
530 	int ret;
531 
532 	if (!trans->bytes_reserved)
533 		return 0;
534 
535 	src_rsv = trans->block_rsv;
536 	dst_rsv = &fs_info->delayed_block_rsv;
537 
538 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
539 
540 	/*
541 	 * Here we migrate space rsv from transaction rsv, since have already
542 	 * reserved space when starting a transaction.  So no need to reserve
543 	 * qgroup space here.
544 	 */
545 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
546 	if (!ret) {
547 		trace_btrfs_space_reservation(fs_info, "delayed_item",
548 					      item->key.objectid,
549 					      num_bytes, 1);
550 		/*
551 		 * For insertions we track reserved metadata space by accounting
552 		 * for the number of leaves that will be used, based on the delayed
553 		 * node's index_items_size field.
554 		 */
555 		if (item->ins_or_del == BTRFS_DELAYED_DELETION_ITEM)
556 			item->bytes_reserved = num_bytes;
557 	}
558 
559 	return ret;
560 }
561 
562 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
563 						struct btrfs_delayed_item *item)
564 {
565 	struct btrfs_block_rsv *rsv;
566 	struct btrfs_fs_info *fs_info = root->fs_info;
567 
568 	if (!item->bytes_reserved)
569 		return;
570 
571 	rsv = &fs_info->delayed_block_rsv;
572 	/*
573 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
574 	 * to release/reserve qgroup space.
575 	 */
576 	trace_btrfs_space_reservation(fs_info, "delayed_item",
577 				      item->key.objectid, item->bytes_reserved,
578 				      0);
579 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
580 }
581 
582 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
583 					      unsigned int num_leaves)
584 {
585 	struct btrfs_fs_info *fs_info = node->root->fs_info;
586 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
587 
588 	/* There are no space reservations during log replay, bail out. */
589 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
590 		return;
591 
592 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
593 				      bytes, 0);
594 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
595 }
596 
597 static int btrfs_delayed_inode_reserve_metadata(
598 					struct btrfs_trans_handle *trans,
599 					struct btrfs_root *root,
600 					struct btrfs_delayed_node *node)
601 {
602 	struct btrfs_fs_info *fs_info = root->fs_info;
603 	struct btrfs_block_rsv *src_rsv;
604 	struct btrfs_block_rsv *dst_rsv;
605 	u64 num_bytes;
606 	int ret;
607 
608 	src_rsv = trans->block_rsv;
609 	dst_rsv = &fs_info->delayed_block_rsv;
610 
611 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
612 
613 	/*
614 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
615 	 * which doesn't reserve space for speed.  This is a problem since we
616 	 * still need to reserve space for this update, so try to reserve the
617 	 * space.
618 	 *
619 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
620 	 * we always reserve enough to update the inode item.
621 	 */
622 	if (!src_rsv || (!trans->bytes_reserved &&
623 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
624 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
625 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
626 		if (ret < 0)
627 			return ret;
628 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
629 					  BTRFS_RESERVE_NO_FLUSH);
630 		/* NO_FLUSH could only fail with -ENOSPC */
631 		ASSERT(ret == 0 || ret == -ENOSPC);
632 		if (ret)
633 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
634 	} else {
635 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
636 	}
637 
638 	if (!ret) {
639 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
640 					      node->inode_id, num_bytes, 1);
641 		node->bytes_reserved = num_bytes;
642 	}
643 
644 	return ret;
645 }
646 
647 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
648 						struct btrfs_delayed_node *node,
649 						bool qgroup_free)
650 {
651 	struct btrfs_block_rsv *rsv;
652 
653 	if (!node->bytes_reserved)
654 		return;
655 
656 	rsv = &fs_info->delayed_block_rsv;
657 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
658 				      node->inode_id, node->bytes_reserved, 0);
659 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
660 	if (qgroup_free)
661 		btrfs_qgroup_free_meta_prealloc(node->root,
662 				node->bytes_reserved);
663 	else
664 		btrfs_qgroup_convert_reserved_meta(node->root,
665 				node->bytes_reserved);
666 	node->bytes_reserved = 0;
667 }
668 
669 /*
670  * Insert a single delayed item or a batch of delayed items, as many as possible
671  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
672  * in the rbtree, and if there's a gap between two consecutive dir index items,
673  * then it means at some point we had delayed dir indexes to add but they got
674  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
675  * into the subvolume tree. Dir index keys also have their offsets coming from a
676  * monotonically increasing counter, so we can't get new keys with an offset that
677  * fits within a gap between delayed dir index items.
678  */
679 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
680 				     struct btrfs_root *root,
681 				     struct btrfs_path *path,
682 				     struct btrfs_delayed_item *first_item)
683 {
684 	struct btrfs_fs_info *fs_info = root->fs_info;
685 	struct btrfs_delayed_node *node = first_item->delayed_node;
686 	LIST_HEAD(item_list);
687 	struct btrfs_delayed_item *curr;
688 	struct btrfs_delayed_item *next;
689 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
690 	struct btrfs_item_batch batch;
691 	int total_size;
692 	char *ins_data = NULL;
693 	int ret;
694 	bool continuous_keys_only = false;
695 
696 	lockdep_assert_held(&node->mutex);
697 
698 	/*
699 	 * During normal operation the delayed index offset is continuously
700 	 * increasing, so we can batch insert all items as there will not be any
701 	 * overlapping keys in the tree.
702 	 *
703 	 * The exception to this is log replay, where we may have interleaved
704 	 * offsets in the tree, so our batch needs to be continuous keys only in
705 	 * order to ensure we do not end up with out of order items in our leaf.
706 	 */
707 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
708 		continuous_keys_only = true;
709 
710 	/*
711 	 * For delayed items to insert, we track reserved metadata bytes based
712 	 * on the number of leaves that we will use.
713 	 * See btrfs_insert_delayed_dir_index() and
714 	 * btrfs_delayed_item_reserve_metadata()).
715 	 */
716 	ASSERT(first_item->bytes_reserved == 0);
717 
718 	list_add_tail(&first_item->tree_list, &item_list);
719 	batch.total_data_size = first_item->data_len;
720 	batch.nr = 1;
721 	total_size = first_item->data_len + sizeof(struct btrfs_item);
722 	curr = first_item;
723 
724 	while (true) {
725 		int next_size;
726 
727 		next = __btrfs_next_delayed_item(curr);
728 		if (!next)
729 			break;
730 
731 		/*
732 		 * We cannot allow gaps in the key space if we're doing log
733 		 * replay.
734 		 */
735 		if (continuous_keys_only &&
736 		    (next->key.offset != curr->key.offset + 1))
737 			break;
738 
739 		ASSERT(next->bytes_reserved == 0);
740 
741 		next_size = next->data_len + sizeof(struct btrfs_item);
742 		if (total_size + next_size > max_size)
743 			break;
744 
745 		list_add_tail(&next->tree_list, &item_list);
746 		batch.nr++;
747 		total_size += next_size;
748 		batch.total_data_size += next->data_len;
749 		curr = next;
750 	}
751 
752 	if (batch.nr == 1) {
753 		batch.keys = &first_item->key;
754 		batch.data_sizes = &first_item->data_len;
755 	} else {
756 		struct btrfs_key *ins_keys;
757 		u32 *ins_sizes;
758 		int i = 0;
759 
760 		ins_data = kmalloc(batch.nr * sizeof(u32) +
761 				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
762 		if (!ins_data) {
763 			ret = -ENOMEM;
764 			goto out;
765 		}
766 		ins_sizes = (u32 *)ins_data;
767 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
768 		batch.keys = ins_keys;
769 		batch.data_sizes = ins_sizes;
770 		list_for_each_entry(curr, &item_list, tree_list) {
771 			ins_keys[i] = curr->key;
772 			ins_sizes[i] = curr->data_len;
773 			i++;
774 		}
775 	}
776 
777 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
778 	if (ret)
779 		goto out;
780 
781 	list_for_each_entry(curr, &item_list, tree_list) {
782 		char *data_ptr;
783 
784 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
785 		write_extent_buffer(path->nodes[0], &curr->data,
786 				    (unsigned long)data_ptr, curr->data_len);
787 		path->slots[0]++;
788 	}
789 
790 	/*
791 	 * Now release our path before releasing the delayed items and their
792 	 * metadata reservations, so that we don't block other tasks for more
793 	 * time than needed.
794 	 */
795 	btrfs_release_path(path);
796 
797 	ASSERT(node->index_item_leaves > 0);
798 
799 	/*
800 	 * For normal operations we will batch an entire leaf's worth of delayed
801 	 * items, so if there are more items to process we can decrement
802 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
803 	 *
804 	 * However for log replay we may not have inserted an entire leaf's
805 	 * worth of items, we may have not had continuous items, so decrementing
806 	 * here would mess up the index_item_leaves accounting.  For this case
807 	 * only clean up the accounting when there are no items left.
808 	 */
809 	if (next && !continuous_keys_only) {
810 		/*
811 		 * We inserted one batch of items into a leaf a there are more
812 		 * items to flush in a future batch, now release one unit of
813 		 * metadata space from the delayed block reserve, corresponding
814 		 * the leaf we just flushed to.
815 		 */
816 		btrfs_delayed_item_release_leaves(node, 1);
817 		node->index_item_leaves--;
818 	} else if (!next) {
819 		/*
820 		 * There are no more items to insert. We can have a number of
821 		 * reserved leaves > 1 here - this happens when many dir index
822 		 * items are added and then removed before they are flushed (file
823 		 * names with a very short life, never span a transaction). So
824 		 * release all remaining leaves.
825 		 */
826 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
827 		node->index_item_leaves = 0;
828 	}
829 
830 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
831 		list_del(&curr->tree_list);
832 		btrfs_release_delayed_item(curr);
833 	}
834 out:
835 	kfree(ins_data);
836 	return ret;
837 }
838 
839 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
840 				      struct btrfs_path *path,
841 				      struct btrfs_root *root,
842 				      struct btrfs_delayed_node *node)
843 {
844 	int ret = 0;
845 
846 	while (ret == 0) {
847 		struct btrfs_delayed_item *curr;
848 
849 		mutex_lock(&node->mutex);
850 		curr = __btrfs_first_delayed_insertion_item(node);
851 		if (!curr) {
852 			mutex_unlock(&node->mutex);
853 			break;
854 		}
855 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
856 		mutex_unlock(&node->mutex);
857 	}
858 
859 	return ret;
860 }
861 
862 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
863 				    struct btrfs_root *root,
864 				    struct btrfs_path *path,
865 				    struct btrfs_delayed_item *item)
866 {
867 	struct btrfs_fs_info *fs_info = root->fs_info;
868 	struct btrfs_delayed_item *curr, *next;
869 	struct extent_buffer *leaf = path->nodes[0];
870 	LIST_HEAD(batch_list);
871 	int nitems, slot, last_slot;
872 	int ret;
873 	u64 total_reserved_size = item->bytes_reserved;
874 
875 	ASSERT(leaf != NULL);
876 
877 	slot = path->slots[0];
878 	last_slot = btrfs_header_nritems(leaf) - 1;
879 	/*
880 	 * Our caller always gives us a path pointing to an existing item, so
881 	 * this can not happen.
882 	 */
883 	ASSERT(slot <= last_slot);
884 	if (WARN_ON(slot > last_slot))
885 		return -ENOENT;
886 
887 	nitems = 1;
888 	curr = item;
889 	list_add_tail(&curr->tree_list, &batch_list);
890 
891 	/*
892 	 * Keep checking if the next delayed item matches the next item in the
893 	 * leaf - if so, we can add it to the batch of items to delete from the
894 	 * leaf.
895 	 */
896 	while (slot < last_slot) {
897 		struct btrfs_key key;
898 
899 		next = __btrfs_next_delayed_item(curr);
900 		if (!next)
901 			break;
902 
903 		slot++;
904 		btrfs_item_key_to_cpu(leaf, &key, slot);
905 		if (btrfs_comp_cpu_keys(&next->key, &key) != 0)
906 			break;
907 		nitems++;
908 		curr = next;
909 		list_add_tail(&curr->tree_list, &batch_list);
910 		total_reserved_size += curr->bytes_reserved;
911 	}
912 
913 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
914 	if (ret)
915 		return ret;
916 
917 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
918 	if (total_reserved_size > 0) {
919 		/*
920 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
921 		 * don't need to release/reserve qgroup space.
922 		 */
923 		trace_btrfs_space_reservation(fs_info, "delayed_item",
924 					      item->key.objectid, total_reserved_size,
925 					      0);
926 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
927 					total_reserved_size, NULL);
928 	}
929 
930 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
931 		list_del(&curr->tree_list);
932 		btrfs_release_delayed_item(curr);
933 	}
934 
935 	return 0;
936 }
937 
938 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
939 				      struct btrfs_path *path,
940 				      struct btrfs_root *root,
941 				      struct btrfs_delayed_node *node)
942 {
943 	int ret = 0;
944 
945 	while (ret == 0) {
946 		struct btrfs_delayed_item *item;
947 
948 		mutex_lock(&node->mutex);
949 		item = __btrfs_first_delayed_deletion_item(node);
950 		if (!item) {
951 			mutex_unlock(&node->mutex);
952 			break;
953 		}
954 
955 		ret = btrfs_search_slot(trans, root, &item->key, path, -1, 1);
956 		if (ret > 0) {
957 			/*
958 			 * There's no matching item in the leaf. This means we
959 			 * have already deleted this item in a past run of the
960 			 * delayed items. We ignore errors when running delayed
961 			 * items from an async context, through a work queue job
962 			 * running btrfs_async_run_delayed_root(), and don't
963 			 * release delayed items that failed to complete. This
964 			 * is because we will retry later, and at transaction
965 			 * commit time we always run delayed items and will
966 			 * then deal with errors if they fail to run again.
967 			 *
968 			 * So just release delayed items for which we can't find
969 			 * an item in the tree, and move to the next item.
970 			 */
971 			btrfs_release_path(path);
972 			btrfs_release_delayed_item(item);
973 			ret = 0;
974 		} else if (ret == 0) {
975 			ret = btrfs_batch_delete_items(trans, root, path, item);
976 			btrfs_release_path(path);
977 		}
978 
979 		/*
980 		 * We unlock and relock on each iteration, this is to prevent
981 		 * blocking other tasks for too long while we are being run from
982 		 * the async context (work queue job). Those tasks are typically
983 		 * running system calls like creat/mkdir/rename/unlink/etc which
984 		 * need to add delayed items to this delayed node.
985 		 */
986 		mutex_unlock(&node->mutex);
987 	}
988 
989 	return ret;
990 }
991 
992 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
993 {
994 	struct btrfs_delayed_root *delayed_root;
995 
996 	if (delayed_node &&
997 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
998 		BUG_ON(!delayed_node->root);
999 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1000 		delayed_node->count--;
1001 
1002 		delayed_root = delayed_node->root->fs_info->delayed_root;
1003 		finish_one_item(delayed_root);
1004 	}
1005 }
1006 
1007 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1008 {
1009 
1010 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1011 		struct btrfs_delayed_root *delayed_root;
1012 
1013 		ASSERT(delayed_node->root);
1014 		delayed_node->count--;
1015 
1016 		delayed_root = delayed_node->root->fs_info->delayed_root;
1017 		finish_one_item(delayed_root);
1018 	}
1019 }
1020 
1021 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1022 					struct btrfs_root *root,
1023 					struct btrfs_path *path,
1024 					struct btrfs_delayed_node *node)
1025 {
1026 	struct btrfs_fs_info *fs_info = root->fs_info;
1027 	struct btrfs_key key;
1028 	struct btrfs_inode_item *inode_item;
1029 	struct extent_buffer *leaf;
1030 	int mod;
1031 	int ret;
1032 
1033 	key.objectid = node->inode_id;
1034 	key.type = BTRFS_INODE_ITEM_KEY;
1035 	key.offset = 0;
1036 
1037 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1038 		mod = -1;
1039 	else
1040 		mod = 1;
1041 
1042 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1043 	if (ret > 0)
1044 		ret = -ENOENT;
1045 	if (ret < 0)
1046 		goto out;
1047 
1048 	leaf = path->nodes[0];
1049 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1050 				    struct btrfs_inode_item);
1051 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1052 			    sizeof(struct btrfs_inode_item));
1053 	btrfs_mark_buffer_dirty(leaf);
1054 
1055 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1056 		goto out;
1057 
1058 	path->slots[0]++;
1059 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1060 		goto search;
1061 again:
1062 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1063 	if (key.objectid != node->inode_id)
1064 		goto out;
1065 
1066 	if (key.type != BTRFS_INODE_REF_KEY &&
1067 	    key.type != BTRFS_INODE_EXTREF_KEY)
1068 		goto out;
1069 
1070 	/*
1071 	 * Delayed iref deletion is for the inode who has only one link,
1072 	 * so there is only one iref. The case that several irefs are
1073 	 * in the same item doesn't exist.
1074 	 */
1075 	btrfs_del_item(trans, root, path);
1076 out:
1077 	btrfs_release_delayed_iref(node);
1078 	btrfs_release_path(path);
1079 err_out:
1080 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1081 	btrfs_release_delayed_inode(node);
1082 
1083 	/*
1084 	 * If we fail to update the delayed inode we need to abort the
1085 	 * transaction, because we could leave the inode with the improper
1086 	 * counts behind.
1087 	 */
1088 	if (ret && ret != -ENOENT)
1089 		btrfs_abort_transaction(trans, ret);
1090 
1091 	return ret;
1092 
1093 search:
1094 	btrfs_release_path(path);
1095 
1096 	key.type = BTRFS_INODE_EXTREF_KEY;
1097 	key.offset = -1;
1098 
1099 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1100 	if (ret < 0)
1101 		goto err_out;
1102 	ASSERT(ret);
1103 
1104 	ret = 0;
1105 	leaf = path->nodes[0];
1106 	path->slots[0]--;
1107 	goto again;
1108 }
1109 
1110 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1111 					     struct btrfs_root *root,
1112 					     struct btrfs_path *path,
1113 					     struct btrfs_delayed_node *node)
1114 {
1115 	int ret;
1116 
1117 	mutex_lock(&node->mutex);
1118 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1119 		mutex_unlock(&node->mutex);
1120 		return 0;
1121 	}
1122 
1123 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1124 	mutex_unlock(&node->mutex);
1125 	return ret;
1126 }
1127 
1128 static inline int
1129 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1130 				   struct btrfs_path *path,
1131 				   struct btrfs_delayed_node *node)
1132 {
1133 	int ret;
1134 
1135 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1136 	if (ret)
1137 		return ret;
1138 
1139 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1140 	if (ret)
1141 		return ret;
1142 
1143 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1144 	return ret;
1145 }
1146 
1147 /*
1148  * Called when committing the transaction.
1149  * Returns 0 on success.
1150  * Returns < 0 on error and returns with an aborted transaction with any
1151  * outstanding delayed items cleaned up.
1152  */
1153 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1154 {
1155 	struct btrfs_fs_info *fs_info = trans->fs_info;
1156 	struct btrfs_delayed_root *delayed_root;
1157 	struct btrfs_delayed_node *curr_node, *prev_node;
1158 	struct btrfs_path *path;
1159 	struct btrfs_block_rsv *block_rsv;
1160 	int ret = 0;
1161 	bool count = (nr > 0);
1162 
1163 	if (TRANS_ABORTED(trans))
1164 		return -EIO;
1165 
1166 	path = btrfs_alloc_path();
1167 	if (!path)
1168 		return -ENOMEM;
1169 
1170 	block_rsv = trans->block_rsv;
1171 	trans->block_rsv = &fs_info->delayed_block_rsv;
1172 
1173 	delayed_root = fs_info->delayed_root;
1174 
1175 	curr_node = btrfs_first_delayed_node(delayed_root);
1176 	while (curr_node && (!count || nr--)) {
1177 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1178 							 curr_node);
1179 		if (ret) {
1180 			btrfs_release_delayed_node(curr_node);
1181 			curr_node = NULL;
1182 			btrfs_abort_transaction(trans, ret);
1183 			break;
1184 		}
1185 
1186 		prev_node = curr_node;
1187 		curr_node = btrfs_next_delayed_node(curr_node);
1188 		btrfs_release_delayed_node(prev_node);
1189 	}
1190 
1191 	if (curr_node)
1192 		btrfs_release_delayed_node(curr_node);
1193 	btrfs_free_path(path);
1194 	trans->block_rsv = block_rsv;
1195 
1196 	return ret;
1197 }
1198 
1199 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1200 {
1201 	return __btrfs_run_delayed_items(trans, -1);
1202 }
1203 
1204 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1205 {
1206 	return __btrfs_run_delayed_items(trans, nr);
1207 }
1208 
1209 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1210 				     struct btrfs_inode *inode)
1211 {
1212 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1213 	struct btrfs_path *path;
1214 	struct btrfs_block_rsv *block_rsv;
1215 	int ret;
1216 
1217 	if (!delayed_node)
1218 		return 0;
1219 
1220 	mutex_lock(&delayed_node->mutex);
1221 	if (!delayed_node->count) {
1222 		mutex_unlock(&delayed_node->mutex);
1223 		btrfs_release_delayed_node(delayed_node);
1224 		return 0;
1225 	}
1226 	mutex_unlock(&delayed_node->mutex);
1227 
1228 	path = btrfs_alloc_path();
1229 	if (!path) {
1230 		btrfs_release_delayed_node(delayed_node);
1231 		return -ENOMEM;
1232 	}
1233 
1234 	block_rsv = trans->block_rsv;
1235 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1236 
1237 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1238 
1239 	btrfs_release_delayed_node(delayed_node);
1240 	btrfs_free_path(path);
1241 	trans->block_rsv = block_rsv;
1242 
1243 	return ret;
1244 }
1245 
1246 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1247 {
1248 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1249 	struct btrfs_trans_handle *trans;
1250 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1251 	struct btrfs_path *path;
1252 	struct btrfs_block_rsv *block_rsv;
1253 	int ret;
1254 
1255 	if (!delayed_node)
1256 		return 0;
1257 
1258 	mutex_lock(&delayed_node->mutex);
1259 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1260 		mutex_unlock(&delayed_node->mutex);
1261 		btrfs_release_delayed_node(delayed_node);
1262 		return 0;
1263 	}
1264 	mutex_unlock(&delayed_node->mutex);
1265 
1266 	trans = btrfs_join_transaction(delayed_node->root);
1267 	if (IS_ERR(trans)) {
1268 		ret = PTR_ERR(trans);
1269 		goto out;
1270 	}
1271 
1272 	path = btrfs_alloc_path();
1273 	if (!path) {
1274 		ret = -ENOMEM;
1275 		goto trans_out;
1276 	}
1277 
1278 	block_rsv = trans->block_rsv;
1279 	trans->block_rsv = &fs_info->delayed_block_rsv;
1280 
1281 	mutex_lock(&delayed_node->mutex);
1282 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1283 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1284 						   path, delayed_node);
1285 	else
1286 		ret = 0;
1287 	mutex_unlock(&delayed_node->mutex);
1288 
1289 	btrfs_free_path(path);
1290 	trans->block_rsv = block_rsv;
1291 trans_out:
1292 	btrfs_end_transaction(trans);
1293 	btrfs_btree_balance_dirty(fs_info);
1294 out:
1295 	btrfs_release_delayed_node(delayed_node);
1296 
1297 	return ret;
1298 }
1299 
1300 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1301 {
1302 	struct btrfs_delayed_node *delayed_node;
1303 
1304 	delayed_node = READ_ONCE(inode->delayed_node);
1305 	if (!delayed_node)
1306 		return;
1307 
1308 	inode->delayed_node = NULL;
1309 	btrfs_release_delayed_node(delayed_node);
1310 }
1311 
1312 struct btrfs_async_delayed_work {
1313 	struct btrfs_delayed_root *delayed_root;
1314 	int nr;
1315 	struct btrfs_work work;
1316 };
1317 
1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1319 {
1320 	struct btrfs_async_delayed_work *async_work;
1321 	struct btrfs_delayed_root *delayed_root;
1322 	struct btrfs_trans_handle *trans;
1323 	struct btrfs_path *path;
1324 	struct btrfs_delayed_node *delayed_node = NULL;
1325 	struct btrfs_root *root;
1326 	struct btrfs_block_rsv *block_rsv;
1327 	int total_done = 0;
1328 
1329 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1330 	delayed_root = async_work->delayed_root;
1331 
1332 	path = btrfs_alloc_path();
1333 	if (!path)
1334 		goto out;
1335 
1336 	do {
1337 		if (atomic_read(&delayed_root->items) <
1338 		    BTRFS_DELAYED_BACKGROUND / 2)
1339 			break;
1340 
1341 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1342 		if (!delayed_node)
1343 			break;
1344 
1345 		root = delayed_node->root;
1346 
1347 		trans = btrfs_join_transaction(root);
1348 		if (IS_ERR(trans)) {
1349 			btrfs_release_path(path);
1350 			btrfs_release_prepared_delayed_node(delayed_node);
1351 			total_done++;
1352 			continue;
1353 		}
1354 
1355 		block_rsv = trans->block_rsv;
1356 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1357 
1358 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1359 
1360 		trans->block_rsv = block_rsv;
1361 		btrfs_end_transaction(trans);
1362 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1363 
1364 		btrfs_release_path(path);
1365 		btrfs_release_prepared_delayed_node(delayed_node);
1366 		total_done++;
1367 
1368 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1369 		 || total_done < async_work->nr);
1370 
1371 	btrfs_free_path(path);
1372 out:
1373 	wake_up(&delayed_root->wait);
1374 	kfree(async_work);
1375 }
1376 
1377 
1378 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1379 				     struct btrfs_fs_info *fs_info, int nr)
1380 {
1381 	struct btrfs_async_delayed_work *async_work;
1382 
1383 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1384 	if (!async_work)
1385 		return -ENOMEM;
1386 
1387 	async_work->delayed_root = delayed_root;
1388 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1389 			NULL);
1390 	async_work->nr = nr;
1391 
1392 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1393 	return 0;
1394 }
1395 
1396 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1397 {
1398 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1399 }
1400 
1401 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1402 {
1403 	int val = atomic_read(&delayed_root->items_seq);
1404 
1405 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1406 		return 1;
1407 
1408 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1409 		return 1;
1410 
1411 	return 0;
1412 }
1413 
1414 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1415 {
1416 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1417 
1418 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1419 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1420 		return;
1421 
1422 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1423 		int seq;
1424 		int ret;
1425 
1426 		seq = atomic_read(&delayed_root->items_seq);
1427 
1428 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1429 		if (ret)
1430 			return;
1431 
1432 		wait_event_interruptible(delayed_root->wait,
1433 					 could_end_wait(delayed_root, seq));
1434 		return;
1435 	}
1436 
1437 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1438 }
1439 
1440 /* Will return 0 or -ENOMEM */
1441 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1442 				   const char *name, int name_len,
1443 				   struct btrfs_inode *dir,
1444 				   struct btrfs_disk_key *disk_key, u8 type,
1445 				   u64 index)
1446 {
1447 	struct btrfs_fs_info *fs_info = trans->fs_info;
1448 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1449 	struct btrfs_delayed_node *delayed_node;
1450 	struct btrfs_delayed_item *delayed_item;
1451 	struct btrfs_dir_item *dir_item;
1452 	bool reserve_leaf_space;
1453 	u32 data_len;
1454 	int ret;
1455 
1456 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1457 	if (IS_ERR(delayed_node))
1458 		return PTR_ERR(delayed_node);
1459 
1460 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1461 	if (!delayed_item) {
1462 		ret = -ENOMEM;
1463 		goto release_node;
1464 	}
1465 
1466 	delayed_item->key.objectid = btrfs_ino(dir);
1467 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1468 	delayed_item->key.offset = index;
1469 	delayed_item->ins_or_del = BTRFS_DELAYED_INSERTION_ITEM;
1470 
1471 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1472 	dir_item->location = *disk_key;
1473 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1474 	btrfs_set_stack_dir_data_len(dir_item, 0);
1475 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1476 	btrfs_set_stack_dir_type(dir_item, type);
1477 	memcpy((char *)(dir_item + 1), name, name_len);
1478 
1479 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1480 
1481 	mutex_lock(&delayed_node->mutex);
1482 
1483 	if (delayed_node->index_item_leaves == 0 ||
1484 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1485 		delayed_node->curr_index_batch_size = data_len;
1486 		reserve_leaf_space = true;
1487 	} else {
1488 		delayed_node->curr_index_batch_size += data_len;
1489 		reserve_leaf_space = false;
1490 	}
1491 
1492 	if (reserve_leaf_space) {
1493 		ret = btrfs_delayed_item_reserve_metadata(trans, dir->root,
1494 							  delayed_item);
1495 		/*
1496 		 * Space was reserved for a dir index item insertion when we
1497 		 * started the transaction, so getting a failure here should be
1498 		 * impossible.
1499 		 */
1500 		if (WARN_ON(ret)) {
1501 			mutex_unlock(&delayed_node->mutex);
1502 			btrfs_release_delayed_item(delayed_item);
1503 			goto release_node;
1504 		}
1505 
1506 		delayed_node->index_item_leaves++;
1507 	} else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1508 		const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1509 
1510 		/*
1511 		 * Adding the new dir index item does not require touching another
1512 		 * leaf, so we can release 1 unit of metadata that was previously
1513 		 * reserved when starting the transaction. This applies only to
1514 		 * the case where we had a transaction start and excludes the
1515 		 * transaction join case (when replaying log trees).
1516 		 */
1517 		trace_btrfs_space_reservation(fs_info, "transaction",
1518 					      trans->transid, bytes, 0);
1519 		btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1520 		ASSERT(trans->bytes_reserved >= bytes);
1521 		trans->bytes_reserved -= bytes;
1522 	}
1523 
1524 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1525 	if (unlikely(ret)) {
1526 		btrfs_err(trans->fs_info,
1527 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1528 			  name_len, name, delayed_node->root->root_key.objectid,
1529 			  delayed_node->inode_id, ret);
1530 		BUG();
1531 	}
1532 	mutex_unlock(&delayed_node->mutex);
1533 
1534 release_node:
1535 	btrfs_release_delayed_node(delayed_node);
1536 	return ret;
1537 }
1538 
1539 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1540 					       struct btrfs_delayed_node *node,
1541 					       struct btrfs_key *key)
1542 {
1543 	struct btrfs_delayed_item *item;
1544 
1545 	mutex_lock(&node->mutex);
1546 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1547 	if (!item) {
1548 		mutex_unlock(&node->mutex);
1549 		return 1;
1550 	}
1551 
1552 	/*
1553 	 * For delayed items to insert, we track reserved metadata bytes based
1554 	 * on the number of leaves that we will use.
1555 	 * See btrfs_insert_delayed_dir_index() and
1556 	 * btrfs_delayed_item_reserve_metadata()).
1557 	 */
1558 	ASSERT(item->bytes_reserved == 0);
1559 	ASSERT(node->index_item_leaves > 0);
1560 
1561 	/*
1562 	 * If there's only one leaf reserved, we can decrement this item from the
1563 	 * current batch, otherwise we can not because we don't know which leaf
1564 	 * it belongs to. With the current limit on delayed items, we rarely
1565 	 * accumulate enough dir index items to fill more than one leaf (even
1566 	 * when using a leaf size of 4K).
1567 	 */
1568 	if (node->index_item_leaves == 1) {
1569 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1570 
1571 		ASSERT(node->curr_index_batch_size >= data_len);
1572 		node->curr_index_batch_size -= data_len;
1573 	}
1574 
1575 	btrfs_release_delayed_item(item);
1576 
1577 	/* If we now have no more dir index items, we can release all leaves. */
1578 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1579 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1580 		node->index_item_leaves = 0;
1581 	}
1582 
1583 	mutex_unlock(&node->mutex);
1584 	return 0;
1585 }
1586 
1587 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1588 				   struct btrfs_inode *dir, u64 index)
1589 {
1590 	struct btrfs_delayed_node *node;
1591 	struct btrfs_delayed_item *item;
1592 	struct btrfs_key item_key;
1593 	int ret;
1594 
1595 	node = btrfs_get_or_create_delayed_node(dir);
1596 	if (IS_ERR(node))
1597 		return PTR_ERR(node);
1598 
1599 	item_key.objectid = btrfs_ino(dir);
1600 	item_key.type = BTRFS_DIR_INDEX_KEY;
1601 	item_key.offset = index;
1602 
1603 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1604 						  &item_key);
1605 	if (!ret)
1606 		goto end;
1607 
1608 	item = btrfs_alloc_delayed_item(0);
1609 	if (!item) {
1610 		ret = -ENOMEM;
1611 		goto end;
1612 	}
1613 
1614 	item->key = item_key;
1615 	item->ins_or_del = BTRFS_DELAYED_DELETION_ITEM;
1616 
1617 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1618 	/*
1619 	 * we have reserved enough space when we start a new transaction,
1620 	 * so reserving metadata failure is impossible.
1621 	 */
1622 	if (ret < 0) {
1623 		btrfs_err(trans->fs_info,
1624 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1625 		btrfs_release_delayed_item(item);
1626 		goto end;
1627 	}
1628 
1629 	mutex_lock(&node->mutex);
1630 	ret = __btrfs_add_delayed_item(node, item);
1631 	if (unlikely(ret)) {
1632 		btrfs_err(trans->fs_info,
1633 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1634 			  index, node->root->root_key.objectid,
1635 			  node->inode_id, ret);
1636 		btrfs_delayed_item_release_metadata(dir->root, item);
1637 		btrfs_release_delayed_item(item);
1638 	}
1639 	mutex_unlock(&node->mutex);
1640 end:
1641 	btrfs_release_delayed_node(node);
1642 	return ret;
1643 }
1644 
1645 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1646 {
1647 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1648 
1649 	if (!delayed_node)
1650 		return -ENOENT;
1651 
1652 	/*
1653 	 * Since we have held i_mutex of this directory, it is impossible that
1654 	 * a new directory index is added into the delayed node and index_cnt
1655 	 * is updated now. So we needn't lock the delayed node.
1656 	 */
1657 	if (!delayed_node->index_cnt) {
1658 		btrfs_release_delayed_node(delayed_node);
1659 		return -EINVAL;
1660 	}
1661 
1662 	inode->index_cnt = delayed_node->index_cnt;
1663 	btrfs_release_delayed_node(delayed_node);
1664 	return 0;
1665 }
1666 
1667 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1668 				     struct list_head *ins_list,
1669 				     struct list_head *del_list)
1670 {
1671 	struct btrfs_delayed_node *delayed_node;
1672 	struct btrfs_delayed_item *item;
1673 
1674 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1675 	if (!delayed_node)
1676 		return false;
1677 
1678 	/*
1679 	 * We can only do one readdir with delayed items at a time because of
1680 	 * item->readdir_list.
1681 	 */
1682 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1683 	btrfs_inode_lock(inode, 0);
1684 
1685 	mutex_lock(&delayed_node->mutex);
1686 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1687 	while (item) {
1688 		refcount_inc(&item->refs);
1689 		list_add_tail(&item->readdir_list, ins_list);
1690 		item = __btrfs_next_delayed_item(item);
1691 	}
1692 
1693 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1694 	while (item) {
1695 		refcount_inc(&item->refs);
1696 		list_add_tail(&item->readdir_list, del_list);
1697 		item = __btrfs_next_delayed_item(item);
1698 	}
1699 	mutex_unlock(&delayed_node->mutex);
1700 	/*
1701 	 * This delayed node is still cached in the btrfs inode, so refs
1702 	 * must be > 1 now, and we needn't check it is going to be freed
1703 	 * or not.
1704 	 *
1705 	 * Besides that, this function is used to read dir, we do not
1706 	 * insert/delete delayed items in this period. So we also needn't
1707 	 * requeue or dequeue this delayed node.
1708 	 */
1709 	refcount_dec(&delayed_node->refs);
1710 
1711 	return true;
1712 }
1713 
1714 void btrfs_readdir_put_delayed_items(struct inode *inode,
1715 				     struct list_head *ins_list,
1716 				     struct list_head *del_list)
1717 {
1718 	struct btrfs_delayed_item *curr, *next;
1719 
1720 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1721 		list_del(&curr->readdir_list);
1722 		if (refcount_dec_and_test(&curr->refs))
1723 			kfree(curr);
1724 	}
1725 
1726 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1727 		list_del(&curr->readdir_list);
1728 		if (refcount_dec_and_test(&curr->refs))
1729 			kfree(curr);
1730 	}
1731 
1732 	/*
1733 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1734 	 * read lock.
1735 	 */
1736 	downgrade_write(&inode->i_rwsem);
1737 }
1738 
1739 int btrfs_should_delete_dir_index(struct list_head *del_list,
1740 				  u64 index)
1741 {
1742 	struct btrfs_delayed_item *curr;
1743 	int ret = 0;
1744 
1745 	list_for_each_entry(curr, del_list, readdir_list) {
1746 		if (curr->key.offset > index)
1747 			break;
1748 		if (curr->key.offset == index) {
1749 			ret = 1;
1750 			break;
1751 		}
1752 	}
1753 	return ret;
1754 }
1755 
1756 /*
1757  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1758  *
1759  */
1760 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1761 				    struct list_head *ins_list)
1762 {
1763 	struct btrfs_dir_item *di;
1764 	struct btrfs_delayed_item *curr, *next;
1765 	struct btrfs_key location;
1766 	char *name;
1767 	int name_len;
1768 	int over = 0;
1769 	unsigned char d_type;
1770 
1771 	if (list_empty(ins_list))
1772 		return 0;
1773 
1774 	/*
1775 	 * Changing the data of the delayed item is impossible. So
1776 	 * we needn't lock them. And we have held i_mutex of the
1777 	 * directory, nobody can delete any directory indexes now.
1778 	 */
1779 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1780 		list_del(&curr->readdir_list);
1781 
1782 		if (curr->key.offset < ctx->pos) {
1783 			if (refcount_dec_and_test(&curr->refs))
1784 				kfree(curr);
1785 			continue;
1786 		}
1787 
1788 		ctx->pos = curr->key.offset;
1789 
1790 		di = (struct btrfs_dir_item *)curr->data;
1791 		name = (char *)(di + 1);
1792 		name_len = btrfs_stack_dir_name_len(di);
1793 
1794 		d_type = fs_ftype_to_dtype(di->type);
1795 		btrfs_disk_key_to_cpu(&location, &di->location);
1796 
1797 		over = !dir_emit(ctx, name, name_len,
1798 			       location.objectid, d_type);
1799 
1800 		if (refcount_dec_and_test(&curr->refs))
1801 			kfree(curr);
1802 
1803 		if (over)
1804 			return 1;
1805 		ctx->pos++;
1806 	}
1807 	return 0;
1808 }
1809 
1810 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1811 				  struct btrfs_inode_item *inode_item,
1812 				  struct inode *inode)
1813 {
1814 	u64 flags;
1815 
1816 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1817 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1818 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1819 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1820 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1821 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1822 	btrfs_set_stack_inode_generation(inode_item,
1823 					 BTRFS_I(inode)->generation);
1824 	btrfs_set_stack_inode_sequence(inode_item,
1825 				       inode_peek_iversion(inode));
1826 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1827 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1828 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1829 					  BTRFS_I(inode)->ro_flags);
1830 	btrfs_set_stack_inode_flags(inode_item, flags);
1831 	btrfs_set_stack_inode_block_group(inode_item, 0);
1832 
1833 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1834 				     inode->i_atime.tv_sec);
1835 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1836 				      inode->i_atime.tv_nsec);
1837 
1838 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1839 				     inode->i_mtime.tv_sec);
1840 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1841 				      inode->i_mtime.tv_nsec);
1842 
1843 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1844 				     inode->i_ctime.tv_sec);
1845 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1846 				      inode->i_ctime.tv_nsec);
1847 
1848 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1849 				     BTRFS_I(inode)->i_otime.tv_sec);
1850 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1851 				     BTRFS_I(inode)->i_otime.tv_nsec);
1852 }
1853 
1854 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1855 {
1856 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1857 	struct btrfs_delayed_node *delayed_node;
1858 	struct btrfs_inode_item *inode_item;
1859 
1860 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1861 	if (!delayed_node)
1862 		return -ENOENT;
1863 
1864 	mutex_lock(&delayed_node->mutex);
1865 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1866 		mutex_unlock(&delayed_node->mutex);
1867 		btrfs_release_delayed_node(delayed_node);
1868 		return -ENOENT;
1869 	}
1870 
1871 	inode_item = &delayed_node->inode_item;
1872 
1873 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1874 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1875 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1876 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1877 			round_up(i_size_read(inode), fs_info->sectorsize));
1878 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1879 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1880 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1881 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1882         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1883 
1884 	inode_set_iversion_queried(inode,
1885 				   btrfs_stack_inode_sequence(inode_item));
1886 	inode->i_rdev = 0;
1887 	*rdev = btrfs_stack_inode_rdev(inode_item);
1888 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1889 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1890 
1891 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1892 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1893 
1894 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1895 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1896 
1897 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1898 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1899 
1900 	BTRFS_I(inode)->i_otime.tv_sec =
1901 		btrfs_stack_timespec_sec(&inode_item->otime);
1902 	BTRFS_I(inode)->i_otime.tv_nsec =
1903 		btrfs_stack_timespec_nsec(&inode_item->otime);
1904 
1905 	inode->i_generation = BTRFS_I(inode)->generation;
1906 	BTRFS_I(inode)->index_cnt = (u64)-1;
1907 
1908 	mutex_unlock(&delayed_node->mutex);
1909 	btrfs_release_delayed_node(delayed_node);
1910 	return 0;
1911 }
1912 
1913 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1914 			       struct btrfs_root *root,
1915 			       struct btrfs_inode *inode)
1916 {
1917 	struct btrfs_delayed_node *delayed_node;
1918 	int ret = 0;
1919 
1920 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1921 	if (IS_ERR(delayed_node))
1922 		return PTR_ERR(delayed_node);
1923 
1924 	mutex_lock(&delayed_node->mutex);
1925 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1926 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1927 				      &inode->vfs_inode);
1928 		goto release_node;
1929 	}
1930 
1931 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1932 	if (ret)
1933 		goto release_node;
1934 
1935 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1936 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1937 	delayed_node->count++;
1938 	atomic_inc(&root->fs_info->delayed_root->items);
1939 release_node:
1940 	mutex_unlock(&delayed_node->mutex);
1941 	btrfs_release_delayed_node(delayed_node);
1942 	return ret;
1943 }
1944 
1945 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1946 {
1947 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1948 	struct btrfs_delayed_node *delayed_node;
1949 
1950 	/*
1951 	 * we don't do delayed inode updates during log recovery because it
1952 	 * leads to enospc problems.  This means we also can't do
1953 	 * delayed inode refs
1954 	 */
1955 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1956 		return -EAGAIN;
1957 
1958 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1959 	if (IS_ERR(delayed_node))
1960 		return PTR_ERR(delayed_node);
1961 
1962 	/*
1963 	 * We don't reserve space for inode ref deletion is because:
1964 	 * - We ONLY do async inode ref deletion for the inode who has only
1965 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1966 	 *   And in most case, the inode ref and the inode item are in the
1967 	 *   same leaf, and we will deal with them at the same time.
1968 	 *   Since we are sure we will reserve the space for the inode item,
1969 	 *   it is unnecessary to reserve space for inode ref deletion.
1970 	 * - If the inode ref and the inode item are not in the same leaf,
1971 	 *   We also needn't worry about enospc problem, because we reserve
1972 	 *   much more space for the inode update than it needs.
1973 	 * - At the worst, we can steal some space from the global reservation.
1974 	 *   It is very rare.
1975 	 */
1976 	mutex_lock(&delayed_node->mutex);
1977 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1978 		goto release_node;
1979 
1980 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1981 	delayed_node->count++;
1982 	atomic_inc(&fs_info->delayed_root->items);
1983 release_node:
1984 	mutex_unlock(&delayed_node->mutex);
1985 	btrfs_release_delayed_node(delayed_node);
1986 	return 0;
1987 }
1988 
1989 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1990 {
1991 	struct btrfs_root *root = delayed_node->root;
1992 	struct btrfs_fs_info *fs_info = root->fs_info;
1993 	struct btrfs_delayed_item *curr_item, *prev_item;
1994 
1995 	mutex_lock(&delayed_node->mutex);
1996 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1997 	while (curr_item) {
1998 		prev_item = curr_item;
1999 		curr_item = __btrfs_next_delayed_item(prev_item);
2000 		btrfs_release_delayed_item(prev_item);
2001 	}
2002 
2003 	if (delayed_node->index_item_leaves > 0) {
2004 		btrfs_delayed_item_release_leaves(delayed_node,
2005 					  delayed_node->index_item_leaves);
2006 		delayed_node->index_item_leaves = 0;
2007 	}
2008 
2009 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2010 	while (curr_item) {
2011 		btrfs_delayed_item_release_metadata(root, curr_item);
2012 		prev_item = curr_item;
2013 		curr_item = __btrfs_next_delayed_item(prev_item);
2014 		btrfs_release_delayed_item(prev_item);
2015 	}
2016 
2017 	btrfs_release_delayed_iref(delayed_node);
2018 
2019 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2020 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2021 		btrfs_release_delayed_inode(delayed_node);
2022 	}
2023 	mutex_unlock(&delayed_node->mutex);
2024 }
2025 
2026 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2027 {
2028 	struct btrfs_delayed_node *delayed_node;
2029 
2030 	delayed_node = btrfs_get_delayed_node(inode);
2031 	if (!delayed_node)
2032 		return;
2033 
2034 	__btrfs_kill_delayed_node(delayed_node);
2035 	btrfs_release_delayed_node(delayed_node);
2036 }
2037 
2038 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2039 {
2040 	u64 inode_id = 0;
2041 	struct btrfs_delayed_node *delayed_nodes[8];
2042 	int i, n;
2043 
2044 	while (1) {
2045 		spin_lock(&root->inode_lock);
2046 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2047 					   (void **)delayed_nodes, inode_id,
2048 					   ARRAY_SIZE(delayed_nodes));
2049 		if (!n) {
2050 			spin_unlock(&root->inode_lock);
2051 			break;
2052 		}
2053 
2054 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
2055 		for (i = 0; i < n; i++) {
2056 			/*
2057 			 * Don't increase refs in case the node is dead and
2058 			 * about to be removed from the tree in the loop below
2059 			 */
2060 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2061 				delayed_nodes[i] = NULL;
2062 		}
2063 		spin_unlock(&root->inode_lock);
2064 
2065 		for (i = 0; i < n; i++) {
2066 			if (!delayed_nodes[i])
2067 				continue;
2068 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2069 			btrfs_release_delayed_node(delayed_nodes[i]);
2070 		}
2071 	}
2072 }
2073 
2074 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2075 {
2076 	struct btrfs_delayed_node *curr_node, *prev_node;
2077 
2078 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2079 	while (curr_node) {
2080 		__btrfs_kill_delayed_node(curr_node);
2081 
2082 		prev_node = curr_node;
2083 		curr_node = btrfs_next_delayed_node(curr_node);
2084 		btrfs_release_delayed_node(prev_node);
2085 	}
2086 }
2087 
2088