xref: /linux/fs/btrfs/delayed-inode.c (revision 1d1997db870f4058676439ef7014390ba9e24eb2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "misc.h"
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
15 #include "locking.h"
16 
17 #define BTRFS_DELAYED_WRITEBACK		512
18 #define BTRFS_DELAYED_BACKGROUND	128
19 #define BTRFS_DELAYED_BATCH		16
20 
21 static struct kmem_cache *delayed_node_cache;
22 
23 int __init btrfs_delayed_inode_init(void)
24 {
25 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
26 					sizeof(struct btrfs_delayed_node),
27 					0,
28 					SLAB_MEM_SPREAD,
29 					NULL);
30 	if (!delayed_node_cache)
31 		return -ENOMEM;
32 	return 0;
33 }
34 
35 void __cold btrfs_delayed_inode_exit(void)
36 {
37 	kmem_cache_destroy(delayed_node_cache);
38 }
39 
40 static inline void btrfs_init_delayed_node(
41 				struct btrfs_delayed_node *delayed_node,
42 				struct btrfs_root *root, u64 inode_id)
43 {
44 	delayed_node->root = root;
45 	delayed_node->inode_id = inode_id;
46 	refcount_set(&delayed_node->refs, 0);
47 	delayed_node->ins_root = RB_ROOT_CACHED;
48 	delayed_node->del_root = RB_ROOT_CACHED;
49 	mutex_init(&delayed_node->mutex);
50 	INIT_LIST_HEAD(&delayed_node->n_list);
51 	INIT_LIST_HEAD(&delayed_node->p_list);
52 }
53 
54 static inline int btrfs_is_continuous_delayed_item(
55 					struct btrfs_delayed_item *item1,
56 					struct btrfs_delayed_item *item2)
57 {
58 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
59 	    item1->key.objectid == item2->key.objectid &&
60 	    item1->key.type == item2->key.type &&
61 	    item1->key.offset + 1 == item2->key.offset)
62 		return 1;
63 	return 0;
64 }
65 
66 static struct btrfs_delayed_node *btrfs_get_delayed_node(
67 		struct btrfs_inode *btrfs_inode)
68 {
69 	struct btrfs_root *root = btrfs_inode->root;
70 	u64 ino = btrfs_ino(btrfs_inode);
71 	struct btrfs_delayed_node *node;
72 
73 	node = READ_ONCE(btrfs_inode->delayed_node);
74 	if (node) {
75 		refcount_inc(&node->refs);
76 		return node;
77 	}
78 
79 	spin_lock(&root->inode_lock);
80 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
81 
82 	if (node) {
83 		if (btrfs_inode->delayed_node) {
84 			refcount_inc(&node->refs);	/* can be accessed */
85 			BUG_ON(btrfs_inode->delayed_node != node);
86 			spin_unlock(&root->inode_lock);
87 			return node;
88 		}
89 
90 		/*
91 		 * It's possible that we're racing into the middle of removing
92 		 * this node from the radix tree.  In this case, the refcount
93 		 * was zero and it should never go back to one.  Just return
94 		 * NULL like it was never in the radix at all; our release
95 		 * function is in the process of removing it.
96 		 *
97 		 * Some implementations of refcount_inc refuse to bump the
98 		 * refcount once it has hit zero.  If we don't do this dance
99 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
100 		 * of actually bumping the refcount.
101 		 *
102 		 * If this node is properly in the radix, we want to bump the
103 		 * refcount twice, once for the inode and once for this get
104 		 * operation.
105 		 */
106 		if (refcount_inc_not_zero(&node->refs)) {
107 			refcount_inc(&node->refs);
108 			btrfs_inode->delayed_node = node;
109 		} else {
110 			node = NULL;
111 		}
112 
113 		spin_unlock(&root->inode_lock);
114 		return node;
115 	}
116 	spin_unlock(&root->inode_lock);
117 
118 	return NULL;
119 }
120 
121 /* Will return either the node or PTR_ERR(-ENOMEM) */
122 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
123 		struct btrfs_inode *btrfs_inode)
124 {
125 	struct btrfs_delayed_node *node;
126 	struct btrfs_root *root = btrfs_inode->root;
127 	u64 ino = btrfs_ino(btrfs_inode);
128 	int ret;
129 
130 again:
131 	node = btrfs_get_delayed_node(btrfs_inode);
132 	if (node)
133 		return node;
134 
135 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
136 	if (!node)
137 		return ERR_PTR(-ENOMEM);
138 	btrfs_init_delayed_node(node, root, ino);
139 
140 	/* cached in the btrfs inode and can be accessed */
141 	refcount_set(&node->refs, 2);
142 
143 	ret = radix_tree_preload(GFP_NOFS);
144 	if (ret) {
145 		kmem_cache_free(delayed_node_cache, node);
146 		return ERR_PTR(ret);
147 	}
148 
149 	spin_lock(&root->inode_lock);
150 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 	if (ret == -EEXIST) {
152 		spin_unlock(&root->inode_lock);
153 		kmem_cache_free(delayed_node_cache, node);
154 		radix_tree_preload_end();
155 		goto again;
156 	}
157 	btrfs_inode->delayed_node = node;
158 	spin_unlock(&root->inode_lock);
159 	radix_tree_preload_end();
160 
161 	return node;
162 }
163 
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 				     struct btrfs_delayed_node *node,
171 				     int mod)
172 {
173 	spin_lock(&root->lock);
174 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 		if (!list_empty(&node->p_list))
176 			list_move_tail(&node->p_list, &root->prepare_list);
177 		else if (mod)
178 			list_add_tail(&node->p_list, &root->prepare_list);
179 	} else {
180 		list_add_tail(&node->n_list, &root->node_list);
181 		list_add_tail(&node->p_list, &root->prepare_list);
182 		refcount_inc(&node->refs);	/* inserted into list */
183 		root->nodes++;
184 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 	}
186 	spin_unlock(&root->lock);
187 }
188 
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 				       struct btrfs_delayed_node *node)
192 {
193 	spin_lock(&root->lock);
194 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 		root->nodes--;
196 		refcount_dec(&node->refs);	/* not in the list */
197 		list_del_init(&node->n_list);
198 		if (!list_empty(&node->p_list))
199 			list_del_init(&node->p_list);
200 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 	}
202 	spin_unlock(&root->lock);
203 }
204 
205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 			struct btrfs_delayed_root *delayed_root)
207 {
208 	struct list_head *p;
209 	struct btrfs_delayed_node *node = NULL;
210 
211 	spin_lock(&delayed_root->lock);
212 	if (list_empty(&delayed_root->node_list))
213 		goto out;
214 
215 	p = delayed_root->node_list.next;
216 	node = list_entry(p, struct btrfs_delayed_node, n_list);
217 	refcount_inc(&node->refs);
218 out:
219 	spin_unlock(&delayed_root->lock);
220 
221 	return node;
222 }
223 
224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 						struct btrfs_delayed_node *node)
226 {
227 	struct btrfs_delayed_root *delayed_root;
228 	struct list_head *p;
229 	struct btrfs_delayed_node *next = NULL;
230 
231 	delayed_root = node->root->fs_info->delayed_root;
232 	spin_lock(&delayed_root->lock);
233 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 		/* not in the list */
235 		if (list_empty(&delayed_root->node_list))
236 			goto out;
237 		p = delayed_root->node_list.next;
238 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 		goto out;
240 	else
241 		p = node->n_list.next;
242 
243 	next = list_entry(p, struct btrfs_delayed_node, n_list);
244 	refcount_inc(&next->refs);
245 out:
246 	spin_unlock(&delayed_root->lock);
247 
248 	return next;
249 }
250 
251 static void __btrfs_release_delayed_node(
252 				struct btrfs_delayed_node *delayed_node,
253 				int mod)
254 {
255 	struct btrfs_delayed_root *delayed_root;
256 
257 	if (!delayed_node)
258 		return;
259 
260 	delayed_root = delayed_node->root->fs_info->delayed_root;
261 
262 	mutex_lock(&delayed_node->mutex);
263 	if (delayed_node->count)
264 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 	else
266 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 	mutex_unlock(&delayed_node->mutex);
268 
269 	if (refcount_dec_and_test(&delayed_node->refs)) {
270 		struct btrfs_root *root = delayed_node->root;
271 
272 		spin_lock(&root->inode_lock);
273 		/*
274 		 * Once our refcount goes to zero, nobody is allowed to bump it
275 		 * back up.  We can delete it now.
276 		 */
277 		ASSERT(refcount_read(&delayed_node->refs) == 0);
278 		radix_tree_delete(&root->delayed_nodes_tree,
279 				  delayed_node->inode_id);
280 		spin_unlock(&root->inode_lock);
281 		kmem_cache_free(delayed_node_cache, delayed_node);
282 	}
283 }
284 
285 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
286 {
287 	__btrfs_release_delayed_node(node, 0);
288 }
289 
290 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
291 					struct btrfs_delayed_root *delayed_root)
292 {
293 	struct list_head *p;
294 	struct btrfs_delayed_node *node = NULL;
295 
296 	spin_lock(&delayed_root->lock);
297 	if (list_empty(&delayed_root->prepare_list))
298 		goto out;
299 
300 	p = delayed_root->prepare_list.next;
301 	list_del_init(p);
302 	node = list_entry(p, struct btrfs_delayed_node, p_list);
303 	refcount_inc(&node->refs);
304 out:
305 	spin_unlock(&delayed_root->lock);
306 
307 	return node;
308 }
309 
310 static inline void btrfs_release_prepared_delayed_node(
311 					struct btrfs_delayed_node *node)
312 {
313 	__btrfs_release_delayed_node(node, 1);
314 }
315 
316 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
317 {
318 	struct btrfs_delayed_item *item;
319 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
320 	if (item) {
321 		item->data_len = data_len;
322 		item->ins_or_del = 0;
323 		item->bytes_reserved = 0;
324 		item->delayed_node = NULL;
325 		refcount_set(&item->refs, 1);
326 	}
327 	return item;
328 }
329 
330 /*
331  * __btrfs_lookup_delayed_item - look up the delayed item by key
332  * @delayed_node: pointer to the delayed node
333  * @key:	  the key to look up
334  * @prev:	  used to store the prev item if the right item isn't found
335  * @next:	  used to store the next item if the right item isn't found
336  *
337  * Note: if we don't find the right item, we will return the prev item and
338  * the next item.
339  */
340 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
341 				struct rb_root *root,
342 				struct btrfs_key *key,
343 				struct btrfs_delayed_item **prev,
344 				struct btrfs_delayed_item **next)
345 {
346 	struct rb_node *node, *prev_node = NULL;
347 	struct btrfs_delayed_item *delayed_item = NULL;
348 	int ret = 0;
349 
350 	node = root->rb_node;
351 
352 	while (node) {
353 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
354 					rb_node);
355 		prev_node = node;
356 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
357 		if (ret < 0)
358 			node = node->rb_right;
359 		else if (ret > 0)
360 			node = node->rb_left;
361 		else
362 			return delayed_item;
363 	}
364 
365 	if (prev) {
366 		if (!prev_node)
367 			*prev = NULL;
368 		else if (ret < 0)
369 			*prev = delayed_item;
370 		else if ((node = rb_prev(prev_node)) != NULL) {
371 			*prev = rb_entry(node, struct btrfs_delayed_item,
372 					 rb_node);
373 		} else
374 			*prev = NULL;
375 	}
376 
377 	if (next) {
378 		if (!prev_node)
379 			*next = NULL;
380 		else if (ret > 0)
381 			*next = delayed_item;
382 		else if ((node = rb_next(prev_node)) != NULL) {
383 			*next = rb_entry(node, struct btrfs_delayed_item,
384 					 rb_node);
385 		} else
386 			*next = NULL;
387 	}
388 	return NULL;
389 }
390 
391 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
392 					struct btrfs_delayed_node *delayed_node,
393 					struct btrfs_key *key)
394 {
395 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
396 					   NULL, NULL);
397 }
398 
399 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
400 				    struct btrfs_delayed_item *ins,
401 				    int action)
402 {
403 	struct rb_node **p, *node;
404 	struct rb_node *parent_node = NULL;
405 	struct rb_root_cached *root;
406 	struct btrfs_delayed_item *item;
407 	int cmp;
408 	bool leftmost = true;
409 
410 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
411 		root = &delayed_node->ins_root;
412 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
413 		root = &delayed_node->del_root;
414 	else
415 		BUG();
416 	p = &root->rb_root.rb_node;
417 	node = &ins->rb_node;
418 
419 	while (*p) {
420 		parent_node = *p;
421 		item = rb_entry(parent_node, struct btrfs_delayed_item,
422 				 rb_node);
423 
424 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
425 		if (cmp < 0) {
426 			p = &(*p)->rb_right;
427 			leftmost = false;
428 		} else if (cmp > 0) {
429 			p = &(*p)->rb_left;
430 		} else {
431 			return -EEXIST;
432 		}
433 	}
434 
435 	rb_link_node(node, parent_node, p);
436 	rb_insert_color_cached(node, root, leftmost);
437 	ins->delayed_node = delayed_node;
438 	ins->ins_or_del = action;
439 
440 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
441 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
442 	    ins->key.offset >= delayed_node->index_cnt)
443 			delayed_node->index_cnt = ins->key.offset + 1;
444 
445 	delayed_node->count++;
446 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
447 	return 0;
448 }
449 
450 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
451 					      struct btrfs_delayed_item *item)
452 {
453 	return __btrfs_add_delayed_item(node, item,
454 					BTRFS_DELAYED_INSERTION_ITEM);
455 }
456 
457 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
458 					     struct btrfs_delayed_item *item)
459 {
460 	return __btrfs_add_delayed_item(node, item,
461 					BTRFS_DELAYED_DELETION_ITEM);
462 }
463 
464 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
465 {
466 	int seq = atomic_inc_return(&delayed_root->items_seq);
467 
468 	/* atomic_dec_return implies a barrier */
469 	if ((atomic_dec_return(&delayed_root->items) <
470 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
471 		cond_wake_up_nomb(&delayed_root->wait);
472 }
473 
474 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
475 {
476 	struct rb_root_cached *root;
477 	struct btrfs_delayed_root *delayed_root;
478 
479 	/* Not associated with any delayed_node */
480 	if (!delayed_item->delayed_node)
481 		return;
482 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
483 
484 	BUG_ON(!delayed_root);
485 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
486 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
487 
488 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
489 		root = &delayed_item->delayed_node->ins_root;
490 	else
491 		root = &delayed_item->delayed_node->del_root;
492 
493 	rb_erase_cached(&delayed_item->rb_node, root);
494 	delayed_item->delayed_node->count--;
495 
496 	finish_one_item(delayed_root);
497 }
498 
499 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
500 {
501 	if (item) {
502 		__btrfs_remove_delayed_item(item);
503 		if (refcount_dec_and_test(&item->refs))
504 			kfree(item);
505 	}
506 }
507 
508 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
509 					struct btrfs_delayed_node *delayed_node)
510 {
511 	struct rb_node *p;
512 	struct btrfs_delayed_item *item = NULL;
513 
514 	p = rb_first_cached(&delayed_node->ins_root);
515 	if (p)
516 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
517 
518 	return item;
519 }
520 
521 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
522 					struct btrfs_delayed_node *delayed_node)
523 {
524 	struct rb_node *p;
525 	struct btrfs_delayed_item *item = NULL;
526 
527 	p = rb_first_cached(&delayed_node->del_root);
528 	if (p)
529 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
530 
531 	return item;
532 }
533 
534 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
535 						struct btrfs_delayed_item *item)
536 {
537 	struct rb_node *p;
538 	struct btrfs_delayed_item *next = NULL;
539 
540 	p = rb_next(&item->rb_node);
541 	if (p)
542 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
543 
544 	return next;
545 }
546 
547 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
548 					       struct btrfs_root *root,
549 					       struct btrfs_delayed_item *item)
550 {
551 	struct btrfs_block_rsv *src_rsv;
552 	struct btrfs_block_rsv *dst_rsv;
553 	struct btrfs_fs_info *fs_info = root->fs_info;
554 	u64 num_bytes;
555 	int ret;
556 
557 	if (!trans->bytes_reserved)
558 		return 0;
559 
560 	src_rsv = trans->block_rsv;
561 	dst_rsv = &fs_info->delayed_block_rsv;
562 
563 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
564 
565 	/*
566 	 * Here we migrate space rsv from transaction rsv, since have already
567 	 * reserved space when starting a transaction.  So no need to reserve
568 	 * qgroup space here.
569 	 */
570 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
571 	if (!ret) {
572 		trace_btrfs_space_reservation(fs_info, "delayed_item",
573 					      item->key.objectid,
574 					      num_bytes, 1);
575 		item->bytes_reserved = num_bytes;
576 	}
577 
578 	return ret;
579 }
580 
581 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
582 						struct btrfs_delayed_item *item)
583 {
584 	struct btrfs_block_rsv *rsv;
585 	struct btrfs_fs_info *fs_info = root->fs_info;
586 
587 	if (!item->bytes_reserved)
588 		return;
589 
590 	rsv = &fs_info->delayed_block_rsv;
591 	/*
592 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
593 	 * to release/reserve qgroup space.
594 	 */
595 	trace_btrfs_space_reservation(fs_info, "delayed_item",
596 				      item->key.objectid, item->bytes_reserved,
597 				      0);
598 	btrfs_block_rsv_release(fs_info, rsv,
599 				item->bytes_reserved);
600 }
601 
602 static int btrfs_delayed_inode_reserve_metadata(
603 					struct btrfs_trans_handle *trans,
604 					struct btrfs_root *root,
605 					struct btrfs_inode *inode,
606 					struct btrfs_delayed_node *node)
607 {
608 	struct btrfs_fs_info *fs_info = root->fs_info;
609 	struct btrfs_block_rsv *src_rsv;
610 	struct btrfs_block_rsv *dst_rsv;
611 	u64 num_bytes;
612 	int ret;
613 
614 	src_rsv = trans->block_rsv;
615 	dst_rsv = &fs_info->delayed_block_rsv;
616 
617 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618 
619 	/*
620 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 	 * which doesn't reserve space for speed.  This is a problem since we
622 	 * still need to reserve space for this update, so try to reserve the
623 	 * space.
624 	 *
625 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 	 * we always reserve enough to update the inode item.
627 	 */
628 	if (!src_rsv || (!trans->bytes_reserved &&
629 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
631 				fs_info->nodesize, true);
632 		if (ret < 0)
633 			return ret;
634 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 					  BTRFS_RESERVE_NO_FLUSH);
636 		/*
637 		 * Since we're under a transaction reserve_metadata_bytes could
638 		 * try to commit the transaction which will make it return
639 		 * EAGAIN to make us stop the transaction we have, so return
640 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 		 */
642 		if (ret == -EAGAIN) {
643 			ret = -ENOSPC;
644 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
645 		}
646 		if (!ret) {
647 			node->bytes_reserved = num_bytes;
648 			trace_btrfs_space_reservation(fs_info,
649 						      "delayed_inode",
650 						      btrfs_ino(inode),
651 						      num_bytes, 1);
652 		} else {
653 			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
654 		}
655 		return ret;
656 	}
657 
658 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
659 	if (!ret) {
660 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
661 					      btrfs_ino(inode), num_bytes, 1);
662 		node->bytes_reserved = num_bytes;
663 	}
664 
665 	return ret;
666 }
667 
668 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
669 						struct btrfs_delayed_node *node,
670 						bool qgroup_free)
671 {
672 	struct btrfs_block_rsv *rsv;
673 
674 	if (!node->bytes_reserved)
675 		return;
676 
677 	rsv = &fs_info->delayed_block_rsv;
678 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
679 				      node->inode_id, node->bytes_reserved, 0);
680 	btrfs_block_rsv_release(fs_info, rsv,
681 				node->bytes_reserved);
682 	if (qgroup_free)
683 		btrfs_qgroup_free_meta_prealloc(node->root,
684 				node->bytes_reserved);
685 	else
686 		btrfs_qgroup_convert_reserved_meta(node->root,
687 				node->bytes_reserved);
688 	node->bytes_reserved = 0;
689 }
690 
691 /*
692  * This helper will insert some continuous items into the same leaf according
693  * to the free space of the leaf.
694  */
695 static int btrfs_batch_insert_items(struct btrfs_root *root,
696 				    struct btrfs_path *path,
697 				    struct btrfs_delayed_item *item)
698 {
699 	struct btrfs_delayed_item *curr, *next;
700 	int free_space;
701 	int total_data_size = 0, total_size = 0;
702 	struct extent_buffer *leaf;
703 	char *data_ptr;
704 	struct btrfs_key *keys;
705 	u32 *data_size;
706 	struct list_head head;
707 	int slot;
708 	int nitems;
709 	int i;
710 	int ret = 0;
711 
712 	BUG_ON(!path->nodes[0]);
713 
714 	leaf = path->nodes[0];
715 	free_space = btrfs_leaf_free_space(leaf);
716 	INIT_LIST_HEAD(&head);
717 
718 	next = item;
719 	nitems = 0;
720 
721 	/*
722 	 * count the number of the continuous items that we can insert in batch
723 	 */
724 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
725 	       free_space) {
726 		total_data_size += next->data_len;
727 		total_size += next->data_len + sizeof(struct btrfs_item);
728 		list_add_tail(&next->tree_list, &head);
729 		nitems++;
730 
731 		curr = next;
732 		next = __btrfs_next_delayed_item(curr);
733 		if (!next)
734 			break;
735 
736 		if (!btrfs_is_continuous_delayed_item(curr, next))
737 			break;
738 	}
739 
740 	if (!nitems) {
741 		ret = 0;
742 		goto out;
743 	}
744 
745 	/*
746 	 * we need allocate some memory space, but it might cause the task
747 	 * to sleep, so we set all locked nodes in the path to blocking locks
748 	 * first.
749 	 */
750 	btrfs_set_path_blocking(path);
751 
752 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
753 	if (!keys) {
754 		ret = -ENOMEM;
755 		goto out;
756 	}
757 
758 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
759 	if (!data_size) {
760 		ret = -ENOMEM;
761 		goto error;
762 	}
763 
764 	/* get keys of all the delayed items */
765 	i = 0;
766 	list_for_each_entry(next, &head, tree_list) {
767 		keys[i] = next->key;
768 		data_size[i] = next->data_len;
769 		i++;
770 	}
771 
772 	/* insert the keys of the items */
773 	setup_items_for_insert(root, path, keys, data_size,
774 			       total_data_size, total_size, nitems);
775 
776 	/* insert the dir index items */
777 	slot = path->slots[0];
778 	list_for_each_entry_safe(curr, next, &head, tree_list) {
779 		data_ptr = btrfs_item_ptr(leaf, slot, char);
780 		write_extent_buffer(leaf, &curr->data,
781 				    (unsigned long)data_ptr,
782 				    curr->data_len);
783 		slot++;
784 
785 		btrfs_delayed_item_release_metadata(root, curr);
786 
787 		list_del(&curr->tree_list);
788 		btrfs_release_delayed_item(curr);
789 	}
790 
791 error:
792 	kfree(data_size);
793 	kfree(keys);
794 out:
795 	return ret;
796 }
797 
798 /*
799  * This helper can just do simple insertion that needn't extend item for new
800  * data, such as directory name index insertion, inode insertion.
801  */
802 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
803 				     struct btrfs_root *root,
804 				     struct btrfs_path *path,
805 				     struct btrfs_delayed_item *delayed_item)
806 {
807 	struct extent_buffer *leaf;
808 	char *ptr;
809 	int ret;
810 
811 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
812 				      delayed_item->data_len);
813 	if (ret < 0 && ret != -EEXIST)
814 		return ret;
815 
816 	leaf = path->nodes[0];
817 
818 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
819 
820 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
821 			    delayed_item->data_len);
822 	btrfs_mark_buffer_dirty(leaf);
823 
824 	btrfs_delayed_item_release_metadata(root, delayed_item);
825 	return 0;
826 }
827 
828 /*
829  * we insert an item first, then if there are some continuous items, we try
830  * to insert those items into the same leaf.
831  */
832 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
833 				      struct btrfs_path *path,
834 				      struct btrfs_root *root,
835 				      struct btrfs_delayed_node *node)
836 {
837 	struct btrfs_delayed_item *curr, *prev;
838 	int ret = 0;
839 
840 do_again:
841 	mutex_lock(&node->mutex);
842 	curr = __btrfs_first_delayed_insertion_item(node);
843 	if (!curr)
844 		goto insert_end;
845 
846 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
847 	if (ret < 0) {
848 		btrfs_release_path(path);
849 		goto insert_end;
850 	}
851 
852 	prev = curr;
853 	curr = __btrfs_next_delayed_item(prev);
854 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
855 		/* insert the continuous items into the same leaf */
856 		path->slots[0]++;
857 		btrfs_batch_insert_items(root, path, curr);
858 	}
859 	btrfs_release_delayed_item(prev);
860 	btrfs_mark_buffer_dirty(path->nodes[0]);
861 
862 	btrfs_release_path(path);
863 	mutex_unlock(&node->mutex);
864 	goto do_again;
865 
866 insert_end:
867 	mutex_unlock(&node->mutex);
868 	return ret;
869 }
870 
871 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
872 				    struct btrfs_root *root,
873 				    struct btrfs_path *path,
874 				    struct btrfs_delayed_item *item)
875 {
876 	struct btrfs_delayed_item *curr, *next;
877 	struct extent_buffer *leaf;
878 	struct btrfs_key key;
879 	struct list_head head;
880 	int nitems, i, last_item;
881 	int ret = 0;
882 
883 	BUG_ON(!path->nodes[0]);
884 
885 	leaf = path->nodes[0];
886 
887 	i = path->slots[0];
888 	last_item = btrfs_header_nritems(leaf) - 1;
889 	if (i > last_item)
890 		return -ENOENT;	/* FIXME: Is errno suitable? */
891 
892 	next = item;
893 	INIT_LIST_HEAD(&head);
894 	btrfs_item_key_to_cpu(leaf, &key, i);
895 	nitems = 0;
896 	/*
897 	 * count the number of the dir index items that we can delete in batch
898 	 */
899 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
900 		list_add_tail(&next->tree_list, &head);
901 		nitems++;
902 
903 		curr = next;
904 		next = __btrfs_next_delayed_item(curr);
905 		if (!next)
906 			break;
907 
908 		if (!btrfs_is_continuous_delayed_item(curr, next))
909 			break;
910 
911 		i++;
912 		if (i > last_item)
913 			break;
914 		btrfs_item_key_to_cpu(leaf, &key, i);
915 	}
916 
917 	if (!nitems)
918 		return 0;
919 
920 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
921 	if (ret)
922 		goto out;
923 
924 	list_for_each_entry_safe(curr, next, &head, tree_list) {
925 		btrfs_delayed_item_release_metadata(root, curr);
926 		list_del(&curr->tree_list);
927 		btrfs_release_delayed_item(curr);
928 	}
929 
930 out:
931 	return ret;
932 }
933 
934 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
935 				      struct btrfs_path *path,
936 				      struct btrfs_root *root,
937 				      struct btrfs_delayed_node *node)
938 {
939 	struct btrfs_delayed_item *curr, *prev;
940 	int ret = 0;
941 
942 do_again:
943 	mutex_lock(&node->mutex);
944 	curr = __btrfs_first_delayed_deletion_item(node);
945 	if (!curr)
946 		goto delete_fail;
947 
948 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
949 	if (ret < 0)
950 		goto delete_fail;
951 	else if (ret > 0) {
952 		/*
953 		 * can't find the item which the node points to, so this node
954 		 * is invalid, just drop it.
955 		 */
956 		prev = curr;
957 		curr = __btrfs_next_delayed_item(prev);
958 		btrfs_release_delayed_item(prev);
959 		ret = 0;
960 		btrfs_release_path(path);
961 		if (curr) {
962 			mutex_unlock(&node->mutex);
963 			goto do_again;
964 		} else
965 			goto delete_fail;
966 	}
967 
968 	btrfs_batch_delete_items(trans, root, path, curr);
969 	btrfs_release_path(path);
970 	mutex_unlock(&node->mutex);
971 	goto do_again;
972 
973 delete_fail:
974 	btrfs_release_path(path);
975 	mutex_unlock(&node->mutex);
976 	return ret;
977 }
978 
979 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
980 {
981 	struct btrfs_delayed_root *delayed_root;
982 
983 	if (delayed_node &&
984 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
985 		BUG_ON(!delayed_node->root);
986 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
987 		delayed_node->count--;
988 
989 		delayed_root = delayed_node->root->fs_info->delayed_root;
990 		finish_one_item(delayed_root);
991 	}
992 }
993 
994 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
995 {
996 	struct btrfs_delayed_root *delayed_root;
997 
998 	ASSERT(delayed_node->root);
999 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1000 	delayed_node->count--;
1001 
1002 	delayed_root = delayed_node->root->fs_info->delayed_root;
1003 	finish_one_item(delayed_root);
1004 }
1005 
1006 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1007 					struct btrfs_root *root,
1008 					struct btrfs_path *path,
1009 					struct btrfs_delayed_node *node)
1010 {
1011 	struct btrfs_fs_info *fs_info = root->fs_info;
1012 	struct btrfs_key key;
1013 	struct btrfs_inode_item *inode_item;
1014 	struct extent_buffer *leaf;
1015 	int mod;
1016 	int ret;
1017 
1018 	key.objectid = node->inode_id;
1019 	key.type = BTRFS_INODE_ITEM_KEY;
1020 	key.offset = 0;
1021 
1022 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1023 		mod = -1;
1024 	else
1025 		mod = 1;
1026 
1027 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1028 	if (ret > 0) {
1029 		btrfs_release_path(path);
1030 		return -ENOENT;
1031 	} else if (ret < 0) {
1032 		return ret;
1033 	}
1034 
1035 	leaf = path->nodes[0];
1036 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1037 				    struct btrfs_inode_item);
1038 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1039 			    sizeof(struct btrfs_inode_item));
1040 	btrfs_mark_buffer_dirty(leaf);
1041 
1042 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1043 		goto no_iref;
1044 
1045 	path->slots[0]++;
1046 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1047 		goto search;
1048 again:
1049 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1050 	if (key.objectid != node->inode_id)
1051 		goto out;
1052 
1053 	if (key.type != BTRFS_INODE_REF_KEY &&
1054 	    key.type != BTRFS_INODE_EXTREF_KEY)
1055 		goto out;
1056 
1057 	/*
1058 	 * Delayed iref deletion is for the inode who has only one link,
1059 	 * so there is only one iref. The case that several irefs are
1060 	 * in the same item doesn't exist.
1061 	 */
1062 	btrfs_del_item(trans, root, path);
1063 out:
1064 	btrfs_release_delayed_iref(node);
1065 no_iref:
1066 	btrfs_release_path(path);
1067 err_out:
1068 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1069 	btrfs_release_delayed_inode(node);
1070 
1071 	return ret;
1072 
1073 search:
1074 	btrfs_release_path(path);
1075 
1076 	key.type = BTRFS_INODE_EXTREF_KEY;
1077 	key.offset = -1;
1078 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1079 	if (ret < 0)
1080 		goto err_out;
1081 	ASSERT(ret);
1082 
1083 	ret = 0;
1084 	leaf = path->nodes[0];
1085 	path->slots[0]--;
1086 	goto again;
1087 }
1088 
1089 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1090 					     struct btrfs_root *root,
1091 					     struct btrfs_path *path,
1092 					     struct btrfs_delayed_node *node)
1093 {
1094 	int ret;
1095 
1096 	mutex_lock(&node->mutex);
1097 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1098 		mutex_unlock(&node->mutex);
1099 		return 0;
1100 	}
1101 
1102 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1103 	mutex_unlock(&node->mutex);
1104 	return ret;
1105 }
1106 
1107 static inline int
1108 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1109 				   struct btrfs_path *path,
1110 				   struct btrfs_delayed_node *node)
1111 {
1112 	int ret;
1113 
1114 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1115 	if (ret)
1116 		return ret;
1117 
1118 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1119 	if (ret)
1120 		return ret;
1121 
1122 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1123 	return ret;
1124 }
1125 
1126 /*
1127  * Called when committing the transaction.
1128  * Returns 0 on success.
1129  * Returns < 0 on error and returns with an aborted transaction with any
1130  * outstanding delayed items cleaned up.
1131  */
1132 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1133 {
1134 	struct btrfs_fs_info *fs_info = trans->fs_info;
1135 	struct btrfs_delayed_root *delayed_root;
1136 	struct btrfs_delayed_node *curr_node, *prev_node;
1137 	struct btrfs_path *path;
1138 	struct btrfs_block_rsv *block_rsv;
1139 	int ret = 0;
1140 	bool count = (nr > 0);
1141 
1142 	if (trans->aborted)
1143 		return -EIO;
1144 
1145 	path = btrfs_alloc_path();
1146 	if (!path)
1147 		return -ENOMEM;
1148 	path->leave_spinning = 1;
1149 
1150 	block_rsv = trans->block_rsv;
1151 	trans->block_rsv = &fs_info->delayed_block_rsv;
1152 
1153 	delayed_root = fs_info->delayed_root;
1154 
1155 	curr_node = btrfs_first_delayed_node(delayed_root);
1156 	while (curr_node && (!count || (count && nr--))) {
1157 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1158 							 curr_node);
1159 		if (ret) {
1160 			btrfs_release_delayed_node(curr_node);
1161 			curr_node = NULL;
1162 			btrfs_abort_transaction(trans, ret);
1163 			break;
1164 		}
1165 
1166 		prev_node = curr_node;
1167 		curr_node = btrfs_next_delayed_node(curr_node);
1168 		btrfs_release_delayed_node(prev_node);
1169 	}
1170 
1171 	if (curr_node)
1172 		btrfs_release_delayed_node(curr_node);
1173 	btrfs_free_path(path);
1174 	trans->block_rsv = block_rsv;
1175 
1176 	return ret;
1177 }
1178 
1179 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1180 {
1181 	return __btrfs_run_delayed_items(trans, -1);
1182 }
1183 
1184 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1185 {
1186 	return __btrfs_run_delayed_items(trans, nr);
1187 }
1188 
1189 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1190 				     struct btrfs_inode *inode)
1191 {
1192 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1193 	struct btrfs_path *path;
1194 	struct btrfs_block_rsv *block_rsv;
1195 	int ret;
1196 
1197 	if (!delayed_node)
1198 		return 0;
1199 
1200 	mutex_lock(&delayed_node->mutex);
1201 	if (!delayed_node->count) {
1202 		mutex_unlock(&delayed_node->mutex);
1203 		btrfs_release_delayed_node(delayed_node);
1204 		return 0;
1205 	}
1206 	mutex_unlock(&delayed_node->mutex);
1207 
1208 	path = btrfs_alloc_path();
1209 	if (!path) {
1210 		btrfs_release_delayed_node(delayed_node);
1211 		return -ENOMEM;
1212 	}
1213 	path->leave_spinning = 1;
1214 
1215 	block_rsv = trans->block_rsv;
1216 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1217 
1218 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1219 
1220 	btrfs_release_delayed_node(delayed_node);
1221 	btrfs_free_path(path);
1222 	trans->block_rsv = block_rsv;
1223 
1224 	return ret;
1225 }
1226 
1227 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1228 {
1229 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1230 	struct btrfs_trans_handle *trans;
1231 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1232 	struct btrfs_path *path;
1233 	struct btrfs_block_rsv *block_rsv;
1234 	int ret;
1235 
1236 	if (!delayed_node)
1237 		return 0;
1238 
1239 	mutex_lock(&delayed_node->mutex);
1240 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1241 		mutex_unlock(&delayed_node->mutex);
1242 		btrfs_release_delayed_node(delayed_node);
1243 		return 0;
1244 	}
1245 	mutex_unlock(&delayed_node->mutex);
1246 
1247 	trans = btrfs_join_transaction(delayed_node->root);
1248 	if (IS_ERR(trans)) {
1249 		ret = PTR_ERR(trans);
1250 		goto out;
1251 	}
1252 
1253 	path = btrfs_alloc_path();
1254 	if (!path) {
1255 		ret = -ENOMEM;
1256 		goto trans_out;
1257 	}
1258 	path->leave_spinning = 1;
1259 
1260 	block_rsv = trans->block_rsv;
1261 	trans->block_rsv = &fs_info->delayed_block_rsv;
1262 
1263 	mutex_lock(&delayed_node->mutex);
1264 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1265 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1266 						   path, delayed_node);
1267 	else
1268 		ret = 0;
1269 	mutex_unlock(&delayed_node->mutex);
1270 
1271 	btrfs_free_path(path);
1272 	trans->block_rsv = block_rsv;
1273 trans_out:
1274 	btrfs_end_transaction(trans);
1275 	btrfs_btree_balance_dirty(fs_info);
1276 out:
1277 	btrfs_release_delayed_node(delayed_node);
1278 
1279 	return ret;
1280 }
1281 
1282 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1283 {
1284 	struct btrfs_delayed_node *delayed_node;
1285 
1286 	delayed_node = READ_ONCE(inode->delayed_node);
1287 	if (!delayed_node)
1288 		return;
1289 
1290 	inode->delayed_node = NULL;
1291 	btrfs_release_delayed_node(delayed_node);
1292 }
1293 
1294 struct btrfs_async_delayed_work {
1295 	struct btrfs_delayed_root *delayed_root;
1296 	int nr;
1297 	struct btrfs_work work;
1298 };
1299 
1300 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1301 {
1302 	struct btrfs_async_delayed_work *async_work;
1303 	struct btrfs_delayed_root *delayed_root;
1304 	struct btrfs_trans_handle *trans;
1305 	struct btrfs_path *path;
1306 	struct btrfs_delayed_node *delayed_node = NULL;
1307 	struct btrfs_root *root;
1308 	struct btrfs_block_rsv *block_rsv;
1309 	int total_done = 0;
1310 
1311 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1312 	delayed_root = async_work->delayed_root;
1313 
1314 	path = btrfs_alloc_path();
1315 	if (!path)
1316 		goto out;
1317 
1318 	do {
1319 		if (atomic_read(&delayed_root->items) <
1320 		    BTRFS_DELAYED_BACKGROUND / 2)
1321 			break;
1322 
1323 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1324 		if (!delayed_node)
1325 			break;
1326 
1327 		path->leave_spinning = 1;
1328 		root = delayed_node->root;
1329 
1330 		trans = btrfs_join_transaction(root);
1331 		if (IS_ERR(trans)) {
1332 			btrfs_release_path(path);
1333 			btrfs_release_prepared_delayed_node(delayed_node);
1334 			total_done++;
1335 			continue;
1336 		}
1337 
1338 		block_rsv = trans->block_rsv;
1339 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1340 
1341 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1342 
1343 		trans->block_rsv = block_rsv;
1344 		btrfs_end_transaction(trans);
1345 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1346 
1347 		btrfs_release_path(path);
1348 		btrfs_release_prepared_delayed_node(delayed_node);
1349 		total_done++;
1350 
1351 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1352 		 || total_done < async_work->nr);
1353 
1354 	btrfs_free_path(path);
1355 out:
1356 	wake_up(&delayed_root->wait);
1357 	kfree(async_work);
1358 }
1359 
1360 
1361 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1362 				     struct btrfs_fs_info *fs_info, int nr)
1363 {
1364 	struct btrfs_async_delayed_work *async_work;
1365 
1366 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1367 	if (!async_work)
1368 		return -ENOMEM;
1369 
1370 	async_work->delayed_root = delayed_root;
1371 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1372 			NULL);
1373 	async_work->nr = nr;
1374 
1375 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1376 	return 0;
1377 }
1378 
1379 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1380 {
1381 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1382 }
1383 
1384 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1385 {
1386 	int val = atomic_read(&delayed_root->items_seq);
1387 
1388 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1389 		return 1;
1390 
1391 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1392 		return 1;
1393 
1394 	return 0;
1395 }
1396 
1397 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1398 {
1399 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1400 
1401 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1402 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1403 		return;
1404 
1405 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1406 		int seq;
1407 		int ret;
1408 
1409 		seq = atomic_read(&delayed_root->items_seq);
1410 
1411 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1412 		if (ret)
1413 			return;
1414 
1415 		wait_event_interruptible(delayed_root->wait,
1416 					 could_end_wait(delayed_root, seq));
1417 		return;
1418 	}
1419 
1420 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1421 }
1422 
1423 /* Will return 0 or -ENOMEM */
1424 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1425 				   const char *name, int name_len,
1426 				   struct btrfs_inode *dir,
1427 				   struct btrfs_disk_key *disk_key, u8 type,
1428 				   u64 index)
1429 {
1430 	struct btrfs_delayed_node *delayed_node;
1431 	struct btrfs_delayed_item *delayed_item;
1432 	struct btrfs_dir_item *dir_item;
1433 	int ret;
1434 
1435 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1436 	if (IS_ERR(delayed_node))
1437 		return PTR_ERR(delayed_node);
1438 
1439 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1440 	if (!delayed_item) {
1441 		ret = -ENOMEM;
1442 		goto release_node;
1443 	}
1444 
1445 	delayed_item->key.objectid = btrfs_ino(dir);
1446 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1447 	delayed_item->key.offset = index;
1448 
1449 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1450 	dir_item->location = *disk_key;
1451 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1452 	btrfs_set_stack_dir_data_len(dir_item, 0);
1453 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1454 	btrfs_set_stack_dir_type(dir_item, type);
1455 	memcpy((char *)(dir_item + 1), name, name_len);
1456 
1457 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1458 	/*
1459 	 * we have reserved enough space when we start a new transaction,
1460 	 * so reserving metadata failure is impossible
1461 	 */
1462 	BUG_ON(ret);
1463 
1464 	mutex_lock(&delayed_node->mutex);
1465 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1466 	if (unlikely(ret)) {
1467 		btrfs_err(trans->fs_info,
1468 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1469 			  name_len, name, delayed_node->root->root_key.objectid,
1470 			  delayed_node->inode_id, ret);
1471 		BUG();
1472 	}
1473 	mutex_unlock(&delayed_node->mutex);
1474 
1475 release_node:
1476 	btrfs_release_delayed_node(delayed_node);
1477 	return ret;
1478 }
1479 
1480 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1481 					       struct btrfs_delayed_node *node,
1482 					       struct btrfs_key *key)
1483 {
1484 	struct btrfs_delayed_item *item;
1485 
1486 	mutex_lock(&node->mutex);
1487 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1488 	if (!item) {
1489 		mutex_unlock(&node->mutex);
1490 		return 1;
1491 	}
1492 
1493 	btrfs_delayed_item_release_metadata(node->root, item);
1494 	btrfs_release_delayed_item(item);
1495 	mutex_unlock(&node->mutex);
1496 	return 0;
1497 }
1498 
1499 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1500 				   struct btrfs_inode *dir, u64 index)
1501 {
1502 	struct btrfs_delayed_node *node;
1503 	struct btrfs_delayed_item *item;
1504 	struct btrfs_key item_key;
1505 	int ret;
1506 
1507 	node = btrfs_get_or_create_delayed_node(dir);
1508 	if (IS_ERR(node))
1509 		return PTR_ERR(node);
1510 
1511 	item_key.objectid = btrfs_ino(dir);
1512 	item_key.type = BTRFS_DIR_INDEX_KEY;
1513 	item_key.offset = index;
1514 
1515 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1516 						  &item_key);
1517 	if (!ret)
1518 		goto end;
1519 
1520 	item = btrfs_alloc_delayed_item(0);
1521 	if (!item) {
1522 		ret = -ENOMEM;
1523 		goto end;
1524 	}
1525 
1526 	item->key = item_key;
1527 
1528 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1529 	/*
1530 	 * we have reserved enough space when we start a new transaction,
1531 	 * so reserving metadata failure is impossible.
1532 	 */
1533 	if (ret < 0) {
1534 		btrfs_err(trans->fs_info,
1535 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1536 		btrfs_release_delayed_item(item);
1537 		goto end;
1538 	}
1539 
1540 	mutex_lock(&node->mutex);
1541 	ret = __btrfs_add_delayed_deletion_item(node, item);
1542 	if (unlikely(ret)) {
1543 		btrfs_err(trans->fs_info,
1544 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1545 			  index, node->root->root_key.objectid,
1546 			  node->inode_id, ret);
1547 		btrfs_delayed_item_release_metadata(dir->root, item);
1548 		btrfs_release_delayed_item(item);
1549 	}
1550 	mutex_unlock(&node->mutex);
1551 end:
1552 	btrfs_release_delayed_node(node);
1553 	return ret;
1554 }
1555 
1556 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1557 {
1558 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1559 
1560 	if (!delayed_node)
1561 		return -ENOENT;
1562 
1563 	/*
1564 	 * Since we have held i_mutex of this directory, it is impossible that
1565 	 * a new directory index is added into the delayed node and index_cnt
1566 	 * is updated now. So we needn't lock the delayed node.
1567 	 */
1568 	if (!delayed_node->index_cnt) {
1569 		btrfs_release_delayed_node(delayed_node);
1570 		return -EINVAL;
1571 	}
1572 
1573 	inode->index_cnt = delayed_node->index_cnt;
1574 	btrfs_release_delayed_node(delayed_node);
1575 	return 0;
1576 }
1577 
1578 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1579 				     struct list_head *ins_list,
1580 				     struct list_head *del_list)
1581 {
1582 	struct btrfs_delayed_node *delayed_node;
1583 	struct btrfs_delayed_item *item;
1584 
1585 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1586 	if (!delayed_node)
1587 		return false;
1588 
1589 	/*
1590 	 * We can only do one readdir with delayed items at a time because of
1591 	 * item->readdir_list.
1592 	 */
1593 	inode_unlock_shared(inode);
1594 	inode_lock(inode);
1595 
1596 	mutex_lock(&delayed_node->mutex);
1597 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1598 	while (item) {
1599 		refcount_inc(&item->refs);
1600 		list_add_tail(&item->readdir_list, ins_list);
1601 		item = __btrfs_next_delayed_item(item);
1602 	}
1603 
1604 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1605 	while (item) {
1606 		refcount_inc(&item->refs);
1607 		list_add_tail(&item->readdir_list, del_list);
1608 		item = __btrfs_next_delayed_item(item);
1609 	}
1610 	mutex_unlock(&delayed_node->mutex);
1611 	/*
1612 	 * This delayed node is still cached in the btrfs inode, so refs
1613 	 * must be > 1 now, and we needn't check it is going to be freed
1614 	 * or not.
1615 	 *
1616 	 * Besides that, this function is used to read dir, we do not
1617 	 * insert/delete delayed items in this period. So we also needn't
1618 	 * requeue or dequeue this delayed node.
1619 	 */
1620 	refcount_dec(&delayed_node->refs);
1621 
1622 	return true;
1623 }
1624 
1625 void btrfs_readdir_put_delayed_items(struct inode *inode,
1626 				     struct list_head *ins_list,
1627 				     struct list_head *del_list)
1628 {
1629 	struct btrfs_delayed_item *curr, *next;
1630 
1631 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1632 		list_del(&curr->readdir_list);
1633 		if (refcount_dec_and_test(&curr->refs))
1634 			kfree(curr);
1635 	}
1636 
1637 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1638 		list_del(&curr->readdir_list);
1639 		if (refcount_dec_and_test(&curr->refs))
1640 			kfree(curr);
1641 	}
1642 
1643 	/*
1644 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1645 	 * read lock.
1646 	 */
1647 	downgrade_write(&inode->i_rwsem);
1648 }
1649 
1650 int btrfs_should_delete_dir_index(struct list_head *del_list,
1651 				  u64 index)
1652 {
1653 	struct btrfs_delayed_item *curr;
1654 	int ret = 0;
1655 
1656 	list_for_each_entry(curr, del_list, readdir_list) {
1657 		if (curr->key.offset > index)
1658 			break;
1659 		if (curr->key.offset == index) {
1660 			ret = 1;
1661 			break;
1662 		}
1663 	}
1664 	return ret;
1665 }
1666 
1667 /*
1668  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1669  *
1670  */
1671 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1672 				    struct list_head *ins_list)
1673 {
1674 	struct btrfs_dir_item *di;
1675 	struct btrfs_delayed_item *curr, *next;
1676 	struct btrfs_key location;
1677 	char *name;
1678 	int name_len;
1679 	int over = 0;
1680 	unsigned char d_type;
1681 
1682 	if (list_empty(ins_list))
1683 		return 0;
1684 
1685 	/*
1686 	 * Changing the data of the delayed item is impossible. So
1687 	 * we needn't lock them. And we have held i_mutex of the
1688 	 * directory, nobody can delete any directory indexes now.
1689 	 */
1690 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1691 		list_del(&curr->readdir_list);
1692 
1693 		if (curr->key.offset < ctx->pos) {
1694 			if (refcount_dec_and_test(&curr->refs))
1695 				kfree(curr);
1696 			continue;
1697 		}
1698 
1699 		ctx->pos = curr->key.offset;
1700 
1701 		di = (struct btrfs_dir_item *)curr->data;
1702 		name = (char *)(di + 1);
1703 		name_len = btrfs_stack_dir_name_len(di);
1704 
1705 		d_type = fs_ftype_to_dtype(di->type);
1706 		btrfs_disk_key_to_cpu(&location, &di->location);
1707 
1708 		over = !dir_emit(ctx, name, name_len,
1709 			       location.objectid, d_type);
1710 
1711 		if (refcount_dec_and_test(&curr->refs))
1712 			kfree(curr);
1713 
1714 		if (over)
1715 			return 1;
1716 		ctx->pos++;
1717 	}
1718 	return 0;
1719 }
1720 
1721 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1722 				  struct btrfs_inode_item *inode_item,
1723 				  struct inode *inode)
1724 {
1725 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1726 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1727 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1728 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1729 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1730 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1731 	btrfs_set_stack_inode_generation(inode_item,
1732 					 BTRFS_I(inode)->generation);
1733 	btrfs_set_stack_inode_sequence(inode_item,
1734 				       inode_peek_iversion(inode));
1735 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1736 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1737 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1738 	btrfs_set_stack_inode_block_group(inode_item, 0);
1739 
1740 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1741 				     inode->i_atime.tv_sec);
1742 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1743 				      inode->i_atime.tv_nsec);
1744 
1745 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1746 				     inode->i_mtime.tv_sec);
1747 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1748 				      inode->i_mtime.tv_nsec);
1749 
1750 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1751 				     inode->i_ctime.tv_sec);
1752 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1753 				      inode->i_ctime.tv_nsec);
1754 
1755 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1756 				     BTRFS_I(inode)->i_otime.tv_sec);
1757 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1758 				     BTRFS_I(inode)->i_otime.tv_nsec);
1759 }
1760 
1761 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1762 {
1763 	struct btrfs_delayed_node *delayed_node;
1764 	struct btrfs_inode_item *inode_item;
1765 
1766 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1767 	if (!delayed_node)
1768 		return -ENOENT;
1769 
1770 	mutex_lock(&delayed_node->mutex);
1771 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1772 		mutex_unlock(&delayed_node->mutex);
1773 		btrfs_release_delayed_node(delayed_node);
1774 		return -ENOENT;
1775 	}
1776 
1777 	inode_item = &delayed_node->inode_item;
1778 
1779 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1780 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1781 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1782 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1783 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1784 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1785 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1786         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1787 
1788 	inode_set_iversion_queried(inode,
1789 				   btrfs_stack_inode_sequence(inode_item));
1790 	inode->i_rdev = 0;
1791 	*rdev = btrfs_stack_inode_rdev(inode_item);
1792 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1793 
1794 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1795 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1796 
1797 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1798 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1799 
1800 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1801 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1802 
1803 	BTRFS_I(inode)->i_otime.tv_sec =
1804 		btrfs_stack_timespec_sec(&inode_item->otime);
1805 	BTRFS_I(inode)->i_otime.tv_nsec =
1806 		btrfs_stack_timespec_nsec(&inode_item->otime);
1807 
1808 	inode->i_generation = BTRFS_I(inode)->generation;
1809 	BTRFS_I(inode)->index_cnt = (u64)-1;
1810 
1811 	mutex_unlock(&delayed_node->mutex);
1812 	btrfs_release_delayed_node(delayed_node);
1813 	return 0;
1814 }
1815 
1816 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1817 			       struct btrfs_root *root, struct inode *inode)
1818 {
1819 	struct btrfs_delayed_node *delayed_node;
1820 	int ret = 0;
1821 
1822 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1823 	if (IS_ERR(delayed_node))
1824 		return PTR_ERR(delayed_node);
1825 
1826 	mutex_lock(&delayed_node->mutex);
1827 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1828 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1829 		goto release_node;
1830 	}
1831 
1832 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1833 						   delayed_node);
1834 	if (ret)
1835 		goto release_node;
1836 
1837 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1838 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1839 	delayed_node->count++;
1840 	atomic_inc(&root->fs_info->delayed_root->items);
1841 release_node:
1842 	mutex_unlock(&delayed_node->mutex);
1843 	btrfs_release_delayed_node(delayed_node);
1844 	return ret;
1845 }
1846 
1847 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1848 {
1849 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1850 	struct btrfs_delayed_node *delayed_node;
1851 
1852 	/*
1853 	 * we don't do delayed inode updates during log recovery because it
1854 	 * leads to enospc problems.  This means we also can't do
1855 	 * delayed inode refs
1856 	 */
1857 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1858 		return -EAGAIN;
1859 
1860 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1861 	if (IS_ERR(delayed_node))
1862 		return PTR_ERR(delayed_node);
1863 
1864 	/*
1865 	 * We don't reserve space for inode ref deletion is because:
1866 	 * - We ONLY do async inode ref deletion for the inode who has only
1867 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1868 	 *   And in most case, the inode ref and the inode item are in the
1869 	 *   same leaf, and we will deal with them at the same time.
1870 	 *   Since we are sure we will reserve the space for the inode item,
1871 	 *   it is unnecessary to reserve space for inode ref deletion.
1872 	 * - If the inode ref and the inode item are not in the same leaf,
1873 	 *   We also needn't worry about enospc problem, because we reserve
1874 	 *   much more space for the inode update than it needs.
1875 	 * - At the worst, we can steal some space from the global reservation.
1876 	 *   It is very rare.
1877 	 */
1878 	mutex_lock(&delayed_node->mutex);
1879 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1880 		goto release_node;
1881 
1882 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1883 	delayed_node->count++;
1884 	atomic_inc(&fs_info->delayed_root->items);
1885 release_node:
1886 	mutex_unlock(&delayed_node->mutex);
1887 	btrfs_release_delayed_node(delayed_node);
1888 	return 0;
1889 }
1890 
1891 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1892 {
1893 	struct btrfs_root *root = delayed_node->root;
1894 	struct btrfs_fs_info *fs_info = root->fs_info;
1895 	struct btrfs_delayed_item *curr_item, *prev_item;
1896 
1897 	mutex_lock(&delayed_node->mutex);
1898 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1899 	while (curr_item) {
1900 		btrfs_delayed_item_release_metadata(root, curr_item);
1901 		prev_item = curr_item;
1902 		curr_item = __btrfs_next_delayed_item(prev_item);
1903 		btrfs_release_delayed_item(prev_item);
1904 	}
1905 
1906 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1907 	while (curr_item) {
1908 		btrfs_delayed_item_release_metadata(root, curr_item);
1909 		prev_item = curr_item;
1910 		curr_item = __btrfs_next_delayed_item(prev_item);
1911 		btrfs_release_delayed_item(prev_item);
1912 	}
1913 
1914 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1915 		btrfs_release_delayed_iref(delayed_node);
1916 
1917 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1918 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1919 		btrfs_release_delayed_inode(delayed_node);
1920 	}
1921 	mutex_unlock(&delayed_node->mutex);
1922 }
1923 
1924 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1925 {
1926 	struct btrfs_delayed_node *delayed_node;
1927 
1928 	delayed_node = btrfs_get_delayed_node(inode);
1929 	if (!delayed_node)
1930 		return;
1931 
1932 	__btrfs_kill_delayed_node(delayed_node);
1933 	btrfs_release_delayed_node(delayed_node);
1934 }
1935 
1936 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1937 {
1938 	u64 inode_id = 0;
1939 	struct btrfs_delayed_node *delayed_nodes[8];
1940 	int i, n;
1941 
1942 	while (1) {
1943 		spin_lock(&root->inode_lock);
1944 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1945 					   (void **)delayed_nodes, inode_id,
1946 					   ARRAY_SIZE(delayed_nodes));
1947 		if (!n) {
1948 			spin_unlock(&root->inode_lock);
1949 			break;
1950 		}
1951 
1952 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1953 		for (i = 0; i < n; i++) {
1954 			/*
1955 			 * Don't increase refs in case the node is dead and
1956 			 * about to be removed from the tree in the loop below
1957 			 */
1958 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1959 				delayed_nodes[i] = NULL;
1960 		}
1961 		spin_unlock(&root->inode_lock);
1962 
1963 		for (i = 0; i < n; i++) {
1964 			if (!delayed_nodes[i])
1965 				continue;
1966 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1967 			btrfs_release_delayed_node(delayed_nodes[i]);
1968 		}
1969 	}
1970 }
1971 
1972 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1973 {
1974 	struct btrfs_delayed_node *curr_node, *prev_node;
1975 
1976 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1977 	while (curr_node) {
1978 		__btrfs_kill_delayed_node(curr_node);
1979 
1980 		prev_node = curr_node;
1981 		curr_node = btrfs_next_delayed_node(curr_node);
1982 		btrfs_release_delayed_node(prev_node);
1983 	}
1984 }
1985 
1986