xref: /linux/fs/btrfs/delayed-inode.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25 
26 #define BTRFS_DELAYED_WRITEBACK		512
27 #define BTRFS_DELAYED_BACKGROUND	128
28 #define BTRFS_DELAYED_BATCH		16
29 
30 static struct kmem_cache *delayed_node_cache;
31 
32 int __init btrfs_delayed_inode_init(void)
33 {
34 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 					sizeof(struct btrfs_delayed_node),
36 					0,
37 					SLAB_MEM_SPREAD,
38 					NULL);
39 	if (!delayed_node_cache)
40 		return -ENOMEM;
41 	return 0;
42 }
43 
44 void btrfs_delayed_inode_exit(void)
45 {
46 	kmem_cache_destroy(delayed_node_cache);
47 }
48 
49 static inline void btrfs_init_delayed_node(
50 				struct btrfs_delayed_node *delayed_node,
51 				struct btrfs_root *root, u64 inode_id)
52 {
53 	delayed_node->root = root;
54 	delayed_node->inode_id = inode_id;
55 	refcount_set(&delayed_node->refs, 0);
56 	delayed_node->ins_root = RB_ROOT;
57 	delayed_node->del_root = RB_ROOT;
58 	mutex_init(&delayed_node->mutex);
59 	INIT_LIST_HEAD(&delayed_node->n_list);
60 	INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62 
63 static inline int btrfs_is_continuous_delayed_item(
64 					struct btrfs_delayed_item *item1,
65 					struct btrfs_delayed_item *item2)
66 {
67 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 	    item1->key.objectid == item2->key.objectid &&
69 	    item1->key.type == item2->key.type &&
70 	    item1->key.offset + 1 == item2->key.offset)
71 		return 1;
72 	return 0;
73 }
74 
75 static struct btrfs_delayed_node *btrfs_get_delayed_node(
76 		struct btrfs_inode *btrfs_inode)
77 {
78 	struct btrfs_root *root = btrfs_inode->root;
79 	u64 ino = btrfs_ino(btrfs_inode);
80 	struct btrfs_delayed_node *node;
81 
82 	node = READ_ONCE(btrfs_inode->delayed_node);
83 	if (node) {
84 		refcount_inc(&node->refs);
85 		return node;
86 	}
87 
88 	spin_lock(&root->inode_lock);
89 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90 
91 	if (node) {
92 		if (btrfs_inode->delayed_node) {
93 			refcount_inc(&node->refs);	/* can be accessed */
94 			BUG_ON(btrfs_inode->delayed_node != node);
95 			spin_unlock(&root->inode_lock);
96 			return node;
97 		}
98 
99 		/*
100 		 * It's possible that we're racing into the middle of removing
101 		 * this node from the radix tree.  In this case, the refcount
102 		 * was zero and it should never go back to one.  Just return
103 		 * NULL like it was never in the radix at all; our release
104 		 * function is in the process of removing it.
105 		 *
106 		 * Some implementations of refcount_inc refuse to bump the
107 		 * refcount once it has hit zero.  If we don't do this dance
108 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
109 		 * of actually bumping the refcount.
110 		 *
111 		 * If this node is properly in the radix, we want to bump the
112 		 * refcount twice, once for the inode and once for this get
113 		 * operation.
114 		 */
115 		if (refcount_inc_not_zero(&node->refs)) {
116 			refcount_inc(&node->refs);
117 			btrfs_inode->delayed_node = node;
118 		} else {
119 			node = NULL;
120 		}
121 
122 		spin_unlock(&root->inode_lock);
123 		return node;
124 	}
125 	spin_unlock(&root->inode_lock);
126 
127 	return NULL;
128 }
129 
130 /* Will return either the node or PTR_ERR(-ENOMEM) */
131 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
132 		struct btrfs_inode *btrfs_inode)
133 {
134 	struct btrfs_delayed_node *node;
135 	struct btrfs_root *root = btrfs_inode->root;
136 	u64 ino = btrfs_ino(btrfs_inode);
137 	int ret;
138 
139 again:
140 	node = btrfs_get_delayed_node(btrfs_inode);
141 	if (node)
142 		return node;
143 
144 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
145 	if (!node)
146 		return ERR_PTR(-ENOMEM);
147 	btrfs_init_delayed_node(node, root, ino);
148 
149 	/* cached in the btrfs inode and can be accessed */
150 	refcount_set(&node->refs, 2);
151 
152 	ret = radix_tree_preload(GFP_NOFS);
153 	if (ret) {
154 		kmem_cache_free(delayed_node_cache, node);
155 		return ERR_PTR(ret);
156 	}
157 
158 	spin_lock(&root->inode_lock);
159 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
160 	if (ret == -EEXIST) {
161 		spin_unlock(&root->inode_lock);
162 		kmem_cache_free(delayed_node_cache, node);
163 		radix_tree_preload_end();
164 		goto again;
165 	}
166 	btrfs_inode->delayed_node = node;
167 	spin_unlock(&root->inode_lock);
168 	radix_tree_preload_end();
169 
170 	return node;
171 }
172 
173 /*
174  * Call it when holding delayed_node->mutex
175  *
176  * If mod = 1, add this node into the prepared list.
177  */
178 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
179 				     struct btrfs_delayed_node *node,
180 				     int mod)
181 {
182 	spin_lock(&root->lock);
183 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
184 		if (!list_empty(&node->p_list))
185 			list_move_tail(&node->p_list, &root->prepare_list);
186 		else if (mod)
187 			list_add_tail(&node->p_list, &root->prepare_list);
188 	} else {
189 		list_add_tail(&node->n_list, &root->node_list);
190 		list_add_tail(&node->p_list, &root->prepare_list);
191 		refcount_inc(&node->refs);	/* inserted into list */
192 		root->nodes++;
193 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
194 	}
195 	spin_unlock(&root->lock);
196 }
197 
198 /* Call it when holding delayed_node->mutex */
199 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
200 				       struct btrfs_delayed_node *node)
201 {
202 	spin_lock(&root->lock);
203 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
204 		root->nodes--;
205 		refcount_dec(&node->refs);	/* not in the list */
206 		list_del_init(&node->n_list);
207 		if (!list_empty(&node->p_list))
208 			list_del_init(&node->p_list);
209 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
210 	}
211 	spin_unlock(&root->lock);
212 }
213 
214 static struct btrfs_delayed_node *btrfs_first_delayed_node(
215 			struct btrfs_delayed_root *delayed_root)
216 {
217 	struct list_head *p;
218 	struct btrfs_delayed_node *node = NULL;
219 
220 	spin_lock(&delayed_root->lock);
221 	if (list_empty(&delayed_root->node_list))
222 		goto out;
223 
224 	p = delayed_root->node_list.next;
225 	node = list_entry(p, struct btrfs_delayed_node, n_list);
226 	refcount_inc(&node->refs);
227 out:
228 	spin_unlock(&delayed_root->lock);
229 
230 	return node;
231 }
232 
233 static struct btrfs_delayed_node *btrfs_next_delayed_node(
234 						struct btrfs_delayed_node *node)
235 {
236 	struct btrfs_delayed_root *delayed_root;
237 	struct list_head *p;
238 	struct btrfs_delayed_node *next = NULL;
239 
240 	delayed_root = node->root->fs_info->delayed_root;
241 	spin_lock(&delayed_root->lock);
242 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
243 		/* not in the list */
244 		if (list_empty(&delayed_root->node_list))
245 			goto out;
246 		p = delayed_root->node_list.next;
247 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
248 		goto out;
249 	else
250 		p = node->n_list.next;
251 
252 	next = list_entry(p, struct btrfs_delayed_node, n_list);
253 	refcount_inc(&next->refs);
254 out:
255 	spin_unlock(&delayed_root->lock);
256 
257 	return next;
258 }
259 
260 static void __btrfs_release_delayed_node(
261 				struct btrfs_delayed_node *delayed_node,
262 				int mod)
263 {
264 	struct btrfs_delayed_root *delayed_root;
265 
266 	if (!delayed_node)
267 		return;
268 
269 	delayed_root = delayed_node->root->fs_info->delayed_root;
270 
271 	mutex_lock(&delayed_node->mutex);
272 	if (delayed_node->count)
273 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
274 	else
275 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
276 	mutex_unlock(&delayed_node->mutex);
277 
278 	if (refcount_dec_and_test(&delayed_node->refs)) {
279 		struct btrfs_root *root = delayed_node->root;
280 
281 		spin_lock(&root->inode_lock);
282 		/*
283 		 * Once our refcount goes to zero, nobody is allowed to bump it
284 		 * back up.  We can delete it now.
285 		 */
286 		ASSERT(refcount_read(&delayed_node->refs) == 0);
287 		radix_tree_delete(&root->delayed_nodes_tree,
288 				  delayed_node->inode_id);
289 		spin_unlock(&root->inode_lock);
290 		kmem_cache_free(delayed_node_cache, delayed_node);
291 	}
292 }
293 
294 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
295 {
296 	__btrfs_release_delayed_node(node, 0);
297 }
298 
299 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
300 					struct btrfs_delayed_root *delayed_root)
301 {
302 	struct list_head *p;
303 	struct btrfs_delayed_node *node = NULL;
304 
305 	spin_lock(&delayed_root->lock);
306 	if (list_empty(&delayed_root->prepare_list))
307 		goto out;
308 
309 	p = delayed_root->prepare_list.next;
310 	list_del_init(p);
311 	node = list_entry(p, struct btrfs_delayed_node, p_list);
312 	refcount_inc(&node->refs);
313 out:
314 	spin_unlock(&delayed_root->lock);
315 
316 	return node;
317 }
318 
319 static inline void btrfs_release_prepared_delayed_node(
320 					struct btrfs_delayed_node *node)
321 {
322 	__btrfs_release_delayed_node(node, 1);
323 }
324 
325 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
326 {
327 	struct btrfs_delayed_item *item;
328 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
329 	if (item) {
330 		item->data_len = data_len;
331 		item->ins_or_del = 0;
332 		item->bytes_reserved = 0;
333 		item->delayed_node = NULL;
334 		refcount_set(&item->refs, 1);
335 	}
336 	return item;
337 }
338 
339 /*
340  * __btrfs_lookup_delayed_item - look up the delayed item by key
341  * @delayed_node: pointer to the delayed node
342  * @key:	  the key to look up
343  * @prev:	  used to store the prev item if the right item isn't found
344  * @next:	  used to store the next item if the right item isn't found
345  *
346  * Note: if we don't find the right item, we will return the prev item and
347  * the next item.
348  */
349 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
350 				struct rb_root *root,
351 				struct btrfs_key *key,
352 				struct btrfs_delayed_item **prev,
353 				struct btrfs_delayed_item **next)
354 {
355 	struct rb_node *node, *prev_node = NULL;
356 	struct btrfs_delayed_item *delayed_item = NULL;
357 	int ret = 0;
358 
359 	node = root->rb_node;
360 
361 	while (node) {
362 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
363 					rb_node);
364 		prev_node = node;
365 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
366 		if (ret < 0)
367 			node = node->rb_right;
368 		else if (ret > 0)
369 			node = node->rb_left;
370 		else
371 			return delayed_item;
372 	}
373 
374 	if (prev) {
375 		if (!prev_node)
376 			*prev = NULL;
377 		else if (ret < 0)
378 			*prev = delayed_item;
379 		else if ((node = rb_prev(prev_node)) != NULL) {
380 			*prev = rb_entry(node, struct btrfs_delayed_item,
381 					 rb_node);
382 		} else
383 			*prev = NULL;
384 	}
385 
386 	if (next) {
387 		if (!prev_node)
388 			*next = NULL;
389 		else if (ret > 0)
390 			*next = delayed_item;
391 		else if ((node = rb_next(prev_node)) != NULL) {
392 			*next = rb_entry(node, struct btrfs_delayed_item,
393 					 rb_node);
394 		} else
395 			*next = NULL;
396 	}
397 	return NULL;
398 }
399 
400 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
401 					struct btrfs_delayed_node *delayed_node,
402 					struct btrfs_key *key)
403 {
404 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
405 					   NULL, NULL);
406 }
407 
408 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
409 				    struct btrfs_delayed_item *ins,
410 				    int action)
411 {
412 	struct rb_node **p, *node;
413 	struct rb_node *parent_node = NULL;
414 	struct rb_root *root;
415 	struct btrfs_delayed_item *item;
416 	int cmp;
417 
418 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
419 		root = &delayed_node->ins_root;
420 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
421 		root = &delayed_node->del_root;
422 	else
423 		BUG();
424 	p = &root->rb_node;
425 	node = &ins->rb_node;
426 
427 	while (*p) {
428 		parent_node = *p;
429 		item = rb_entry(parent_node, struct btrfs_delayed_item,
430 				 rb_node);
431 
432 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
433 		if (cmp < 0)
434 			p = &(*p)->rb_right;
435 		else if (cmp > 0)
436 			p = &(*p)->rb_left;
437 		else
438 			return -EEXIST;
439 	}
440 
441 	rb_link_node(node, parent_node, p);
442 	rb_insert_color(node, root);
443 	ins->delayed_node = delayed_node;
444 	ins->ins_or_del = action;
445 
446 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
447 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
448 	    ins->key.offset >= delayed_node->index_cnt)
449 			delayed_node->index_cnt = ins->key.offset + 1;
450 
451 	delayed_node->count++;
452 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
453 	return 0;
454 }
455 
456 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
457 					      struct btrfs_delayed_item *item)
458 {
459 	return __btrfs_add_delayed_item(node, item,
460 					BTRFS_DELAYED_INSERTION_ITEM);
461 }
462 
463 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
464 					     struct btrfs_delayed_item *item)
465 {
466 	return __btrfs_add_delayed_item(node, item,
467 					BTRFS_DELAYED_DELETION_ITEM);
468 }
469 
470 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
471 {
472 	int seq = atomic_inc_return(&delayed_root->items_seq);
473 
474 	/*
475 	 * atomic_dec_return implies a barrier for waitqueue_active
476 	 */
477 	if ((atomic_dec_return(&delayed_root->items) <
478 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
479 	    waitqueue_active(&delayed_root->wait))
480 		wake_up(&delayed_root->wait);
481 }
482 
483 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
484 {
485 	struct rb_root *root;
486 	struct btrfs_delayed_root *delayed_root;
487 
488 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
489 
490 	BUG_ON(!delayed_root);
491 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
492 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
493 
494 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
495 		root = &delayed_item->delayed_node->ins_root;
496 	else
497 		root = &delayed_item->delayed_node->del_root;
498 
499 	rb_erase(&delayed_item->rb_node, root);
500 	delayed_item->delayed_node->count--;
501 
502 	finish_one_item(delayed_root);
503 }
504 
505 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
506 {
507 	if (item) {
508 		__btrfs_remove_delayed_item(item);
509 		if (refcount_dec_and_test(&item->refs))
510 			kfree(item);
511 	}
512 }
513 
514 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
515 					struct btrfs_delayed_node *delayed_node)
516 {
517 	struct rb_node *p;
518 	struct btrfs_delayed_item *item = NULL;
519 
520 	p = rb_first(&delayed_node->ins_root);
521 	if (p)
522 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
523 
524 	return item;
525 }
526 
527 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
528 					struct btrfs_delayed_node *delayed_node)
529 {
530 	struct rb_node *p;
531 	struct btrfs_delayed_item *item = NULL;
532 
533 	p = rb_first(&delayed_node->del_root);
534 	if (p)
535 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
536 
537 	return item;
538 }
539 
540 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
541 						struct btrfs_delayed_item *item)
542 {
543 	struct rb_node *p;
544 	struct btrfs_delayed_item *next = NULL;
545 
546 	p = rb_next(&item->rb_node);
547 	if (p)
548 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
549 
550 	return next;
551 }
552 
553 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
554 					       struct btrfs_fs_info *fs_info,
555 					       struct btrfs_delayed_item *item)
556 {
557 	struct btrfs_block_rsv *src_rsv;
558 	struct btrfs_block_rsv *dst_rsv;
559 	u64 num_bytes;
560 	int ret;
561 
562 	if (!trans->bytes_reserved)
563 		return 0;
564 
565 	src_rsv = trans->block_rsv;
566 	dst_rsv = &fs_info->delayed_block_rsv;
567 
568 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
569 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
570 	if (!ret) {
571 		trace_btrfs_space_reservation(fs_info, "delayed_item",
572 					      item->key.objectid,
573 					      num_bytes, 1);
574 		item->bytes_reserved = num_bytes;
575 	}
576 
577 	return ret;
578 }
579 
580 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
581 						struct btrfs_delayed_item *item)
582 {
583 	struct btrfs_block_rsv *rsv;
584 
585 	if (!item->bytes_reserved)
586 		return;
587 
588 	rsv = &fs_info->delayed_block_rsv;
589 	trace_btrfs_space_reservation(fs_info, "delayed_item",
590 				      item->key.objectid, item->bytes_reserved,
591 				      0);
592 	btrfs_block_rsv_release(fs_info, rsv,
593 				item->bytes_reserved);
594 }
595 
596 static int btrfs_delayed_inode_reserve_metadata(
597 					struct btrfs_trans_handle *trans,
598 					struct btrfs_root *root,
599 					struct btrfs_inode *inode,
600 					struct btrfs_delayed_node *node)
601 {
602 	struct btrfs_fs_info *fs_info = root->fs_info;
603 	struct btrfs_block_rsv *src_rsv;
604 	struct btrfs_block_rsv *dst_rsv;
605 	u64 num_bytes;
606 	int ret;
607 
608 	src_rsv = trans->block_rsv;
609 	dst_rsv = &fs_info->delayed_block_rsv;
610 
611 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
612 
613 	/*
614 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
615 	 * which doesn't reserve space for speed.  This is a problem since we
616 	 * still need to reserve space for this update, so try to reserve the
617 	 * space.
618 	 *
619 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
620 	 * we always reserve enough to update the inode item.
621 	 */
622 	if (!src_rsv || (!trans->bytes_reserved &&
623 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
624 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
625 					  BTRFS_RESERVE_NO_FLUSH);
626 		/*
627 		 * Since we're under a transaction reserve_metadata_bytes could
628 		 * try to commit the transaction which will make it return
629 		 * EAGAIN to make us stop the transaction we have, so return
630 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
631 		 */
632 		if (ret == -EAGAIN)
633 			ret = -ENOSPC;
634 		if (!ret) {
635 			node->bytes_reserved = num_bytes;
636 			trace_btrfs_space_reservation(fs_info,
637 						      "delayed_inode",
638 						      btrfs_ino(inode),
639 						      num_bytes, 1);
640 		}
641 		return ret;
642 	}
643 
644 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
645 	if (!ret) {
646 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
647 					      btrfs_ino(inode), num_bytes, 1);
648 		node->bytes_reserved = num_bytes;
649 	}
650 
651 	return ret;
652 }
653 
654 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
655 						struct btrfs_delayed_node *node)
656 {
657 	struct btrfs_block_rsv *rsv;
658 
659 	if (!node->bytes_reserved)
660 		return;
661 
662 	rsv = &fs_info->delayed_block_rsv;
663 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
664 				      node->inode_id, node->bytes_reserved, 0);
665 	btrfs_block_rsv_release(fs_info, rsv,
666 				node->bytes_reserved);
667 	node->bytes_reserved = 0;
668 }
669 
670 /*
671  * This helper will insert some continuous items into the same leaf according
672  * to the free space of the leaf.
673  */
674 static int btrfs_batch_insert_items(struct btrfs_root *root,
675 				    struct btrfs_path *path,
676 				    struct btrfs_delayed_item *item)
677 {
678 	struct btrfs_fs_info *fs_info = root->fs_info;
679 	struct btrfs_delayed_item *curr, *next;
680 	int free_space;
681 	int total_data_size = 0, total_size = 0;
682 	struct extent_buffer *leaf;
683 	char *data_ptr;
684 	struct btrfs_key *keys;
685 	u32 *data_size;
686 	struct list_head head;
687 	int slot;
688 	int nitems;
689 	int i;
690 	int ret = 0;
691 
692 	BUG_ON(!path->nodes[0]);
693 
694 	leaf = path->nodes[0];
695 	free_space = btrfs_leaf_free_space(fs_info, leaf);
696 	INIT_LIST_HEAD(&head);
697 
698 	next = item;
699 	nitems = 0;
700 
701 	/*
702 	 * count the number of the continuous items that we can insert in batch
703 	 */
704 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
705 	       free_space) {
706 		total_data_size += next->data_len;
707 		total_size += next->data_len + sizeof(struct btrfs_item);
708 		list_add_tail(&next->tree_list, &head);
709 		nitems++;
710 
711 		curr = next;
712 		next = __btrfs_next_delayed_item(curr);
713 		if (!next)
714 			break;
715 
716 		if (!btrfs_is_continuous_delayed_item(curr, next))
717 			break;
718 	}
719 
720 	if (!nitems) {
721 		ret = 0;
722 		goto out;
723 	}
724 
725 	/*
726 	 * we need allocate some memory space, but it might cause the task
727 	 * to sleep, so we set all locked nodes in the path to blocking locks
728 	 * first.
729 	 */
730 	btrfs_set_path_blocking(path);
731 
732 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
733 	if (!keys) {
734 		ret = -ENOMEM;
735 		goto out;
736 	}
737 
738 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
739 	if (!data_size) {
740 		ret = -ENOMEM;
741 		goto error;
742 	}
743 
744 	/* get keys of all the delayed items */
745 	i = 0;
746 	list_for_each_entry(next, &head, tree_list) {
747 		keys[i] = next->key;
748 		data_size[i] = next->data_len;
749 		i++;
750 	}
751 
752 	/* reset all the locked nodes in the patch to spinning locks. */
753 	btrfs_clear_path_blocking(path, NULL, 0);
754 
755 	/* insert the keys of the items */
756 	setup_items_for_insert(root, path, keys, data_size,
757 			       total_data_size, total_size, nitems);
758 
759 	/* insert the dir index items */
760 	slot = path->slots[0];
761 	list_for_each_entry_safe(curr, next, &head, tree_list) {
762 		data_ptr = btrfs_item_ptr(leaf, slot, char);
763 		write_extent_buffer(leaf, &curr->data,
764 				    (unsigned long)data_ptr,
765 				    curr->data_len);
766 		slot++;
767 
768 		btrfs_delayed_item_release_metadata(fs_info, curr);
769 
770 		list_del(&curr->tree_list);
771 		btrfs_release_delayed_item(curr);
772 	}
773 
774 error:
775 	kfree(data_size);
776 	kfree(keys);
777 out:
778 	return ret;
779 }
780 
781 /*
782  * This helper can just do simple insertion that needn't extend item for new
783  * data, such as directory name index insertion, inode insertion.
784  */
785 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
786 				     struct btrfs_root *root,
787 				     struct btrfs_path *path,
788 				     struct btrfs_delayed_item *delayed_item)
789 {
790 	struct btrfs_fs_info *fs_info = root->fs_info;
791 	struct extent_buffer *leaf;
792 	char *ptr;
793 	int ret;
794 
795 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
796 				      delayed_item->data_len);
797 	if (ret < 0 && ret != -EEXIST)
798 		return ret;
799 
800 	leaf = path->nodes[0];
801 
802 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
803 
804 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
805 			    delayed_item->data_len);
806 	btrfs_mark_buffer_dirty(leaf);
807 
808 	btrfs_delayed_item_release_metadata(fs_info, delayed_item);
809 	return 0;
810 }
811 
812 /*
813  * we insert an item first, then if there are some continuous items, we try
814  * to insert those items into the same leaf.
815  */
816 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
817 				      struct btrfs_path *path,
818 				      struct btrfs_root *root,
819 				      struct btrfs_delayed_node *node)
820 {
821 	struct btrfs_delayed_item *curr, *prev;
822 	int ret = 0;
823 
824 do_again:
825 	mutex_lock(&node->mutex);
826 	curr = __btrfs_first_delayed_insertion_item(node);
827 	if (!curr)
828 		goto insert_end;
829 
830 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
831 	if (ret < 0) {
832 		btrfs_release_path(path);
833 		goto insert_end;
834 	}
835 
836 	prev = curr;
837 	curr = __btrfs_next_delayed_item(prev);
838 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
839 		/* insert the continuous items into the same leaf */
840 		path->slots[0]++;
841 		btrfs_batch_insert_items(root, path, curr);
842 	}
843 	btrfs_release_delayed_item(prev);
844 	btrfs_mark_buffer_dirty(path->nodes[0]);
845 
846 	btrfs_release_path(path);
847 	mutex_unlock(&node->mutex);
848 	goto do_again;
849 
850 insert_end:
851 	mutex_unlock(&node->mutex);
852 	return ret;
853 }
854 
855 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
856 				    struct btrfs_root *root,
857 				    struct btrfs_path *path,
858 				    struct btrfs_delayed_item *item)
859 {
860 	struct btrfs_fs_info *fs_info = root->fs_info;
861 	struct btrfs_delayed_item *curr, *next;
862 	struct extent_buffer *leaf;
863 	struct btrfs_key key;
864 	struct list_head head;
865 	int nitems, i, last_item;
866 	int ret = 0;
867 
868 	BUG_ON(!path->nodes[0]);
869 
870 	leaf = path->nodes[0];
871 
872 	i = path->slots[0];
873 	last_item = btrfs_header_nritems(leaf) - 1;
874 	if (i > last_item)
875 		return -ENOENT;	/* FIXME: Is errno suitable? */
876 
877 	next = item;
878 	INIT_LIST_HEAD(&head);
879 	btrfs_item_key_to_cpu(leaf, &key, i);
880 	nitems = 0;
881 	/*
882 	 * count the number of the dir index items that we can delete in batch
883 	 */
884 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
885 		list_add_tail(&next->tree_list, &head);
886 		nitems++;
887 
888 		curr = next;
889 		next = __btrfs_next_delayed_item(curr);
890 		if (!next)
891 			break;
892 
893 		if (!btrfs_is_continuous_delayed_item(curr, next))
894 			break;
895 
896 		i++;
897 		if (i > last_item)
898 			break;
899 		btrfs_item_key_to_cpu(leaf, &key, i);
900 	}
901 
902 	if (!nitems)
903 		return 0;
904 
905 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
906 	if (ret)
907 		goto out;
908 
909 	list_for_each_entry_safe(curr, next, &head, tree_list) {
910 		btrfs_delayed_item_release_metadata(fs_info, curr);
911 		list_del(&curr->tree_list);
912 		btrfs_release_delayed_item(curr);
913 	}
914 
915 out:
916 	return ret;
917 }
918 
919 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
920 				      struct btrfs_path *path,
921 				      struct btrfs_root *root,
922 				      struct btrfs_delayed_node *node)
923 {
924 	struct btrfs_delayed_item *curr, *prev;
925 	int ret = 0;
926 
927 do_again:
928 	mutex_lock(&node->mutex);
929 	curr = __btrfs_first_delayed_deletion_item(node);
930 	if (!curr)
931 		goto delete_fail;
932 
933 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
934 	if (ret < 0)
935 		goto delete_fail;
936 	else if (ret > 0) {
937 		/*
938 		 * can't find the item which the node points to, so this node
939 		 * is invalid, just drop it.
940 		 */
941 		prev = curr;
942 		curr = __btrfs_next_delayed_item(prev);
943 		btrfs_release_delayed_item(prev);
944 		ret = 0;
945 		btrfs_release_path(path);
946 		if (curr) {
947 			mutex_unlock(&node->mutex);
948 			goto do_again;
949 		} else
950 			goto delete_fail;
951 	}
952 
953 	btrfs_batch_delete_items(trans, root, path, curr);
954 	btrfs_release_path(path);
955 	mutex_unlock(&node->mutex);
956 	goto do_again;
957 
958 delete_fail:
959 	btrfs_release_path(path);
960 	mutex_unlock(&node->mutex);
961 	return ret;
962 }
963 
964 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
965 {
966 	struct btrfs_delayed_root *delayed_root;
967 
968 	if (delayed_node &&
969 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
970 		BUG_ON(!delayed_node->root);
971 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
972 		delayed_node->count--;
973 
974 		delayed_root = delayed_node->root->fs_info->delayed_root;
975 		finish_one_item(delayed_root);
976 	}
977 }
978 
979 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
980 {
981 	struct btrfs_delayed_root *delayed_root;
982 
983 	ASSERT(delayed_node->root);
984 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
985 	delayed_node->count--;
986 
987 	delayed_root = delayed_node->root->fs_info->delayed_root;
988 	finish_one_item(delayed_root);
989 }
990 
991 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
992 					struct btrfs_root *root,
993 					struct btrfs_path *path,
994 					struct btrfs_delayed_node *node)
995 {
996 	struct btrfs_fs_info *fs_info = root->fs_info;
997 	struct btrfs_key key;
998 	struct btrfs_inode_item *inode_item;
999 	struct extent_buffer *leaf;
1000 	int mod;
1001 	int ret;
1002 
1003 	key.objectid = node->inode_id;
1004 	key.type = BTRFS_INODE_ITEM_KEY;
1005 	key.offset = 0;
1006 
1007 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1008 		mod = -1;
1009 	else
1010 		mod = 1;
1011 
1012 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1013 	if (ret > 0) {
1014 		btrfs_release_path(path);
1015 		return -ENOENT;
1016 	} else if (ret < 0) {
1017 		return ret;
1018 	}
1019 
1020 	leaf = path->nodes[0];
1021 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1022 				    struct btrfs_inode_item);
1023 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1024 			    sizeof(struct btrfs_inode_item));
1025 	btrfs_mark_buffer_dirty(leaf);
1026 
1027 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028 		goto no_iref;
1029 
1030 	path->slots[0]++;
1031 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1032 		goto search;
1033 again:
1034 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1035 	if (key.objectid != node->inode_id)
1036 		goto out;
1037 
1038 	if (key.type != BTRFS_INODE_REF_KEY &&
1039 	    key.type != BTRFS_INODE_EXTREF_KEY)
1040 		goto out;
1041 
1042 	/*
1043 	 * Delayed iref deletion is for the inode who has only one link,
1044 	 * so there is only one iref. The case that several irefs are
1045 	 * in the same item doesn't exist.
1046 	 */
1047 	btrfs_del_item(trans, root, path);
1048 out:
1049 	btrfs_release_delayed_iref(node);
1050 no_iref:
1051 	btrfs_release_path(path);
1052 err_out:
1053 	btrfs_delayed_inode_release_metadata(fs_info, node);
1054 	btrfs_release_delayed_inode(node);
1055 
1056 	return ret;
1057 
1058 search:
1059 	btrfs_release_path(path);
1060 
1061 	key.type = BTRFS_INODE_EXTREF_KEY;
1062 	key.offset = -1;
1063 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1064 	if (ret < 0)
1065 		goto err_out;
1066 	ASSERT(ret);
1067 
1068 	ret = 0;
1069 	leaf = path->nodes[0];
1070 	path->slots[0]--;
1071 	goto again;
1072 }
1073 
1074 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1075 					     struct btrfs_root *root,
1076 					     struct btrfs_path *path,
1077 					     struct btrfs_delayed_node *node)
1078 {
1079 	int ret;
1080 
1081 	mutex_lock(&node->mutex);
1082 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1083 		mutex_unlock(&node->mutex);
1084 		return 0;
1085 	}
1086 
1087 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1088 	mutex_unlock(&node->mutex);
1089 	return ret;
1090 }
1091 
1092 static inline int
1093 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1094 				   struct btrfs_path *path,
1095 				   struct btrfs_delayed_node *node)
1096 {
1097 	int ret;
1098 
1099 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1100 	if (ret)
1101 		return ret;
1102 
1103 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1104 	if (ret)
1105 		return ret;
1106 
1107 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1108 	return ret;
1109 }
1110 
1111 /*
1112  * Called when committing the transaction.
1113  * Returns 0 on success.
1114  * Returns < 0 on error and returns with an aborted transaction with any
1115  * outstanding delayed items cleaned up.
1116  */
1117 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1118 				     struct btrfs_fs_info *fs_info, int nr)
1119 {
1120 	struct btrfs_delayed_root *delayed_root;
1121 	struct btrfs_delayed_node *curr_node, *prev_node;
1122 	struct btrfs_path *path;
1123 	struct btrfs_block_rsv *block_rsv;
1124 	int ret = 0;
1125 	bool count = (nr > 0);
1126 
1127 	if (trans->aborted)
1128 		return -EIO;
1129 
1130 	path = btrfs_alloc_path();
1131 	if (!path)
1132 		return -ENOMEM;
1133 	path->leave_spinning = 1;
1134 
1135 	block_rsv = trans->block_rsv;
1136 	trans->block_rsv = &fs_info->delayed_block_rsv;
1137 
1138 	delayed_root = fs_info->delayed_root;
1139 
1140 	curr_node = btrfs_first_delayed_node(delayed_root);
1141 	while (curr_node && (!count || (count && nr--))) {
1142 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1143 							 curr_node);
1144 		if (ret) {
1145 			btrfs_release_delayed_node(curr_node);
1146 			curr_node = NULL;
1147 			btrfs_abort_transaction(trans, ret);
1148 			break;
1149 		}
1150 
1151 		prev_node = curr_node;
1152 		curr_node = btrfs_next_delayed_node(curr_node);
1153 		btrfs_release_delayed_node(prev_node);
1154 	}
1155 
1156 	if (curr_node)
1157 		btrfs_release_delayed_node(curr_node);
1158 	btrfs_free_path(path);
1159 	trans->block_rsv = block_rsv;
1160 
1161 	return ret;
1162 }
1163 
1164 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1165 			    struct btrfs_fs_info *fs_info)
1166 {
1167 	return __btrfs_run_delayed_items(trans, fs_info, -1);
1168 }
1169 
1170 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1171 			       struct btrfs_fs_info *fs_info, int nr)
1172 {
1173 	return __btrfs_run_delayed_items(trans, fs_info, nr);
1174 }
1175 
1176 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1177 				     struct btrfs_inode *inode)
1178 {
1179 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1180 	struct btrfs_path *path;
1181 	struct btrfs_block_rsv *block_rsv;
1182 	int ret;
1183 
1184 	if (!delayed_node)
1185 		return 0;
1186 
1187 	mutex_lock(&delayed_node->mutex);
1188 	if (!delayed_node->count) {
1189 		mutex_unlock(&delayed_node->mutex);
1190 		btrfs_release_delayed_node(delayed_node);
1191 		return 0;
1192 	}
1193 	mutex_unlock(&delayed_node->mutex);
1194 
1195 	path = btrfs_alloc_path();
1196 	if (!path) {
1197 		btrfs_release_delayed_node(delayed_node);
1198 		return -ENOMEM;
1199 	}
1200 	path->leave_spinning = 1;
1201 
1202 	block_rsv = trans->block_rsv;
1203 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1204 
1205 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1206 
1207 	btrfs_release_delayed_node(delayed_node);
1208 	btrfs_free_path(path);
1209 	trans->block_rsv = block_rsv;
1210 
1211 	return ret;
1212 }
1213 
1214 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1215 {
1216 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1217 	struct btrfs_trans_handle *trans;
1218 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1219 	struct btrfs_path *path;
1220 	struct btrfs_block_rsv *block_rsv;
1221 	int ret;
1222 
1223 	if (!delayed_node)
1224 		return 0;
1225 
1226 	mutex_lock(&delayed_node->mutex);
1227 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1228 		mutex_unlock(&delayed_node->mutex);
1229 		btrfs_release_delayed_node(delayed_node);
1230 		return 0;
1231 	}
1232 	mutex_unlock(&delayed_node->mutex);
1233 
1234 	trans = btrfs_join_transaction(delayed_node->root);
1235 	if (IS_ERR(trans)) {
1236 		ret = PTR_ERR(trans);
1237 		goto out;
1238 	}
1239 
1240 	path = btrfs_alloc_path();
1241 	if (!path) {
1242 		ret = -ENOMEM;
1243 		goto trans_out;
1244 	}
1245 	path->leave_spinning = 1;
1246 
1247 	block_rsv = trans->block_rsv;
1248 	trans->block_rsv = &fs_info->delayed_block_rsv;
1249 
1250 	mutex_lock(&delayed_node->mutex);
1251 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1252 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1253 						   path, delayed_node);
1254 	else
1255 		ret = 0;
1256 	mutex_unlock(&delayed_node->mutex);
1257 
1258 	btrfs_free_path(path);
1259 	trans->block_rsv = block_rsv;
1260 trans_out:
1261 	btrfs_end_transaction(trans);
1262 	btrfs_btree_balance_dirty(fs_info);
1263 out:
1264 	btrfs_release_delayed_node(delayed_node);
1265 
1266 	return ret;
1267 }
1268 
1269 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1270 {
1271 	struct btrfs_delayed_node *delayed_node;
1272 
1273 	delayed_node = READ_ONCE(inode->delayed_node);
1274 	if (!delayed_node)
1275 		return;
1276 
1277 	inode->delayed_node = NULL;
1278 	btrfs_release_delayed_node(delayed_node);
1279 }
1280 
1281 struct btrfs_async_delayed_work {
1282 	struct btrfs_delayed_root *delayed_root;
1283 	int nr;
1284 	struct btrfs_work work;
1285 };
1286 
1287 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1288 {
1289 	struct btrfs_async_delayed_work *async_work;
1290 	struct btrfs_delayed_root *delayed_root;
1291 	struct btrfs_trans_handle *trans;
1292 	struct btrfs_path *path;
1293 	struct btrfs_delayed_node *delayed_node = NULL;
1294 	struct btrfs_root *root;
1295 	struct btrfs_block_rsv *block_rsv;
1296 	int total_done = 0;
1297 
1298 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1299 	delayed_root = async_work->delayed_root;
1300 
1301 	path = btrfs_alloc_path();
1302 	if (!path)
1303 		goto out;
1304 
1305 again:
1306 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1307 		goto free_path;
1308 
1309 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1310 	if (!delayed_node)
1311 		goto free_path;
1312 
1313 	path->leave_spinning = 1;
1314 	root = delayed_node->root;
1315 
1316 	trans = btrfs_join_transaction(root);
1317 	if (IS_ERR(trans))
1318 		goto release_path;
1319 
1320 	block_rsv = trans->block_rsv;
1321 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1322 
1323 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1324 
1325 	trans->block_rsv = block_rsv;
1326 	btrfs_end_transaction(trans);
1327 	btrfs_btree_balance_dirty_nodelay(root->fs_info);
1328 
1329 release_path:
1330 	btrfs_release_path(path);
1331 	total_done++;
1332 
1333 	btrfs_release_prepared_delayed_node(delayed_node);
1334 	if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1335 	    total_done < async_work->nr)
1336 		goto again;
1337 
1338 free_path:
1339 	btrfs_free_path(path);
1340 out:
1341 	wake_up(&delayed_root->wait);
1342 	kfree(async_work);
1343 }
1344 
1345 
1346 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1347 				     struct btrfs_fs_info *fs_info, int nr)
1348 {
1349 	struct btrfs_async_delayed_work *async_work;
1350 
1351 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1352 	    btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1353 		return 0;
1354 
1355 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1356 	if (!async_work)
1357 		return -ENOMEM;
1358 
1359 	async_work->delayed_root = delayed_root;
1360 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1361 			btrfs_async_run_delayed_root, NULL, NULL);
1362 	async_work->nr = nr;
1363 
1364 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1365 	return 0;
1366 }
1367 
1368 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1369 {
1370 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1371 }
1372 
1373 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1374 {
1375 	int val = atomic_read(&delayed_root->items_seq);
1376 
1377 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1378 		return 1;
1379 
1380 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1381 		return 1;
1382 
1383 	return 0;
1384 }
1385 
1386 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1387 {
1388 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1389 
1390 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391 		return;
1392 
1393 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1394 		int seq;
1395 		int ret;
1396 
1397 		seq = atomic_read(&delayed_root->items_seq);
1398 
1399 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1400 		if (ret)
1401 			return;
1402 
1403 		wait_event_interruptible(delayed_root->wait,
1404 					 could_end_wait(delayed_root, seq));
1405 		return;
1406 	}
1407 
1408 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1409 }
1410 
1411 /* Will return 0 or -ENOMEM */
1412 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1413 				   struct btrfs_fs_info *fs_info,
1414 				   const char *name, int name_len,
1415 				   struct btrfs_inode *dir,
1416 				   struct btrfs_disk_key *disk_key, u8 type,
1417 				   u64 index)
1418 {
1419 	struct btrfs_delayed_node *delayed_node;
1420 	struct btrfs_delayed_item *delayed_item;
1421 	struct btrfs_dir_item *dir_item;
1422 	int ret;
1423 
1424 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1425 	if (IS_ERR(delayed_node))
1426 		return PTR_ERR(delayed_node);
1427 
1428 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429 	if (!delayed_item) {
1430 		ret = -ENOMEM;
1431 		goto release_node;
1432 	}
1433 
1434 	delayed_item->key.objectid = btrfs_ino(dir);
1435 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436 	delayed_item->key.offset = index;
1437 
1438 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439 	dir_item->location = *disk_key;
1440 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441 	btrfs_set_stack_dir_data_len(dir_item, 0);
1442 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1443 	btrfs_set_stack_dir_type(dir_item, type);
1444 	memcpy((char *)(dir_item + 1), name, name_len);
1445 
1446 	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1447 	/*
1448 	 * we have reserved enough space when we start a new transaction,
1449 	 * so reserving metadata failure is impossible
1450 	 */
1451 	BUG_ON(ret);
1452 
1453 
1454 	mutex_lock(&delayed_node->mutex);
1455 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1456 	if (unlikely(ret)) {
1457 		btrfs_err(fs_info,
1458 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1459 			  name_len, name, delayed_node->root->objectid,
1460 			  delayed_node->inode_id, ret);
1461 		BUG();
1462 	}
1463 	mutex_unlock(&delayed_node->mutex);
1464 
1465 release_node:
1466 	btrfs_release_delayed_node(delayed_node);
1467 	return ret;
1468 }
1469 
1470 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1471 					       struct btrfs_delayed_node *node,
1472 					       struct btrfs_key *key)
1473 {
1474 	struct btrfs_delayed_item *item;
1475 
1476 	mutex_lock(&node->mutex);
1477 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1478 	if (!item) {
1479 		mutex_unlock(&node->mutex);
1480 		return 1;
1481 	}
1482 
1483 	btrfs_delayed_item_release_metadata(fs_info, item);
1484 	btrfs_release_delayed_item(item);
1485 	mutex_unlock(&node->mutex);
1486 	return 0;
1487 }
1488 
1489 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1490 				   struct btrfs_fs_info *fs_info,
1491 				   struct btrfs_inode *dir, u64 index)
1492 {
1493 	struct btrfs_delayed_node *node;
1494 	struct btrfs_delayed_item *item;
1495 	struct btrfs_key item_key;
1496 	int ret;
1497 
1498 	node = btrfs_get_or_create_delayed_node(dir);
1499 	if (IS_ERR(node))
1500 		return PTR_ERR(node);
1501 
1502 	item_key.objectid = btrfs_ino(dir);
1503 	item_key.type = BTRFS_DIR_INDEX_KEY;
1504 	item_key.offset = index;
1505 
1506 	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1507 	if (!ret)
1508 		goto end;
1509 
1510 	item = btrfs_alloc_delayed_item(0);
1511 	if (!item) {
1512 		ret = -ENOMEM;
1513 		goto end;
1514 	}
1515 
1516 	item->key = item_key;
1517 
1518 	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1519 	/*
1520 	 * we have reserved enough space when we start a new transaction,
1521 	 * so reserving metadata failure is impossible.
1522 	 */
1523 	BUG_ON(ret);
1524 
1525 	mutex_lock(&node->mutex);
1526 	ret = __btrfs_add_delayed_deletion_item(node, item);
1527 	if (unlikely(ret)) {
1528 		btrfs_err(fs_info,
1529 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1530 			  index, node->root->objectid, node->inode_id, ret);
1531 		BUG();
1532 	}
1533 	mutex_unlock(&node->mutex);
1534 end:
1535 	btrfs_release_delayed_node(node);
1536 	return ret;
1537 }
1538 
1539 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1540 {
1541 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1542 
1543 	if (!delayed_node)
1544 		return -ENOENT;
1545 
1546 	/*
1547 	 * Since we have held i_mutex of this directory, it is impossible that
1548 	 * a new directory index is added into the delayed node and index_cnt
1549 	 * is updated now. So we needn't lock the delayed node.
1550 	 */
1551 	if (!delayed_node->index_cnt) {
1552 		btrfs_release_delayed_node(delayed_node);
1553 		return -EINVAL;
1554 	}
1555 
1556 	inode->index_cnt = delayed_node->index_cnt;
1557 	btrfs_release_delayed_node(delayed_node);
1558 	return 0;
1559 }
1560 
1561 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1562 				     struct list_head *ins_list,
1563 				     struct list_head *del_list)
1564 {
1565 	struct btrfs_delayed_node *delayed_node;
1566 	struct btrfs_delayed_item *item;
1567 
1568 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1569 	if (!delayed_node)
1570 		return false;
1571 
1572 	/*
1573 	 * We can only do one readdir with delayed items at a time because of
1574 	 * item->readdir_list.
1575 	 */
1576 	inode_unlock_shared(inode);
1577 	inode_lock(inode);
1578 
1579 	mutex_lock(&delayed_node->mutex);
1580 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1581 	while (item) {
1582 		refcount_inc(&item->refs);
1583 		list_add_tail(&item->readdir_list, ins_list);
1584 		item = __btrfs_next_delayed_item(item);
1585 	}
1586 
1587 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1588 	while (item) {
1589 		refcount_inc(&item->refs);
1590 		list_add_tail(&item->readdir_list, del_list);
1591 		item = __btrfs_next_delayed_item(item);
1592 	}
1593 	mutex_unlock(&delayed_node->mutex);
1594 	/*
1595 	 * This delayed node is still cached in the btrfs inode, so refs
1596 	 * must be > 1 now, and we needn't check it is going to be freed
1597 	 * or not.
1598 	 *
1599 	 * Besides that, this function is used to read dir, we do not
1600 	 * insert/delete delayed items in this period. So we also needn't
1601 	 * requeue or dequeue this delayed node.
1602 	 */
1603 	refcount_dec(&delayed_node->refs);
1604 
1605 	return true;
1606 }
1607 
1608 void btrfs_readdir_put_delayed_items(struct inode *inode,
1609 				     struct list_head *ins_list,
1610 				     struct list_head *del_list)
1611 {
1612 	struct btrfs_delayed_item *curr, *next;
1613 
1614 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1615 		list_del(&curr->readdir_list);
1616 		if (refcount_dec_and_test(&curr->refs))
1617 			kfree(curr);
1618 	}
1619 
1620 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1621 		list_del(&curr->readdir_list);
1622 		if (refcount_dec_and_test(&curr->refs))
1623 			kfree(curr);
1624 	}
1625 
1626 	/*
1627 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1628 	 * read lock.
1629 	 */
1630 	downgrade_write(&inode->i_rwsem);
1631 }
1632 
1633 int btrfs_should_delete_dir_index(struct list_head *del_list,
1634 				  u64 index)
1635 {
1636 	struct btrfs_delayed_item *curr;
1637 	int ret = 0;
1638 
1639 	list_for_each_entry(curr, del_list, readdir_list) {
1640 		if (curr->key.offset > index)
1641 			break;
1642 		if (curr->key.offset == index) {
1643 			ret = 1;
1644 			break;
1645 		}
1646 	}
1647 	return ret;
1648 }
1649 
1650 /*
1651  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1652  *
1653  */
1654 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1655 				    struct list_head *ins_list)
1656 {
1657 	struct btrfs_dir_item *di;
1658 	struct btrfs_delayed_item *curr, *next;
1659 	struct btrfs_key location;
1660 	char *name;
1661 	int name_len;
1662 	int over = 0;
1663 	unsigned char d_type;
1664 
1665 	if (list_empty(ins_list))
1666 		return 0;
1667 
1668 	/*
1669 	 * Changing the data of the delayed item is impossible. So
1670 	 * we needn't lock them. And we have held i_mutex of the
1671 	 * directory, nobody can delete any directory indexes now.
1672 	 */
1673 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1674 		list_del(&curr->readdir_list);
1675 
1676 		if (curr->key.offset < ctx->pos) {
1677 			if (refcount_dec_and_test(&curr->refs))
1678 				kfree(curr);
1679 			continue;
1680 		}
1681 
1682 		ctx->pos = curr->key.offset;
1683 
1684 		di = (struct btrfs_dir_item *)curr->data;
1685 		name = (char *)(di + 1);
1686 		name_len = btrfs_stack_dir_name_len(di);
1687 
1688 		d_type = btrfs_filetype_table[di->type];
1689 		btrfs_disk_key_to_cpu(&location, &di->location);
1690 
1691 		over = !dir_emit(ctx, name, name_len,
1692 			       location.objectid, d_type);
1693 
1694 		if (refcount_dec_and_test(&curr->refs))
1695 			kfree(curr);
1696 
1697 		if (over)
1698 			return 1;
1699 		ctx->pos++;
1700 	}
1701 	return 0;
1702 }
1703 
1704 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1705 				  struct btrfs_inode_item *inode_item,
1706 				  struct inode *inode)
1707 {
1708 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1709 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1710 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1711 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1712 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1713 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1714 	btrfs_set_stack_inode_generation(inode_item,
1715 					 BTRFS_I(inode)->generation);
1716 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1717 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1718 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1719 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1720 	btrfs_set_stack_inode_block_group(inode_item, 0);
1721 
1722 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1723 				     inode->i_atime.tv_sec);
1724 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1725 				      inode->i_atime.tv_nsec);
1726 
1727 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1728 				     inode->i_mtime.tv_sec);
1729 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1730 				      inode->i_mtime.tv_nsec);
1731 
1732 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1733 				     inode->i_ctime.tv_sec);
1734 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1735 				      inode->i_ctime.tv_nsec);
1736 
1737 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1738 				     BTRFS_I(inode)->i_otime.tv_sec);
1739 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1740 				     BTRFS_I(inode)->i_otime.tv_nsec);
1741 }
1742 
1743 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1744 {
1745 	struct btrfs_delayed_node *delayed_node;
1746 	struct btrfs_inode_item *inode_item;
1747 
1748 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1749 	if (!delayed_node)
1750 		return -ENOENT;
1751 
1752 	mutex_lock(&delayed_node->mutex);
1753 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1754 		mutex_unlock(&delayed_node->mutex);
1755 		btrfs_release_delayed_node(delayed_node);
1756 		return -ENOENT;
1757 	}
1758 
1759 	inode_item = &delayed_node->inode_item;
1760 
1761 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1762 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1763 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1764 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1765 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1766 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1767 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1768         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1769 
1770 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1771 	inode->i_rdev = 0;
1772 	*rdev = btrfs_stack_inode_rdev(inode_item);
1773 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1774 
1775 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1776 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1777 
1778 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1779 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1780 
1781 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1782 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1783 
1784 	BTRFS_I(inode)->i_otime.tv_sec =
1785 		btrfs_stack_timespec_sec(&inode_item->otime);
1786 	BTRFS_I(inode)->i_otime.tv_nsec =
1787 		btrfs_stack_timespec_nsec(&inode_item->otime);
1788 
1789 	inode->i_generation = BTRFS_I(inode)->generation;
1790 	BTRFS_I(inode)->index_cnt = (u64)-1;
1791 
1792 	mutex_unlock(&delayed_node->mutex);
1793 	btrfs_release_delayed_node(delayed_node);
1794 	return 0;
1795 }
1796 
1797 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1798 			       struct btrfs_root *root, struct inode *inode)
1799 {
1800 	struct btrfs_delayed_node *delayed_node;
1801 	int ret = 0;
1802 
1803 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1804 	if (IS_ERR(delayed_node))
1805 		return PTR_ERR(delayed_node);
1806 
1807 	mutex_lock(&delayed_node->mutex);
1808 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1809 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1810 		goto release_node;
1811 	}
1812 
1813 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1814 						   delayed_node);
1815 	if (ret)
1816 		goto release_node;
1817 
1818 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1819 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1820 	delayed_node->count++;
1821 	atomic_inc(&root->fs_info->delayed_root->items);
1822 release_node:
1823 	mutex_unlock(&delayed_node->mutex);
1824 	btrfs_release_delayed_node(delayed_node);
1825 	return ret;
1826 }
1827 
1828 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1829 {
1830 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1831 	struct btrfs_delayed_node *delayed_node;
1832 
1833 	/*
1834 	 * we don't do delayed inode updates during log recovery because it
1835 	 * leads to enospc problems.  This means we also can't do
1836 	 * delayed inode refs
1837 	 */
1838 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1839 		return -EAGAIN;
1840 
1841 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1842 	if (IS_ERR(delayed_node))
1843 		return PTR_ERR(delayed_node);
1844 
1845 	/*
1846 	 * We don't reserve space for inode ref deletion is because:
1847 	 * - We ONLY do async inode ref deletion for the inode who has only
1848 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1849 	 *   And in most case, the inode ref and the inode item are in the
1850 	 *   same leaf, and we will deal with them at the same time.
1851 	 *   Since we are sure we will reserve the space for the inode item,
1852 	 *   it is unnecessary to reserve space for inode ref deletion.
1853 	 * - If the inode ref and the inode item are not in the same leaf,
1854 	 *   We also needn't worry about enospc problem, because we reserve
1855 	 *   much more space for the inode update than it needs.
1856 	 * - At the worst, we can steal some space from the global reservation.
1857 	 *   It is very rare.
1858 	 */
1859 	mutex_lock(&delayed_node->mutex);
1860 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1861 		goto release_node;
1862 
1863 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1864 	delayed_node->count++;
1865 	atomic_inc(&fs_info->delayed_root->items);
1866 release_node:
1867 	mutex_unlock(&delayed_node->mutex);
1868 	btrfs_release_delayed_node(delayed_node);
1869 	return 0;
1870 }
1871 
1872 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1873 {
1874 	struct btrfs_root *root = delayed_node->root;
1875 	struct btrfs_fs_info *fs_info = root->fs_info;
1876 	struct btrfs_delayed_item *curr_item, *prev_item;
1877 
1878 	mutex_lock(&delayed_node->mutex);
1879 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1880 	while (curr_item) {
1881 		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1882 		prev_item = curr_item;
1883 		curr_item = __btrfs_next_delayed_item(prev_item);
1884 		btrfs_release_delayed_item(prev_item);
1885 	}
1886 
1887 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1888 	while (curr_item) {
1889 		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1890 		prev_item = curr_item;
1891 		curr_item = __btrfs_next_delayed_item(prev_item);
1892 		btrfs_release_delayed_item(prev_item);
1893 	}
1894 
1895 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1896 		btrfs_release_delayed_iref(delayed_node);
1897 
1898 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1899 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1900 		btrfs_release_delayed_inode(delayed_node);
1901 	}
1902 	mutex_unlock(&delayed_node->mutex);
1903 }
1904 
1905 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1906 {
1907 	struct btrfs_delayed_node *delayed_node;
1908 
1909 	delayed_node = btrfs_get_delayed_node(inode);
1910 	if (!delayed_node)
1911 		return;
1912 
1913 	__btrfs_kill_delayed_node(delayed_node);
1914 	btrfs_release_delayed_node(delayed_node);
1915 }
1916 
1917 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1918 {
1919 	u64 inode_id = 0;
1920 	struct btrfs_delayed_node *delayed_nodes[8];
1921 	int i, n;
1922 
1923 	while (1) {
1924 		spin_lock(&root->inode_lock);
1925 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1926 					   (void **)delayed_nodes, inode_id,
1927 					   ARRAY_SIZE(delayed_nodes));
1928 		if (!n) {
1929 			spin_unlock(&root->inode_lock);
1930 			break;
1931 		}
1932 
1933 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1934 
1935 		for (i = 0; i < n; i++)
1936 			refcount_inc(&delayed_nodes[i]->refs);
1937 		spin_unlock(&root->inode_lock);
1938 
1939 		for (i = 0; i < n; i++) {
1940 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1941 			btrfs_release_delayed_node(delayed_nodes[i]);
1942 		}
1943 	}
1944 }
1945 
1946 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1947 {
1948 	struct btrfs_delayed_node *curr_node, *prev_node;
1949 
1950 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1951 	while (curr_node) {
1952 		__btrfs_kill_delayed_node(curr_node);
1953 
1954 		prev_node = curr_node;
1955 		curr_node = btrfs_next_delayed_node(curr_node);
1956 		btrfs_release_delayed_node(prev_node);
1957 	}
1958 }
1959 
1960