xref: /linux/fs/btrfs/delayed-inode.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 					sizeof(struct btrfs_delayed_node),
33 					0,
34 					SLAB_MEM_SPREAD,
35 					NULL);
36 	if (!delayed_node_cache)
37 		return -ENOMEM;
38 	return 0;
39 }
40 
41 void __cold btrfs_delayed_inode_exit(void)
42 {
43 	kmem_cache_destroy(delayed_node_cache);
44 }
45 
46 static inline void btrfs_init_delayed_node(
47 				struct btrfs_delayed_node *delayed_node,
48 				struct btrfs_root *root, u64 inode_id)
49 {
50 	delayed_node->root = root;
51 	delayed_node->inode_id = inode_id;
52 	refcount_set(&delayed_node->refs, 0);
53 	delayed_node->ins_root = RB_ROOT_CACHED;
54 	delayed_node->del_root = RB_ROOT_CACHED;
55 	mutex_init(&delayed_node->mutex);
56 	INIT_LIST_HEAD(&delayed_node->n_list);
57 	INIT_LIST_HEAD(&delayed_node->p_list);
58 }
59 
60 static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 		struct btrfs_inode *btrfs_inode)
62 {
63 	struct btrfs_root *root = btrfs_inode->root;
64 	u64 ino = btrfs_ino(btrfs_inode);
65 	struct btrfs_delayed_node *node;
66 
67 	node = READ_ONCE(btrfs_inode->delayed_node);
68 	if (node) {
69 		refcount_inc(&node->refs);
70 		return node;
71 	}
72 
73 	spin_lock(&root->inode_lock);
74 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75 
76 	if (node) {
77 		if (btrfs_inode->delayed_node) {
78 			refcount_inc(&node->refs);	/* can be accessed */
79 			BUG_ON(btrfs_inode->delayed_node != node);
80 			spin_unlock(&root->inode_lock);
81 			return node;
82 		}
83 
84 		/*
85 		 * It's possible that we're racing into the middle of removing
86 		 * this node from the radix tree.  In this case, the refcount
87 		 * was zero and it should never go back to one.  Just return
88 		 * NULL like it was never in the radix at all; our release
89 		 * function is in the process of removing it.
90 		 *
91 		 * Some implementations of refcount_inc refuse to bump the
92 		 * refcount once it has hit zero.  If we don't do this dance
93 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 		 * of actually bumping the refcount.
95 		 *
96 		 * If this node is properly in the radix, we want to bump the
97 		 * refcount twice, once for the inode and once for this get
98 		 * operation.
99 		 */
100 		if (refcount_inc_not_zero(&node->refs)) {
101 			refcount_inc(&node->refs);
102 			btrfs_inode->delayed_node = node;
103 		} else {
104 			node = NULL;
105 		}
106 
107 		spin_unlock(&root->inode_lock);
108 		return node;
109 	}
110 	spin_unlock(&root->inode_lock);
111 
112 	return NULL;
113 }
114 
115 /* Will return either the node or PTR_ERR(-ENOMEM) */
116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 		struct btrfs_inode *btrfs_inode)
118 {
119 	struct btrfs_delayed_node *node;
120 	struct btrfs_root *root = btrfs_inode->root;
121 	u64 ino = btrfs_ino(btrfs_inode);
122 	int ret;
123 
124 again:
125 	node = btrfs_get_delayed_node(btrfs_inode);
126 	if (node)
127 		return node;
128 
129 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 	if (!node)
131 		return ERR_PTR(-ENOMEM);
132 	btrfs_init_delayed_node(node, root, ino);
133 
134 	/* cached in the btrfs inode and can be accessed */
135 	refcount_set(&node->refs, 2);
136 
137 	ret = radix_tree_preload(GFP_NOFS);
138 	if (ret) {
139 		kmem_cache_free(delayed_node_cache, node);
140 		return ERR_PTR(ret);
141 	}
142 
143 	spin_lock(&root->inode_lock);
144 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 	if (ret == -EEXIST) {
146 		spin_unlock(&root->inode_lock);
147 		kmem_cache_free(delayed_node_cache, node);
148 		radix_tree_preload_end();
149 		goto again;
150 	}
151 	btrfs_inode->delayed_node = node;
152 	spin_unlock(&root->inode_lock);
153 	radix_tree_preload_end();
154 
155 	return node;
156 }
157 
158 /*
159  * Call it when holding delayed_node->mutex
160  *
161  * If mod = 1, add this node into the prepared list.
162  */
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 				     struct btrfs_delayed_node *node,
165 				     int mod)
166 {
167 	spin_lock(&root->lock);
168 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 		if (!list_empty(&node->p_list))
170 			list_move_tail(&node->p_list, &root->prepare_list);
171 		else if (mod)
172 			list_add_tail(&node->p_list, &root->prepare_list);
173 	} else {
174 		list_add_tail(&node->n_list, &root->node_list);
175 		list_add_tail(&node->p_list, &root->prepare_list);
176 		refcount_inc(&node->refs);	/* inserted into list */
177 		root->nodes++;
178 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 	}
180 	spin_unlock(&root->lock);
181 }
182 
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 				       struct btrfs_delayed_node *node)
186 {
187 	spin_lock(&root->lock);
188 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 		root->nodes--;
190 		refcount_dec(&node->refs);	/* not in the list */
191 		list_del_init(&node->n_list);
192 		if (!list_empty(&node->p_list))
193 			list_del_init(&node->p_list);
194 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 	}
196 	spin_unlock(&root->lock);
197 }
198 
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 			struct btrfs_delayed_root *delayed_root)
201 {
202 	struct list_head *p;
203 	struct btrfs_delayed_node *node = NULL;
204 
205 	spin_lock(&delayed_root->lock);
206 	if (list_empty(&delayed_root->node_list))
207 		goto out;
208 
209 	p = delayed_root->node_list.next;
210 	node = list_entry(p, struct btrfs_delayed_node, n_list);
211 	refcount_inc(&node->refs);
212 out:
213 	spin_unlock(&delayed_root->lock);
214 
215 	return node;
216 }
217 
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 						struct btrfs_delayed_node *node)
220 {
221 	struct btrfs_delayed_root *delayed_root;
222 	struct list_head *p;
223 	struct btrfs_delayed_node *next = NULL;
224 
225 	delayed_root = node->root->fs_info->delayed_root;
226 	spin_lock(&delayed_root->lock);
227 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 		/* not in the list */
229 		if (list_empty(&delayed_root->node_list))
230 			goto out;
231 		p = delayed_root->node_list.next;
232 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 		goto out;
234 	else
235 		p = node->n_list.next;
236 
237 	next = list_entry(p, struct btrfs_delayed_node, n_list);
238 	refcount_inc(&next->refs);
239 out:
240 	spin_unlock(&delayed_root->lock);
241 
242 	return next;
243 }
244 
245 static void __btrfs_release_delayed_node(
246 				struct btrfs_delayed_node *delayed_node,
247 				int mod)
248 {
249 	struct btrfs_delayed_root *delayed_root;
250 
251 	if (!delayed_node)
252 		return;
253 
254 	delayed_root = delayed_node->root->fs_info->delayed_root;
255 
256 	mutex_lock(&delayed_node->mutex);
257 	if (delayed_node->count)
258 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 	else
260 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 	mutex_unlock(&delayed_node->mutex);
262 
263 	if (refcount_dec_and_test(&delayed_node->refs)) {
264 		struct btrfs_root *root = delayed_node->root;
265 
266 		spin_lock(&root->inode_lock);
267 		/*
268 		 * Once our refcount goes to zero, nobody is allowed to bump it
269 		 * back up.  We can delete it now.
270 		 */
271 		ASSERT(refcount_read(&delayed_node->refs) == 0);
272 		radix_tree_delete(&root->delayed_nodes_tree,
273 				  delayed_node->inode_id);
274 		spin_unlock(&root->inode_lock);
275 		kmem_cache_free(delayed_node_cache, delayed_node);
276 	}
277 }
278 
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 	__btrfs_release_delayed_node(node, 0);
282 }
283 
284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 					struct btrfs_delayed_root *delayed_root)
286 {
287 	struct list_head *p;
288 	struct btrfs_delayed_node *node = NULL;
289 
290 	spin_lock(&delayed_root->lock);
291 	if (list_empty(&delayed_root->prepare_list))
292 		goto out;
293 
294 	p = delayed_root->prepare_list.next;
295 	list_del_init(p);
296 	node = list_entry(p, struct btrfs_delayed_node, p_list);
297 	refcount_inc(&node->refs);
298 out:
299 	spin_unlock(&delayed_root->lock);
300 
301 	return node;
302 }
303 
304 static inline void btrfs_release_prepared_delayed_node(
305 					struct btrfs_delayed_node *node)
306 {
307 	__btrfs_release_delayed_node(node, 1);
308 }
309 
310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 					   struct btrfs_delayed_node *node,
312 					   enum btrfs_delayed_item_type type)
313 {
314 	struct btrfs_delayed_item *item;
315 
316 	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
317 	if (item) {
318 		item->data_len = data_len;
319 		item->type = type;
320 		item->bytes_reserved = 0;
321 		item->delayed_node = node;
322 		RB_CLEAR_NODE(&item->rb_node);
323 		INIT_LIST_HEAD(&item->log_list);
324 		item->logged = false;
325 		refcount_set(&item->refs, 1);
326 	}
327 	return item;
328 }
329 
330 /*
331  * Look up the delayed item by key.
332  *
333  * @delayed_node: pointer to the delayed node
334  * @index:	  the dir index value to lookup (offset of a dir index key)
335  *
336  * Note: if we don't find the right item, we will return the prev item and
337  * the next item.
338  */
339 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 				struct rb_root *root,
341 				u64 index)
342 {
343 	struct rb_node *node = root->rb_node;
344 	struct btrfs_delayed_item *delayed_item = NULL;
345 
346 	while (node) {
347 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 					rb_node);
349 		if (delayed_item->index < index)
350 			node = node->rb_right;
351 		else if (delayed_item->index > index)
352 			node = node->rb_left;
353 		else
354 			return delayed_item;
355 	}
356 
357 	return NULL;
358 }
359 
360 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
361 				    struct btrfs_delayed_item *ins)
362 {
363 	struct rb_node **p, *node;
364 	struct rb_node *parent_node = NULL;
365 	struct rb_root_cached *root;
366 	struct btrfs_delayed_item *item;
367 	bool leftmost = true;
368 
369 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
370 		root = &delayed_node->ins_root;
371 	else
372 		root = &delayed_node->del_root;
373 
374 	p = &root->rb_root.rb_node;
375 	node = &ins->rb_node;
376 
377 	while (*p) {
378 		parent_node = *p;
379 		item = rb_entry(parent_node, struct btrfs_delayed_item,
380 				 rb_node);
381 
382 		if (item->index < ins->index) {
383 			p = &(*p)->rb_right;
384 			leftmost = false;
385 		} else if (item->index > ins->index) {
386 			p = &(*p)->rb_left;
387 		} else {
388 			return -EEXIST;
389 		}
390 	}
391 
392 	rb_link_node(node, parent_node, p);
393 	rb_insert_color_cached(node, root, leftmost);
394 
395 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
396 	    ins->index >= delayed_node->index_cnt)
397 		delayed_node->index_cnt = ins->index + 1;
398 
399 	delayed_node->count++;
400 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
401 	return 0;
402 }
403 
404 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
405 {
406 	int seq = atomic_inc_return(&delayed_root->items_seq);
407 
408 	/* atomic_dec_return implies a barrier */
409 	if ((atomic_dec_return(&delayed_root->items) <
410 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
411 		cond_wake_up_nomb(&delayed_root->wait);
412 }
413 
414 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
415 {
416 	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
417 	struct rb_root_cached *root;
418 	struct btrfs_delayed_root *delayed_root;
419 
420 	/* Not inserted, ignore it. */
421 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
422 		return;
423 
424 	/* If it's in a rbtree, then we need to have delayed node locked. */
425 	lockdep_assert_held(&delayed_node->mutex);
426 
427 	delayed_root = delayed_node->root->fs_info->delayed_root;
428 
429 	BUG_ON(!delayed_root);
430 
431 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
432 		root = &delayed_node->ins_root;
433 	else
434 		root = &delayed_node->del_root;
435 
436 	rb_erase_cached(&delayed_item->rb_node, root);
437 	RB_CLEAR_NODE(&delayed_item->rb_node);
438 	delayed_node->count--;
439 
440 	finish_one_item(delayed_root);
441 }
442 
443 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
444 {
445 	if (item) {
446 		__btrfs_remove_delayed_item(item);
447 		if (refcount_dec_and_test(&item->refs))
448 			kfree(item);
449 	}
450 }
451 
452 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
453 					struct btrfs_delayed_node *delayed_node)
454 {
455 	struct rb_node *p;
456 	struct btrfs_delayed_item *item = NULL;
457 
458 	p = rb_first_cached(&delayed_node->ins_root);
459 	if (p)
460 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
461 
462 	return item;
463 }
464 
465 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
466 					struct btrfs_delayed_node *delayed_node)
467 {
468 	struct rb_node *p;
469 	struct btrfs_delayed_item *item = NULL;
470 
471 	p = rb_first_cached(&delayed_node->del_root);
472 	if (p)
473 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
474 
475 	return item;
476 }
477 
478 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
479 						struct btrfs_delayed_item *item)
480 {
481 	struct rb_node *p;
482 	struct btrfs_delayed_item *next = NULL;
483 
484 	p = rb_next(&item->rb_node);
485 	if (p)
486 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
487 
488 	return next;
489 }
490 
491 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
492 					       struct btrfs_delayed_item *item)
493 {
494 	struct btrfs_block_rsv *src_rsv;
495 	struct btrfs_block_rsv *dst_rsv;
496 	struct btrfs_fs_info *fs_info = trans->fs_info;
497 	u64 num_bytes;
498 	int ret;
499 
500 	if (!trans->bytes_reserved)
501 		return 0;
502 
503 	src_rsv = trans->block_rsv;
504 	dst_rsv = &fs_info->delayed_block_rsv;
505 
506 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
507 
508 	/*
509 	 * Here we migrate space rsv from transaction rsv, since have already
510 	 * reserved space when starting a transaction.  So no need to reserve
511 	 * qgroup space here.
512 	 */
513 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
514 	if (!ret) {
515 		trace_btrfs_space_reservation(fs_info, "delayed_item",
516 					      item->delayed_node->inode_id,
517 					      num_bytes, 1);
518 		/*
519 		 * For insertions we track reserved metadata space by accounting
520 		 * for the number of leaves that will be used, based on the delayed
521 		 * node's curr_index_batch_size and index_item_leaves fields.
522 		 */
523 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
524 			item->bytes_reserved = num_bytes;
525 	}
526 
527 	return ret;
528 }
529 
530 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
531 						struct btrfs_delayed_item *item)
532 {
533 	struct btrfs_block_rsv *rsv;
534 	struct btrfs_fs_info *fs_info = root->fs_info;
535 
536 	if (!item->bytes_reserved)
537 		return;
538 
539 	rsv = &fs_info->delayed_block_rsv;
540 	/*
541 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
542 	 * to release/reserve qgroup space.
543 	 */
544 	trace_btrfs_space_reservation(fs_info, "delayed_item",
545 				      item->delayed_node->inode_id,
546 				      item->bytes_reserved, 0);
547 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
548 }
549 
550 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
551 					      unsigned int num_leaves)
552 {
553 	struct btrfs_fs_info *fs_info = node->root->fs_info;
554 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
555 
556 	/* There are no space reservations during log replay, bail out. */
557 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
558 		return;
559 
560 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
561 				      bytes, 0);
562 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
563 }
564 
565 static int btrfs_delayed_inode_reserve_metadata(
566 					struct btrfs_trans_handle *trans,
567 					struct btrfs_root *root,
568 					struct btrfs_delayed_node *node)
569 {
570 	struct btrfs_fs_info *fs_info = root->fs_info;
571 	struct btrfs_block_rsv *src_rsv;
572 	struct btrfs_block_rsv *dst_rsv;
573 	u64 num_bytes;
574 	int ret;
575 
576 	src_rsv = trans->block_rsv;
577 	dst_rsv = &fs_info->delayed_block_rsv;
578 
579 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
580 
581 	/*
582 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
583 	 * which doesn't reserve space for speed.  This is a problem since we
584 	 * still need to reserve space for this update, so try to reserve the
585 	 * space.
586 	 *
587 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
588 	 * we always reserve enough to update the inode item.
589 	 */
590 	if (!src_rsv || (!trans->bytes_reserved &&
591 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
592 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
593 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
594 		if (ret < 0)
595 			return ret;
596 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
597 					  BTRFS_RESERVE_NO_FLUSH);
598 		/* NO_FLUSH could only fail with -ENOSPC */
599 		ASSERT(ret == 0 || ret == -ENOSPC);
600 		if (ret)
601 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
602 	} else {
603 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
604 	}
605 
606 	if (!ret) {
607 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
608 					      node->inode_id, num_bytes, 1);
609 		node->bytes_reserved = num_bytes;
610 	}
611 
612 	return ret;
613 }
614 
615 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
616 						struct btrfs_delayed_node *node,
617 						bool qgroup_free)
618 {
619 	struct btrfs_block_rsv *rsv;
620 
621 	if (!node->bytes_reserved)
622 		return;
623 
624 	rsv = &fs_info->delayed_block_rsv;
625 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
626 				      node->inode_id, node->bytes_reserved, 0);
627 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
628 	if (qgroup_free)
629 		btrfs_qgroup_free_meta_prealloc(node->root,
630 				node->bytes_reserved);
631 	else
632 		btrfs_qgroup_convert_reserved_meta(node->root,
633 				node->bytes_reserved);
634 	node->bytes_reserved = 0;
635 }
636 
637 /*
638  * Insert a single delayed item or a batch of delayed items, as many as possible
639  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
640  * in the rbtree, and if there's a gap between two consecutive dir index items,
641  * then it means at some point we had delayed dir indexes to add but they got
642  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
643  * into the subvolume tree. Dir index keys also have their offsets coming from a
644  * monotonically increasing counter, so we can't get new keys with an offset that
645  * fits within a gap between delayed dir index items.
646  */
647 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
648 				     struct btrfs_root *root,
649 				     struct btrfs_path *path,
650 				     struct btrfs_delayed_item *first_item)
651 {
652 	struct btrfs_fs_info *fs_info = root->fs_info;
653 	struct btrfs_delayed_node *node = first_item->delayed_node;
654 	LIST_HEAD(item_list);
655 	struct btrfs_delayed_item *curr;
656 	struct btrfs_delayed_item *next;
657 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
658 	struct btrfs_item_batch batch;
659 	struct btrfs_key first_key;
660 	const u32 first_data_size = first_item->data_len;
661 	int total_size;
662 	char *ins_data = NULL;
663 	int ret;
664 	bool continuous_keys_only = false;
665 
666 	lockdep_assert_held(&node->mutex);
667 
668 	/*
669 	 * During normal operation the delayed index offset is continuously
670 	 * increasing, so we can batch insert all items as there will not be any
671 	 * overlapping keys in the tree.
672 	 *
673 	 * The exception to this is log replay, where we may have interleaved
674 	 * offsets in the tree, so our batch needs to be continuous keys only in
675 	 * order to ensure we do not end up with out of order items in our leaf.
676 	 */
677 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
678 		continuous_keys_only = true;
679 
680 	/*
681 	 * For delayed items to insert, we track reserved metadata bytes based
682 	 * on the number of leaves that we will use.
683 	 * See btrfs_insert_delayed_dir_index() and
684 	 * btrfs_delayed_item_reserve_metadata()).
685 	 */
686 	ASSERT(first_item->bytes_reserved == 0);
687 
688 	list_add_tail(&first_item->tree_list, &item_list);
689 	batch.total_data_size = first_data_size;
690 	batch.nr = 1;
691 	total_size = first_data_size + sizeof(struct btrfs_item);
692 	curr = first_item;
693 
694 	while (true) {
695 		int next_size;
696 
697 		next = __btrfs_next_delayed_item(curr);
698 		if (!next)
699 			break;
700 
701 		/*
702 		 * We cannot allow gaps in the key space if we're doing log
703 		 * replay.
704 		 */
705 		if (continuous_keys_only && (next->index != curr->index + 1))
706 			break;
707 
708 		ASSERT(next->bytes_reserved == 0);
709 
710 		next_size = next->data_len + sizeof(struct btrfs_item);
711 		if (total_size + next_size > max_size)
712 			break;
713 
714 		list_add_tail(&next->tree_list, &item_list);
715 		batch.nr++;
716 		total_size += next_size;
717 		batch.total_data_size += next->data_len;
718 		curr = next;
719 	}
720 
721 	if (batch.nr == 1) {
722 		first_key.objectid = node->inode_id;
723 		first_key.type = BTRFS_DIR_INDEX_KEY;
724 		first_key.offset = first_item->index;
725 		batch.keys = &first_key;
726 		batch.data_sizes = &first_data_size;
727 	} else {
728 		struct btrfs_key *ins_keys;
729 		u32 *ins_sizes;
730 		int i = 0;
731 
732 		ins_data = kmalloc(batch.nr * sizeof(u32) +
733 				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
734 		if (!ins_data) {
735 			ret = -ENOMEM;
736 			goto out;
737 		}
738 		ins_sizes = (u32 *)ins_data;
739 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
740 		batch.keys = ins_keys;
741 		batch.data_sizes = ins_sizes;
742 		list_for_each_entry(curr, &item_list, tree_list) {
743 			ins_keys[i].objectid = node->inode_id;
744 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
745 			ins_keys[i].offset = curr->index;
746 			ins_sizes[i] = curr->data_len;
747 			i++;
748 		}
749 	}
750 
751 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
752 	if (ret)
753 		goto out;
754 
755 	list_for_each_entry(curr, &item_list, tree_list) {
756 		char *data_ptr;
757 
758 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
759 		write_extent_buffer(path->nodes[0], &curr->data,
760 				    (unsigned long)data_ptr, curr->data_len);
761 		path->slots[0]++;
762 	}
763 
764 	/*
765 	 * Now release our path before releasing the delayed items and their
766 	 * metadata reservations, so that we don't block other tasks for more
767 	 * time than needed.
768 	 */
769 	btrfs_release_path(path);
770 
771 	ASSERT(node->index_item_leaves > 0);
772 
773 	/*
774 	 * For normal operations we will batch an entire leaf's worth of delayed
775 	 * items, so if there are more items to process we can decrement
776 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
777 	 *
778 	 * However for log replay we may not have inserted an entire leaf's
779 	 * worth of items, we may have not had continuous items, so decrementing
780 	 * here would mess up the index_item_leaves accounting.  For this case
781 	 * only clean up the accounting when there are no items left.
782 	 */
783 	if (next && !continuous_keys_only) {
784 		/*
785 		 * We inserted one batch of items into a leaf a there are more
786 		 * items to flush in a future batch, now release one unit of
787 		 * metadata space from the delayed block reserve, corresponding
788 		 * the leaf we just flushed to.
789 		 */
790 		btrfs_delayed_item_release_leaves(node, 1);
791 		node->index_item_leaves--;
792 	} else if (!next) {
793 		/*
794 		 * There are no more items to insert. We can have a number of
795 		 * reserved leaves > 1 here - this happens when many dir index
796 		 * items are added and then removed before they are flushed (file
797 		 * names with a very short life, never span a transaction). So
798 		 * release all remaining leaves.
799 		 */
800 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
801 		node->index_item_leaves = 0;
802 	}
803 
804 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
805 		list_del(&curr->tree_list);
806 		btrfs_release_delayed_item(curr);
807 	}
808 out:
809 	kfree(ins_data);
810 	return ret;
811 }
812 
813 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
814 				      struct btrfs_path *path,
815 				      struct btrfs_root *root,
816 				      struct btrfs_delayed_node *node)
817 {
818 	int ret = 0;
819 
820 	while (ret == 0) {
821 		struct btrfs_delayed_item *curr;
822 
823 		mutex_lock(&node->mutex);
824 		curr = __btrfs_first_delayed_insertion_item(node);
825 		if (!curr) {
826 			mutex_unlock(&node->mutex);
827 			break;
828 		}
829 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
830 		mutex_unlock(&node->mutex);
831 	}
832 
833 	return ret;
834 }
835 
836 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
837 				    struct btrfs_root *root,
838 				    struct btrfs_path *path,
839 				    struct btrfs_delayed_item *item)
840 {
841 	const u64 ino = item->delayed_node->inode_id;
842 	struct btrfs_fs_info *fs_info = root->fs_info;
843 	struct btrfs_delayed_item *curr, *next;
844 	struct extent_buffer *leaf = path->nodes[0];
845 	LIST_HEAD(batch_list);
846 	int nitems, slot, last_slot;
847 	int ret;
848 	u64 total_reserved_size = item->bytes_reserved;
849 
850 	ASSERT(leaf != NULL);
851 
852 	slot = path->slots[0];
853 	last_slot = btrfs_header_nritems(leaf) - 1;
854 	/*
855 	 * Our caller always gives us a path pointing to an existing item, so
856 	 * this can not happen.
857 	 */
858 	ASSERT(slot <= last_slot);
859 	if (WARN_ON(slot > last_slot))
860 		return -ENOENT;
861 
862 	nitems = 1;
863 	curr = item;
864 	list_add_tail(&curr->tree_list, &batch_list);
865 
866 	/*
867 	 * Keep checking if the next delayed item matches the next item in the
868 	 * leaf - if so, we can add it to the batch of items to delete from the
869 	 * leaf.
870 	 */
871 	while (slot < last_slot) {
872 		struct btrfs_key key;
873 
874 		next = __btrfs_next_delayed_item(curr);
875 		if (!next)
876 			break;
877 
878 		slot++;
879 		btrfs_item_key_to_cpu(leaf, &key, slot);
880 		if (key.objectid != ino ||
881 		    key.type != BTRFS_DIR_INDEX_KEY ||
882 		    key.offset != next->index)
883 			break;
884 		nitems++;
885 		curr = next;
886 		list_add_tail(&curr->tree_list, &batch_list);
887 		total_reserved_size += curr->bytes_reserved;
888 	}
889 
890 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
891 	if (ret)
892 		return ret;
893 
894 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
895 	if (total_reserved_size > 0) {
896 		/*
897 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
898 		 * don't need to release/reserve qgroup space.
899 		 */
900 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
901 					      total_reserved_size, 0);
902 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
903 					total_reserved_size, NULL);
904 	}
905 
906 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
907 		list_del(&curr->tree_list);
908 		btrfs_release_delayed_item(curr);
909 	}
910 
911 	return 0;
912 }
913 
914 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
915 				      struct btrfs_path *path,
916 				      struct btrfs_root *root,
917 				      struct btrfs_delayed_node *node)
918 {
919 	struct btrfs_key key;
920 	int ret = 0;
921 
922 	key.objectid = node->inode_id;
923 	key.type = BTRFS_DIR_INDEX_KEY;
924 
925 	while (ret == 0) {
926 		struct btrfs_delayed_item *item;
927 
928 		mutex_lock(&node->mutex);
929 		item = __btrfs_first_delayed_deletion_item(node);
930 		if (!item) {
931 			mutex_unlock(&node->mutex);
932 			break;
933 		}
934 
935 		key.offset = item->index;
936 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
937 		if (ret > 0) {
938 			/*
939 			 * There's no matching item in the leaf. This means we
940 			 * have already deleted this item in a past run of the
941 			 * delayed items. We ignore errors when running delayed
942 			 * items from an async context, through a work queue job
943 			 * running btrfs_async_run_delayed_root(), and don't
944 			 * release delayed items that failed to complete. This
945 			 * is because we will retry later, and at transaction
946 			 * commit time we always run delayed items and will
947 			 * then deal with errors if they fail to run again.
948 			 *
949 			 * So just release delayed items for which we can't find
950 			 * an item in the tree, and move to the next item.
951 			 */
952 			btrfs_release_path(path);
953 			btrfs_release_delayed_item(item);
954 			ret = 0;
955 		} else if (ret == 0) {
956 			ret = btrfs_batch_delete_items(trans, root, path, item);
957 			btrfs_release_path(path);
958 		}
959 
960 		/*
961 		 * We unlock and relock on each iteration, this is to prevent
962 		 * blocking other tasks for too long while we are being run from
963 		 * the async context (work queue job). Those tasks are typically
964 		 * running system calls like creat/mkdir/rename/unlink/etc which
965 		 * need to add delayed items to this delayed node.
966 		 */
967 		mutex_unlock(&node->mutex);
968 	}
969 
970 	return ret;
971 }
972 
973 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
974 {
975 	struct btrfs_delayed_root *delayed_root;
976 
977 	if (delayed_node &&
978 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
979 		BUG_ON(!delayed_node->root);
980 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
981 		delayed_node->count--;
982 
983 		delayed_root = delayed_node->root->fs_info->delayed_root;
984 		finish_one_item(delayed_root);
985 	}
986 }
987 
988 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
989 {
990 
991 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
992 		struct btrfs_delayed_root *delayed_root;
993 
994 		ASSERT(delayed_node->root);
995 		delayed_node->count--;
996 
997 		delayed_root = delayed_node->root->fs_info->delayed_root;
998 		finish_one_item(delayed_root);
999 	}
1000 }
1001 
1002 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1003 					struct btrfs_root *root,
1004 					struct btrfs_path *path,
1005 					struct btrfs_delayed_node *node)
1006 {
1007 	struct btrfs_fs_info *fs_info = root->fs_info;
1008 	struct btrfs_key key;
1009 	struct btrfs_inode_item *inode_item;
1010 	struct extent_buffer *leaf;
1011 	int mod;
1012 	int ret;
1013 
1014 	key.objectid = node->inode_id;
1015 	key.type = BTRFS_INODE_ITEM_KEY;
1016 	key.offset = 0;
1017 
1018 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1019 		mod = -1;
1020 	else
1021 		mod = 1;
1022 
1023 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1024 	if (ret > 0)
1025 		ret = -ENOENT;
1026 	if (ret < 0)
1027 		goto out;
1028 
1029 	leaf = path->nodes[0];
1030 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1031 				    struct btrfs_inode_item);
1032 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1033 			    sizeof(struct btrfs_inode_item));
1034 	btrfs_mark_buffer_dirty(trans, leaf);
1035 
1036 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1037 		goto out;
1038 
1039 	path->slots[0]++;
1040 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1041 		goto search;
1042 again:
1043 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1044 	if (key.objectid != node->inode_id)
1045 		goto out;
1046 
1047 	if (key.type != BTRFS_INODE_REF_KEY &&
1048 	    key.type != BTRFS_INODE_EXTREF_KEY)
1049 		goto out;
1050 
1051 	/*
1052 	 * Delayed iref deletion is for the inode who has only one link,
1053 	 * so there is only one iref. The case that several irefs are
1054 	 * in the same item doesn't exist.
1055 	 */
1056 	ret = btrfs_del_item(trans, root, path);
1057 out:
1058 	btrfs_release_delayed_iref(node);
1059 	btrfs_release_path(path);
1060 err_out:
1061 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1062 	btrfs_release_delayed_inode(node);
1063 
1064 	/*
1065 	 * If we fail to update the delayed inode we need to abort the
1066 	 * transaction, because we could leave the inode with the improper
1067 	 * counts behind.
1068 	 */
1069 	if (ret && ret != -ENOENT)
1070 		btrfs_abort_transaction(trans, ret);
1071 
1072 	return ret;
1073 
1074 search:
1075 	btrfs_release_path(path);
1076 
1077 	key.type = BTRFS_INODE_EXTREF_KEY;
1078 	key.offset = -1;
1079 
1080 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1081 	if (ret < 0)
1082 		goto err_out;
1083 	ASSERT(ret);
1084 
1085 	ret = 0;
1086 	leaf = path->nodes[0];
1087 	path->slots[0]--;
1088 	goto again;
1089 }
1090 
1091 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1092 					     struct btrfs_root *root,
1093 					     struct btrfs_path *path,
1094 					     struct btrfs_delayed_node *node)
1095 {
1096 	int ret;
1097 
1098 	mutex_lock(&node->mutex);
1099 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1100 		mutex_unlock(&node->mutex);
1101 		return 0;
1102 	}
1103 
1104 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1105 	mutex_unlock(&node->mutex);
1106 	return ret;
1107 }
1108 
1109 static inline int
1110 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1111 				   struct btrfs_path *path,
1112 				   struct btrfs_delayed_node *node)
1113 {
1114 	int ret;
1115 
1116 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1121 	if (ret)
1122 		return ret;
1123 
1124 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1125 	return ret;
1126 }
1127 
1128 /*
1129  * Called when committing the transaction.
1130  * Returns 0 on success.
1131  * Returns < 0 on error and returns with an aborted transaction with any
1132  * outstanding delayed items cleaned up.
1133  */
1134 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1135 {
1136 	struct btrfs_fs_info *fs_info = trans->fs_info;
1137 	struct btrfs_delayed_root *delayed_root;
1138 	struct btrfs_delayed_node *curr_node, *prev_node;
1139 	struct btrfs_path *path;
1140 	struct btrfs_block_rsv *block_rsv;
1141 	int ret = 0;
1142 	bool count = (nr > 0);
1143 
1144 	if (TRANS_ABORTED(trans))
1145 		return -EIO;
1146 
1147 	path = btrfs_alloc_path();
1148 	if (!path)
1149 		return -ENOMEM;
1150 
1151 	block_rsv = trans->block_rsv;
1152 	trans->block_rsv = &fs_info->delayed_block_rsv;
1153 
1154 	delayed_root = fs_info->delayed_root;
1155 
1156 	curr_node = btrfs_first_delayed_node(delayed_root);
1157 	while (curr_node && (!count || nr--)) {
1158 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1159 							 curr_node);
1160 		if (ret) {
1161 			btrfs_abort_transaction(trans, ret);
1162 			break;
1163 		}
1164 
1165 		prev_node = curr_node;
1166 		curr_node = btrfs_next_delayed_node(curr_node);
1167 		/*
1168 		 * See the comment below about releasing path before releasing
1169 		 * node. If the commit of delayed items was successful the path
1170 		 * should always be released, but in case of an error, it may
1171 		 * point to locked extent buffers (a leaf at the very least).
1172 		 */
1173 		ASSERT(path->nodes[0] == NULL);
1174 		btrfs_release_delayed_node(prev_node);
1175 	}
1176 
1177 	/*
1178 	 * Release the path to avoid a potential deadlock and lockdep splat when
1179 	 * releasing the delayed node, as that requires taking the delayed node's
1180 	 * mutex. If another task starts running delayed items before we take
1181 	 * the mutex, it will first lock the mutex and then it may try to lock
1182 	 * the same btree path (leaf).
1183 	 */
1184 	btrfs_free_path(path);
1185 
1186 	if (curr_node)
1187 		btrfs_release_delayed_node(curr_node);
1188 	trans->block_rsv = block_rsv;
1189 
1190 	return ret;
1191 }
1192 
1193 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1194 {
1195 	return __btrfs_run_delayed_items(trans, -1);
1196 }
1197 
1198 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1199 {
1200 	return __btrfs_run_delayed_items(trans, nr);
1201 }
1202 
1203 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1204 				     struct btrfs_inode *inode)
1205 {
1206 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1207 	struct btrfs_path *path;
1208 	struct btrfs_block_rsv *block_rsv;
1209 	int ret;
1210 
1211 	if (!delayed_node)
1212 		return 0;
1213 
1214 	mutex_lock(&delayed_node->mutex);
1215 	if (!delayed_node->count) {
1216 		mutex_unlock(&delayed_node->mutex);
1217 		btrfs_release_delayed_node(delayed_node);
1218 		return 0;
1219 	}
1220 	mutex_unlock(&delayed_node->mutex);
1221 
1222 	path = btrfs_alloc_path();
1223 	if (!path) {
1224 		btrfs_release_delayed_node(delayed_node);
1225 		return -ENOMEM;
1226 	}
1227 
1228 	block_rsv = trans->block_rsv;
1229 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1230 
1231 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1232 
1233 	btrfs_release_delayed_node(delayed_node);
1234 	btrfs_free_path(path);
1235 	trans->block_rsv = block_rsv;
1236 
1237 	return ret;
1238 }
1239 
1240 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1241 {
1242 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1243 	struct btrfs_trans_handle *trans;
1244 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1245 	struct btrfs_path *path;
1246 	struct btrfs_block_rsv *block_rsv;
1247 	int ret;
1248 
1249 	if (!delayed_node)
1250 		return 0;
1251 
1252 	mutex_lock(&delayed_node->mutex);
1253 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1254 		mutex_unlock(&delayed_node->mutex);
1255 		btrfs_release_delayed_node(delayed_node);
1256 		return 0;
1257 	}
1258 	mutex_unlock(&delayed_node->mutex);
1259 
1260 	trans = btrfs_join_transaction(delayed_node->root);
1261 	if (IS_ERR(trans)) {
1262 		ret = PTR_ERR(trans);
1263 		goto out;
1264 	}
1265 
1266 	path = btrfs_alloc_path();
1267 	if (!path) {
1268 		ret = -ENOMEM;
1269 		goto trans_out;
1270 	}
1271 
1272 	block_rsv = trans->block_rsv;
1273 	trans->block_rsv = &fs_info->delayed_block_rsv;
1274 
1275 	mutex_lock(&delayed_node->mutex);
1276 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1277 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1278 						   path, delayed_node);
1279 	else
1280 		ret = 0;
1281 	mutex_unlock(&delayed_node->mutex);
1282 
1283 	btrfs_free_path(path);
1284 	trans->block_rsv = block_rsv;
1285 trans_out:
1286 	btrfs_end_transaction(trans);
1287 	btrfs_btree_balance_dirty(fs_info);
1288 out:
1289 	btrfs_release_delayed_node(delayed_node);
1290 
1291 	return ret;
1292 }
1293 
1294 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1295 {
1296 	struct btrfs_delayed_node *delayed_node;
1297 
1298 	delayed_node = READ_ONCE(inode->delayed_node);
1299 	if (!delayed_node)
1300 		return;
1301 
1302 	inode->delayed_node = NULL;
1303 	btrfs_release_delayed_node(delayed_node);
1304 }
1305 
1306 struct btrfs_async_delayed_work {
1307 	struct btrfs_delayed_root *delayed_root;
1308 	int nr;
1309 	struct btrfs_work work;
1310 };
1311 
1312 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1313 {
1314 	struct btrfs_async_delayed_work *async_work;
1315 	struct btrfs_delayed_root *delayed_root;
1316 	struct btrfs_trans_handle *trans;
1317 	struct btrfs_path *path;
1318 	struct btrfs_delayed_node *delayed_node = NULL;
1319 	struct btrfs_root *root;
1320 	struct btrfs_block_rsv *block_rsv;
1321 	int total_done = 0;
1322 
1323 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1324 	delayed_root = async_work->delayed_root;
1325 
1326 	path = btrfs_alloc_path();
1327 	if (!path)
1328 		goto out;
1329 
1330 	do {
1331 		if (atomic_read(&delayed_root->items) <
1332 		    BTRFS_DELAYED_BACKGROUND / 2)
1333 			break;
1334 
1335 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1336 		if (!delayed_node)
1337 			break;
1338 
1339 		root = delayed_node->root;
1340 
1341 		trans = btrfs_join_transaction(root);
1342 		if (IS_ERR(trans)) {
1343 			btrfs_release_path(path);
1344 			btrfs_release_prepared_delayed_node(delayed_node);
1345 			total_done++;
1346 			continue;
1347 		}
1348 
1349 		block_rsv = trans->block_rsv;
1350 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1351 
1352 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1353 
1354 		trans->block_rsv = block_rsv;
1355 		btrfs_end_transaction(trans);
1356 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1357 
1358 		btrfs_release_path(path);
1359 		btrfs_release_prepared_delayed_node(delayed_node);
1360 		total_done++;
1361 
1362 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363 		 || total_done < async_work->nr);
1364 
1365 	btrfs_free_path(path);
1366 out:
1367 	wake_up(&delayed_root->wait);
1368 	kfree(async_work);
1369 }
1370 
1371 
1372 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373 				     struct btrfs_fs_info *fs_info, int nr)
1374 {
1375 	struct btrfs_async_delayed_work *async_work;
1376 
1377 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 	if (!async_work)
1379 		return -ENOMEM;
1380 
1381 	async_work->delayed_root = delayed_root;
1382 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1383 	async_work->nr = nr;
1384 
1385 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1386 	return 0;
1387 }
1388 
1389 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1390 {
1391 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1392 }
1393 
1394 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1395 {
1396 	int val = atomic_read(&delayed_root->items_seq);
1397 
1398 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1399 		return 1;
1400 
1401 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1402 		return 1;
1403 
1404 	return 0;
1405 }
1406 
1407 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1408 {
1409 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1410 
1411 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1412 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1413 		return;
1414 
1415 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416 		int seq;
1417 		int ret;
1418 
1419 		seq = atomic_read(&delayed_root->items_seq);
1420 
1421 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1422 		if (ret)
1423 			return;
1424 
1425 		wait_event_interruptible(delayed_root->wait,
1426 					 could_end_wait(delayed_root, seq));
1427 		return;
1428 	}
1429 
1430 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431 }
1432 
1433 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1434 {
1435 	struct btrfs_fs_info *fs_info = trans->fs_info;
1436 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1437 
1438 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1439 		return;
1440 
1441 	/*
1442 	 * Adding the new dir index item does not require touching another
1443 	 * leaf, so we can release 1 unit of metadata that was previously
1444 	 * reserved when starting the transaction. This applies only to
1445 	 * the case where we had a transaction start and excludes the
1446 	 * transaction join case (when replaying log trees).
1447 	 */
1448 	trace_btrfs_space_reservation(fs_info, "transaction",
1449 				      trans->transid, bytes, 0);
1450 	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1451 	ASSERT(trans->bytes_reserved >= bytes);
1452 	trans->bytes_reserved -= bytes;
1453 }
1454 
1455 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1456 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1457 				   const char *name, int name_len,
1458 				   struct btrfs_inode *dir,
1459 				   struct btrfs_disk_key *disk_key, u8 flags,
1460 				   u64 index)
1461 {
1462 	struct btrfs_fs_info *fs_info = trans->fs_info;
1463 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1464 	struct btrfs_delayed_node *delayed_node;
1465 	struct btrfs_delayed_item *delayed_item;
1466 	struct btrfs_dir_item *dir_item;
1467 	bool reserve_leaf_space;
1468 	u32 data_len;
1469 	int ret;
1470 
1471 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1472 	if (IS_ERR(delayed_node))
1473 		return PTR_ERR(delayed_node);
1474 
1475 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1476 						delayed_node,
1477 						BTRFS_DELAYED_INSERTION_ITEM);
1478 	if (!delayed_item) {
1479 		ret = -ENOMEM;
1480 		goto release_node;
1481 	}
1482 
1483 	delayed_item->index = index;
1484 
1485 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1486 	dir_item->location = *disk_key;
1487 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1488 	btrfs_set_stack_dir_data_len(dir_item, 0);
1489 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1490 	btrfs_set_stack_dir_flags(dir_item, flags);
1491 	memcpy((char *)(dir_item + 1), name, name_len);
1492 
1493 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1494 
1495 	mutex_lock(&delayed_node->mutex);
1496 
1497 	/*
1498 	 * First attempt to insert the delayed item. This is to make the error
1499 	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1500 	 * any other task coming in and running the delayed item before we do
1501 	 * the metadata space reservation below, because we are holding the
1502 	 * delayed node's mutex and that mutex must also be locked before the
1503 	 * node's delayed items can be run.
1504 	 */
1505 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1506 	if (unlikely(ret)) {
1507 		btrfs_err(trans->fs_info,
1508 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1509 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1510 			  delayed_node->inode_id, dir->index_cnt,
1511 			  delayed_node->index_cnt, ret);
1512 		btrfs_release_delayed_item(delayed_item);
1513 		btrfs_release_dir_index_item_space(trans);
1514 		mutex_unlock(&delayed_node->mutex);
1515 		goto release_node;
1516 	}
1517 
1518 	if (delayed_node->index_item_leaves == 0 ||
1519 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1520 		delayed_node->curr_index_batch_size = data_len;
1521 		reserve_leaf_space = true;
1522 	} else {
1523 		delayed_node->curr_index_batch_size += data_len;
1524 		reserve_leaf_space = false;
1525 	}
1526 
1527 	if (reserve_leaf_space) {
1528 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1529 		/*
1530 		 * Space was reserved for a dir index item insertion when we
1531 		 * started the transaction, so getting a failure here should be
1532 		 * impossible.
1533 		 */
1534 		if (WARN_ON(ret)) {
1535 			btrfs_release_delayed_item(delayed_item);
1536 			mutex_unlock(&delayed_node->mutex);
1537 			goto release_node;
1538 		}
1539 
1540 		delayed_node->index_item_leaves++;
1541 	} else {
1542 		btrfs_release_dir_index_item_space(trans);
1543 	}
1544 	mutex_unlock(&delayed_node->mutex);
1545 
1546 release_node:
1547 	btrfs_release_delayed_node(delayed_node);
1548 	return ret;
1549 }
1550 
1551 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1552 					       struct btrfs_delayed_node *node,
1553 					       u64 index)
1554 {
1555 	struct btrfs_delayed_item *item;
1556 
1557 	mutex_lock(&node->mutex);
1558 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1559 	if (!item) {
1560 		mutex_unlock(&node->mutex);
1561 		return 1;
1562 	}
1563 
1564 	/*
1565 	 * For delayed items to insert, we track reserved metadata bytes based
1566 	 * on the number of leaves that we will use.
1567 	 * See btrfs_insert_delayed_dir_index() and
1568 	 * btrfs_delayed_item_reserve_metadata()).
1569 	 */
1570 	ASSERT(item->bytes_reserved == 0);
1571 	ASSERT(node->index_item_leaves > 0);
1572 
1573 	/*
1574 	 * If there's only one leaf reserved, we can decrement this item from the
1575 	 * current batch, otherwise we can not because we don't know which leaf
1576 	 * it belongs to. With the current limit on delayed items, we rarely
1577 	 * accumulate enough dir index items to fill more than one leaf (even
1578 	 * when using a leaf size of 4K).
1579 	 */
1580 	if (node->index_item_leaves == 1) {
1581 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1582 
1583 		ASSERT(node->curr_index_batch_size >= data_len);
1584 		node->curr_index_batch_size -= data_len;
1585 	}
1586 
1587 	btrfs_release_delayed_item(item);
1588 
1589 	/* If we now have no more dir index items, we can release all leaves. */
1590 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1591 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1592 		node->index_item_leaves = 0;
1593 	}
1594 
1595 	mutex_unlock(&node->mutex);
1596 	return 0;
1597 }
1598 
1599 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1600 				   struct btrfs_inode *dir, u64 index)
1601 {
1602 	struct btrfs_delayed_node *node;
1603 	struct btrfs_delayed_item *item;
1604 	int ret;
1605 
1606 	node = btrfs_get_or_create_delayed_node(dir);
1607 	if (IS_ERR(node))
1608 		return PTR_ERR(node);
1609 
1610 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1611 	if (!ret)
1612 		goto end;
1613 
1614 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1615 	if (!item) {
1616 		ret = -ENOMEM;
1617 		goto end;
1618 	}
1619 
1620 	item->index = index;
1621 
1622 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1623 	/*
1624 	 * we have reserved enough space when we start a new transaction,
1625 	 * so reserving metadata failure is impossible.
1626 	 */
1627 	if (ret < 0) {
1628 		btrfs_err(trans->fs_info,
1629 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1630 		btrfs_release_delayed_item(item);
1631 		goto end;
1632 	}
1633 
1634 	mutex_lock(&node->mutex);
1635 	ret = __btrfs_add_delayed_item(node, item);
1636 	if (unlikely(ret)) {
1637 		btrfs_err(trans->fs_info,
1638 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1639 			  index, node->root->root_key.objectid,
1640 			  node->inode_id, ret);
1641 		btrfs_delayed_item_release_metadata(dir->root, item);
1642 		btrfs_release_delayed_item(item);
1643 	}
1644 	mutex_unlock(&node->mutex);
1645 end:
1646 	btrfs_release_delayed_node(node);
1647 	return ret;
1648 }
1649 
1650 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1651 {
1652 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1653 
1654 	if (!delayed_node)
1655 		return -ENOENT;
1656 
1657 	/*
1658 	 * Since we have held i_mutex of this directory, it is impossible that
1659 	 * a new directory index is added into the delayed node and index_cnt
1660 	 * is updated now. So we needn't lock the delayed node.
1661 	 */
1662 	if (!delayed_node->index_cnt) {
1663 		btrfs_release_delayed_node(delayed_node);
1664 		return -EINVAL;
1665 	}
1666 
1667 	inode->index_cnt = delayed_node->index_cnt;
1668 	btrfs_release_delayed_node(delayed_node);
1669 	return 0;
1670 }
1671 
1672 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1673 				     u64 last_index,
1674 				     struct list_head *ins_list,
1675 				     struct list_head *del_list)
1676 {
1677 	struct btrfs_delayed_node *delayed_node;
1678 	struct btrfs_delayed_item *item;
1679 
1680 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1681 	if (!delayed_node)
1682 		return false;
1683 
1684 	/*
1685 	 * We can only do one readdir with delayed items at a time because of
1686 	 * item->readdir_list.
1687 	 */
1688 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1689 	btrfs_inode_lock(BTRFS_I(inode), 0);
1690 
1691 	mutex_lock(&delayed_node->mutex);
1692 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1693 	while (item && item->index <= last_index) {
1694 		refcount_inc(&item->refs);
1695 		list_add_tail(&item->readdir_list, ins_list);
1696 		item = __btrfs_next_delayed_item(item);
1697 	}
1698 
1699 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1700 	while (item && item->index <= last_index) {
1701 		refcount_inc(&item->refs);
1702 		list_add_tail(&item->readdir_list, del_list);
1703 		item = __btrfs_next_delayed_item(item);
1704 	}
1705 	mutex_unlock(&delayed_node->mutex);
1706 	/*
1707 	 * This delayed node is still cached in the btrfs inode, so refs
1708 	 * must be > 1 now, and we needn't check it is going to be freed
1709 	 * or not.
1710 	 *
1711 	 * Besides that, this function is used to read dir, we do not
1712 	 * insert/delete delayed items in this period. So we also needn't
1713 	 * requeue or dequeue this delayed node.
1714 	 */
1715 	refcount_dec(&delayed_node->refs);
1716 
1717 	return true;
1718 }
1719 
1720 void btrfs_readdir_put_delayed_items(struct inode *inode,
1721 				     struct list_head *ins_list,
1722 				     struct list_head *del_list)
1723 {
1724 	struct btrfs_delayed_item *curr, *next;
1725 
1726 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1727 		list_del(&curr->readdir_list);
1728 		if (refcount_dec_and_test(&curr->refs))
1729 			kfree(curr);
1730 	}
1731 
1732 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1733 		list_del(&curr->readdir_list);
1734 		if (refcount_dec_and_test(&curr->refs))
1735 			kfree(curr);
1736 	}
1737 
1738 	/*
1739 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1740 	 * read lock.
1741 	 */
1742 	downgrade_write(&inode->i_rwsem);
1743 }
1744 
1745 int btrfs_should_delete_dir_index(struct list_head *del_list,
1746 				  u64 index)
1747 {
1748 	struct btrfs_delayed_item *curr;
1749 	int ret = 0;
1750 
1751 	list_for_each_entry(curr, del_list, readdir_list) {
1752 		if (curr->index > index)
1753 			break;
1754 		if (curr->index == index) {
1755 			ret = 1;
1756 			break;
1757 		}
1758 	}
1759 	return ret;
1760 }
1761 
1762 /*
1763  * Read dir info stored in the delayed tree.
1764  */
1765 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1766 				    struct list_head *ins_list)
1767 {
1768 	struct btrfs_dir_item *di;
1769 	struct btrfs_delayed_item *curr, *next;
1770 	struct btrfs_key location;
1771 	char *name;
1772 	int name_len;
1773 	int over = 0;
1774 	unsigned char d_type;
1775 
1776 	/*
1777 	 * Changing the data of the delayed item is impossible. So
1778 	 * we needn't lock them. And we have held i_mutex of the
1779 	 * directory, nobody can delete any directory indexes now.
1780 	 */
1781 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1782 		list_del(&curr->readdir_list);
1783 
1784 		if (curr->index < ctx->pos) {
1785 			if (refcount_dec_and_test(&curr->refs))
1786 				kfree(curr);
1787 			continue;
1788 		}
1789 
1790 		ctx->pos = curr->index;
1791 
1792 		di = (struct btrfs_dir_item *)curr->data;
1793 		name = (char *)(di + 1);
1794 		name_len = btrfs_stack_dir_name_len(di);
1795 
1796 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1797 		btrfs_disk_key_to_cpu(&location, &di->location);
1798 
1799 		over = !dir_emit(ctx, name, name_len,
1800 			       location.objectid, d_type);
1801 
1802 		if (refcount_dec_and_test(&curr->refs))
1803 			kfree(curr);
1804 
1805 		if (over)
1806 			return 1;
1807 		ctx->pos++;
1808 	}
1809 	return 0;
1810 }
1811 
1812 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1813 				  struct btrfs_inode_item *inode_item,
1814 				  struct inode *inode)
1815 {
1816 	u64 flags;
1817 
1818 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1819 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1820 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1821 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1822 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1823 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1824 	btrfs_set_stack_inode_generation(inode_item,
1825 					 BTRFS_I(inode)->generation);
1826 	btrfs_set_stack_inode_sequence(inode_item,
1827 				       inode_peek_iversion(inode));
1828 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1829 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1830 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1831 					  BTRFS_I(inode)->ro_flags);
1832 	btrfs_set_stack_inode_flags(inode_item, flags);
1833 	btrfs_set_stack_inode_block_group(inode_item, 0);
1834 
1835 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1836 				     inode_get_atime_sec(inode));
1837 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1838 				      inode_get_atime_nsec(inode));
1839 
1840 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1841 				     inode_get_mtime_sec(inode));
1842 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1843 				      inode_get_mtime_nsec(inode));
1844 
1845 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1846 				     inode_get_ctime_sec(inode));
1847 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1848 				      inode_get_ctime_nsec(inode));
1849 
1850 	btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1851 	btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1852 }
1853 
1854 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1855 {
1856 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1857 	struct btrfs_delayed_node *delayed_node;
1858 	struct btrfs_inode_item *inode_item;
1859 
1860 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1861 	if (!delayed_node)
1862 		return -ENOENT;
1863 
1864 	mutex_lock(&delayed_node->mutex);
1865 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1866 		mutex_unlock(&delayed_node->mutex);
1867 		btrfs_release_delayed_node(delayed_node);
1868 		return -ENOENT;
1869 	}
1870 
1871 	inode_item = &delayed_node->inode_item;
1872 
1873 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1874 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1875 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1876 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1877 			round_up(i_size_read(inode), fs_info->sectorsize));
1878 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1879 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1880 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1881 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1882         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1883 
1884 	inode_set_iversion_queried(inode,
1885 				   btrfs_stack_inode_sequence(inode_item));
1886 	inode->i_rdev = 0;
1887 	*rdev = btrfs_stack_inode_rdev(inode_item);
1888 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1889 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1890 
1891 	inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1892 			btrfs_stack_timespec_nsec(&inode_item->atime));
1893 
1894 	inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1895 			btrfs_stack_timespec_nsec(&inode_item->mtime));
1896 
1897 	inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1898 			btrfs_stack_timespec_nsec(&inode_item->ctime));
1899 
1900 	BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1901 	BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1902 
1903 	inode->i_generation = BTRFS_I(inode)->generation;
1904 	BTRFS_I(inode)->index_cnt = (u64)-1;
1905 
1906 	mutex_unlock(&delayed_node->mutex);
1907 	btrfs_release_delayed_node(delayed_node);
1908 	return 0;
1909 }
1910 
1911 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1912 			       struct btrfs_inode *inode)
1913 {
1914 	struct btrfs_root *root = inode->root;
1915 	struct btrfs_delayed_node *delayed_node;
1916 	int ret = 0;
1917 
1918 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1919 	if (IS_ERR(delayed_node))
1920 		return PTR_ERR(delayed_node);
1921 
1922 	mutex_lock(&delayed_node->mutex);
1923 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1924 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1925 				      &inode->vfs_inode);
1926 		goto release_node;
1927 	}
1928 
1929 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1930 	if (ret)
1931 		goto release_node;
1932 
1933 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1934 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1935 	delayed_node->count++;
1936 	atomic_inc(&root->fs_info->delayed_root->items);
1937 release_node:
1938 	mutex_unlock(&delayed_node->mutex);
1939 	btrfs_release_delayed_node(delayed_node);
1940 	return ret;
1941 }
1942 
1943 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1944 {
1945 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1946 	struct btrfs_delayed_node *delayed_node;
1947 
1948 	/*
1949 	 * we don't do delayed inode updates during log recovery because it
1950 	 * leads to enospc problems.  This means we also can't do
1951 	 * delayed inode refs
1952 	 */
1953 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1954 		return -EAGAIN;
1955 
1956 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1957 	if (IS_ERR(delayed_node))
1958 		return PTR_ERR(delayed_node);
1959 
1960 	/*
1961 	 * We don't reserve space for inode ref deletion is because:
1962 	 * - We ONLY do async inode ref deletion for the inode who has only
1963 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1964 	 *   And in most case, the inode ref and the inode item are in the
1965 	 *   same leaf, and we will deal with them at the same time.
1966 	 *   Since we are sure we will reserve the space for the inode item,
1967 	 *   it is unnecessary to reserve space for inode ref deletion.
1968 	 * - If the inode ref and the inode item are not in the same leaf,
1969 	 *   We also needn't worry about enospc problem, because we reserve
1970 	 *   much more space for the inode update than it needs.
1971 	 * - At the worst, we can steal some space from the global reservation.
1972 	 *   It is very rare.
1973 	 */
1974 	mutex_lock(&delayed_node->mutex);
1975 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1976 		goto release_node;
1977 
1978 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1979 	delayed_node->count++;
1980 	atomic_inc(&fs_info->delayed_root->items);
1981 release_node:
1982 	mutex_unlock(&delayed_node->mutex);
1983 	btrfs_release_delayed_node(delayed_node);
1984 	return 0;
1985 }
1986 
1987 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1988 {
1989 	struct btrfs_root *root = delayed_node->root;
1990 	struct btrfs_fs_info *fs_info = root->fs_info;
1991 	struct btrfs_delayed_item *curr_item, *prev_item;
1992 
1993 	mutex_lock(&delayed_node->mutex);
1994 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1995 	while (curr_item) {
1996 		prev_item = curr_item;
1997 		curr_item = __btrfs_next_delayed_item(prev_item);
1998 		btrfs_release_delayed_item(prev_item);
1999 	}
2000 
2001 	if (delayed_node->index_item_leaves > 0) {
2002 		btrfs_delayed_item_release_leaves(delayed_node,
2003 					  delayed_node->index_item_leaves);
2004 		delayed_node->index_item_leaves = 0;
2005 	}
2006 
2007 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2008 	while (curr_item) {
2009 		btrfs_delayed_item_release_metadata(root, curr_item);
2010 		prev_item = curr_item;
2011 		curr_item = __btrfs_next_delayed_item(prev_item);
2012 		btrfs_release_delayed_item(prev_item);
2013 	}
2014 
2015 	btrfs_release_delayed_iref(delayed_node);
2016 
2017 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2018 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2019 		btrfs_release_delayed_inode(delayed_node);
2020 	}
2021 	mutex_unlock(&delayed_node->mutex);
2022 }
2023 
2024 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2025 {
2026 	struct btrfs_delayed_node *delayed_node;
2027 
2028 	delayed_node = btrfs_get_delayed_node(inode);
2029 	if (!delayed_node)
2030 		return;
2031 
2032 	__btrfs_kill_delayed_node(delayed_node);
2033 	btrfs_release_delayed_node(delayed_node);
2034 }
2035 
2036 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2037 {
2038 	u64 inode_id = 0;
2039 	struct btrfs_delayed_node *delayed_nodes[8];
2040 	int i, n;
2041 
2042 	while (1) {
2043 		spin_lock(&root->inode_lock);
2044 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2045 					   (void **)delayed_nodes, inode_id,
2046 					   ARRAY_SIZE(delayed_nodes));
2047 		if (!n) {
2048 			spin_unlock(&root->inode_lock);
2049 			break;
2050 		}
2051 
2052 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
2053 		for (i = 0; i < n; i++) {
2054 			/*
2055 			 * Don't increase refs in case the node is dead and
2056 			 * about to be removed from the tree in the loop below
2057 			 */
2058 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2059 				delayed_nodes[i] = NULL;
2060 		}
2061 		spin_unlock(&root->inode_lock);
2062 
2063 		for (i = 0; i < n; i++) {
2064 			if (!delayed_nodes[i])
2065 				continue;
2066 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2067 			btrfs_release_delayed_node(delayed_nodes[i]);
2068 		}
2069 	}
2070 }
2071 
2072 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2073 {
2074 	struct btrfs_delayed_node *curr_node, *prev_node;
2075 
2076 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2077 	while (curr_node) {
2078 		__btrfs_kill_delayed_node(curr_node);
2079 
2080 		prev_node = curr_node;
2081 		curr_node = btrfs_next_delayed_node(curr_node);
2082 		btrfs_release_delayed_node(prev_node);
2083 	}
2084 }
2085 
2086 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2087 				 struct list_head *ins_list,
2088 				 struct list_head *del_list)
2089 {
2090 	struct btrfs_delayed_node *node;
2091 	struct btrfs_delayed_item *item;
2092 
2093 	node = btrfs_get_delayed_node(inode);
2094 	if (!node)
2095 		return;
2096 
2097 	mutex_lock(&node->mutex);
2098 	item = __btrfs_first_delayed_insertion_item(node);
2099 	while (item) {
2100 		/*
2101 		 * It's possible that the item is already in a log list. This
2102 		 * can happen in case two tasks are trying to log the same
2103 		 * directory. For example if we have tasks A and task B:
2104 		 *
2105 		 * Task A collected the delayed items into a log list while
2106 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2107 		 * only releases the items after logging the inodes they point
2108 		 * to (if they are new inodes), which happens after unlocking
2109 		 * the log mutex;
2110 		 *
2111 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2112 		 * of the same directory inode, before task B releases the
2113 		 * delayed items. This can happen for example when logging some
2114 		 * inode we need to trigger logging of its parent directory, so
2115 		 * logging two files that have the same parent directory can
2116 		 * lead to this.
2117 		 *
2118 		 * If this happens, just ignore delayed items already in a log
2119 		 * list. All the tasks logging the directory are under a log
2120 		 * transaction and whichever finishes first can not sync the log
2121 		 * before the other completes and leaves the log transaction.
2122 		 */
2123 		if (!item->logged && list_empty(&item->log_list)) {
2124 			refcount_inc(&item->refs);
2125 			list_add_tail(&item->log_list, ins_list);
2126 		}
2127 		item = __btrfs_next_delayed_item(item);
2128 	}
2129 
2130 	item = __btrfs_first_delayed_deletion_item(node);
2131 	while (item) {
2132 		/* It may be non-empty, for the same reason mentioned above. */
2133 		if (!item->logged && list_empty(&item->log_list)) {
2134 			refcount_inc(&item->refs);
2135 			list_add_tail(&item->log_list, del_list);
2136 		}
2137 		item = __btrfs_next_delayed_item(item);
2138 	}
2139 	mutex_unlock(&node->mutex);
2140 
2141 	/*
2142 	 * We are called during inode logging, which means the inode is in use
2143 	 * and can not be evicted before we finish logging the inode. So we never
2144 	 * have the last reference on the delayed inode.
2145 	 * Also, we don't use btrfs_release_delayed_node() because that would
2146 	 * requeue the delayed inode (change its order in the list of prepared
2147 	 * nodes) and we don't want to do such change because we don't create or
2148 	 * delete delayed items.
2149 	 */
2150 	ASSERT(refcount_read(&node->refs) > 1);
2151 	refcount_dec(&node->refs);
2152 }
2153 
2154 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2155 				 struct list_head *ins_list,
2156 				 struct list_head *del_list)
2157 {
2158 	struct btrfs_delayed_node *node;
2159 	struct btrfs_delayed_item *item;
2160 	struct btrfs_delayed_item *next;
2161 
2162 	node = btrfs_get_delayed_node(inode);
2163 	if (!node)
2164 		return;
2165 
2166 	mutex_lock(&node->mutex);
2167 
2168 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2169 		item->logged = true;
2170 		list_del_init(&item->log_list);
2171 		if (refcount_dec_and_test(&item->refs))
2172 			kfree(item);
2173 	}
2174 
2175 	list_for_each_entry_safe(item, next, del_list, log_list) {
2176 		item->logged = true;
2177 		list_del_init(&item->log_list);
2178 		if (refcount_dec_and_test(&item->refs))
2179 			kfree(item);
2180 	}
2181 
2182 	mutex_unlock(&node->mutex);
2183 
2184 	/*
2185 	 * We are called during inode logging, which means the inode is in use
2186 	 * and can not be evicted before we finish logging the inode. So we never
2187 	 * have the last reference on the delayed inode.
2188 	 * Also, we don't use btrfs_release_delayed_node() because that would
2189 	 * requeue the delayed inode (change its order in the list of prepared
2190 	 * nodes) and we don't want to do such change because we don't create or
2191 	 * delete delayed items.
2192 	 */
2193 	ASSERT(refcount_read(&node->refs) > 1);
2194 	refcount_dec(&node->refs);
2195 }
2196