xref: /linux/fs/btrfs/delayed-inode.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 
25 #define BTRFS_DELAYED_WRITEBACK		400
26 #define BTRFS_DELAYED_BACKGROUND	100
27 
28 static struct kmem_cache *delayed_node_cache;
29 
30 int __init btrfs_delayed_inode_init(void)
31 {
32 	delayed_node_cache = kmem_cache_create("delayed_node",
33 					sizeof(struct btrfs_delayed_node),
34 					0,
35 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 					NULL);
37 	if (!delayed_node_cache)
38 		return -ENOMEM;
39 	return 0;
40 }
41 
42 void btrfs_delayed_inode_exit(void)
43 {
44 	if (delayed_node_cache)
45 		kmem_cache_destroy(delayed_node_cache);
46 }
47 
48 static inline void btrfs_init_delayed_node(
49 				struct btrfs_delayed_node *delayed_node,
50 				struct btrfs_root *root, u64 inode_id)
51 {
52 	delayed_node->root = root;
53 	delayed_node->inode_id = inode_id;
54 	atomic_set(&delayed_node->refs, 0);
55 	delayed_node->count = 0;
56 	delayed_node->in_list = 0;
57 	delayed_node->inode_dirty = 0;
58 	delayed_node->ins_root = RB_ROOT;
59 	delayed_node->del_root = RB_ROOT;
60 	mutex_init(&delayed_node->mutex);
61 	delayed_node->index_cnt = 0;
62 	INIT_LIST_HEAD(&delayed_node->n_list);
63 	INIT_LIST_HEAD(&delayed_node->p_list);
64 	delayed_node->bytes_reserved = 0;
65 }
66 
67 static inline int btrfs_is_continuous_delayed_item(
68 					struct btrfs_delayed_item *item1,
69 					struct btrfs_delayed_item *item2)
70 {
71 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 	    item1->key.objectid == item2->key.objectid &&
73 	    item1->key.type == item2->key.type &&
74 	    item1->key.offset + 1 == item2->key.offset)
75 		return 1;
76 	return 0;
77 }
78 
79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 							struct btrfs_root *root)
81 {
82 	return root->fs_info->delayed_root;
83 }
84 
85 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
86 							struct inode *inode)
87 {
88 	struct btrfs_delayed_node *node;
89 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 	struct btrfs_root *root = btrfs_inode->root;
91 	u64 ino = btrfs_ino(inode);
92 	int ret;
93 
94 again:
95 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
96 	if (node) {
97 		atomic_inc(&node->refs);	/* can be accessed */
98 		return node;
99 	}
100 
101 	spin_lock(&root->inode_lock);
102 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
103 	if (node) {
104 		if (btrfs_inode->delayed_node) {
105 			spin_unlock(&root->inode_lock);
106 			goto again;
107 		}
108 		btrfs_inode->delayed_node = node;
109 		atomic_inc(&node->refs);	/* can be accessed */
110 		atomic_inc(&node->refs);	/* cached in the inode */
111 		spin_unlock(&root->inode_lock);
112 		return node;
113 	}
114 	spin_unlock(&root->inode_lock);
115 
116 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
117 	if (!node)
118 		return ERR_PTR(-ENOMEM);
119 	btrfs_init_delayed_node(node, root, ino);
120 
121 	atomic_inc(&node->refs);	/* cached in the btrfs inode */
122 	atomic_inc(&node->refs);	/* can be accessed */
123 
124 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
125 	if (ret) {
126 		kmem_cache_free(delayed_node_cache, node);
127 		return ERR_PTR(ret);
128 	}
129 
130 	spin_lock(&root->inode_lock);
131 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
132 	if (ret == -EEXIST) {
133 		kmem_cache_free(delayed_node_cache, node);
134 		spin_unlock(&root->inode_lock);
135 		radix_tree_preload_end();
136 		goto again;
137 	}
138 	btrfs_inode->delayed_node = node;
139 	spin_unlock(&root->inode_lock);
140 	radix_tree_preload_end();
141 
142 	return node;
143 }
144 
145 /*
146  * Call it when holding delayed_node->mutex
147  *
148  * If mod = 1, add this node into the prepared list.
149  */
150 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
151 				     struct btrfs_delayed_node *node,
152 				     int mod)
153 {
154 	spin_lock(&root->lock);
155 	if (node->in_list) {
156 		if (!list_empty(&node->p_list))
157 			list_move_tail(&node->p_list, &root->prepare_list);
158 		else if (mod)
159 			list_add_tail(&node->p_list, &root->prepare_list);
160 	} else {
161 		list_add_tail(&node->n_list, &root->node_list);
162 		list_add_tail(&node->p_list, &root->prepare_list);
163 		atomic_inc(&node->refs);	/* inserted into list */
164 		root->nodes++;
165 		node->in_list = 1;
166 	}
167 	spin_unlock(&root->lock);
168 }
169 
170 /* Call it when holding delayed_node->mutex */
171 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
172 				       struct btrfs_delayed_node *node)
173 {
174 	spin_lock(&root->lock);
175 	if (node->in_list) {
176 		root->nodes--;
177 		atomic_dec(&node->refs);	/* not in the list */
178 		list_del_init(&node->n_list);
179 		if (!list_empty(&node->p_list))
180 			list_del_init(&node->p_list);
181 		node->in_list = 0;
182 	}
183 	spin_unlock(&root->lock);
184 }
185 
186 struct btrfs_delayed_node *btrfs_first_delayed_node(
187 			struct btrfs_delayed_root *delayed_root)
188 {
189 	struct list_head *p;
190 	struct btrfs_delayed_node *node = NULL;
191 
192 	spin_lock(&delayed_root->lock);
193 	if (list_empty(&delayed_root->node_list))
194 		goto out;
195 
196 	p = delayed_root->node_list.next;
197 	node = list_entry(p, struct btrfs_delayed_node, n_list);
198 	atomic_inc(&node->refs);
199 out:
200 	spin_unlock(&delayed_root->lock);
201 
202 	return node;
203 }
204 
205 struct btrfs_delayed_node *btrfs_next_delayed_node(
206 						struct btrfs_delayed_node *node)
207 {
208 	struct btrfs_delayed_root *delayed_root;
209 	struct list_head *p;
210 	struct btrfs_delayed_node *next = NULL;
211 
212 	delayed_root = node->root->fs_info->delayed_root;
213 	spin_lock(&delayed_root->lock);
214 	if (!node->in_list) {	/* not in the list */
215 		if (list_empty(&delayed_root->node_list))
216 			goto out;
217 		p = delayed_root->node_list.next;
218 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
219 		goto out;
220 	else
221 		p = node->n_list.next;
222 
223 	next = list_entry(p, struct btrfs_delayed_node, n_list);
224 	atomic_inc(&next->refs);
225 out:
226 	spin_unlock(&delayed_root->lock);
227 
228 	return next;
229 }
230 
231 static void __btrfs_release_delayed_node(
232 				struct btrfs_delayed_node *delayed_node,
233 				int mod)
234 {
235 	struct btrfs_delayed_root *delayed_root;
236 
237 	if (!delayed_node)
238 		return;
239 
240 	delayed_root = delayed_node->root->fs_info->delayed_root;
241 
242 	mutex_lock(&delayed_node->mutex);
243 	if (delayed_node->count)
244 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
245 	else
246 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
247 	mutex_unlock(&delayed_node->mutex);
248 
249 	if (atomic_dec_and_test(&delayed_node->refs)) {
250 		struct btrfs_root *root = delayed_node->root;
251 		spin_lock(&root->inode_lock);
252 		if (atomic_read(&delayed_node->refs) == 0) {
253 			radix_tree_delete(&root->delayed_nodes_tree,
254 					  delayed_node->inode_id);
255 			kmem_cache_free(delayed_node_cache, delayed_node);
256 		}
257 		spin_unlock(&root->inode_lock);
258 	}
259 }
260 
261 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
262 {
263 	__btrfs_release_delayed_node(node, 0);
264 }
265 
266 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
267 					struct btrfs_delayed_root *delayed_root)
268 {
269 	struct list_head *p;
270 	struct btrfs_delayed_node *node = NULL;
271 
272 	spin_lock(&delayed_root->lock);
273 	if (list_empty(&delayed_root->prepare_list))
274 		goto out;
275 
276 	p = delayed_root->prepare_list.next;
277 	list_del_init(p);
278 	node = list_entry(p, struct btrfs_delayed_node, p_list);
279 	atomic_inc(&node->refs);
280 out:
281 	spin_unlock(&delayed_root->lock);
282 
283 	return node;
284 }
285 
286 static inline void btrfs_release_prepared_delayed_node(
287 					struct btrfs_delayed_node *node)
288 {
289 	__btrfs_release_delayed_node(node, 1);
290 }
291 
292 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
293 {
294 	struct btrfs_delayed_item *item;
295 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
296 	if (item) {
297 		item->data_len = data_len;
298 		item->ins_or_del = 0;
299 		item->bytes_reserved = 0;
300 		item->block_rsv = NULL;
301 		item->delayed_node = NULL;
302 		atomic_set(&item->refs, 1);
303 	}
304 	return item;
305 }
306 
307 /*
308  * __btrfs_lookup_delayed_item - look up the delayed item by key
309  * @delayed_node: pointer to the delayed node
310  * @key:	  the key to look up
311  * @prev:	  used to store the prev item if the right item isn't found
312  * @next:	  used to store the next item if the right item isn't found
313  *
314  * Note: if we don't find the right item, we will return the prev item and
315  * the next item.
316  */
317 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
318 				struct rb_root *root,
319 				struct btrfs_key *key,
320 				struct btrfs_delayed_item **prev,
321 				struct btrfs_delayed_item **next)
322 {
323 	struct rb_node *node, *prev_node = NULL;
324 	struct btrfs_delayed_item *delayed_item = NULL;
325 	int ret = 0;
326 
327 	node = root->rb_node;
328 
329 	while (node) {
330 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
331 					rb_node);
332 		prev_node = node;
333 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
334 		if (ret < 0)
335 			node = node->rb_right;
336 		else if (ret > 0)
337 			node = node->rb_left;
338 		else
339 			return delayed_item;
340 	}
341 
342 	if (prev) {
343 		if (!prev_node)
344 			*prev = NULL;
345 		else if (ret < 0)
346 			*prev = delayed_item;
347 		else if ((node = rb_prev(prev_node)) != NULL) {
348 			*prev = rb_entry(node, struct btrfs_delayed_item,
349 					 rb_node);
350 		} else
351 			*prev = NULL;
352 	}
353 
354 	if (next) {
355 		if (!prev_node)
356 			*next = NULL;
357 		else if (ret > 0)
358 			*next = delayed_item;
359 		else if ((node = rb_next(prev_node)) != NULL) {
360 			*next = rb_entry(node, struct btrfs_delayed_item,
361 					 rb_node);
362 		} else
363 			*next = NULL;
364 	}
365 	return NULL;
366 }
367 
368 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
369 					struct btrfs_delayed_node *delayed_node,
370 					struct btrfs_key *key)
371 {
372 	struct btrfs_delayed_item *item;
373 
374 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
375 					   NULL, NULL);
376 	return item;
377 }
378 
379 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
380 					struct btrfs_delayed_node *delayed_node,
381 					struct btrfs_key *key)
382 {
383 	struct btrfs_delayed_item *item;
384 
385 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
386 					   NULL, NULL);
387 	return item;
388 }
389 
390 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
391 					struct btrfs_delayed_node *delayed_node,
392 					struct btrfs_key *key)
393 {
394 	struct btrfs_delayed_item *item, *next;
395 
396 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
397 					   NULL, &next);
398 	if (!item)
399 		item = next;
400 
401 	return item;
402 }
403 
404 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
405 					struct btrfs_delayed_node *delayed_node,
406 					struct btrfs_key *key)
407 {
408 	struct btrfs_delayed_item *item, *next;
409 
410 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
411 					   NULL, &next);
412 	if (!item)
413 		item = next;
414 
415 	return item;
416 }
417 
418 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
419 				    struct btrfs_delayed_item *ins,
420 				    int action)
421 {
422 	struct rb_node **p, *node;
423 	struct rb_node *parent_node = NULL;
424 	struct rb_root *root;
425 	struct btrfs_delayed_item *item;
426 	int cmp;
427 
428 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
429 		root = &delayed_node->ins_root;
430 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
431 		root = &delayed_node->del_root;
432 	else
433 		BUG();
434 	p = &root->rb_node;
435 	node = &ins->rb_node;
436 
437 	while (*p) {
438 		parent_node = *p;
439 		item = rb_entry(parent_node, struct btrfs_delayed_item,
440 				 rb_node);
441 
442 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
443 		if (cmp < 0)
444 			p = &(*p)->rb_right;
445 		else if (cmp > 0)
446 			p = &(*p)->rb_left;
447 		else
448 			return -EEXIST;
449 	}
450 
451 	rb_link_node(node, parent_node, p);
452 	rb_insert_color(node, root);
453 	ins->delayed_node = delayed_node;
454 	ins->ins_or_del = action;
455 
456 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
457 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
458 	    ins->key.offset >= delayed_node->index_cnt)
459 			delayed_node->index_cnt = ins->key.offset + 1;
460 
461 	delayed_node->count++;
462 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
463 	return 0;
464 }
465 
466 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
467 					      struct btrfs_delayed_item *item)
468 {
469 	return __btrfs_add_delayed_item(node, item,
470 					BTRFS_DELAYED_INSERTION_ITEM);
471 }
472 
473 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
474 					     struct btrfs_delayed_item *item)
475 {
476 	return __btrfs_add_delayed_item(node, item,
477 					BTRFS_DELAYED_DELETION_ITEM);
478 }
479 
480 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
481 {
482 	struct rb_root *root;
483 	struct btrfs_delayed_root *delayed_root;
484 
485 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
486 
487 	BUG_ON(!delayed_root);
488 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
489 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
490 
491 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
492 		root = &delayed_item->delayed_node->ins_root;
493 	else
494 		root = &delayed_item->delayed_node->del_root;
495 
496 	rb_erase(&delayed_item->rb_node, root);
497 	delayed_item->delayed_node->count--;
498 	atomic_dec(&delayed_root->items);
499 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
500 	    waitqueue_active(&delayed_root->wait))
501 		wake_up(&delayed_root->wait);
502 }
503 
504 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
505 {
506 	if (item) {
507 		__btrfs_remove_delayed_item(item);
508 		if (atomic_dec_and_test(&item->refs))
509 			kfree(item);
510 	}
511 }
512 
513 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
514 					struct btrfs_delayed_node *delayed_node)
515 {
516 	struct rb_node *p;
517 	struct btrfs_delayed_item *item = NULL;
518 
519 	p = rb_first(&delayed_node->ins_root);
520 	if (p)
521 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
522 
523 	return item;
524 }
525 
526 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
527 					struct btrfs_delayed_node *delayed_node)
528 {
529 	struct rb_node *p;
530 	struct btrfs_delayed_item *item = NULL;
531 
532 	p = rb_first(&delayed_node->del_root);
533 	if (p)
534 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
535 
536 	return item;
537 }
538 
539 struct btrfs_delayed_item *__btrfs_next_delayed_item(
540 						struct btrfs_delayed_item *item)
541 {
542 	struct rb_node *p;
543 	struct btrfs_delayed_item *next = NULL;
544 
545 	p = rb_next(&item->rb_node);
546 	if (p)
547 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
548 
549 	return next;
550 }
551 
552 static inline struct btrfs_delayed_node *btrfs_get_delayed_node(
553 							struct inode *inode)
554 {
555 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
556 	struct btrfs_delayed_node *delayed_node;
557 
558 	delayed_node = btrfs_inode->delayed_node;
559 	if (delayed_node)
560 		atomic_inc(&delayed_node->refs);
561 
562 	return delayed_node;
563 }
564 
565 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
566 						   u64 root_id)
567 {
568 	struct btrfs_key root_key;
569 
570 	if (root->objectid == root_id)
571 		return root;
572 
573 	root_key.objectid = root_id;
574 	root_key.type = BTRFS_ROOT_ITEM_KEY;
575 	root_key.offset = (u64)-1;
576 	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
577 }
578 
579 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
580 					       struct btrfs_root *root,
581 					       struct btrfs_delayed_item *item)
582 {
583 	struct btrfs_block_rsv *src_rsv;
584 	struct btrfs_block_rsv *dst_rsv;
585 	u64 num_bytes;
586 	int ret;
587 
588 	if (!trans->bytes_reserved)
589 		return 0;
590 
591 	src_rsv = trans->block_rsv;
592 	dst_rsv = &root->fs_info->global_block_rsv;
593 
594 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
595 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
596 	if (!ret) {
597 		item->bytes_reserved = num_bytes;
598 		item->block_rsv = dst_rsv;
599 	}
600 
601 	return ret;
602 }
603 
604 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
605 						struct btrfs_delayed_item *item)
606 {
607 	if (!item->bytes_reserved)
608 		return;
609 
610 	btrfs_block_rsv_release(root, item->block_rsv,
611 				item->bytes_reserved);
612 }
613 
614 static int btrfs_delayed_inode_reserve_metadata(
615 					struct btrfs_trans_handle *trans,
616 					struct btrfs_root *root,
617 					struct btrfs_delayed_node *node)
618 {
619 	struct btrfs_block_rsv *src_rsv;
620 	struct btrfs_block_rsv *dst_rsv;
621 	u64 num_bytes;
622 	int ret;
623 
624 	if (!trans->bytes_reserved)
625 		return 0;
626 
627 	src_rsv = trans->block_rsv;
628 	dst_rsv = &root->fs_info->global_block_rsv;
629 
630 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
631 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
632 	if (!ret)
633 		node->bytes_reserved = num_bytes;
634 
635 	return ret;
636 }
637 
638 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
639 						struct btrfs_delayed_node *node)
640 {
641 	struct btrfs_block_rsv *rsv;
642 
643 	if (!node->bytes_reserved)
644 		return;
645 
646 	rsv = &root->fs_info->global_block_rsv;
647 	btrfs_block_rsv_release(root, rsv,
648 				node->bytes_reserved);
649 	node->bytes_reserved = 0;
650 }
651 
652 /*
653  * This helper will insert some continuous items into the same leaf according
654  * to the free space of the leaf.
655  */
656 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
657 				struct btrfs_root *root,
658 				struct btrfs_path *path,
659 				struct btrfs_delayed_item *item)
660 {
661 	struct btrfs_delayed_item *curr, *next;
662 	int free_space;
663 	int total_data_size = 0, total_size = 0;
664 	struct extent_buffer *leaf;
665 	char *data_ptr;
666 	struct btrfs_key *keys;
667 	u32 *data_size;
668 	struct list_head head;
669 	int slot;
670 	int nitems;
671 	int i;
672 	int ret = 0;
673 
674 	BUG_ON(!path->nodes[0]);
675 
676 	leaf = path->nodes[0];
677 	free_space = btrfs_leaf_free_space(root, leaf);
678 	INIT_LIST_HEAD(&head);
679 
680 	next = item;
681 	nitems = 0;
682 
683 	/*
684 	 * count the number of the continuous items that we can insert in batch
685 	 */
686 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
687 	       free_space) {
688 		total_data_size += next->data_len;
689 		total_size += next->data_len + sizeof(struct btrfs_item);
690 		list_add_tail(&next->tree_list, &head);
691 		nitems++;
692 
693 		curr = next;
694 		next = __btrfs_next_delayed_item(curr);
695 		if (!next)
696 			break;
697 
698 		if (!btrfs_is_continuous_delayed_item(curr, next))
699 			break;
700 	}
701 
702 	if (!nitems) {
703 		ret = 0;
704 		goto out;
705 	}
706 
707 	/*
708 	 * we need allocate some memory space, but it might cause the task
709 	 * to sleep, so we set all locked nodes in the path to blocking locks
710 	 * first.
711 	 */
712 	btrfs_set_path_blocking(path);
713 
714 	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
715 	if (!keys) {
716 		ret = -ENOMEM;
717 		goto out;
718 	}
719 
720 	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
721 	if (!data_size) {
722 		ret = -ENOMEM;
723 		goto error;
724 	}
725 
726 	/* get keys of all the delayed items */
727 	i = 0;
728 	list_for_each_entry(next, &head, tree_list) {
729 		keys[i] = next->key;
730 		data_size[i] = next->data_len;
731 		i++;
732 	}
733 
734 	/* reset all the locked nodes in the patch to spinning locks. */
735 	btrfs_clear_path_blocking(path, NULL);
736 
737 	/* insert the keys of the items */
738 	ret = setup_items_for_insert(trans, root, path, keys, data_size,
739 				     total_data_size, total_size, nitems);
740 	if (ret)
741 		goto error;
742 
743 	/* insert the dir index items */
744 	slot = path->slots[0];
745 	list_for_each_entry_safe(curr, next, &head, tree_list) {
746 		data_ptr = btrfs_item_ptr(leaf, slot, char);
747 		write_extent_buffer(leaf, &curr->data,
748 				    (unsigned long)data_ptr,
749 				    curr->data_len);
750 		slot++;
751 
752 		btrfs_delayed_item_release_metadata(root, curr);
753 
754 		list_del(&curr->tree_list);
755 		btrfs_release_delayed_item(curr);
756 	}
757 
758 error:
759 	kfree(data_size);
760 	kfree(keys);
761 out:
762 	return ret;
763 }
764 
765 /*
766  * This helper can just do simple insertion that needn't extend item for new
767  * data, such as directory name index insertion, inode insertion.
768  */
769 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
770 				     struct btrfs_root *root,
771 				     struct btrfs_path *path,
772 				     struct btrfs_delayed_item *delayed_item)
773 {
774 	struct extent_buffer *leaf;
775 	struct btrfs_item *item;
776 	char *ptr;
777 	int ret;
778 
779 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
780 				      delayed_item->data_len);
781 	if (ret < 0 && ret != -EEXIST)
782 		return ret;
783 
784 	leaf = path->nodes[0];
785 
786 	item = btrfs_item_nr(leaf, path->slots[0]);
787 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
788 
789 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
790 			    delayed_item->data_len);
791 	btrfs_mark_buffer_dirty(leaf);
792 
793 	btrfs_delayed_item_release_metadata(root, delayed_item);
794 	return 0;
795 }
796 
797 /*
798  * we insert an item first, then if there are some continuous items, we try
799  * to insert those items into the same leaf.
800  */
801 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
802 				      struct btrfs_path *path,
803 				      struct btrfs_root *root,
804 				      struct btrfs_delayed_node *node)
805 {
806 	struct btrfs_delayed_item *curr, *prev;
807 	int ret = 0;
808 
809 do_again:
810 	mutex_lock(&node->mutex);
811 	curr = __btrfs_first_delayed_insertion_item(node);
812 	if (!curr)
813 		goto insert_end;
814 
815 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
816 	if (ret < 0) {
817 		btrfs_release_path(path);
818 		goto insert_end;
819 	}
820 
821 	prev = curr;
822 	curr = __btrfs_next_delayed_item(prev);
823 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
824 		/* insert the continuous items into the same leaf */
825 		path->slots[0]++;
826 		btrfs_batch_insert_items(trans, root, path, curr);
827 	}
828 	btrfs_release_delayed_item(prev);
829 	btrfs_mark_buffer_dirty(path->nodes[0]);
830 
831 	btrfs_release_path(path);
832 	mutex_unlock(&node->mutex);
833 	goto do_again;
834 
835 insert_end:
836 	mutex_unlock(&node->mutex);
837 	return ret;
838 }
839 
840 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841 				    struct btrfs_root *root,
842 				    struct btrfs_path *path,
843 				    struct btrfs_delayed_item *item)
844 {
845 	struct btrfs_delayed_item *curr, *next;
846 	struct extent_buffer *leaf;
847 	struct btrfs_key key;
848 	struct list_head head;
849 	int nitems, i, last_item;
850 	int ret = 0;
851 
852 	BUG_ON(!path->nodes[0]);
853 
854 	leaf = path->nodes[0];
855 
856 	i = path->slots[0];
857 	last_item = btrfs_header_nritems(leaf) - 1;
858 	if (i > last_item)
859 		return -ENOENT;	/* FIXME: Is errno suitable? */
860 
861 	next = item;
862 	INIT_LIST_HEAD(&head);
863 	btrfs_item_key_to_cpu(leaf, &key, i);
864 	nitems = 0;
865 	/*
866 	 * count the number of the dir index items that we can delete in batch
867 	 */
868 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
869 		list_add_tail(&next->tree_list, &head);
870 		nitems++;
871 
872 		curr = next;
873 		next = __btrfs_next_delayed_item(curr);
874 		if (!next)
875 			break;
876 
877 		if (!btrfs_is_continuous_delayed_item(curr, next))
878 			break;
879 
880 		i++;
881 		if (i > last_item)
882 			break;
883 		btrfs_item_key_to_cpu(leaf, &key, i);
884 	}
885 
886 	if (!nitems)
887 		return 0;
888 
889 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
890 	if (ret)
891 		goto out;
892 
893 	list_for_each_entry_safe(curr, next, &head, tree_list) {
894 		btrfs_delayed_item_release_metadata(root, curr);
895 		list_del(&curr->tree_list);
896 		btrfs_release_delayed_item(curr);
897 	}
898 
899 out:
900 	return ret;
901 }
902 
903 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
904 				      struct btrfs_path *path,
905 				      struct btrfs_root *root,
906 				      struct btrfs_delayed_node *node)
907 {
908 	struct btrfs_delayed_item *curr, *prev;
909 	int ret = 0;
910 
911 do_again:
912 	mutex_lock(&node->mutex);
913 	curr = __btrfs_first_delayed_deletion_item(node);
914 	if (!curr)
915 		goto delete_fail;
916 
917 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
918 	if (ret < 0)
919 		goto delete_fail;
920 	else if (ret > 0) {
921 		/*
922 		 * can't find the item which the node points to, so this node
923 		 * is invalid, just drop it.
924 		 */
925 		prev = curr;
926 		curr = __btrfs_next_delayed_item(prev);
927 		btrfs_release_delayed_item(prev);
928 		ret = 0;
929 		btrfs_release_path(path);
930 		if (curr)
931 			goto do_again;
932 		else
933 			goto delete_fail;
934 	}
935 
936 	btrfs_batch_delete_items(trans, root, path, curr);
937 	btrfs_release_path(path);
938 	mutex_unlock(&node->mutex);
939 	goto do_again;
940 
941 delete_fail:
942 	btrfs_release_path(path);
943 	mutex_unlock(&node->mutex);
944 	return ret;
945 }
946 
947 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
948 {
949 	struct btrfs_delayed_root *delayed_root;
950 
951 	if (delayed_node && delayed_node->inode_dirty) {
952 		BUG_ON(!delayed_node->root);
953 		delayed_node->inode_dirty = 0;
954 		delayed_node->count--;
955 
956 		delayed_root = delayed_node->root->fs_info->delayed_root;
957 		atomic_dec(&delayed_root->items);
958 		if (atomic_read(&delayed_root->items) <
959 		    BTRFS_DELAYED_BACKGROUND &&
960 		    waitqueue_active(&delayed_root->wait))
961 			wake_up(&delayed_root->wait);
962 	}
963 }
964 
965 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
966 				      struct btrfs_root *root,
967 				      struct btrfs_path *path,
968 				      struct btrfs_delayed_node *node)
969 {
970 	struct btrfs_key key;
971 	struct btrfs_inode_item *inode_item;
972 	struct extent_buffer *leaf;
973 	int ret;
974 
975 	mutex_lock(&node->mutex);
976 	if (!node->inode_dirty) {
977 		mutex_unlock(&node->mutex);
978 		return 0;
979 	}
980 
981 	key.objectid = node->inode_id;
982 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
983 	key.offset = 0;
984 	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
985 	if (ret > 0) {
986 		btrfs_release_path(path);
987 		mutex_unlock(&node->mutex);
988 		return -ENOENT;
989 	} else if (ret < 0) {
990 		mutex_unlock(&node->mutex);
991 		return ret;
992 	}
993 
994 	btrfs_unlock_up_safe(path, 1);
995 	leaf = path->nodes[0];
996 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
997 				    struct btrfs_inode_item);
998 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
999 			    sizeof(struct btrfs_inode_item));
1000 	btrfs_mark_buffer_dirty(leaf);
1001 	btrfs_release_path(path);
1002 
1003 	btrfs_delayed_inode_release_metadata(root, node);
1004 	btrfs_release_delayed_inode(node);
1005 	mutex_unlock(&node->mutex);
1006 
1007 	return 0;
1008 }
1009 
1010 /* Called when committing the transaction. */
1011 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1012 			    struct btrfs_root *root)
1013 {
1014 	struct btrfs_delayed_root *delayed_root;
1015 	struct btrfs_delayed_node *curr_node, *prev_node;
1016 	struct btrfs_path *path;
1017 	int ret = 0;
1018 
1019 	path = btrfs_alloc_path();
1020 	if (!path)
1021 		return -ENOMEM;
1022 	path->leave_spinning = 1;
1023 
1024 	delayed_root = btrfs_get_delayed_root(root);
1025 
1026 	curr_node = btrfs_first_delayed_node(delayed_root);
1027 	while (curr_node) {
1028 		root = curr_node->root;
1029 		ret = btrfs_insert_delayed_items(trans, path, root,
1030 						 curr_node);
1031 		if (!ret)
1032 			ret = btrfs_delete_delayed_items(trans, path, root,
1033 							 curr_node);
1034 		if (!ret)
1035 			ret = btrfs_update_delayed_inode(trans, root, path,
1036 							 curr_node);
1037 		if (ret) {
1038 			btrfs_release_delayed_node(curr_node);
1039 			break;
1040 		}
1041 
1042 		prev_node = curr_node;
1043 		curr_node = btrfs_next_delayed_node(curr_node);
1044 		btrfs_release_delayed_node(prev_node);
1045 	}
1046 
1047 	btrfs_free_path(path);
1048 	return ret;
1049 }
1050 
1051 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1052 					      struct btrfs_delayed_node *node)
1053 {
1054 	struct btrfs_path *path;
1055 	int ret;
1056 
1057 	path = btrfs_alloc_path();
1058 	if (!path)
1059 		return -ENOMEM;
1060 	path->leave_spinning = 1;
1061 
1062 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1063 	if (!ret)
1064 		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1065 	if (!ret)
1066 		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1067 	btrfs_free_path(path);
1068 
1069 	return ret;
1070 }
1071 
1072 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1073 				     struct inode *inode)
1074 {
1075 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1076 	int ret;
1077 
1078 	if (!delayed_node)
1079 		return 0;
1080 
1081 	mutex_lock(&delayed_node->mutex);
1082 	if (!delayed_node->count) {
1083 		mutex_unlock(&delayed_node->mutex);
1084 		btrfs_release_delayed_node(delayed_node);
1085 		return 0;
1086 	}
1087 	mutex_unlock(&delayed_node->mutex);
1088 
1089 	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1090 	btrfs_release_delayed_node(delayed_node);
1091 	return ret;
1092 }
1093 
1094 void btrfs_remove_delayed_node(struct inode *inode)
1095 {
1096 	struct btrfs_delayed_node *delayed_node;
1097 
1098 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1099 	if (!delayed_node)
1100 		return;
1101 
1102 	BTRFS_I(inode)->delayed_node = NULL;
1103 	btrfs_release_delayed_node(delayed_node);
1104 }
1105 
1106 struct btrfs_async_delayed_node {
1107 	struct btrfs_root *root;
1108 	struct btrfs_delayed_node *delayed_node;
1109 	struct btrfs_work work;
1110 };
1111 
1112 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1113 {
1114 	struct btrfs_async_delayed_node *async_node;
1115 	struct btrfs_trans_handle *trans;
1116 	struct btrfs_path *path;
1117 	struct btrfs_delayed_node *delayed_node = NULL;
1118 	struct btrfs_root *root;
1119 	unsigned long nr = 0;
1120 	int need_requeue = 0;
1121 	int ret;
1122 
1123 	async_node = container_of(work, struct btrfs_async_delayed_node, work);
1124 
1125 	path = btrfs_alloc_path();
1126 	if (!path)
1127 		goto out;
1128 	path->leave_spinning = 1;
1129 
1130 	delayed_node = async_node->delayed_node;
1131 	root = delayed_node->root;
1132 
1133 	trans = btrfs_join_transaction(root);
1134 	if (IS_ERR(trans))
1135 		goto free_path;
1136 
1137 	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1138 	if (!ret)
1139 		ret = btrfs_delete_delayed_items(trans, path, root,
1140 						 delayed_node);
1141 
1142 	if (!ret)
1143 		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1144 
1145 	/*
1146 	 * Maybe new delayed items have been inserted, so we need requeue
1147 	 * the work. Besides that, we must dequeue the empty delayed nodes
1148 	 * to avoid the race between delayed items balance and the worker.
1149 	 * The race like this:
1150 	 * 	Task1				Worker thread
1151 	 * 					count == 0, needn't requeue
1152 	 * 					  also needn't insert the
1153 	 * 					  delayed node into prepare
1154 	 * 					  list again.
1155 	 * 	add lots of delayed items
1156 	 * 	queue the delayed node
1157 	 * 	  already in the list,
1158 	 * 	  and not in the prepare
1159 	 * 	  list, it means the delayed
1160 	 * 	  node is being dealt with
1161 	 * 	  by the worker.
1162 	 * 	do delayed items balance
1163 	 * 	  the delayed node is being
1164 	 * 	  dealt with by the worker
1165 	 * 	  now, just wait.
1166 	 * 	  				the worker goto idle.
1167 	 * Task1 will sleep until the transaction is commited.
1168 	 */
1169 	mutex_lock(&delayed_node->mutex);
1170 	if (delayed_node->count)
1171 		need_requeue = 1;
1172 	else
1173 		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1174 					   delayed_node);
1175 	mutex_unlock(&delayed_node->mutex);
1176 
1177 	nr = trans->blocks_used;
1178 
1179 	btrfs_end_transaction_dmeta(trans, root);
1180 	__btrfs_btree_balance_dirty(root, nr);
1181 free_path:
1182 	btrfs_free_path(path);
1183 out:
1184 	if (need_requeue)
1185 		btrfs_requeue_work(&async_node->work);
1186 	else {
1187 		btrfs_release_prepared_delayed_node(delayed_node);
1188 		kfree(async_node);
1189 	}
1190 }
1191 
1192 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1193 				     struct btrfs_root *root, int all)
1194 {
1195 	struct btrfs_async_delayed_node *async_node;
1196 	struct btrfs_delayed_node *curr;
1197 	int count = 0;
1198 
1199 again:
1200 	curr = btrfs_first_prepared_delayed_node(delayed_root);
1201 	if (!curr)
1202 		return 0;
1203 
1204 	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1205 	if (!async_node) {
1206 		btrfs_release_prepared_delayed_node(curr);
1207 		return -ENOMEM;
1208 	}
1209 
1210 	async_node->root = root;
1211 	async_node->delayed_node = curr;
1212 
1213 	async_node->work.func = btrfs_async_run_delayed_node_done;
1214 	async_node->work.flags = 0;
1215 
1216 	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1217 	count++;
1218 
1219 	if (all || count < 4)
1220 		goto again;
1221 
1222 	return 0;
1223 }
1224 
1225 void btrfs_balance_delayed_items(struct btrfs_root *root)
1226 {
1227 	struct btrfs_delayed_root *delayed_root;
1228 
1229 	delayed_root = btrfs_get_delayed_root(root);
1230 
1231 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1232 		return;
1233 
1234 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1235 		int ret;
1236 		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1237 		if (ret)
1238 			return;
1239 
1240 		wait_event_interruptible_timeout(
1241 				delayed_root->wait,
1242 				(atomic_read(&delayed_root->items) <
1243 				 BTRFS_DELAYED_BACKGROUND),
1244 				HZ);
1245 		return;
1246 	}
1247 
1248 	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1249 }
1250 
1251 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1252 				   struct btrfs_root *root, const char *name,
1253 				   int name_len, struct inode *dir,
1254 				   struct btrfs_disk_key *disk_key, u8 type,
1255 				   u64 index)
1256 {
1257 	struct btrfs_delayed_node *delayed_node;
1258 	struct btrfs_delayed_item *delayed_item;
1259 	struct btrfs_dir_item *dir_item;
1260 	int ret;
1261 
1262 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1263 	if (IS_ERR(delayed_node))
1264 		return PTR_ERR(delayed_node);
1265 
1266 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1267 	if (!delayed_item) {
1268 		ret = -ENOMEM;
1269 		goto release_node;
1270 	}
1271 
1272 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1273 	/*
1274 	 * we have reserved enough space when we start a new transaction,
1275 	 * so reserving metadata failure is impossible
1276 	 */
1277 	BUG_ON(ret);
1278 
1279 	delayed_item->key.objectid = btrfs_ino(dir);
1280 	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1281 	delayed_item->key.offset = index;
1282 
1283 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1284 	dir_item->location = *disk_key;
1285 	dir_item->transid = cpu_to_le64(trans->transid);
1286 	dir_item->data_len = 0;
1287 	dir_item->name_len = cpu_to_le16(name_len);
1288 	dir_item->type = type;
1289 	memcpy((char *)(dir_item + 1), name, name_len);
1290 
1291 	mutex_lock(&delayed_node->mutex);
1292 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1293 	if (unlikely(ret)) {
1294 		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1295 				"the insertion tree of the delayed node"
1296 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1297 				name,
1298 				(unsigned long long)delayed_node->root->objectid,
1299 				(unsigned long long)delayed_node->inode_id,
1300 				ret);
1301 		BUG();
1302 	}
1303 	mutex_unlock(&delayed_node->mutex);
1304 
1305 release_node:
1306 	btrfs_release_delayed_node(delayed_node);
1307 	return ret;
1308 }
1309 
1310 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1311 					       struct btrfs_delayed_node *node,
1312 					       struct btrfs_key *key)
1313 {
1314 	struct btrfs_delayed_item *item;
1315 
1316 	mutex_lock(&node->mutex);
1317 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1318 	if (!item) {
1319 		mutex_unlock(&node->mutex);
1320 		return 1;
1321 	}
1322 
1323 	btrfs_delayed_item_release_metadata(root, item);
1324 	btrfs_release_delayed_item(item);
1325 	mutex_unlock(&node->mutex);
1326 	return 0;
1327 }
1328 
1329 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1330 				   struct btrfs_root *root, struct inode *dir,
1331 				   u64 index)
1332 {
1333 	struct btrfs_delayed_node *node;
1334 	struct btrfs_delayed_item *item;
1335 	struct btrfs_key item_key;
1336 	int ret;
1337 
1338 	node = btrfs_get_or_create_delayed_node(dir);
1339 	if (IS_ERR(node))
1340 		return PTR_ERR(node);
1341 
1342 	item_key.objectid = btrfs_ino(dir);
1343 	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1344 	item_key.offset = index;
1345 
1346 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1347 	if (!ret)
1348 		goto end;
1349 
1350 	item = btrfs_alloc_delayed_item(0);
1351 	if (!item) {
1352 		ret = -ENOMEM;
1353 		goto end;
1354 	}
1355 
1356 	item->key = item_key;
1357 
1358 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1359 	/*
1360 	 * we have reserved enough space when we start a new transaction,
1361 	 * so reserving metadata failure is impossible.
1362 	 */
1363 	BUG_ON(ret);
1364 
1365 	mutex_lock(&node->mutex);
1366 	ret = __btrfs_add_delayed_deletion_item(node, item);
1367 	if (unlikely(ret)) {
1368 		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1369 				"into the deletion tree of the delayed node"
1370 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1371 				(unsigned long long)index,
1372 				(unsigned long long)node->root->objectid,
1373 				(unsigned long long)node->inode_id,
1374 				ret);
1375 		BUG();
1376 	}
1377 	mutex_unlock(&node->mutex);
1378 end:
1379 	btrfs_release_delayed_node(node);
1380 	return ret;
1381 }
1382 
1383 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1384 {
1385 	struct btrfs_delayed_node *delayed_node = BTRFS_I(inode)->delayed_node;
1386 	int ret = 0;
1387 
1388 	if (!delayed_node)
1389 		return -ENOENT;
1390 
1391 	/*
1392 	 * Since we have held i_mutex of this directory, it is impossible that
1393 	 * a new directory index is added into the delayed node and index_cnt
1394 	 * is updated now. So we needn't lock the delayed node.
1395 	 */
1396 	if (!delayed_node->index_cnt)
1397 		return -EINVAL;
1398 
1399 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1400 	return ret;
1401 }
1402 
1403 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1404 			     struct list_head *del_list)
1405 {
1406 	struct btrfs_delayed_node *delayed_node;
1407 	struct btrfs_delayed_item *item;
1408 
1409 	delayed_node = btrfs_get_delayed_node(inode);
1410 	if (!delayed_node)
1411 		return;
1412 
1413 	mutex_lock(&delayed_node->mutex);
1414 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1415 	while (item) {
1416 		atomic_inc(&item->refs);
1417 		list_add_tail(&item->readdir_list, ins_list);
1418 		item = __btrfs_next_delayed_item(item);
1419 	}
1420 
1421 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1422 	while (item) {
1423 		atomic_inc(&item->refs);
1424 		list_add_tail(&item->readdir_list, del_list);
1425 		item = __btrfs_next_delayed_item(item);
1426 	}
1427 	mutex_unlock(&delayed_node->mutex);
1428 	/*
1429 	 * This delayed node is still cached in the btrfs inode, so refs
1430 	 * must be > 1 now, and we needn't check it is going to be freed
1431 	 * or not.
1432 	 *
1433 	 * Besides that, this function is used to read dir, we do not
1434 	 * insert/delete delayed items in this period. So we also needn't
1435 	 * requeue or dequeue this delayed node.
1436 	 */
1437 	atomic_dec(&delayed_node->refs);
1438 }
1439 
1440 void btrfs_put_delayed_items(struct list_head *ins_list,
1441 			     struct list_head *del_list)
1442 {
1443 	struct btrfs_delayed_item *curr, *next;
1444 
1445 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1446 		list_del(&curr->readdir_list);
1447 		if (atomic_dec_and_test(&curr->refs))
1448 			kfree(curr);
1449 	}
1450 
1451 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1452 		list_del(&curr->readdir_list);
1453 		if (atomic_dec_and_test(&curr->refs))
1454 			kfree(curr);
1455 	}
1456 }
1457 
1458 int btrfs_should_delete_dir_index(struct list_head *del_list,
1459 				  u64 index)
1460 {
1461 	struct btrfs_delayed_item *curr, *next;
1462 	int ret;
1463 
1464 	if (list_empty(del_list))
1465 		return 0;
1466 
1467 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1468 		if (curr->key.offset > index)
1469 			break;
1470 
1471 		list_del(&curr->readdir_list);
1472 		ret = (curr->key.offset == index);
1473 
1474 		if (atomic_dec_and_test(&curr->refs))
1475 			kfree(curr);
1476 
1477 		if (ret)
1478 			return 1;
1479 		else
1480 			continue;
1481 	}
1482 	return 0;
1483 }
1484 
1485 /*
1486  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1487  *
1488  */
1489 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1490 				    filldir_t filldir,
1491 				    struct list_head *ins_list)
1492 {
1493 	struct btrfs_dir_item *di;
1494 	struct btrfs_delayed_item *curr, *next;
1495 	struct btrfs_key location;
1496 	char *name;
1497 	int name_len;
1498 	int over = 0;
1499 	unsigned char d_type;
1500 
1501 	if (list_empty(ins_list))
1502 		return 0;
1503 
1504 	/*
1505 	 * Changing the data of the delayed item is impossible. So
1506 	 * we needn't lock them. And we have held i_mutex of the
1507 	 * directory, nobody can delete any directory indexes now.
1508 	 */
1509 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1510 		list_del(&curr->readdir_list);
1511 
1512 		if (curr->key.offset < filp->f_pos) {
1513 			if (atomic_dec_and_test(&curr->refs))
1514 				kfree(curr);
1515 			continue;
1516 		}
1517 
1518 		filp->f_pos = curr->key.offset;
1519 
1520 		di = (struct btrfs_dir_item *)curr->data;
1521 		name = (char *)(di + 1);
1522 		name_len = le16_to_cpu(di->name_len);
1523 
1524 		d_type = btrfs_filetype_table[di->type];
1525 		btrfs_disk_key_to_cpu(&location, &di->location);
1526 
1527 		over = filldir(dirent, name, name_len, curr->key.offset,
1528 			       location.objectid, d_type);
1529 
1530 		if (atomic_dec_and_test(&curr->refs))
1531 			kfree(curr);
1532 
1533 		if (over)
1534 			return 1;
1535 	}
1536 	return 0;
1537 }
1538 
1539 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1540 			 generation, 64);
1541 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1542 			 sequence, 64);
1543 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1544 			 transid, 64);
1545 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1546 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1547 			 nbytes, 64);
1548 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1549 			 block_group, 64);
1550 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1551 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1552 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1553 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1554 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1555 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1556 
1557 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1558 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1559 
1560 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1561 				  struct btrfs_inode_item *inode_item,
1562 				  struct inode *inode)
1563 {
1564 	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1565 	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1566 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1567 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1568 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1569 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1570 	btrfs_set_stack_inode_generation(inode_item,
1571 					 BTRFS_I(inode)->generation);
1572 	btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1573 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1574 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1575 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1576 	btrfs_set_stack_inode_block_group(inode_item, 0);
1577 
1578 	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1579 				     inode->i_atime.tv_sec);
1580 	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1581 				      inode->i_atime.tv_nsec);
1582 
1583 	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1584 				     inode->i_mtime.tv_sec);
1585 	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1586 				      inode->i_mtime.tv_nsec);
1587 
1588 	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1589 				     inode->i_ctime.tv_sec);
1590 	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1591 				      inode->i_ctime.tv_nsec);
1592 }
1593 
1594 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1595 			       struct btrfs_root *root, struct inode *inode)
1596 {
1597 	struct btrfs_delayed_node *delayed_node;
1598 	int ret = 0;
1599 
1600 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1601 	if (IS_ERR(delayed_node))
1602 		return PTR_ERR(delayed_node);
1603 
1604 	mutex_lock(&delayed_node->mutex);
1605 	if (delayed_node->inode_dirty) {
1606 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1607 		goto release_node;
1608 	}
1609 
1610 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1611 	/*
1612 	 * we must reserve enough space when we start a new transaction,
1613 	 * so reserving metadata failure is impossible
1614 	 */
1615 	BUG_ON(ret);
1616 
1617 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1618 	delayed_node->inode_dirty = 1;
1619 	delayed_node->count++;
1620 	atomic_inc(&root->fs_info->delayed_root->items);
1621 release_node:
1622 	mutex_unlock(&delayed_node->mutex);
1623 	btrfs_release_delayed_node(delayed_node);
1624 	return ret;
1625 }
1626 
1627 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1628 {
1629 	struct btrfs_root *root = delayed_node->root;
1630 	struct btrfs_delayed_item *curr_item, *prev_item;
1631 
1632 	mutex_lock(&delayed_node->mutex);
1633 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1634 	while (curr_item) {
1635 		btrfs_delayed_item_release_metadata(root, curr_item);
1636 		prev_item = curr_item;
1637 		curr_item = __btrfs_next_delayed_item(prev_item);
1638 		btrfs_release_delayed_item(prev_item);
1639 	}
1640 
1641 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1642 	while (curr_item) {
1643 		btrfs_delayed_item_release_metadata(root, curr_item);
1644 		prev_item = curr_item;
1645 		curr_item = __btrfs_next_delayed_item(prev_item);
1646 		btrfs_release_delayed_item(prev_item);
1647 	}
1648 
1649 	if (delayed_node->inode_dirty) {
1650 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1651 		btrfs_release_delayed_inode(delayed_node);
1652 	}
1653 	mutex_unlock(&delayed_node->mutex);
1654 }
1655 
1656 void btrfs_kill_delayed_inode_items(struct inode *inode)
1657 {
1658 	struct btrfs_delayed_node *delayed_node;
1659 
1660 	delayed_node = btrfs_get_delayed_node(inode);
1661 	if (!delayed_node)
1662 		return;
1663 
1664 	__btrfs_kill_delayed_node(delayed_node);
1665 	btrfs_release_delayed_node(delayed_node);
1666 }
1667 
1668 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1669 {
1670 	u64 inode_id = 0;
1671 	struct btrfs_delayed_node *delayed_nodes[8];
1672 	int i, n;
1673 
1674 	while (1) {
1675 		spin_lock(&root->inode_lock);
1676 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1677 					   (void **)delayed_nodes, inode_id,
1678 					   ARRAY_SIZE(delayed_nodes));
1679 		if (!n) {
1680 			spin_unlock(&root->inode_lock);
1681 			break;
1682 		}
1683 
1684 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1685 
1686 		for (i = 0; i < n; i++)
1687 			atomic_inc(&delayed_nodes[i]->refs);
1688 		spin_unlock(&root->inode_lock);
1689 
1690 		for (i = 0; i < n; i++) {
1691 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1692 			btrfs_release_delayed_node(delayed_nodes[i]);
1693 		}
1694 	}
1695 }
1696