1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "misc.h" 10 #include "delayed-inode.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "ctree.h" 14 #include "qgroup.h" 15 #include "locking.h" 16 #include "inode-item.h" 17 18 #define BTRFS_DELAYED_WRITEBACK 512 19 #define BTRFS_DELAYED_BACKGROUND 128 20 #define BTRFS_DELAYED_BATCH 16 21 22 static struct kmem_cache *delayed_node_cache; 23 24 int __init btrfs_delayed_inode_init(void) 25 { 26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 27 sizeof(struct btrfs_delayed_node), 28 0, 29 SLAB_MEM_SPREAD, 30 NULL); 31 if (!delayed_node_cache) 32 return -ENOMEM; 33 return 0; 34 } 35 36 void __cold btrfs_delayed_inode_exit(void) 37 { 38 kmem_cache_destroy(delayed_node_cache); 39 } 40 41 static inline void btrfs_init_delayed_node( 42 struct btrfs_delayed_node *delayed_node, 43 struct btrfs_root *root, u64 inode_id) 44 { 45 delayed_node->root = root; 46 delayed_node->inode_id = inode_id; 47 refcount_set(&delayed_node->refs, 0); 48 delayed_node->ins_root = RB_ROOT_CACHED; 49 delayed_node->del_root = RB_ROOT_CACHED; 50 mutex_init(&delayed_node->mutex); 51 INIT_LIST_HEAD(&delayed_node->n_list); 52 INIT_LIST_HEAD(&delayed_node->p_list); 53 } 54 55 static struct btrfs_delayed_node *btrfs_get_delayed_node( 56 struct btrfs_inode *btrfs_inode) 57 { 58 struct btrfs_root *root = btrfs_inode->root; 59 u64 ino = btrfs_ino(btrfs_inode); 60 struct btrfs_delayed_node *node; 61 62 node = READ_ONCE(btrfs_inode->delayed_node); 63 if (node) { 64 refcount_inc(&node->refs); 65 return node; 66 } 67 68 spin_lock(&root->inode_lock); 69 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 70 71 if (node) { 72 if (btrfs_inode->delayed_node) { 73 refcount_inc(&node->refs); /* can be accessed */ 74 BUG_ON(btrfs_inode->delayed_node != node); 75 spin_unlock(&root->inode_lock); 76 return node; 77 } 78 79 /* 80 * It's possible that we're racing into the middle of removing 81 * this node from the radix tree. In this case, the refcount 82 * was zero and it should never go back to one. Just return 83 * NULL like it was never in the radix at all; our release 84 * function is in the process of removing it. 85 * 86 * Some implementations of refcount_inc refuse to bump the 87 * refcount once it has hit zero. If we don't do this dance 88 * here, refcount_inc() may decide to just WARN_ONCE() instead 89 * of actually bumping the refcount. 90 * 91 * If this node is properly in the radix, we want to bump the 92 * refcount twice, once for the inode and once for this get 93 * operation. 94 */ 95 if (refcount_inc_not_zero(&node->refs)) { 96 refcount_inc(&node->refs); 97 btrfs_inode->delayed_node = node; 98 } else { 99 node = NULL; 100 } 101 102 spin_unlock(&root->inode_lock); 103 return node; 104 } 105 spin_unlock(&root->inode_lock); 106 107 return NULL; 108 } 109 110 /* Will return either the node or PTR_ERR(-ENOMEM) */ 111 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 112 struct btrfs_inode *btrfs_inode) 113 { 114 struct btrfs_delayed_node *node; 115 struct btrfs_root *root = btrfs_inode->root; 116 u64 ino = btrfs_ino(btrfs_inode); 117 int ret; 118 119 again: 120 node = btrfs_get_delayed_node(btrfs_inode); 121 if (node) 122 return node; 123 124 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 125 if (!node) 126 return ERR_PTR(-ENOMEM); 127 btrfs_init_delayed_node(node, root, ino); 128 129 /* cached in the btrfs inode and can be accessed */ 130 refcount_set(&node->refs, 2); 131 132 ret = radix_tree_preload(GFP_NOFS); 133 if (ret) { 134 kmem_cache_free(delayed_node_cache, node); 135 return ERR_PTR(ret); 136 } 137 138 spin_lock(&root->inode_lock); 139 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 140 if (ret == -EEXIST) { 141 spin_unlock(&root->inode_lock); 142 kmem_cache_free(delayed_node_cache, node); 143 radix_tree_preload_end(); 144 goto again; 145 } 146 btrfs_inode->delayed_node = node; 147 spin_unlock(&root->inode_lock); 148 radix_tree_preload_end(); 149 150 return node; 151 } 152 153 /* 154 * Call it when holding delayed_node->mutex 155 * 156 * If mod = 1, add this node into the prepared list. 157 */ 158 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 159 struct btrfs_delayed_node *node, 160 int mod) 161 { 162 spin_lock(&root->lock); 163 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 164 if (!list_empty(&node->p_list)) 165 list_move_tail(&node->p_list, &root->prepare_list); 166 else if (mod) 167 list_add_tail(&node->p_list, &root->prepare_list); 168 } else { 169 list_add_tail(&node->n_list, &root->node_list); 170 list_add_tail(&node->p_list, &root->prepare_list); 171 refcount_inc(&node->refs); /* inserted into list */ 172 root->nodes++; 173 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 174 } 175 spin_unlock(&root->lock); 176 } 177 178 /* Call it when holding delayed_node->mutex */ 179 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 180 struct btrfs_delayed_node *node) 181 { 182 spin_lock(&root->lock); 183 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 184 root->nodes--; 185 refcount_dec(&node->refs); /* not in the list */ 186 list_del_init(&node->n_list); 187 if (!list_empty(&node->p_list)) 188 list_del_init(&node->p_list); 189 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 190 } 191 spin_unlock(&root->lock); 192 } 193 194 static struct btrfs_delayed_node *btrfs_first_delayed_node( 195 struct btrfs_delayed_root *delayed_root) 196 { 197 struct list_head *p; 198 struct btrfs_delayed_node *node = NULL; 199 200 spin_lock(&delayed_root->lock); 201 if (list_empty(&delayed_root->node_list)) 202 goto out; 203 204 p = delayed_root->node_list.next; 205 node = list_entry(p, struct btrfs_delayed_node, n_list); 206 refcount_inc(&node->refs); 207 out: 208 spin_unlock(&delayed_root->lock); 209 210 return node; 211 } 212 213 static struct btrfs_delayed_node *btrfs_next_delayed_node( 214 struct btrfs_delayed_node *node) 215 { 216 struct btrfs_delayed_root *delayed_root; 217 struct list_head *p; 218 struct btrfs_delayed_node *next = NULL; 219 220 delayed_root = node->root->fs_info->delayed_root; 221 spin_lock(&delayed_root->lock); 222 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 223 /* not in the list */ 224 if (list_empty(&delayed_root->node_list)) 225 goto out; 226 p = delayed_root->node_list.next; 227 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 228 goto out; 229 else 230 p = node->n_list.next; 231 232 next = list_entry(p, struct btrfs_delayed_node, n_list); 233 refcount_inc(&next->refs); 234 out: 235 spin_unlock(&delayed_root->lock); 236 237 return next; 238 } 239 240 static void __btrfs_release_delayed_node( 241 struct btrfs_delayed_node *delayed_node, 242 int mod) 243 { 244 struct btrfs_delayed_root *delayed_root; 245 246 if (!delayed_node) 247 return; 248 249 delayed_root = delayed_node->root->fs_info->delayed_root; 250 251 mutex_lock(&delayed_node->mutex); 252 if (delayed_node->count) 253 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 254 else 255 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 256 mutex_unlock(&delayed_node->mutex); 257 258 if (refcount_dec_and_test(&delayed_node->refs)) { 259 struct btrfs_root *root = delayed_node->root; 260 261 spin_lock(&root->inode_lock); 262 /* 263 * Once our refcount goes to zero, nobody is allowed to bump it 264 * back up. We can delete it now. 265 */ 266 ASSERT(refcount_read(&delayed_node->refs) == 0); 267 radix_tree_delete(&root->delayed_nodes_tree, 268 delayed_node->inode_id); 269 spin_unlock(&root->inode_lock); 270 kmem_cache_free(delayed_node_cache, delayed_node); 271 } 272 } 273 274 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 275 { 276 __btrfs_release_delayed_node(node, 0); 277 } 278 279 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 280 struct btrfs_delayed_root *delayed_root) 281 { 282 struct list_head *p; 283 struct btrfs_delayed_node *node = NULL; 284 285 spin_lock(&delayed_root->lock); 286 if (list_empty(&delayed_root->prepare_list)) 287 goto out; 288 289 p = delayed_root->prepare_list.next; 290 list_del_init(p); 291 node = list_entry(p, struct btrfs_delayed_node, p_list); 292 refcount_inc(&node->refs); 293 out: 294 spin_unlock(&delayed_root->lock); 295 296 return node; 297 } 298 299 static inline void btrfs_release_prepared_delayed_node( 300 struct btrfs_delayed_node *node) 301 { 302 __btrfs_release_delayed_node(node, 1); 303 } 304 305 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 306 { 307 struct btrfs_delayed_item *item; 308 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 309 if (item) { 310 item->data_len = data_len; 311 item->ins_or_del = 0; 312 item->bytes_reserved = 0; 313 item->delayed_node = NULL; 314 refcount_set(&item->refs, 1); 315 } 316 return item; 317 } 318 319 /* 320 * __btrfs_lookup_delayed_item - look up the delayed item by key 321 * @delayed_node: pointer to the delayed node 322 * @key: the key to look up 323 * @prev: used to store the prev item if the right item isn't found 324 * @next: used to store the next item if the right item isn't found 325 * 326 * Note: if we don't find the right item, we will return the prev item and 327 * the next item. 328 */ 329 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 330 struct rb_root *root, 331 struct btrfs_key *key, 332 struct btrfs_delayed_item **prev, 333 struct btrfs_delayed_item **next) 334 { 335 struct rb_node *node, *prev_node = NULL; 336 struct btrfs_delayed_item *delayed_item = NULL; 337 int ret = 0; 338 339 node = root->rb_node; 340 341 while (node) { 342 delayed_item = rb_entry(node, struct btrfs_delayed_item, 343 rb_node); 344 prev_node = node; 345 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 346 if (ret < 0) 347 node = node->rb_right; 348 else if (ret > 0) 349 node = node->rb_left; 350 else 351 return delayed_item; 352 } 353 354 if (prev) { 355 if (!prev_node) 356 *prev = NULL; 357 else if (ret < 0) 358 *prev = delayed_item; 359 else if ((node = rb_prev(prev_node)) != NULL) { 360 *prev = rb_entry(node, struct btrfs_delayed_item, 361 rb_node); 362 } else 363 *prev = NULL; 364 } 365 366 if (next) { 367 if (!prev_node) 368 *next = NULL; 369 else if (ret > 0) 370 *next = delayed_item; 371 else if ((node = rb_next(prev_node)) != NULL) { 372 *next = rb_entry(node, struct btrfs_delayed_item, 373 rb_node); 374 } else 375 *next = NULL; 376 } 377 return NULL; 378 } 379 380 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 381 struct btrfs_delayed_node *delayed_node, 382 struct btrfs_key *key) 383 { 384 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 385 NULL, NULL); 386 } 387 388 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 389 struct btrfs_delayed_item *ins) 390 { 391 struct rb_node **p, *node; 392 struct rb_node *parent_node = NULL; 393 struct rb_root_cached *root; 394 struct btrfs_delayed_item *item; 395 int cmp; 396 bool leftmost = true; 397 398 if (ins->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 399 root = &delayed_node->ins_root; 400 else if (ins->ins_or_del == BTRFS_DELAYED_DELETION_ITEM) 401 root = &delayed_node->del_root; 402 else 403 BUG(); 404 p = &root->rb_root.rb_node; 405 node = &ins->rb_node; 406 407 while (*p) { 408 parent_node = *p; 409 item = rb_entry(parent_node, struct btrfs_delayed_item, 410 rb_node); 411 412 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 413 if (cmp < 0) { 414 p = &(*p)->rb_right; 415 leftmost = false; 416 } else if (cmp > 0) { 417 p = &(*p)->rb_left; 418 } else { 419 return -EEXIST; 420 } 421 } 422 423 rb_link_node(node, parent_node, p); 424 rb_insert_color_cached(node, root, leftmost); 425 ins->delayed_node = delayed_node; 426 427 /* Delayed items are always for dir index items. */ 428 ASSERT(ins->key.type == BTRFS_DIR_INDEX_KEY); 429 430 if (ins->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM && 431 ins->key.offset >= delayed_node->index_cnt) 432 delayed_node->index_cnt = ins->key.offset + 1; 433 434 delayed_node->count++; 435 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 436 return 0; 437 } 438 439 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 440 { 441 int seq = atomic_inc_return(&delayed_root->items_seq); 442 443 /* atomic_dec_return implies a barrier */ 444 if ((atomic_dec_return(&delayed_root->items) < 445 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 446 cond_wake_up_nomb(&delayed_root->wait); 447 } 448 449 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 450 { 451 struct rb_root_cached *root; 452 struct btrfs_delayed_root *delayed_root; 453 454 /* Not associated with any delayed_node */ 455 if (!delayed_item->delayed_node) 456 return; 457 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 458 459 BUG_ON(!delayed_root); 460 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 461 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 462 463 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 464 root = &delayed_item->delayed_node->ins_root; 465 else 466 root = &delayed_item->delayed_node->del_root; 467 468 rb_erase_cached(&delayed_item->rb_node, root); 469 delayed_item->delayed_node->count--; 470 471 finish_one_item(delayed_root); 472 } 473 474 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 475 { 476 if (item) { 477 __btrfs_remove_delayed_item(item); 478 if (refcount_dec_and_test(&item->refs)) 479 kfree(item); 480 } 481 } 482 483 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 484 struct btrfs_delayed_node *delayed_node) 485 { 486 struct rb_node *p; 487 struct btrfs_delayed_item *item = NULL; 488 489 p = rb_first_cached(&delayed_node->ins_root); 490 if (p) 491 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 492 493 return item; 494 } 495 496 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 497 struct btrfs_delayed_node *delayed_node) 498 { 499 struct rb_node *p; 500 struct btrfs_delayed_item *item = NULL; 501 502 p = rb_first_cached(&delayed_node->del_root); 503 if (p) 504 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 505 506 return item; 507 } 508 509 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 510 struct btrfs_delayed_item *item) 511 { 512 struct rb_node *p; 513 struct btrfs_delayed_item *next = NULL; 514 515 p = rb_next(&item->rb_node); 516 if (p) 517 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 518 519 return next; 520 } 521 522 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 523 struct btrfs_root *root, 524 struct btrfs_delayed_item *item) 525 { 526 struct btrfs_block_rsv *src_rsv; 527 struct btrfs_block_rsv *dst_rsv; 528 struct btrfs_fs_info *fs_info = root->fs_info; 529 u64 num_bytes; 530 int ret; 531 532 if (!trans->bytes_reserved) 533 return 0; 534 535 src_rsv = trans->block_rsv; 536 dst_rsv = &fs_info->delayed_block_rsv; 537 538 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 539 540 /* 541 * Here we migrate space rsv from transaction rsv, since have already 542 * reserved space when starting a transaction. So no need to reserve 543 * qgroup space here. 544 */ 545 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 546 if (!ret) { 547 trace_btrfs_space_reservation(fs_info, "delayed_item", 548 item->key.objectid, 549 num_bytes, 1); 550 /* 551 * For insertions we track reserved metadata space by accounting 552 * for the number of leaves that will be used, based on the delayed 553 * node's index_items_size field. 554 */ 555 if (item->ins_or_del == BTRFS_DELAYED_DELETION_ITEM) 556 item->bytes_reserved = num_bytes; 557 } 558 559 return ret; 560 } 561 562 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 563 struct btrfs_delayed_item *item) 564 { 565 struct btrfs_block_rsv *rsv; 566 struct btrfs_fs_info *fs_info = root->fs_info; 567 568 if (!item->bytes_reserved) 569 return; 570 571 rsv = &fs_info->delayed_block_rsv; 572 /* 573 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 574 * to release/reserve qgroup space. 575 */ 576 trace_btrfs_space_reservation(fs_info, "delayed_item", 577 item->key.objectid, item->bytes_reserved, 578 0); 579 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 580 } 581 582 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 583 unsigned int num_leaves) 584 { 585 struct btrfs_fs_info *fs_info = node->root->fs_info; 586 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 587 588 /* There are no space reservations during log replay, bail out. */ 589 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 590 return; 591 592 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 593 bytes, 0); 594 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 595 } 596 597 static int btrfs_delayed_inode_reserve_metadata( 598 struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_delayed_node *node) 601 { 602 struct btrfs_fs_info *fs_info = root->fs_info; 603 struct btrfs_block_rsv *src_rsv; 604 struct btrfs_block_rsv *dst_rsv; 605 u64 num_bytes; 606 int ret; 607 608 src_rsv = trans->block_rsv; 609 dst_rsv = &fs_info->delayed_block_rsv; 610 611 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 612 613 /* 614 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 615 * which doesn't reserve space for speed. This is a problem since we 616 * still need to reserve space for this update, so try to reserve the 617 * space. 618 * 619 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 620 * we always reserve enough to update the inode item. 621 */ 622 if (!src_rsv || (!trans->bytes_reserved && 623 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 624 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 625 BTRFS_QGROUP_RSV_META_PREALLOC, true); 626 if (ret < 0) 627 return ret; 628 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 629 BTRFS_RESERVE_NO_FLUSH); 630 /* NO_FLUSH could only fail with -ENOSPC */ 631 ASSERT(ret == 0 || ret == -ENOSPC); 632 if (ret) 633 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 634 } else { 635 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 636 } 637 638 if (!ret) { 639 trace_btrfs_space_reservation(fs_info, "delayed_inode", 640 node->inode_id, num_bytes, 1); 641 node->bytes_reserved = num_bytes; 642 } 643 644 return ret; 645 } 646 647 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 648 struct btrfs_delayed_node *node, 649 bool qgroup_free) 650 { 651 struct btrfs_block_rsv *rsv; 652 653 if (!node->bytes_reserved) 654 return; 655 656 rsv = &fs_info->delayed_block_rsv; 657 trace_btrfs_space_reservation(fs_info, "delayed_inode", 658 node->inode_id, node->bytes_reserved, 0); 659 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 660 if (qgroup_free) 661 btrfs_qgroup_free_meta_prealloc(node->root, 662 node->bytes_reserved); 663 else 664 btrfs_qgroup_convert_reserved_meta(node->root, 665 node->bytes_reserved); 666 node->bytes_reserved = 0; 667 } 668 669 /* 670 * Insert a single delayed item or a batch of delayed items, as many as possible 671 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 672 * in the rbtree, and if there's a gap between two consecutive dir index items, 673 * then it means at some point we had delayed dir indexes to add but they got 674 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 675 * into the subvolume tree. Dir index keys also have their offsets coming from a 676 * monotonically increasing counter, so we can't get new keys with an offset that 677 * fits within a gap between delayed dir index items. 678 */ 679 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 680 struct btrfs_root *root, 681 struct btrfs_path *path, 682 struct btrfs_delayed_item *first_item) 683 { 684 struct btrfs_fs_info *fs_info = root->fs_info; 685 struct btrfs_delayed_node *node = first_item->delayed_node; 686 LIST_HEAD(item_list); 687 struct btrfs_delayed_item *curr; 688 struct btrfs_delayed_item *next; 689 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 690 struct btrfs_item_batch batch; 691 int total_size; 692 char *ins_data = NULL; 693 int ret; 694 bool continuous_keys_only = false; 695 696 lockdep_assert_held(&node->mutex); 697 698 /* 699 * During normal operation the delayed index offset is continuously 700 * increasing, so we can batch insert all items as there will not be any 701 * overlapping keys in the tree. 702 * 703 * The exception to this is log replay, where we may have interleaved 704 * offsets in the tree, so our batch needs to be continuous keys only in 705 * order to ensure we do not end up with out of order items in our leaf. 706 */ 707 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 708 continuous_keys_only = true; 709 710 /* 711 * For delayed items to insert, we track reserved metadata bytes based 712 * on the number of leaves that we will use. 713 * See btrfs_insert_delayed_dir_index() and 714 * btrfs_delayed_item_reserve_metadata()). 715 */ 716 ASSERT(first_item->bytes_reserved == 0); 717 718 list_add_tail(&first_item->tree_list, &item_list); 719 batch.total_data_size = first_item->data_len; 720 batch.nr = 1; 721 total_size = first_item->data_len + sizeof(struct btrfs_item); 722 curr = first_item; 723 724 while (true) { 725 int next_size; 726 727 next = __btrfs_next_delayed_item(curr); 728 if (!next) 729 break; 730 731 /* 732 * We cannot allow gaps in the key space if we're doing log 733 * replay. 734 */ 735 if (continuous_keys_only && 736 (next->key.offset != curr->key.offset + 1)) 737 break; 738 739 ASSERT(next->bytes_reserved == 0); 740 741 next_size = next->data_len + sizeof(struct btrfs_item); 742 if (total_size + next_size > max_size) 743 break; 744 745 list_add_tail(&next->tree_list, &item_list); 746 batch.nr++; 747 total_size += next_size; 748 batch.total_data_size += next->data_len; 749 curr = next; 750 } 751 752 if (batch.nr == 1) { 753 batch.keys = &first_item->key; 754 batch.data_sizes = &first_item->data_len; 755 } else { 756 struct btrfs_key *ins_keys; 757 u32 *ins_sizes; 758 int i = 0; 759 760 ins_data = kmalloc(batch.nr * sizeof(u32) + 761 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 762 if (!ins_data) { 763 ret = -ENOMEM; 764 goto out; 765 } 766 ins_sizes = (u32 *)ins_data; 767 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 768 batch.keys = ins_keys; 769 batch.data_sizes = ins_sizes; 770 list_for_each_entry(curr, &item_list, tree_list) { 771 ins_keys[i] = curr->key; 772 ins_sizes[i] = curr->data_len; 773 i++; 774 } 775 } 776 777 ret = btrfs_insert_empty_items(trans, root, path, &batch); 778 if (ret) 779 goto out; 780 781 list_for_each_entry(curr, &item_list, tree_list) { 782 char *data_ptr; 783 784 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 785 write_extent_buffer(path->nodes[0], &curr->data, 786 (unsigned long)data_ptr, curr->data_len); 787 path->slots[0]++; 788 } 789 790 /* 791 * Now release our path before releasing the delayed items and their 792 * metadata reservations, so that we don't block other tasks for more 793 * time than needed. 794 */ 795 btrfs_release_path(path); 796 797 ASSERT(node->index_item_leaves > 0); 798 799 /* 800 * For normal operations we will batch an entire leaf's worth of delayed 801 * items, so if there are more items to process we can decrement 802 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 803 * 804 * However for log replay we may not have inserted an entire leaf's 805 * worth of items, we may have not had continuous items, so decrementing 806 * here would mess up the index_item_leaves accounting. For this case 807 * only clean up the accounting when there are no items left. 808 */ 809 if (next && !continuous_keys_only) { 810 /* 811 * We inserted one batch of items into a leaf a there are more 812 * items to flush in a future batch, now release one unit of 813 * metadata space from the delayed block reserve, corresponding 814 * the leaf we just flushed to. 815 */ 816 btrfs_delayed_item_release_leaves(node, 1); 817 node->index_item_leaves--; 818 } else if (!next) { 819 /* 820 * There are no more items to insert. We can have a number of 821 * reserved leaves > 1 here - this happens when many dir index 822 * items are added and then removed before they are flushed (file 823 * names with a very short life, never span a transaction). So 824 * release all remaining leaves. 825 */ 826 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 827 node->index_item_leaves = 0; 828 } 829 830 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 831 list_del(&curr->tree_list); 832 btrfs_release_delayed_item(curr); 833 } 834 out: 835 kfree(ins_data); 836 return ret; 837 } 838 839 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 840 struct btrfs_path *path, 841 struct btrfs_root *root, 842 struct btrfs_delayed_node *node) 843 { 844 int ret = 0; 845 846 while (ret == 0) { 847 struct btrfs_delayed_item *curr; 848 849 mutex_lock(&node->mutex); 850 curr = __btrfs_first_delayed_insertion_item(node); 851 if (!curr) { 852 mutex_unlock(&node->mutex); 853 break; 854 } 855 ret = btrfs_insert_delayed_item(trans, root, path, curr); 856 mutex_unlock(&node->mutex); 857 } 858 859 return ret; 860 } 861 862 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 863 struct btrfs_root *root, 864 struct btrfs_path *path, 865 struct btrfs_delayed_item *item) 866 { 867 struct btrfs_fs_info *fs_info = root->fs_info; 868 struct btrfs_delayed_item *curr, *next; 869 struct extent_buffer *leaf = path->nodes[0]; 870 LIST_HEAD(batch_list); 871 int nitems, slot, last_slot; 872 int ret; 873 u64 total_reserved_size = item->bytes_reserved; 874 875 ASSERT(leaf != NULL); 876 877 slot = path->slots[0]; 878 last_slot = btrfs_header_nritems(leaf) - 1; 879 /* 880 * Our caller always gives us a path pointing to an existing item, so 881 * this can not happen. 882 */ 883 ASSERT(slot <= last_slot); 884 if (WARN_ON(slot > last_slot)) 885 return -ENOENT; 886 887 nitems = 1; 888 curr = item; 889 list_add_tail(&curr->tree_list, &batch_list); 890 891 /* 892 * Keep checking if the next delayed item matches the next item in the 893 * leaf - if so, we can add it to the batch of items to delete from the 894 * leaf. 895 */ 896 while (slot < last_slot) { 897 struct btrfs_key key; 898 899 next = __btrfs_next_delayed_item(curr); 900 if (!next) 901 break; 902 903 slot++; 904 btrfs_item_key_to_cpu(leaf, &key, slot); 905 if (btrfs_comp_cpu_keys(&next->key, &key) != 0) 906 break; 907 nitems++; 908 curr = next; 909 list_add_tail(&curr->tree_list, &batch_list); 910 total_reserved_size += curr->bytes_reserved; 911 } 912 913 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 914 if (ret) 915 return ret; 916 917 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 918 if (total_reserved_size > 0) { 919 /* 920 * Check btrfs_delayed_item_reserve_metadata() to see why we 921 * don't need to release/reserve qgroup space. 922 */ 923 trace_btrfs_space_reservation(fs_info, "delayed_item", 924 item->key.objectid, total_reserved_size, 925 0); 926 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 927 total_reserved_size, NULL); 928 } 929 930 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 931 list_del(&curr->tree_list); 932 btrfs_release_delayed_item(curr); 933 } 934 935 return 0; 936 } 937 938 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 939 struct btrfs_path *path, 940 struct btrfs_root *root, 941 struct btrfs_delayed_node *node) 942 { 943 int ret = 0; 944 945 while (ret == 0) { 946 struct btrfs_delayed_item *item; 947 948 mutex_lock(&node->mutex); 949 item = __btrfs_first_delayed_deletion_item(node); 950 if (!item) { 951 mutex_unlock(&node->mutex); 952 break; 953 } 954 955 ret = btrfs_search_slot(trans, root, &item->key, path, -1, 1); 956 if (ret > 0) { 957 /* 958 * There's no matching item in the leaf. This means we 959 * have already deleted this item in a past run of the 960 * delayed items. We ignore errors when running delayed 961 * items from an async context, through a work queue job 962 * running btrfs_async_run_delayed_root(), and don't 963 * release delayed items that failed to complete. This 964 * is because we will retry later, and at transaction 965 * commit time we always run delayed items and will 966 * then deal with errors if they fail to run again. 967 * 968 * So just release delayed items for which we can't find 969 * an item in the tree, and move to the next item. 970 */ 971 btrfs_release_path(path); 972 btrfs_release_delayed_item(item); 973 ret = 0; 974 } else if (ret == 0) { 975 ret = btrfs_batch_delete_items(trans, root, path, item); 976 btrfs_release_path(path); 977 } 978 979 /* 980 * We unlock and relock on each iteration, this is to prevent 981 * blocking other tasks for too long while we are being run from 982 * the async context (work queue job). Those tasks are typically 983 * running system calls like creat/mkdir/rename/unlink/etc which 984 * need to add delayed items to this delayed node. 985 */ 986 mutex_unlock(&node->mutex); 987 } 988 989 return ret; 990 } 991 992 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 993 { 994 struct btrfs_delayed_root *delayed_root; 995 996 if (delayed_node && 997 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 998 BUG_ON(!delayed_node->root); 999 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1000 delayed_node->count--; 1001 1002 delayed_root = delayed_node->root->fs_info->delayed_root; 1003 finish_one_item(delayed_root); 1004 } 1005 } 1006 1007 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 1008 { 1009 1010 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 1011 struct btrfs_delayed_root *delayed_root; 1012 1013 ASSERT(delayed_node->root); 1014 delayed_node->count--; 1015 1016 delayed_root = delayed_node->root->fs_info->delayed_root; 1017 finish_one_item(delayed_root); 1018 } 1019 } 1020 1021 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1022 struct btrfs_root *root, 1023 struct btrfs_path *path, 1024 struct btrfs_delayed_node *node) 1025 { 1026 struct btrfs_fs_info *fs_info = root->fs_info; 1027 struct btrfs_key key; 1028 struct btrfs_inode_item *inode_item; 1029 struct extent_buffer *leaf; 1030 int mod; 1031 int ret; 1032 1033 key.objectid = node->inode_id; 1034 key.type = BTRFS_INODE_ITEM_KEY; 1035 key.offset = 0; 1036 1037 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1038 mod = -1; 1039 else 1040 mod = 1; 1041 1042 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1043 if (ret > 0) 1044 ret = -ENOENT; 1045 if (ret < 0) 1046 goto out; 1047 1048 leaf = path->nodes[0]; 1049 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1050 struct btrfs_inode_item); 1051 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1052 sizeof(struct btrfs_inode_item)); 1053 btrfs_mark_buffer_dirty(leaf); 1054 1055 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1056 goto out; 1057 1058 path->slots[0]++; 1059 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1060 goto search; 1061 again: 1062 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1063 if (key.objectid != node->inode_id) 1064 goto out; 1065 1066 if (key.type != BTRFS_INODE_REF_KEY && 1067 key.type != BTRFS_INODE_EXTREF_KEY) 1068 goto out; 1069 1070 /* 1071 * Delayed iref deletion is for the inode who has only one link, 1072 * so there is only one iref. The case that several irefs are 1073 * in the same item doesn't exist. 1074 */ 1075 btrfs_del_item(trans, root, path); 1076 out: 1077 btrfs_release_delayed_iref(node); 1078 btrfs_release_path(path); 1079 err_out: 1080 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1081 btrfs_release_delayed_inode(node); 1082 1083 /* 1084 * If we fail to update the delayed inode we need to abort the 1085 * transaction, because we could leave the inode with the improper 1086 * counts behind. 1087 */ 1088 if (ret && ret != -ENOENT) 1089 btrfs_abort_transaction(trans, ret); 1090 1091 return ret; 1092 1093 search: 1094 btrfs_release_path(path); 1095 1096 key.type = BTRFS_INODE_EXTREF_KEY; 1097 key.offset = -1; 1098 1099 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1100 if (ret < 0) 1101 goto err_out; 1102 ASSERT(ret); 1103 1104 ret = 0; 1105 leaf = path->nodes[0]; 1106 path->slots[0]--; 1107 goto again; 1108 } 1109 1110 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1111 struct btrfs_root *root, 1112 struct btrfs_path *path, 1113 struct btrfs_delayed_node *node) 1114 { 1115 int ret; 1116 1117 mutex_lock(&node->mutex); 1118 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1119 mutex_unlock(&node->mutex); 1120 return 0; 1121 } 1122 1123 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1124 mutex_unlock(&node->mutex); 1125 return ret; 1126 } 1127 1128 static inline int 1129 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1130 struct btrfs_path *path, 1131 struct btrfs_delayed_node *node) 1132 { 1133 int ret; 1134 1135 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1136 if (ret) 1137 return ret; 1138 1139 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1140 if (ret) 1141 return ret; 1142 1143 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1144 return ret; 1145 } 1146 1147 /* 1148 * Called when committing the transaction. 1149 * Returns 0 on success. 1150 * Returns < 0 on error and returns with an aborted transaction with any 1151 * outstanding delayed items cleaned up. 1152 */ 1153 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1154 { 1155 struct btrfs_fs_info *fs_info = trans->fs_info; 1156 struct btrfs_delayed_root *delayed_root; 1157 struct btrfs_delayed_node *curr_node, *prev_node; 1158 struct btrfs_path *path; 1159 struct btrfs_block_rsv *block_rsv; 1160 int ret = 0; 1161 bool count = (nr > 0); 1162 1163 if (TRANS_ABORTED(trans)) 1164 return -EIO; 1165 1166 path = btrfs_alloc_path(); 1167 if (!path) 1168 return -ENOMEM; 1169 1170 block_rsv = trans->block_rsv; 1171 trans->block_rsv = &fs_info->delayed_block_rsv; 1172 1173 delayed_root = fs_info->delayed_root; 1174 1175 curr_node = btrfs_first_delayed_node(delayed_root); 1176 while (curr_node && (!count || nr--)) { 1177 ret = __btrfs_commit_inode_delayed_items(trans, path, 1178 curr_node); 1179 if (ret) { 1180 btrfs_release_delayed_node(curr_node); 1181 curr_node = NULL; 1182 btrfs_abort_transaction(trans, ret); 1183 break; 1184 } 1185 1186 prev_node = curr_node; 1187 curr_node = btrfs_next_delayed_node(curr_node); 1188 btrfs_release_delayed_node(prev_node); 1189 } 1190 1191 if (curr_node) 1192 btrfs_release_delayed_node(curr_node); 1193 btrfs_free_path(path); 1194 trans->block_rsv = block_rsv; 1195 1196 return ret; 1197 } 1198 1199 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1200 { 1201 return __btrfs_run_delayed_items(trans, -1); 1202 } 1203 1204 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1205 { 1206 return __btrfs_run_delayed_items(trans, nr); 1207 } 1208 1209 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1210 struct btrfs_inode *inode) 1211 { 1212 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1213 struct btrfs_path *path; 1214 struct btrfs_block_rsv *block_rsv; 1215 int ret; 1216 1217 if (!delayed_node) 1218 return 0; 1219 1220 mutex_lock(&delayed_node->mutex); 1221 if (!delayed_node->count) { 1222 mutex_unlock(&delayed_node->mutex); 1223 btrfs_release_delayed_node(delayed_node); 1224 return 0; 1225 } 1226 mutex_unlock(&delayed_node->mutex); 1227 1228 path = btrfs_alloc_path(); 1229 if (!path) { 1230 btrfs_release_delayed_node(delayed_node); 1231 return -ENOMEM; 1232 } 1233 1234 block_rsv = trans->block_rsv; 1235 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1236 1237 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1238 1239 btrfs_release_delayed_node(delayed_node); 1240 btrfs_free_path(path); 1241 trans->block_rsv = block_rsv; 1242 1243 return ret; 1244 } 1245 1246 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1247 { 1248 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1249 struct btrfs_trans_handle *trans; 1250 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1251 struct btrfs_path *path; 1252 struct btrfs_block_rsv *block_rsv; 1253 int ret; 1254 1255 if (!delayed_node) 1256 return 0; 1257 1258 mutex_lock(&delayed_node->mutex); 1259 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1260 mutex_unlock(&delayed_node->mutex); 1261 btrfs_release_delayed_node(delayed_node); 1262 return 0; 1263 } 1264 mutex_unlock(&delayed_node->mutex); 1265 1266 trans = btrfs_join_transaction(delayed_node->root); 1267 if (IS_ERR(trans)) { 1268 ret = PTR_ERR(trans); 1269 goto out; 1270 } 1271 1272 path = btrfs_alloc_path(); 1273 if (!path) { 1274 ret = -ENOMEM; 1275 goto trans_out; 1276 } 1277 1278 block_rsv = trans->block_rsv; 1279 trans->block_rsv = &fs_info->delayed_block_rsv; 1280 1281 mutex_lock(&delayed_node->mutex); 1282 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1283 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1284 path, delayed_node); 1285 else 1286 ret = 0; 1287 mutex_unlock(&delayed_node->mutex); 1288 1289 btrfs_free_path(path); 1290 trans->block_rsv = block_rsv; 1291 trans_out: 1292 btrfs_end_transaction(trans); 1293 btrfs_btree_balance_dirty(fs_info); 1294 out: 1295 btrfs_release_delayed_node(delayed_node); 1296 1297 return ret; 1298 } 1299 1300 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1301 { 1302 struct btrfs_delayed_node *delayed_node; 1303 1304 delayed_node = READ_ONCE(inode->delayed_node); 1305 if (!delayed_node) 1306 return; 1307 1308 inode->delayed_node = NULL; 1309 btrfs_release_delayed_node(delayed_node); 1310 } 1311 1312 struct btrfs_async_delayed_work { 1313 struct btrfs_delayed_root *delayed_root; 1314 int nr; 1315 struct btrfs_work work; 1316 }; 1317 1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1319 { 1320 struct btrfs_async_delayed_work *async_work; 1321 struct btrfs_delayed_root *delayed_root; 1322 struct btrfs_trans_handle *trans; 1323 struct btrfs_path *path; 1324 struct btrfs_delayed_node *delayed_node = NULL; 1325 struct btrfs_root *root; 1326 struct btrfs_block_rsv *block_rsv; 1327 int total_done = 0; 1328 1329 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1330 delayed_root = async_work->delayed_root; 1331 1332 path = btrfs_alloc_path(); 1333 if (!path) 1334 goto out; 1335 1336 do { 1337 if (atomic_read(&delayed_root->items) < 1338 BTRFS_DELAYED_BACKGROUND / 2) 1339 break; 1340 1341 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1342 if (!delayed_node) 1343 break; 1344 1345 root = delayed_node->root; 1346 1347 trans = btrfs_join_transaction(root); 1348 if (IS_ERR(trans)) { 1349 btrfs_release_path(path); 1350 btrfs_release_prepared_delayed_node(delayed_node); 1351 total_done++; 1352 continue; 1353 } 1354 1355 block_rsv = trans->block_rsv; 1356 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1357 1358 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1359 1360 trans->block_rsv = block_rsv; 1361 btrfs_end_transaction(trans); 1362 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1363 1364 btrfs_release_path(path); 1365 btrfs_release_prepared_delayed_node(delayed_node); 1366 total_done++; 1367 1368 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1369 || total_done < async_work->nr); 1370 1371 btrfs_free_path(path); 1372 out: 1373 wake_up(&delayed_root->wait); 1374 kfree(async_work); 1375 } 1376 1377 1378 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1379 struct btrfs_fs_info *fs_info, int nr) 1380 { 1381 struct btrfs_async_delayed_work *async_work; 1382 1383 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1384 if (!async_work) 1385 return -ENOMEM; 1386 1387 async_work->delayed_root = delayed_root; 1388 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1389 NULL); 1390 async_work->nr = nr; 1391 1392 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1393 return 0; 1394 } 1395 1396 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1397 { 1398 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1399 } 1400 1401 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1402 { 1403 int val = atomic_read(&delayed_root->items_seq); 1404 1405 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1406 return 1; 1407 1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1409 return 1; 1410 1411 return 0; 1412 } 1413 1414 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1415 { 1416 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1417 1418 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1419 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1420 return; 1421 1422 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1423 int seq; 1424 int ret; 1425 1426 seq = atomic_read(&delayed_root->items_seq); 1427 1428 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1429 if (ret) 1430 return; 1431 1432 wait_event_interruptible(delayed_root->wait, 1433 could_end_wait(delayed_root, seq)); 1434 return; 1435 } 1436 1437 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1438 } 1439 1440 /* Will return 0 or -ENOMEM */ 1441 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1442 const char *name, int name_len, 1443 struct btrfs_inode *dir, 1444 struct btrfs_disk_key *disk_key, u8 type, 1445 u64 index) 1446 { 1447 struct btrfs_fs_info *fs_info = trans->fs_info; 1448 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1449 struct btrfs_delayed_node *delayed_node; 1450 struct btrfs_delayed_item *delayed_item; 1451 struct btrfs_dir_item *dir_item; 1452 bool reserve_leaf_space; 1453 u32 data_len; 1454 int ret; 1455 1456 delayed_node = btrfs_get_or_create_delayed_node(dir); 1457 if (IS_ERR(delayed_node)) 1458 return PTR_ERR(delayed_node); 1459 1460 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1461 if (!delayed_item) { 1462 ret = -ENOMEM; 1463 goto release_node; 1464 } 1465 1466 delayed_item->key.objectid = btrfs_ino(dir); 1467 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1468 delayed_item->key.offset = index; 1469 delayed_item->ins_or_del = BTRFS_DELAYED_INSERTION_ITEM; 1470 1471 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1472 dir_item->location = *disk_key; 1473 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1474 btrfs_set_stack_dir_data_len(dir_item, 0); 1475 btrfs_set_stack_dir_name_len(dir_item, name_len); 1476 btrfs_set_stack_dir_type(dir_item, type); 1477 memcpy((char *)(dir_item + 1), name, name_len); 1478 1479 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1480 1481 mutex_lock(&delayed_node->mutex); 1482 1483 if (delayed_node->index_item_leaves == 0 || 1484 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1485 delayed_node->curr_index_batch_size = data_len; 1486 reserve_leaf_space = true; 1487 } else { 1488 delayed_node->curr_index_batch_size += data_len; 1489 reserve_leaf_space = false; 1490 } 1491 1492 if (reserve_leaf_space) { 1493 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, 1494 delayed_item); 1495 /* 1496 * Space was reserved for a dir index item insertion when we 1497 * started the transaction, so getting a failure here should be 1498 * impossible. 1499 */ 1500 if (WARN_ON(ret)) { 1501 mutex_unlock(&delayed_node->mutex); 1502 btrfs_release_delayed_item(delayed_item); 1503 goto release_node; 1504 } 1505 1506 delayed_node->index_item_leaves++; 1507 } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 1508 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1509 1510 /* 1511 * Adding the new dir index item does not require touching another 1512 * leaf, so we can release 1 unit of metadata that was previously 1513 * reserved when starting the transaction. This applies only to 1514 * the case where we had a transaction start and excludes the 1515 * transaction join case (when replaying log trees). 1516 */ 1517 trace_btrfs_space_reservation(fs_info, "transaction", 1518 trans->transid, bytes, 0); 1519 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1520 ASSERT(trans->bytes_reserved >= bytes); 1521 trans->bytes_reserved -= bytes; 1522 } 1523 1524 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1525 if (unlikely(ret)) { 1526 btrfs_err(trans->fs_info, 1527 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1528 name_len, name, delayed_node->root->root_key.objectid, 1529 delayed_node->inode_id, ret); 1530 BUG(); 1531 } 1532 mutex_unlock(&delayed_node->mutex); 1533 1534 release_node: 1535 btrfs_release_delayed_node(delayed_node); 1536 return ret; 1537 } 1538 1539 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1540 struct btrfs_delayed_node *node, 1541 struct btrfs_key *key) 1542 { 1543 struct btrfs_delayed_item *item; 1544 1545 mutex_lock(&node->mutex); 1546 item = __btrfs_lookup_delayed_insertion_item(node, key); 1547 if (!item) { 1548 mutex_unlock(&node->mutex); 1549 return 1; 1550 } 1551 1552 /* 1553 * For delayed items to insert, we track reserved metadata bytes based 1554 * on the number of leaves that we will use. 1555 * See btrfs_insert_delayed_dir_index() and 1556 * btrfs_delayed_item_reserve_metadata()). 1557 */ 1558 ASSERT(item->bytes_reserved == 0); 1559 ASSERT(node->index_item_leaves > 0); 1560 1561 /* 1562 * If there's only one leaf reserved, we can decrement this item from the 1563 * current batch, otherwise we can not because we don't know which leaf 1564 * it belongs to. With the current limit on delayed items, we rarely 1565 * accumulate enough dir index items to fill more than one leaf (even 1566 * when using a leaf size of 4K). 1567 */ 1568 if (node->index_item_leaves == 1) { 1569 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1570 1571 ASSERT(node->curr_index_batch_size >= data_len); 1572 node->curr_index_batch_size -= data_len; 1573 } 1574 1575 btrfs_release_delayed_item(item); 1576 1577 /* If we now have no more dir index items, we can release all leaves. */ 1578 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1579 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1580 node->index_item_leaves = 0; 1581 } 1582 1583 mutex_unlock(&node->mutex); 1584 return 0; 1585 } 1586 1587 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1588 struct btrfs_inode *dir, u64 index) 1589 { 1590 struct btrfs_delayed_node *node; 1591 struct btrfs_delayed_item *item; 1592 struct btrfs_key item_key; 1593 int ret; 1594 1595 node = btrfs_get_or_create_delayed_node(dir); 1596 if (IS_ERR(node)) 1597 return PTR_ERR(node); 1598 1599 item_key.objectid = btrfs_ino(dir); 1600 item_key.type = BTRFS_DIR_INDEX_KEY; 1601 item_key.offset = index; 1602 1603 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1604 &item_key); 1605 if (!ret) 1606 goto end; 1607 1608 item = btrfs_alloc_delayed_item(0); 1609 if (!item) { 1610 ret = -ENOMEM; 1611 goto end; 1612 } 1613 1614 item->key = item_key; 1615 item->ins_or_del = BTRFS_DELAYED_DELETION_ITEM; 1616 1617 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1618 /* 1619 * we have reserved enough space when we start a new transaction, 1620 * so reserving metadata failure is impossible. 1621 */ 1622 if (ret < 0) { 1623 btrfs_err(trans->fs_info, 1624 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1625 btrfs_release_delayed_item(item); 1626 goto end; 1627 } 1628 1629 mutex_lock(&node->mutex); 1630 ret = __btrfs_add_delayed_item(node, item); 1631 if (unlikely(ret)) { 1632 btrfs_err(trans->fs_info, 1633 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1634 index, node->root->root_key.objectid, 1635 node->inode_id, ret); 1636 btrfs_delayed_item_release_metadata(dir->root, item); 1637 btrfs_release_delayed_item(item); 1638 } 1639 mutex_unlock(&node->mutex); 1640 end: 1641 btrfs_release_delayed_node(node); 1642 return ret; 1643 } 1644 1645 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1646 { 1647 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1648 1649 if (!delayed_node) 1650 return -ENOENT; 1651 1652 /* 1653 * Since we have held i_mutex of this directory, it is impossible that 1654 * a new directory index is added into the delayed node and index_cnt 1655 * is updated now. So we needn't lock the delayed node. 1656 */ 1657 if (!delayed_node->index_cnt) { 1658 btrfs_release_delayed_node(delayed_node); 1659 return -EINVAL; 1660 } 1661 1662 inode->index_cnt = delayed_node->index_cnt; 1663 btrfs_release_delayed_node(delayed_node); 1664 return 0; 1665 } 1666 1667 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1668 struct list_head *ins_list, 1669 struct list_head *del_list) 1670 { 1671 struct btrfs_delayed_node *delayed_node; 1672 struct btrfs_delayed_item *item; 1673 1674 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1675 if (!delayed_node) 1676 return false; 1677 1678 /* 1679 * We can only do one readdir with delayed items at a time because of 1680 * item->readdir_list. 1681 */ 1682 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1683 btrfs_inode_lock(inode, 0); 1684 1685 mutex_lock(&delayed_node->mutex); 1686 item = __btrfs_first_delayed_insertion_item(delayed_node); 1687 while (item) { 1688 refcount_inc(&item->refs); 1689 list_add_tail(&item->readdir_list, ins_list); 1690 item = __btrfs_next_delayed_item(item); 1691 } 1692 1693 item = __btrfs_first_delayed_deletion_item(delayed_node); 1694 while (item) { 1695 refcount_inc(&item->refs); 1696 list_add_tail(&item->readdir_list, del_list); 1697 item = __btrfs_next_delayed_item(item); 1698 } 1699 mutex_unlock(&delayed_node->mutex); 1700 /* 1701 * This delayed node is still cached in the btrfs inode, so refs 1702 * must be > 1 now, and we needn't check it is going to be freed 1703 * or not. 1704 * 1705 * Besides that, this function is used to read dir, we do not 1706 * insert/delete delayed items in this period. So we also needn't 1707 * requeue or dequeue this delayed node. 1708 */ 1709 refcount_dec(&delayed_node->refs); 1710 1711 return true; 1712 } 1713 1714 void btrfs_readdir_put_delayed_items(struct inode *inode, 1715 struct list_head *ins_list, 1716 struct list_head *del_list) 1717 { 1718 struct btrfs_delayed_item *curr, *next; 1719 1720 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1721 list_del(&curr->readdir_list); 1722 if (refcount_dec_and_test(&curr->refs)) 1723 kfree(curr); 1724 } 1725 1726 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1727 list_del(&curr->readdir_list); 1728 if (refcount_dec_and_test(&curr->refs)) 1729 kfree(curr); 1730 } 1731 1732 /* 1733 * The VFS is going to do up_read(), so we need to downgrade back to a 1734 * read lock. 1735 */ 1736 downgrade_write(&inode->i_rwsem); 1737 } 1738 1739 int btrfs_should_delete_dir_index(struct list_head *del_list, 1740 u64 index) 1741 { 1742 struct btrfs_delayed_item *curr; 1743 int ret = 0; 1744 1745 list_for_each_entry(curr, del_list, readdir_list) { 1746 if (curr->key.offset > index) 1747 break; 1748 if (curr->key.offset == index) { 1749 ret = 1; 1750 break; 1751 } 1752 } 1753 return ret; 1754 } 1755 1756 /* 1757 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1758 * 1759 */ 1760 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1761 struct list_head *ins_list) 1762 { 1763 struct btrfs_dir_item *di; 1764 struct btrfs_delayed_item *curr, *next; 1765 struct btrfs_key location; 1766 char *name; 1767 int name_len; 1768 int over = 0; 1769 unsigned char d_type; 1770 1771 if (list_empty(ins_list)) 1772 return 0; 1773 1774 /* 1775 * Changing the data of the delayed item is impossible. So 1776 * we needn't lock them. And we have held i_mutex of the 1777 * directory, nobody can delete any directory indexes now. 1778 */ 1779 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1780 list_del(&curr->readdir_list); 1781 1782 if (curr->key.offset < ctx->pos) { 1783 if (refcount_dec_and_test(&curr->refs)) 1784 kfree(curr); 1785 continue; 1786 } 1787 1788 ctx->pos = curr->key.offset; 1789 1790 di = (struct btrfs_dir_item *)curr->data; 1791 name = (char *)(di + 1); 1792 name_len = btrfs_stack_dir_name_len(di); 1793 1794 d_type = fs_ftype_to_dtype(di->type); 1795 btrfs_disk_key_to_cpu(&location, &di->location); 1796 1797 over = !dir_emit(ctx, name, name_len, 1798 location.objectid, d_type); 1799 1800 if (refcount_dec_and_test(&curr->refs)) 1801 kfree(curr); 1802 1803 if (over) 1804 return 1; 1805 ctx->pos++; 1806 } 1807 return 0; 1808 } 1809 1810 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1811 struct btrfs_inode_item *inode_item, 1812 struct inode *inode) 1813 { 1814 u64 flags; 1815 1816 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1817 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1818 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1819 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1820 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1821 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1822 btrfs_set_stack_inode_generation(inode_item, 1823 BTRFS_I(inode)->generation); 1824 btrfs_set_stack_inode_sequence(inode_item, 1825 inode_peek_iversion(inode)); 1826 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1827 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1828 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 1829 BTRFS_I(inode)->ro_flags); 1830 btrfs_set_stack_inode_flags(inode_item, flags); 1831 btrfs_set_stack_inode_block_group(inode_item, 0); 1832 1833 btrfs_set_stack_timespec_sec(&inode_item->atime, 1834 inode->i_atime.tv_sec); 1835 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1836 inode->i_atime.tv_nsec); 1837 1838 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1839 inode->i_mtime.tv_sec); 1840 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1841 inode->i_mtime.tv_nsec); 1842 1843 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1844 inode->i_ctime.tv_sec); 1845 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1846 inode->i_ctime.tv_nsec); 1847 1848 btrfs_set_stack_timespec_sec(&inode_item->otime, 1849 BTRFS_I(inode)->i_otime.tv_sec); 1850 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1851 BTRFS_I(inode)->i_otime.tv_nsec); 1852 } 1853 1854 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1855 { 1856 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1857 struct btrfs_delayed_node *delayed_node; 1858 struct btrfs_inode_item *inode_item; 1859 1860 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1861 if (!delayed_node) 1862 return -ENOENT; 1863 1864 mutex_lock(&delayed_node->mutex); 1865 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1866 mutex_unlock(&delayed_node->mutex); 1867 btrfs_release_delayed_node(delayed_node); 1868 return -ENOENT; 1869 } 1870 1871 inode_item = &delayed_node->inode_item; 1872 1873 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1874 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1875 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1876 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1877 round_up(i_size_read(inode), fs_info->sectorsize)); 1878 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1879 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1880 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1881 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1882 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1883 1884 inode_set_iversion_queried(inode, 1885 btrfs_stack_inode_sequence(inode_item)); 1886 inode->i_rdev = 0; 1887 *rdev = btrfs_stack_inode_rdev(inode_item); 1888 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1889 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 1890 1891 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1892 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1893 1894 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1895 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1896 1897 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1898 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1899 1900 BTRFS_I(inode)->i_otime.tv_sec = 1901 btrfs_stack_timespec_sec(&inode_item->otime); 1902 BTRFS_I(inode)->i_otime.tv_nsec = 1903 btrfs_stack_timespec_nsec(&inode_item->otime); 1904 1905 inode->i_generation = BTRFS_I(inode)->generation; 1906 BTRFS_I(inode)->index_cnt = (u64)-1; 1907 1908 mutex_unlock(&delayed_node->mutex); 1909 btrfs_release_delayed_node(delayed_node); 1910 return 0; 1911 } 1912 1913 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1914 struct btrfs_root *root, 1915 struct btrfs_inode *inode) 1916 { 1917 struct btrfs_delayed_node *delayed_node; 1918 int ret = 0; 1919 1920 delayed_node = btrfs_get_or_create_delayed_node(inode); 1921 if (IS_ERR(delayed_node)) 1922 return PTR_ERR(delayed_node); 1923 1924 mutex_lock(&delayed_node->mutex); 1925 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1926 fill_stack_inode_item(trans, &delayed_node->inode_item, 1927 &inode->vfs_inode); 1928 goto release_node; 1929 } 1930 1931 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1932 if (ret) 1933 goto release_node; 1934 1935 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1936 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1937 delayed_node->count++; 1938 atomic_inc(&root->fs_info->delayed_root->items); 1939 release_node: 1940 mutex_unlock(&delayed_node->mutex); 1941 btrfs_release_delayed_node(delayed_node); 1942 return ret; 1943 } 1944 1945 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1946 { 1947 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1948 struct btrfs_delayed_node *delayed_node; 1949 1950 /* 1951 * we don't do delayed inode updates during log recovery because it 1952 * leads to enospc problems. This means we also can't do 1953 * delayed inode refs 1954 */ 1955 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1956 return -EAGAIN; 1957 1958 delayed_node = btrfs_get_or_create_delayed_node(inode); 1959 if (IS_ERR(delayed_node)) 1960 return PTR_ERR(delayed_node); 1961 1962 /* 1963 * We don't reserve space for inode ref deletion is because: 1964 * - We ONLY do async inode ref deletion for the inode who has only 1965 * one link(i_nlink == 1), it means there is only one inode ref. 1966 * And in most case, the inode ref and the inode item are in the 1967 * same leaf, and we will deal with them at the same time. 1968 * Since we are sure we will reserve the space for the inode item, 1969 * it is unnecessary to reserve space for inode ref deletion. 1970 * - If the inode ref and the inode item are not in the same leaf, 1971 * We also needn't worry about enospc problem, because we reserve 1972 * much more space for the inode update than it needs. 1973 * - At the worst, we can steal some space from the global reservation. 1974 * It is very rare. 1975 */ 1976 mutex_lock(&delayed_node->mutex); 1977 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1978 goto release_node; 1979 1980 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1981 delayed_node->count++; 1982 atomic_inc(&fs_info->delayed_root->items); 1983 release_node: 1984 mutex_unlock(&delayed_node->mutex); 1985 btrfs_release_delayed_node(delayed_node); 1986 return 0; 1987 } 1988 1989 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1990 { 1991 struct btrfs_root *root = delayed_node->root; 1992 struct btrfs_fs_info *fs_info = root->fs_info; 1993 struct btrfs_delayed_item *curr_item, *prev_item; 1994 1995 mutex_lock(&delayed_node->mutex); 1996 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1997 while (curr_item) { 1998 prev_item = curr_item; 1999 curr_item = __btrfs_next_delayed_item(prev_item); 2000 btrfs_release_delayed_item(prev_item); 2001 } 2002 2003 if (delayed_node->index_item_leaves > 0) { 2004 btrfs_delayed_item_release_leaves(delayed_node, 2005 delayed_node->index_item_leaves); 2006 delayed_node->index_item_leaves = 0; 2007 } 2008 2009 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2010 while (curr_item) { 2011 btrfs_delayed_item_release_metadata(root, curr_item); 2012 prev_item = curr_item; 2013 curr_item = __btrfs_next_delayed_item(prev_item); 2014 btrfs_release_delayed_item(prev_item); 2015 } 2016 2017 btrfs_release_delayed_iref(delayed_node); 2018 2019 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2020 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2021 btrfs_release_delayed_inode(delayed_node); 2022 } 2023 mutex_unlock(&delayed_node->mutex); 2024 } 2025 2026 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2027 { 2028 struct btrfs_delayed_node *delayed_node; 2029 2030 delayed_node = btrfs_get_delayed_node(inode); 2031 if (!delayed_node) 2032 return; 2033 2034 __btrfs_kill_delayed_node(delayed_node); 2035 btrfs_release_delayed_node(delayed_node); 2036 } 2037 2038 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2039 { 2040 u64 inode_id = 0; 2041 struct btrfs_delayed_node *delayed_nodes[8]; 2042 int i, n; 2043 2044 while (1) { 2045 spin_lock(&root->inode_lock); 2046 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 2047 (void **)delayed_nodes, inode_id, 2048 ARRAY_SIZE(delayed_nodes)); 2049 if (!n) { 2050 spin_unlock(&root->inode_lock); 2051 break; 2052 } 2053 2054 inode_id = delayed_nodes[n - 1]->inode_id + 1; 2055 for (i = 0; i < n; i++) { 2056 /* 2057 * Don't increase refs in case the node is dead and 2058 * about to be removed from the tree in the loop below 2059 */ 2060 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 2061 delayed_nodes[i] = NULL; 2062 } 2063 spin_unlock(&root->inode_lock); 2064 2065 for (i = 0; i < n; i++) { 2066 if (!delayed_nodes[i]) 2067 continue; 2068 __btrfs_kill_delayed_node(delayed_nodes[i]); 2069 btrfs_release_delayed_node(delayed_nodes[i]); 2070 } 2071 } 2072 } 2073 2074 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2075 { 2076 struct btrfs_delayed_node *curr_node, *prev_node; 2077 2078 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 2079 while (curr_node) { 2080 __btrfs_kill_delayed_node(curr_node); 2081 2082 prev_node = curr_node; 2083 curr_node = btrfs_next_delayed_node(curr_node); 2084 btrfs_release_delayed_node(prev_node); 2085 } 2086 } 2087 2088