xref: /linux/fs/btrfs/delayed-inode.c (revision 2359ccddc1c3f4752f43cc19b3db189710b15791)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "delayed-inode.h"
10 #include "disk-io.h"
11 #include "transaction.h"
12 #include "ctree.h"
13 #include "qgroup.h"
14 
15 #define BTRFS_DELAYED_WRITEBACK		512
16 #define BTRFS_DELAYED_BACKGROUND	128
17 #define BTRFS_DELAYED_BATCH		16
18 
19 static struct kmem_cache *delayed_node_cache;
20 
21 int __init btrfs_delayed_inode_init(void)
22 {
23 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24 					sizeof(struct btrfs_delayed_node),
25 					0,
26 					SLAB_MEM_SPREAD,
27 					NULL);
28 	if (!delayed_node_cache)
29 		return -ENOMEM;
30 	return 0;
31 }
32 
33 void __cold btrfs_delayed_inode_exit(void)
34 {
35 	kmem_cache_destroy(delayed_node_cache);
36 }
37 
38 static inline void btrfs_init_delayed_node(
39 				struct btrfs_delayed_node *delayed_node,
40 				struct btrfs_root *root, u64 inode_id)
41 {
42 	delayed_node->root = root;
43 	delayed_node->inode_id = inode_id;
44 	refcount_set(&delayed_node->refs, 0);
45 	delayed_node->ins_root = RB_ROOT;
46 	delayed_node->del_root = RB_ROOT;
47 	mutex_init(&delayed_node->mutex);
48 	INIT_LIST_HEAD(&delayed_node->n_list);
49 	INIT_LIST_HEAD(&delayed_node->p_list);
50 }
51 
52 static inline int btrfs_is_continuous_delayed_item(
53 					struct btrfs_delayed_item *item1,
54 					struct btrfs_delayed_item *item2)
55 {
56 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
57 	    item1->key.objectid == item2->key.objectid &&
58 	    item1->key.type == item2->key.type &&
59 	    item1->key.offset + 1 == item2->key.offset)
60 		return 1;
61 	return 0;
62 }
63 
64 static struct btrfs_delayed_node *btrfs_get_delayed_node(
65 		struct btrfs_inode *btrfs_inode)
66 {
67 	struct btrfs_root *root = btrfs_inode->root;
68 	u64 ino = btrfs_ino(btrfs_inode);
69 	struct btrfs_delayed_node *node;
70 
71 	node = READ_ONCE(btrfs_inode->delayed_node);
72 	if (node) {
73 		refcount_inc(&node->refs);
74 		return node;
75 	}
76 
77 	spin_lock(&root->inode_lock);
78 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79 
80 	if (node) {
81 		if (btrfs_inode->delayed_node) {
82 			refcount_inc(&node->refs);	/* can be accessed */
83 			BUG_ON(btrfs_inode->delayed_node != node);
84 			spin_unlock(&root->inode_lock);
85 			return node;
86 		}
87 
88 		/*
89 		 * It's possible that we're racing into the middle of removing
90 		 * this node from the radix tree.  In this case, the refcount
91 		 * was zero and it should never go back to one.  Just return
92 		 * NULL like it was never in the radix at all; our release
93 		 * function is in the process of removing it.
94 		 *
95 		 * Some implementations of refcount_inc refuse to bump the
96 		 * refcount once it has hit zero.  If we don't do this dance
97 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
98 		 * of actually bumping the refcount.
99 		 *
100 		 * If this node is properly in the radix, we want to bump the
101 		 * refcount twice, once for the inode and once for this get
102 		 * operation.
103 		 */
104 		if (refcount_inc_not_zero(&node->refs)) {
105 			refcount_inc(&node->refs);
106 			btrfs_inode->delayed_node = node;
107 		} else {
108 			node = NULL;
109 		}
110 
111 		spin_unlock(&root->inode_lock);
112 		return node;
113 	}
114 	spin_unlock(&root->inode_lock);
115 
116 	return NULL;
117 }
118 
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 		struct btrfs_inode *btrfs_inode)
122 {
123 	struct btrfs_delayed_node *node;
124 	struct btrfs_root *root = btrfs_inode->root;
125 	u64 ino = btrfs_ino(btrfs_inode);
126 	int ret;
127 
128 again:
129 	node = btrfs_get_delayed_node(btrfs_inode);
130 	if (node)
131 		return node;
132 
133 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134 	if (!node)
135 		return ERR_PTR(-ENOMEM);
136 	btrfs_init_delayed_node(node, root, ino);
137 
138 	/* cached in the btrfs inode and can be accessed */
139 	refcount_set(&node->refs, 2);
140 
141 	ret = radix_tree_preload(GFP_NOFS);
142 	if (ret) {
143 		kmem_cache_free(delayed_node_cache, node);
144 		return ERR_PTR(ret);
145 	}
146 
147 	spin_lock(&root->inode_lock);
148 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 	if (ret == -EEXIST) {
150 		spin_unlock(&root->inode_lock);
151 		kmem_cache_free(delayed_node_cache, node);
152 		radix_tree_preload_end();
153 		goto again;
154 	}
155 	btrfs_inode->delayed_node = node;
156 	spin_unlock(&root->inode_lock);
157 	radix_tree_preload_end();
158 
159 	return node;
160 }
161 
162 /*
163  * Call it when holding delayed_node->mutex
164  *
165  * If mod = 1, add this node into the prepared list.
166  */
167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 				     struct btrfs_delayed_node *node,
169 				     int mod)
170 {
171 	spin_lock(&root->lock);
172 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173 		if (!list_empty(&node->p_list))
174 			list_move_tail(&node->p_list, &root->prepare_list);
175 		else if (mod)
176 			list_add_tail(&node->p_list, &root->prepare_list);
177 	} else {
178 		list_add_tail(&node->n_list, &root->node_list);
179 		list_add_tail(&node->p_list, &root->prepare_list);
180 		refcount_inc(&node->refs);	/* inserted into list */
181 		root->nodes++;
182 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183 	}
184 	spin_unlock(&root->lock);
185 }
186 
187 /* Call it when holding delayed_node->mutex */
188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 				       struct btrfs_delayed_node *node)
190 {
191 	spin_lock(&root->lock);
192 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193 		root->nodes--;
194 		refcount_dec(&node->refs);	/* not in the list */
195 		list_del_init(&node->n_list);
196 		if (!list_empty(&node->p_list))
197 			list_del_init(&node->p_list);
198 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199 	}
200 	spin_unlock(&root->lock);
201 }
202 
203 static struct btrfs_delayed_node *btrfs_first_delayed_node(
204 			struct btrfs_delayed_root *delayed_root)
205 {
206 	struct list_head *p;
207 	struct btrfs_delayed_node *node = NULL;
208 
209 	spin_lock(&delayed_root->lock);
210 	if (list_empty(&delayed_root->node_list))
211 		goto out;
212 
213 	p = delayed_root->node_list.next;
214 	node = list_entry(p, struct btrfs_delayed_node, n_list);
215 	refcount_inc(&node->refs);
216 out:
217 	spin_unlock(&delayed_root->lock);
218 
219 	return node;
220 }
221 
222 static struct btrfs_delayed_node *btrfs_next_delayed_node(
223 						struct btrfs_delayed_node *node)
224 {
225 	struct btrfs_delayed_root *delayed_root;
226 	struct list_head *p;
227 	struct btrfs_delayed_node *next = NULL;
228 
229 	delayed_root = node->root->fs_info->delayed_root;
230 	spin_lock(&delayed_root->lock);
231 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
232 		/* not in the list */
233 		if (list_empty(&delayed_root->node_list))
234 			goto out;
235 		p = delayed_root->node_list.next;
236 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 		goto out;
238 	else
239 		p = node->n_list.next;
240 
241 	next = list_entry(p, struct btrfs_delayed_node, n_list);
242 	refcount_inc(&next->refs);
243 out:
244 	spin_unlock(&delayed_root->lock);
245 
246 	return next;
247 }
248 
249 static void __btrfs_release_delayed_node(
250 				struct btrfs_delayed_node *delayed_node,
251 				int mod)
252 {
253 	struct btrfs_delayed_root *delayed_root;
254 
255 	if (!delayed_node)
256 		return;
257 
258 	delayed_root = delayed_node->root->fs_info->delayed_root;
259 
260 	mutex_lock(&delayed_node->mutex);
261 	if (delayed_node->count)
262 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 	else
264 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 	mutex_unlock(&delayed_node->mutex);
266 
267 	if (refcount_dec_and_test(&delayed_node->refs)) {
268 		struct btrfs_root *root = delayed_node->root;
269 
270 		spin_lock(&root->inode_lock);
271 		/*
272 		 * Once our refcount goes to zero, nobody is allowed to bump it
273 		 * back up.  We can delete it now.
274 		 */
275 		ASSERT(refcount_read(&delayed_node->refs) == 0);
276 		radix_tree_delete(&root->delayed_nodes_tree,
277 				  delayed_node->inode_id);
278 		spin_unlock(&root->inode_lock);
279 		kmem_cache_free(delayed_node_cache, delayed_node);
280 	}
281 }
282 
283 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284 {
285 	__btrfs_release_delayed_node(node, 0);
286 }
287 
288 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 					struct btrfs_delayed_root *delayed_root)
290 {
291 	struct list_head *p;
292 	struct btrfs_delayed_node *node = NULL;
293 
294 	spin_lock(&delayed_root->lock);
295 	if (list_empty(&delayed_root->prepare_list))
296 		goto out;
297 
298 	p = delayed_root->prepare_list.next;
299 	list_del_init(p);
300 	node = list_entry(p, struct btrfs_delayed_node, p_list);
301 	refcount_inc(&node->refs);
302 out:
303 	spin_unlock(&delayed_root->lock);
304 
305 	return node;
306 }
307 
308 static inline void btrfs_release_prepared_delayed_node(
309 					struct btrfs_delayed_node *node)
310 {
311 	__btrfs_release_delayed_node(node, 1);
312 }
313 
314 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315 {
316 	struct btrfs_delayed_item *item;
317 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
318 	if (item) {
319 		item->data_len = data_len;
320 		item->ins_or_del = 0;
321 		item->bytes_reserved = 0;
322 		item->delayed_node = NULL;
323 		refcount_set(&item->refs, 1);
324 	}
325 	return item;
326 }
327 
328 /*
329  * __btrfs_lookup_delayed_item - look up the delayed item by key
330  * @delayed_node: pointer to the delayed node
331  * @key:	  the key to look up
332  * @prev:	  used to store the prev item if the right item isn't found
333  * @next:	  used to store the next item if the right item isn't found
334  *
335  * Note: if we don't find the right item, we will return the prev item and
336  * the next item.
337  */
338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 				struct rb_root *root,
340 				struct btrfs_key *key,
341 				struct btrfs_delayed_item **prev,
342 				struct btrfs_delayed_item **next)
343 {
344 	struct rb_node *node, *prev_node = NULL;
345 	struct btrfs_delayed_item *delayed_item = NULL;
346 	int ret = 0;
347 
348 	node = root->rb_node;
349 
350 	while (node) {
351 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 					rb_node);
353 		prev_node = node;
354 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
355 		if (ret < 0)
356 			node = node->rb_right;
357 		else if (ret > 0)
358 			node = node->rb_left;
359 		else
360 			return delayed_item;
361 	}
362 
363 	if (prev) {
364 		if (!prev_node)
365 			*prev = NULL;
366 		else if (ret < 0)
367 			*prev = delayed_item;
368 		else if ((node = rb_prev(prev_node)) != NULL) {
369 			*prev = rb_entry(node, struct btrfs_delayed_item,
370 					 rb_node);
371 		} else
372 			*prev = NULL;
373 	}
374 
375 	if (next) {
376 		if (!prev_node)
377 			*next = NULL;
378 		else if (ret > 0)
379 			*next = delayed_item;
380 		else if ((node = rb_next(prev_node)) != NULL) {
381 			*next = rb_entry(node, struct btrfs_delayed_item,
382 					 rb_node);
383 		} else
384 			*next = NULL;
385 	}
386 	return NULL;
387 }
388 
389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390 					struct btrfs_delayed_node *delayed_node,
391 					struct btrfs_key *key)
392 {
393 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394 					   NULL, NULL);
395 }
396 
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398 				    struct btrfs_delayed_item *ins,
399 				    int action)
400 {
401 	struct rb_node **p, *node;
402 	struct rb_node *parent_node = NULL;
403 	struct rb_root *root;
404 	struct btrfs_delayed_item *item;
405 	int cmp;
406 
407 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
408 		root = &delayed_node->ins_root;
409 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
410 		root = &delayed_node->del_root;
411 	else
412 		BUG();
413 	p = &root->rb_node;
414 	node = &ins->rb_node;
415 
416 	while (*p) {
417 		parent_node = *p;
418 		item = rb_entry(parent_node, struct btrfs_delayed_item,
419 				 rb_node);
420 
421 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
422 		if (cmp < 0)
423 			p = &(*p)->rb_right;
424 		else if (cmp > 0)
425 			p = &(*p)->rb_left;
426 		else
427 			return -EEXIST;
428 	}
429 
430 	rb_link_node(node, parent_node, p);
431 	rb_insert_color(node, root);
432 	ins->delayed_node = delayed_node;
433 	ins->ins_or_del = action;
434 
435 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
436 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
437 	    ins->key.offset >= delayed_node->index_cnt)
438 			delayed_node->index_cnt = ins->key.offset + 1;
439 
440 	delayed_node->count++;
441 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
442 	return 0;
443 }
444 
445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
446 					      struct btrfs_delayed_item *item)
447 {
448 	return __btrfs_add_delayed_item(node, item,
449 					BTRFS_DELAYED_INSERTION_ITEM);
450 }
451 
452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
453 					     struct btrfs_delayed_item *item)
454 {
455 	return __btrfs_add_delayed_item(node, item,
456 					BTRFS_DELAYED_DELETION_ITEM);
457 }
458 
459 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460 {
461 	int seq = atomic_inc_return(&delayed_root->items_seq);
462 
463 	/*
464 	 * atomic_dec_return implies a barrier for waitqueue_active
465 	 */
466 	if ((atomic_dec_return(&delayed_root->items) <
467 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
468 	    waitqueue_active(&delayed_root->wait))
469 		wake_up(&delayed_root->wait);
470 }
471 
472 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
473 {
474 	struct rb_root *root;
475 	struct btrfs_delayed_root *delayed_root;
476 
477 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
478 
479 	BUG_ON(!delayed_root);
480 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
481 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
482 
483 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
484 		root = &delayed_item->delayed_node->ins_root;
485 	else
486 		root = &delayed_item->delayed_node->del_root;
487 
488 	rb_erase(&delayed_item->rb_node, root);
489 	delayed_item->delayed_node->count--;
490 
491 	finish_one_item(delayed_root);
492 }
493 
494 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
495 {
496 	if (item) {
497 		__btrfs_remove_delayed_item(item);
498 		if (refcount_dec_and_test(&item->refs))
499 			kfree(item);
500 	}
501 }
502 
503 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
504 					struct btrfs_delayed_node *delayed_node)
505 {
506 	struct rb_node *p;
507 	struct btrfs_delayed_item *item = NULL;
508 
509 	p = rb_first(&delayed_node->ins_root);
510 	if (p)
511 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
512 
513 	return item;
514 }
515 
516 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
517 					struct btrfs_delayed_node *delayed_node)
518 {
519 	struct rb_node *p;
520 	struct btrfs_delayed_item *item = NULL;
521 
522 	p = rb_first(&delayed_node->del_root);
523 	if (p)
524 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525 
526 	return item;
527 }
528 
529 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
530 						struct btrfs_delayed_item *item)
531 {
532 	struct rb_node *p;
533 	struct btrfs_delayed_item *next = NULL;
534 
535 	p = rb_next(&item->rb_node);
536 	if (p)
537 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
538 
539 	return next;
540 }
541 
542 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
543 					       struct btrfs_root *root,
544 					       struct btrfs_delayed_item *item)
545 {
546 	struct btrfs_block_rsv *src_rsv;
547 	struct btrfs_block_rsv *dst_rsv;
548 	struct btrfs_fs_info *fs_info = root->fs_info;
549 	u64 num_bytes;
550 	int ret;
551 
552 	if (!trans->bytes_reserved)
553 		return 0;
554 
555 	src_rsv = trans->block_rsv;
556 	dst_rsv = &fs_info->delayed_block_rsv;
557 
558 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
559 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
560 	if (!ret) {
561 		trace_btrfs_space_reservation(fs_info, "delayed_item",
562 					      item->key.objectid,
563 					      num_bytes, 1);
564 		item->bytes_reserved = num_bytes;
565 	}
566 
567 	return ret;
568 }
569 
570 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
571 						struct btrfs_delayed_item *item)
572 {
573 	struct btrfs_block_rsv *rsv;
574 	struct btrfs_fs_info *fs_info = root->fs_info;
575 
576 	if (!item->bytes_reserved)
577 		return;
578 
579 	rsv = &fs_info->delayed_block_rsv;
580 	btrfs_qgroup_convert_reserved_meta(root, item->bytes_reserved);
581 	trace_btrfs_space_reservation(fs_info, "delayed_item",
582 				      item->key.objectid, item->bytes_reserved,
583 				      0);
584 	btrfs_block_rsv_release(fs_info, rsv,
585 				item->bytes_reserved);
586 }
587 
588 static int btrfs_delayed_inode_reserve_metadata(
589 					struct btrfs_trans_handle *trans,
590 					struct btrfs_root *root,
591 					struct btrfs_inode *inode,
592 					struct btrfs_delayed_node *node)
593 {
594 	struct btrfs_fs_info *fs_info = root->fs_info;
595 	struct btrfs_block_rsv *src_rsv;
596 	struct btrfs_block_rsv *dst_rsv;
597 	u64 num_bytes;
598 	int ret;
599 
600 	src_rsv = trans->block_rsv;
601 	dst_rsv = &fs_info->delayed_block_rsv;
602 
603 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
604 
605 	ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
606 	if (ret < 0)
607 		return ret;
608 	/*
609 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
610 	 * which doesn't reserve space for speed.  This is a problem since we
611 	 * still need to reserve space for this update, so try to reserve the
612 	 * space.
613 	 *
614 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
615 	 * we always reserve enough to update the inode item.
616 	 */
617 	if (!src_rsv || (!trans->bytes_reserved &&
618 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
619 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
620 					  BTRFS_RESERVE_NO_FLUSH);
621 		/*
622 		 * Since we're under a transaction reserve_metadata_bytes could
623 		 * try to commit the transaction which will make it return
624 		 * EAGAIN to make us stop the transaction we have, so return
625 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
626 		 */
627 		if (ret == -EAGAIN) {
628 			ret = -ENOSPC;
629 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
630 		}
631 		if (!ret) {
632 			node->bytes_reserved = num_bytes;
633 			trace_btrfs_space_reservation(fs_info,
634 						      "delayed_inode",
635 						      btrfs_ino(inode),
636 						      num_bytes, 1);
637 		}
638 		return ret;
639 	}
640 
641 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
642 	if (!ret) {
643 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
644 					      btrfs_ino(inode), num_bytes, 1);
645 		node->bytes_reserved = num_bytes;
646 	}
647 
648 	return ret;
649 }
650 
651 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
652 						struct btrfs_delayed_node *node,
653 						bool qgroup_free)
654 {
655 	struct btrfs_block_rsv *rsv;
656 
657 	if (!node->bytes_reserved)
658 		return;
659 
660 	rsv = &fs_info->delayed_block_rsv;
661 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
662 				      node->inode_id, node->bytes_reserved, 0);
663 	btrfs_block_rsv_release(fs_info, rsv,
664 				node->bytes_reserved);
665 	if (qgroup_free)
666 		btrfs_qgroup_free_meta_prealloc(node->root,
667 				node->bytes_reserved);
668 	else
669 		btrfs_qgroup_convert_reserved_meta(node->root,
670 				node->bytes_reserved);
671 	node->bytes_reserved = 0;
672 }
673 
674 /*
675  * This helper will insert some continuous items into the same leaf according
676  * to the free space of the leaf.
677  */
678 static int btrfs_batch_insert_items(struct btrfs_root *root,
679 				    struct btrfs_path *path,
680 				    struct btrfs_delayed_item *item)
681 {
682 	struct btrfs_fs_info *fs_info = root->fs_info;
683 	struct btrfs_delayed_item *curr, *next;
684 	int free_space;
685 	int total_data_size = 0, total_size = 0;
686 	struct extent_buffer *leaf;
687 	char *data_ptr;
688 	struct btrfs_key *keys;
689 	u32 *data_size;
690 	struct list_head head;
691 	int slot;
692 	int nitems;
693 	int i;
694 	int ret = 0;
695 
696 	BUG_ON(!path->nodes[0]);
697 
698 	leaf = path->nodes[0];
699 	free_space = btrfs_leaf_free_space(fs_info, leaf);
700 	INIT_LIST_HEAD(&head);
701 
702 	next = item;
703 	nitems = 0;
704 
705 	/*
706 	 * count the number of the continuous items that we can insert in batch
707 	 */
708 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
709 	       free_space) {
710 		total_data_size += next->data_len;
711 		total_size += next->data_len + sizeof(struct btrfs_item);
712 		list_add_tail(&next->tree_list, &head);
713 		nitems++;
714 
715 		curr = next;
716 		next = __btrfs_next_delayed_item(curr);
717 		if (!next)
718 			break;
719 
720 		if (!btrfs_is_continuous_delayed_item(curr, next))
721 			break;
722 	}
723 
724 	if (!nitems) {
725 		ret = 0;
726 		goto out;
727 	}
728 
729 	/*
730 	 * we need allocate some memory space, but it might cause the task
731 	 * to sleep, so we set all locked nodes in the path to blocking locks
732 	 * first.
733 	 */
734 	btrfs_set_path_blocking(path);
735 
736 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
737 	if (!keys) {
738 		ret = -ENOMEM;
739 		goto out;
740 	}
741 
742 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
743 	if (!data_size) {
744 		ret = -ENOMEM;
745 		goto error;
746 	}
747 
748 	/* get keys of all the delayed items */
749 	i = 0;
750 	list_for_each_entry(next, &head, tree_list) {
751 		keys[i] = next->key;
752 		data_size[i] = next->data_len;
753 		i++;
754 	}
755 
756 	/* reset all the locked nodes in the patch to spinning locks. */
757 	btrfs_clear_path_blocking(path, NULL, 0);
758 
759 	/* insert the keys of the items */
760 	setup_items_for_insert(root, path, keys, data_size,
761 			       total_data_size, total_size, nitems);
762 
763 	/* insert the dir index items */
764 	slot = path->slots[0];
765 	list_for_each_entry_safe(curr, next, &head, tree_list) {
766 		data_ptr = btrfs_item_ptr(leaf, slot, char);
767 		write_extent_buffer(leaf, &curr->data,
768 				    (unsigned long)data_ptr,
769 				    curr->data_len);
770 		slot++;
771 
772 		btrfs_delayed_item_release_metadata(root, curr);
773 
774 		list_del(&curr->tree_list);
775 		btrfs_release_delayed_item(curr);
776 	}
777 
778 error:
779 	kfree(data_size);
780 	kfree(keys);
781 out:
782 	return ret;
783 }
784 
785 /*
786  * This helper can just do simple insertion that needn't extend item for new
787  * data, such as directory name index insertion, inode insertion.
788  */
789 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
790 				     struct btrfs_root *root,
791 				     struct btrfs_path *path,
792 				     struct btrfs_delayed_item *delayed_item)
793 {
794 	struct extent_buffer *leaf;
795 	char *ptr;
796 	int ret;
797 
798 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
799 				      delayed_item->data_len);
800 	if (ret < 0 && ret != -EEXIST)
801 		return ret;
802 
803 	leaf = path->nodes[0];
804 
805 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
806 
807 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
808 			    delayed_item->data_len);
809 	btrfs_mark_buffer_dirty(leaf);
810 
811 	btrfs_delayed_item_release_metadata(root, delayed_item);
812 	return 0;
813 }
814 
815 /*
816  * we insert an item first, then if there are some continuous items, we try
817  * to insert those items into the same leaf.
818  */
819 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
820 				      struct btrfs_path *path,
821 				      struct btrfs_root *root,
822 				      struct btrfs_delayed_node *node)
823 {
824 	struct btrfs_delayed_item *curr, *prev;
825 	int ret = 0;
826 
827 do_again:
828 	mutex_lock(&node->mutex);
829 	curr = __btrfs_first_delayed_insertion_item(node);
830 	if (!curr)
831 		goto insert_end;
832 
833 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
834 	if (ret < 0) {
835 		btrfs_release_path(path);
836 		goto insert_end;
837 	}
838 
839 	prev = curr;
840 	curr = __btrfs_next_delayed_item(prev);
841 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
842 		/* insert the continuous items into the same leaf */
843 		path->slots[0]++;
844 		btrfs_batch_insert_items(root, path, curr);
845 	}
846 	btrfs_release_delayed_item(prev);
847 	btrfs_mark_buffer_dirty(path->nodes[0]);
848 
849 	btrfs_release_path(path);
850 	mutex_unlock(&node->mutex);
851 	goto do_again;
852 
853 insert_end:
854 	mutex_unlock(&node->mutex);
855 	return ret;
856 }
857 
858 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
859 				    struct btrfs_root *root,
860 				    struct btrfs_path *path,
861 				    struct btrfs_delayed_item *item)
862 {
863 	struct btrfs_delayed_item *curr, *next;
864 	struct extent_buffer *leaf;
865 	struct btrfs_key key;
866 	struct list_head head;
867 	int nitems, i, last_item;
868 	int ret = 0;
869 
870 	BUG_ON(!path->nodes[0]);
871 
872 	leaf = path->nodes[0];
873 
874 	i = path->slots[0];
875 	last_item = btrfs_header_nritems(leaf) - 1;
876 	if (i > last_item)
877 		return -ENOENT;	/* FIXME: Is errno suitable? */
878 
879 	next = item;
880 	INIT_LIST_HEAD(&head);
881 	btrfs_item_key_to_cpu(leaf, &key, i);
882 	nitems = 0;
883 	/*
884 	 * count the number of the dir index items that we can delete in batch
885 	 */
886 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
887 		list_add_tail(&next->tree_list, &head);
888 		nitems++;
889 
890 		curr = next;
891 		next = __btrfs_next_delayed_item(curr);
892 		if (!next)
893 			break;
894 
895 		if (!btrfs_is_continuous_delayed_item(curr, next))
896 			break;
897 
898 		i++;
899 		if (i > last_item)
900 			break;
901 		btrfs_item_key_to_cpu(leaf, &key, i);
902 	}
903 
904 	if (!nitems)
905 		return 0;
906 
907 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
908 	if (ret)
909 		goto out;
910 
911 	list_for_each_entry_safe(curr, next, &head, tree_list) {
912 		btrfs_delayed_item_release_metadata(root, curr);
913 		list_del(&curr->tree_list);
914 		btrfs_release_delayed_item(curr);
915 	}
916 
917 out:
918 	return ret;
919 }
920 
921 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
922 				      struct btrfs_path *path,
923 				      struct btrfs_root *root,
924 				      struct btrfs_delayed_node *node)
925 {
926 	struct btrfs_delayed_item *curr, *prev;
927 	int ret = 0;
928 
929 do_again:
930 	mutex_lock(&node->mutex);
931 	curr = __btrfs_first_delayed_deletion_item(node);
932 	if (!curr)
933 		goto delete_fail;
934 
935 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
936 	if (ret < 0)
937 		goto delete_fail;
938 	else if (ret > 0) {
939 		/*
940 		 * can't find the item which the node points to, so this node
941 		 * is invalid, just drop it.
942 		 */
943 		prev = curr;
944 		curr = __btrfs_next_delayed_item(prev);
945 		btrfs_release_delayed_item(prev);
946 		ret = 0;
947 		btrfs_release_path(path);
948 		if (curr) {
949 			mutex_unlock(&node->mutex);
950 			goto do_again;
951 		} else
952 			goto delete_fail;
953 	}
954 
955 	btrfs_batch_delete_items(trans, root, path, curr);
956 	btrfs_release_path(path);
957 	mutex_unlock(&node->mutex);
958 	goto do_again;
959 
960 delete_fail:
961 	btrfs_release_path(path);
962 	mutex_unlock(&node->mutex);
963 	return ret;
964 }
965 
966 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
967 {
968 	struct btrfs_delayed_root *delayed_root;
969 
970 	if (delayed_node &&
971 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
972 		BUG_ON(!delayed_node->root);
973 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
974 		delayed_node->count--;
975 
976 		delayed_root = delayed_node->root->fs_info->delayed_root;
977 		finish_one_item(delayed_root);
978 	}
979 }
980 
981 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
982 {
983 	struct btrfs_delayed_root *delayed_root;
984 
985 	ASSERT(delayed_node->root);
986 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
987 	delayed_node->count--;
988 
989 	delayed_root = delayed_node->root->fs_info->delayed_root;
990 	finish_one_item(delayed_root);
991 }
992 
993 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
994 					struct btrfs_root *root,
995 					struct btrfs_path *path,
996 					struct btrfs_delayed_node *node)
997 {
998 	struct btrfs_fs_info *fs_info = root->fs_info;
999 	struct btrfs_key key;
1000 	struct btrfs_inode_item *inode_item;
1001 	struct extent_buffer *leaf;
1002 	int mod;
1003 	int ret;
1004 
1005 	key.objectid = node->inode_id;
1006 	key.type = BTRFS_INODE_ITEM_KEY;
1007 	key.offset = 0;
1008 
1009 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1010 		mod = -1;
1011 	else
1012 		mod = 1;
1013 
1014 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1015 	if (ret > 0) {
1016 		btrfs_release_path(path);
1017 		return -ENOENT;
1018 	} else if (ret < 0) {
1019 		return ret;
1020 	}
1021 
1022 	leaf = path->nodes[0];
1023 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1024 				    struct btrfs_inode_item);
1025 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1026 			    sizeof(struct btrfs_inode_item));
1027 	btrfs_mark_buffer_dirty(leaf);
1028 
1029 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030 		goto no_iref;
1031 
1032 	path->slots[0]++;
1033 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1034 		goto search;
1035 again:
1036 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1037 	if (key.objectid != node->inode_id)
1038 		goto out;
1039 
1040 	if (key.type != BTRFS_INODE_REF_KEY &&
1041 	    key.type != BTRFS_INODE_EXTREF_KEY)
1042 		goto out;
1043 
1044 	/*
1045 	 * Delayed iref deletion is for the inode who has only one link,
1046 	 * so there is only one iref. The case that several irefs are
1047 	 * in the same item doesn't exist.
1048 	 */
1049 	btrfs_del_item(trans, root, path);
1050 out:
1051 	btrfs_release_delayed_iref(node);
1052 no_iref:
1053 	btrfs_release_path(path);
1054 err_out:
1055 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1056 	btrfs_release_delayed_inode(node);
1057 
1058 	return ret;
1059 
1060 search:
1061 	btrfs_release_path(path);
1062 
1063 	key.type = BTRFS_INODE_EXTREF_KEY;
1064 	key.offset = -1;
1065 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1066 	if (ret < 0)
1067 		goto err_out;
1068 	ASSERT(ret);
1069 
1070 	ret = 0;
1071 	leaf = path->nodes[0];
1072 	path->slots[0]--;
1073 	goto again;
1074 }
1075 
1076 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1077 					     struct btrfs_root *root,
1078 					     struct btrfs_path *path,
1079 					     struct btrfs_delayed_node *node)
1080 {
1081 	int ret;
1082 
1083 	mutex_lock(&node->mutex);
1084 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1085 		mutex_unlock(&node->mutex);
1086 		return 0;
1087 	}
1088 
1089 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1090 	mutex_unlock(&node->mutex);
1091 	return ret;
1092 }
1093 
1094 static inline int
1095 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1096 				   struct btrfs_path *path,
1097 				   struct btrfs_delayed_node *node)
1098 {
1099 	int ret;
1100 
1101 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1102 	if (ret)
1103 		return ret;
1104 
1105 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1106 	if (ret)
1107 		return ret;
1108 
1109 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1110 	return ret;
1111 }
1112 
1113 /*
1114  * Called when committing the transaction.
1115  * Returns 0 on success.
1116  * Returns < 0 on error and returns with an aborted transaction with any
1117  * outstanding delayed items cleaned up.
1118  */
1119 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1120 {
1121 	struct btrfs_fs_info *fs_info = trans->fs_info;
1122 	struct btrfs_delayed_root *delayed_root;
1123 	struct btrfs_delayed_node *curr_node, *prev_node;
1124 	struct btrfs_path *path;
1125 	struct btrfs_block_rsv *block_rsv;
1126 	int ret = 0;
1127 	bool count = (nr > 0);
1128 
1129 	if (trans->aborted)
1130 		return -EIO;
1131 
1132 	path = btrfs_alloc_path();
1133 	if (!path)
1134 		return -ENOMEM;
1135 	path->leave_spinning = 1;
1136 
1137 	block_rsv = trans->block_rsv;
1138 	trans->block_rsv = &fs_info->delayed_block_rsv;
1139 
1140 	delayed_root = fs_info->delayed_root;
1141 
1142 	curr_node = btrfs_first_delayed_node(delayed_root);
1143 	while (curr_node && (!count || (count && nr--))) {
1144 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1145 							 curr_node);
1146 		if (ret) {
1147 			btrfs_release_delayed_node(curr_node);
1148 			curr_node = NULL;
1149 			btrfs_abort_transaction(trans, ret);
1150 			break;
1151 		}
1152 
1153 		prev_node = curr_node;
1154 		curr_node = btrfs_next_delayed_node(curr_node);
1155 		btrfs_release_delayed_node(prev_node);
1156 	}
1157 
1158 	if (curr_node)
1159 		btrfs_release_delayed_node(curr_node);
1160 	btrfs_free_path(path);
1161 	trans->block_rsv = block_rsv;
1162 
1163 	return ret;
1164 }
1165 
1166 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1167 {
1168 	return __btrfs_run_delayed_items(trans, -1);
1169 }
1170 
1171 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1172 {
1173 	return __btrfs_run_delayed_items(trans, nr);
1174 }
1175 
1176 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1177 				     struct btrfs_inode *inode)
1178 {
1179 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1180 	struct btrfs_path *path;
1181 	struct btrfs_block_rsv *block_rsv;
1182 	int ret;
1183 
1184 	if (!delayed_node)
1185 		return 0;
1186 
1187 	mutex_lock(&delayed_node->mutex);
1188 	if (!delayed_node->count) {
1189 		mutex_unlock(&delayed_node->mutex);
1190 		btrfs_release_delayed_node(delayed_node);
1191 		return 0;
1192 	}
1193 	mutex_unlock(&delayed_node->mutex);
1194 
1195 	path = btrfs_alloc_path();
1196 	if (!path) {
1197 		btrfs_release_delayed_node(delayed_node);
1198 		return -ENOMEM;
1199 	}
1200 	path->leave_spinning = 1;
1201 
1202 	block_rsv = trans->block_rsv;
1203 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1204 
1205 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1206 
1207 	btrfs_release_delayed_node(delayed_node);
1208 	btrfs_free_path(path);
1209 	trans->block_rsv = block_rsv;
1210 
1211 	return ret;
1212 }
1213 
1214 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1215 {
1216 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1217 	struct btrfs_trans_handle *trans;
1218 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1219 	struct btrfs_path *path;
1220 	struct btrfs_block_rsv *block_rsv;
1221 	int ret;
1222 
1223 	if (!delayed_node)
1224 		return 0;
1225 
1226 	mutex_lock(&delayed_node->mutex);
1227 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1228 		mutex_unlock(&delayed_node->mutex);
1229 		btrfs_release_delayed_node(delayed_node);
1230 		return 0;
1231 	}
1232 	mutex_unlock(&delayed_node->mutex);
1233 
1234 	trans = btrfs_join_transaction(delayed_node->root);
1235 	if (IS_ERR(trans)) {
1236 		ret = PTR_ERR(trans);
1237 		goto out;
1238 	}
1239 
1240 	path = btrfs_alloc_path();
1241 	if (!path) {
1242 		ret = -ENOMEM;
1243 		goto trans_out;
1244 	}
1245 	path->leave_spinning = 1;
1246 
1247 	block_rsv = trans->block_rsv;
1248 	trans->block_rsv = &fs_info->delayed_block_rsv;
1249 
1250 	mutex_lock(&delayed_node->mutex);
1251 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1252 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1253 						   path, delayed_node);
1254 	else
1255 		ret = 0;
1256 	mutex_unlock(&delayed_node->mutex);
1257 
1258 	btrfs_free_path(path);
1259 	trans->block_rsv = block_rsv;
1260 trans_out:
1261 	btrfs_end_transaction(trans);
1262 	btrfs_btree_balance_dirty(fs_info);
1263 out:
1264 	btrfs_release_delayed_node(delayed_node);
1265 
1266 	return ret;
1267 }
1268 
1269 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1270 {
1271 	struct btrfs_delayed_node *delayed_node;
1272 
1273 	delayed_node = READ_ONCE(inode->delayed_node);
1274 	if (!delayed_node)
1275 		return;
1276 
1277 	inode->delayed_node = NULL;
1278 	btrfs_release_delayed_node(delayed_node);
1279 }
1280 
1281 struct btrfs_async_delayed_work {
1282 	struct btrfs_delayed_root *delayed_root;
1283 	int nr;
1284 	struct btrfs_work work;
1285 };
1286 
1287 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1288 {
1289 	struct btrfs_async_delayed_work *async_work;
1290 	struct btrfs_delayed_root *delayed_root;
1291 	struct btrfs_trans_handle *trans;
1292 	struct btrfs_path *path;
1293 	struct btrfs_delayed_node *delayed_node = NULL;
1294 	struct btrfs_root *root;
1295 	struct btrfs_block_rsv *block_rsv;
1296 	int total_done = 0;
1297 
1298 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1299 	delayed_root = async_work->delayed_root;
1300 
1301 	path = btrfs_alloc_path();
1302 	if (!path)
1303 		goto out;
1304 
1305 	do {
1306 		if (atomic_read(&delayed_root->items) <
1307 		    BTRFS_DELAYED_BACKGROUND / 2)
1308 			break;
1309 
1310 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1311 		if (!delayed_node)
1312 			break;
1313 
1314 		path->leave_spinning = 1;
1315 		root = delayed_node->root;
1316 
1317 		trans = btrfs_join_transaction(root);
1318 		if (IS_ERR(trans)) {
1319 			btrfs_release_path(path);
1320 			btrfs_release_prepared_delayed_node(delayed_node);
1321 			total_done++;
1322 			continue;
1323 		}
1324 
1325 		block_rsv = trans->block_rsv;
1326 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1327 
1328 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1329 
1330 		trans->block_rsv = block_rsv;
1331 		btrfs_end_transaction(trans);
1332 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1333 
1334 		btrfs_release_path(path);
1335 		btrfs_release_prepared_delayed_node(delayed_node);
1336 		total_done++;
1337 
1338 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1339 		 || total_done < async_work->nr);
1340 
1341 	btrfs_free_path(path);
1342 out:
1343 	wake_up(&delayed_root->wait);
1344 	kfree(async_work);
1345 }
1346 
1347 
1348 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1349 				     struct btrfs_fs_info *fs_info, int nr)
1350 {
1351 	struct btrfs_async_delayed_work *async_work;
1352 
1353 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1354 	if (!async_work)
1355 		return -ENOMEM;
1356 
1357 	async_work->delayed_root = delayed_root;
1358 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1359 			btrfs_async_run_delayed_root, NULL, NULL);
1360 	async_work->nr = nr;
1361 
1362 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1363 	return 0;
1364 }
1365 
1366 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1367 {
1368 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1369 }
1370 
1371 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1372 {
1373 	int val = atomic_read(&delayed_root->items_seq);
1374 
1375 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1376 		return 1;
1377 
1378 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1379 		return 1;
1380 
1381 	return 0;
1382 }
1383 
1384 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1385 {
1386 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1387 
1388 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1389 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1390 		return;
1391 
1392 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1393 		int seq;
1394 		int ret;
1395 
1396 		seq = atomic_read(&delayed_root->items_seq);
1397 
1398 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1399 		if (ret)
1400 			return;
1401 
1402 		wait_event_interruptible(delayed_root->wait,
1403 					 could_end_wait(delayed_root, seq));
1404 		return;
1405 	}
1406 
1407 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1408 }
1409 
1410 /* Will return 0 or -ENOMEM */
1411 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1412 				   struct btrfs_fs_info *fs_info,
1413 				   const char *name, int name_len,
1414 				   struct btrfs_inode *dir,
1415 				   struct btrfs_disk_key *disk_key, u8 type,
1416 				   u64 index)
1417 {
1418 	struct btrfs_delayed_node *delayed_node;
1419 	struct btrfs_delayed_item *delayed_item;
1420 	struct btrfs_dir_item *dir_item;
1421 	int ret;
1422 
1423 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1424 	if (IS_ERR(delayed_node))
1425 		return PTR_ERR(delayed_node);
1426 
1427 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1428 	if (!delayed_item) {
1429 		ret = -ENOMEM;
1430 		goto release_node;
1431 	}
1432 
1433 	delayed_item->key.objectid = btrfs_ino(dir);
1434 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1435 	delayed_item->key.offset = index;
1436 
1437 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1438 	dir_item->location = *disk_key;
1439 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1440 	btrfs_set_stack_dir_data_len(dir_item, 0);
1441 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1442 	btrfs_set_stack_dir_type(dir_item, type);
1443 	memcpy((char *)(dir_item + 1), name, name_len);
1444 
1445 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1446 	/*
1447 	 * we have reserved enough space when we start a new transaction,
1448 	 * so reserving metadata failure is impossible
1449 	 */
1450 	BUG_ON(ret);
1451 
1452 
1453 	mutex_lock(&delayed_node->mutex);
1454 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1455 	if (unlikely(ret)) {
1456 		btrfs_err(fs_info,
1457 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1458 			  name_len, name, delayed_node->root->objectid,
1459 			  delayed_node->inode_id, ret);
1460 		BUG();
1461 	}
1462 	mutex_unlock(&delayed_node->mutex);
1463 
1464 release_node:
1465 	btrfs_release_delayed_node(delayed_node);
1466 	return ret;
1467 }
1468 
1469 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1470 					       struct btrfs_delayed_node *node,
1471 					       struct btrfs_key *key)
1472 {
1473 	struct btrfs_delayed_item *item;
1474 
1475 	mutex_lock(&node->mutex);
1476 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1477 	if (!item) {
1478 		mutex_unlock(&node->mutex);
1479 		return 1;
1480 	}
1481 
1482 	btrfs_delayed_item_release_metadata(node->root, item);
1483 	btrfs_release_delayed_item(item);
1484 	mutex_unlock(&node->mutex);
1485 	return 0;
1486 }
1487 
1488 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1489 				   struct btrfs_fs_info *fs_info,
1490 				   struct btrfs_inode *dir, u64 index)
1491 {
1492 	struct btrfs_delayed_node *node;
1493 	struct btrfs_delayed_item *item;
1494 	struct btrfs_key item_key;
1495 	int ret;
1496 
1497 	node = btrfs_get_or_create_delayed_node(dir);
1498 	if (IS_ERR(node))
1499 		return PTR_ERR(node);
1500 
1501 	item_key.objectid = btrfs_ino(dir);
1502 	item_key.type = BTRFS_DIR_INDEX_KEY;
1503 	item_key.offset = index;
1504 
1505 	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1506 	if (!ret)
1507 		goto end;
1508 
1509 	item = btrfs_alloc_delayed_item(0);
1510 	if (!item) {
1511 		ret = -ENOMEM;
1512 		goto end;
1513 	}
1514 
1515 	item->key = item_key;
1516 
1517 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1518 	/*
1519 	 * we have reserved enough space when we start a new transaction,
1520 	 * so reserving metadata failure is impossible.
1521 	 */
1522 	BUG_ON(ret);
1523 
1524 	mutex_lock(&node->mutex);
1525 	ret = __btrfs_add_delayed_deletion_item(node, item);
1526 	if (unlikely(ret)) {
1527 		btrfs_err(fs_info,
1528 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1529 			  index, node->root->objectid, node->inode_id, ret);
1530 		BUG();
1531 	}
1532 	mutex_unlock(&node->mutex);
1533 end:
1534 	btrfs_release_delayed_node(node);
1535 	return ret;
1536 }
1537 
1538 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1539 {
1540 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1541 
1542 	if (!delayed_node)
1543 		return -ENOENT;
1544 
1545 	/*
1546 	 * Since we have held i_mutex of this directory, it is impossible that
1547 	 * a new directory index is added into the delayed node and index_cnt
1548 	 * is updated now. So we needn't lock the delayed node.
1549 	 */
1550 	if (!delayed_node->index_cnt) {
1551 		btrfs_release_delayed_node(delayed_node);
1552 		return -EINVAL;
1553 	}
1554 
1555 	inode->index_cnt = delayed_node->index_cnt;
1556 	btrfs_release_delayed_node(delayed_node);
1557 	return 0;
1558 }
1559 
1560 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1561 				     struct list_head *ins_list,
1562 				     struct list_head *del_list)
1563 {
1564 	struct btrfs_delayed_node *delayed_node;
1565 	struct btrfs_delayed_item *item;
1566 
1567 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1568 	if (!delayed_node)
1569 		return false;
1570 
1571 	/*
1572 	 * We can only do one readdir with delayed items at a time because of
1573 	 * item->readdir_list.
1574 	 */
1575 	inode_unlock_shared(inode);
1576 	inode_lock(inode);
1577 
1578 	mutex_lock(&delayed_node->mutex);
1579 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1580 	while (item) {
1581 		refcount_inc(&item->refs);
1582 		list_add_tail(&item->readdir_list, ins_list);
1583 		item = __btrfs_next_delayed_item(item);
1584 	}
1585 
1586 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1587 	while (item) {
1588 		refcount_inc(&item->refs);
1589 		list_add_tail(&item->readdir_list, del_list);
1590 		item = __btrfs_next_delayed_item(item);
1591 	}
1592 	mutex_unlock(&delayed_node->mutex);
1593 	/*
1594 	 * This delayed node is still cached in the btrfs inode, so refs
1595 	 * must be > 1 now, and we needn't check it is going to be freed
1596 	 * or not.
1597 	 *
1598 	 * Besides that, this function is used to read dir, we do not
1599 	 * insert/delete delayed items in this period. So we also needn't
1600 	 * requeue or dequeue this delayed node.
1601 	 */
1602 	refcount_dec(&delayed_node->refs);
1603 
1604 	return true;
1605 }
1606 
1607 void btrfs_readdir_put_delayed_items(struct inode *inode,
1608 				     struct list_head *ins_list,
1609 				     struct list_head *del_list)
1610 {
1611 	struct btrfs_delayed_item *curr, *next;
1612 
1613 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1614 		list_del(&curr->readdir_list);
1615 		if (refcount_dec_and_test(&curr->refs))
1616 			kfree(curr);
1617 	}
1618 
1619 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1620 		list_del(&curr->readdir_list);
1621 		if (refcount_dec_and_test(&curr->refs))
1622 			kfree(curr);
1623 	}
1624 
1625 	/*
1626 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1627 	 * read lock.
1628 	 */
1629 	downgrade_write(&inode->i_rwsem);
1630 }
1631 
1632 int btrfs_should_delete_dir_index(struct list_head *del_list,
1633 				  u64 index)
1634 {
1635 	struct btrfs_delayed_item *curr;
1636 	int ret = 0;
1637 
1638 	list_for_each_entry(curr, del_list, readdir_list) {
1639 		if (curr->key.offset > index)
1640 			break;
1641 		if (curr->key.offset == index) {
1642 			ret = 1;
1643 			break;
1644 		}
1645 	}
1646 	return ret;
1647 }
1648 
1649 /*
1650  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1651  *
1652  */
1653 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1654 				    struct list_head *ins_list)
1655 {
1656 	struct btrfs_dir_item *di;
1657 	struct btrfs_delayed_item *curr, *next;
1658 	struct btrfs_key location;
1659 	char *name;
1660 	int name_len;
1661 	int over = 0;
1662 	unsigned char d_type;
1663 
1664 	if (list_empty(ins_list))
1665 		return 0;
1666 
1667 	/*
1668 	 * Changing the data of the delayed item is impossible. So
1669 	 * we needn't lock them. And we have held i_mutex of the
1670 	 * directory, nobody can delete any directory indexes now.
1671 	 */
1672 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1673 		list_del(&curr->readdir_list);
1674 
1675 		if (curr->key.offset < ctx->pos) {
1676 			if (refcount_dec_and_test(&curr->refs))
1677 				kfree(curr);
1678 			continue;
1679 		}
1680 
1681 		ctx->pos = curr->key.offset;
1682 
1683 		di = (struct btrfs_dir_item *)curr->data;
1684 		name = (char *)(di + 1);
1685 		name_len = btrfs_stack_dir_name_len(di);
1686 
1687 		d_type = btrfs_filetype_table[di->type];
1688 		btrfs_disk_key_to_cpu(&location, &di->location);
1689 
1690 		over = !dir_emit(ctx, name, name_len,
1691 			       location.objectid, d_type);
1692 
1693 		if (refcount_dec_and_test(&curr->refs))
1694 			kfree(curr);
1695 
1696 		if (over)
1697 			return 1;
1698 		ctx->pos++;
1699 	}
1700 	return 0;
1701 }
1702 
1703 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1704 				  struct btrfs_inode_item *inode_item,
1705 				  struct inode *inode)
1706 {
1707 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1708 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1709 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1710 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1711 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1712 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1713 	btrfs_set_stack_inode_generation(inode_item,
1714 					 BTRFS_I(inode)->generation);
1715 	btrfs_set_stack_inode_sequence(inode_item,
1716 				       inode_peek_iversion(inode));
1717 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1718 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1719 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1720 	btrfs_set_stack_inode_block_group(inode_item, 0);
1721 
1722 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1723 				     inode->i_atime.tv_sec);
1724 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1725 				      inode->i_atime.tv_nsec);
1726 
1727 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1728 				     inode->i_mtime.tv_sec);
1729 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1730 				      inode->i_mtime.tv_nsec);
1731 
1732 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1733 				     inode->i_ctime.tv_sec);
1734 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1735 				      inode->i_ctime.tv_nsec);
1736 
1737 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1738 				     BTRFS_I(inode)->i_otime.tv_sec);
1739 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1740 				     BTRFS_I(inode)->i_otime.tv_nsec);
1741 }
1742 
1743 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1744 {
1745 	struct btrfs_delayed_node *delayed_node;
1746 	struct btrfs_inode_item *inode_item;
1747 
1748 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1749 	if (!delayed_node)
1750 		return -ENOENT;
1751 
1752 	mutex_lock(&delayed_node->mutex);
1753 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1754 		mutex_unlock(&delayed_node->mutex);
1755 		btrfs_release_delayed_node(delayed_node);
1756 		return -ENOENT;
1757 	}
1758 
1759 	inode_item = &delayed_node->inode_item;
1760 
1761 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1762 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1763 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1764 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1765 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1766 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1767 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1768         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1769 
1770 	inode_set_iversion_queried(inode,
1771 				   btrfs_stack_inode_sequence(inode_item));
1772 	inode->i_rdev = 0;
1773 	*rdev = btrfs_stack_inode_rdev(inode_item);
1774 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1775 
1776 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1777 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1778 
1779 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1780 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1781 
1782 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1783 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1784 
1785 	BTRFS_I(inode)->i_otime.tv_sec =
1786 		btrfs_stack_timespec_sec(&inode_item->otime);
1787 	BTRFS_I(inode)->i_otime.tv_nsec =
1788 		btrfs_stack_timespec_nsec(&inode_item->otime);
1789 
1790 	inode->i_generation = BTRFS_I(inode)->generation;
1791 	BTRFS_I(inode)->index_cnt = (u64)-1;
1792 
1793 	mutex_unlock(&delayed_node->mutex);
1794 	btrfs_release_delayed_node(delayed_node);
1795 	return 0;
1796 }
1797 
1798 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1799 			       struct btrfs_root *root, struct inode *inode)
1800 {
1801 	struct btrfs_delayed_node *delayed_node;
1802 	int ret = 0;
1803 
1804 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1805 	if (IS_ERR(delayed_node))
1806 		return PTR_ERR(delayed_node);
1807 
1808 	mutex_lock(&delayed_node->mutex);
1809 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1810 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1811 		goto release_node;
1812 	}
1813 
1814 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1815 						   delayed_node);
1816 	if (ret)
1817 		goto release_node;
1818 
1819 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1820 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1821 	delayed_node->count++;
1822 	atomic_inc(&root->fs_info->delayed_root->items);
1823 release_node:
1824 	mutex_unlock(&delayed_node->mutex);
1825 	btrfs_release_delayed_node(delayed_node);
1826 	return ret;
1827 }
1828 
1829 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1830 {
1831 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1832 	struct btrfs_delayed_node *delayed_node;
1833 
1834 	/*
1835 	 * we don't do delayed inode updates during log recovery because it
1836 	 * leads to enospc problems.  This means we also can't do
1837 	 * delayed inode refs
1838 	 */
1839 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1840 		return -EAGAIN;
1841 
1842 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1843 	if (IS_ERR(delayed_node))
1844 		return PTR_ERR(delayed_node);
1845 
1846 	/*
1847 	 * We don't reserve space for inode ref deletion is because:
1848 	 * - We ONLY do async inode ref deletion for the inode who has only
1849 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1850 	 *   And in most case, the inode ref and the inode item are in the
1851 	 *   same leaf, and we will deal with them at the same time.
1852 	 *   Since we are sure we will reserve the space for the inode item,
1853 	 *   it is unnecessary to reserve space for inode ref deletion.
1854 	 * - If the inode ref and the inode item are not in the same leaf,
1855 	 *   We also needn't worry about enospc problem, because we reserve
1856 	 *   much more space for the inode update than it needs.
1857 	 * - At the worst, we can steal some space from the global reservation.
1858 	 *   It is very rare.
1859 	 */
1860 	mutex_lock(&delayed_node->mutex);
1861 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1862 		goto release_node;
1863 
1864 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1865 	delayed_node->count++;
1866 	atomic_inc(&fs_info->delayed_root->items);
1867 release_node:
1868 	mutex_unlock(&delayed_node->mutex);
1869 	btrfs_release_delayed_node(delayed_node);
1870 	return 0;
1871 }
1872 
1873 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1874 {
1875 	struct btrfs_root *root = delayed_node->root;
1876 	struct btrfs_fs_info *fs_info = root->fs_info;
1877 	struct btrfs_delayed_item *curr_item, *prev_item;
1878 
1879 	mutex_lock(&delayed_node->mutex);
1880 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1881 	while (curr_item) {
1882 		btrfs_delayed_item_release_metadata(root, curr_item);
1883 		prev_item = curr_item;
1884 		curr_item = __btrfs_next_delayed_item(prev_item);
1885 		btrfs_release_delayed_item(prev_item);
1886 	}
1887 
1888 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1889 	while (curr_item) {
1890 		btrfs_delayed_item_release_metadata(root, curr_item);
1891 		prev_item = curr_item;
1892 		curr_item = __btrfs_next_delayed_item(prev_item);
1893 		btrfs_release_delayed_item(prev_item);
1894 	}
1895 
1896 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1897 		btrfs_release_delayed_iref(delayed_node);
1898 
1899 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1900 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1901 		btrfs_release_delayed_inode(delayed_node);
1902 	}
1903 	mutex_unlock(&delayed_node->mutex);
1904 }
1905 
1906 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1907 {
1908 	struct btrfs_delayed_node *delayed_node;
1909 
1910 	delayed_node = btrfs_get_delayed_node(inode);
1911 	if (!delayed_node)
1912 		return;
1913 
1914 	__btrfs_kill_delayed_node(delayed_node);
1915 	btrfs_release_delayed_node(delayed_node);
1916 }
1917 
1918 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1919 {
1920 	u64 inode_id = 0;
1921 	struct btrfs_delayed_node *delayed_nodes[8];
1922 	int i, n;
1923 
1924 	while (1) {
1925 		spin_lock(&root->inode_lock);
1926 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1927 					   (void **)delayed_nodes, inode_id,
1928 					   ARRAY_SIZE(delayed_nodes));
1929 		if (!n) {
1930 			spin_unlock(&root->inode_lock);
1931 			break;
1932 		}
1933 
1934 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1935 
1936 		for (i = 0; i < n; i++)
1937 			refcount_inc(&delayed_nodes[i]->refs);
1938 		spin_unlock(&root->inode_lock);
1939 
1940 		for (i = 0; i < n; i++) {
1941 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1942 			btrfs_release_delayed_node(delayed_nodes[i]);
1943 		}
1944 	}
1945 }
1946 
1947 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1948 {
1949 	struct btrfs_delayed_node *curr_node, *prev_node;
1950 
1951 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1952 	while (curr_node) {
1953 		__btrfs_kill_delayed_node(curr_node);
1954 
1955 		prev_node = curr_node;
1956 		curr_node = btrfs_next_delayed_node(curr_node);
1957 		btrfs_release_delayed_node(prev_node);
1958 	}
1959 }
1960 
1961