xref: /linux/fs/btrfs/delayed-inode.c (revision 0da908c291070d89482f6211dbe81d4d43c3f7cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 					sizeof(struct btrfs_delayed_node),
33 					0,
34 					SLAB_MEM_SPREAD,
35 					NULL);
36 	if (!delayed_node_cache)
37 		return -ENOMEM;
38 	return 0;
39 }
40 
41 void __cold btrfs_delayed_inode_exit(void)
42 {
43 	kmem_cache_destroy(delayed_node_cache);
44 }
45 
46 static inline void btrfs_init_delayed_node(
47 				struct btrfs_delayed_node *delayed_node,
48 				struct btrfs_root *root, u64 inode_id)
49 {
50 	delayed_node->root = root;
51 	delayed_node->inode_id = inode_id;
52 	refcount_set(&delayed_node->refs, 0);
53 	delayed_node->ins_root = RB_ROOT_CACHED;
54 	delayed_node->del_root = RB_ROOT_CACHED;
55 	mutex_init(&delayed_node->mutex);
56 	INIT_LIST_HEAD(&delayed_node->n_list);
57 	INIT_LIST_HEAD(&delayed_node->p_list);
58 }
59 
60 static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 		struct btrfs_inode *btrfs_inode)
62 {
63 	struct btrfs_root *root = btrfs_inode->root;
64 	u64 ino = btrfs_ino(btrfs_inode);
65 	struct btrfs_delayed_node *node;
66 
67 	node = READ_ONCE(btrfs_inode->delayed_node);
68 	if (node) {
69 		refcount_inc(&node->refs);
70 		return node;
71 	}
72 
73 	spin_lock(&root->inode_lock);
74 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75 
76 	if (node) {
77 		if (btrfs_inode->delayed_node) {
78 			refcount_inc(&node->refs);	/* can be accessed */
79 			BUG_ON(btrfs_inode->delayed_node != node);
80 			spin_unlock(&root->inode_lock);
81 			return node;
82 		}
83 
84 		/*
85 		 * It's possible that we're racing into the middle of removing
86 		 * this node from the radix tree.  In this case, the refcount
87 		 * was zero and it should never go back to one.  Just return
88 		 * NULL like it was never in the radix at all; our release
89 		 * function is in the process of removing it.
90 		 *
91 		 * Some implementations of refcount_inc refuse to bump the
92 		 * refcount once it has hit zero.  If we don't do this dance
93 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 		 * of actually bumping the refcount.
95 		 *
96 		 * If this node is properly in the radix, we want to bump the
97 		 * refcount twice, once for the inode and once for this get
98 		 * operation.
99 		 */
100 		if (refcount_inc_not_zero(&node->refs)) {
101 			refcount_inc(&node->refs);
102 			btrfs_inode->delayed_node = node;
103 		} else {
104 			node = NULL;
105 		}
106 
107 		spin_unlock(&root->inode_lock);
108 		return node;
109 	}
110 	spin_unlock(&root->inode_lock);
111 
112 	return NULL;
113 }
114 
115 /* Will return either the node or PTR_ERR(-ENOMEM) */
116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 		struct btrfs_inode *btrfs_inode)
118 {
119 	struct btrfs_delayed_node *node;
120 	struct btrfs_root *root = btrfs_inode->root;
121 	u64 ino = btrfs_ino(btrfs_inode);
122 	int ret;
123 
124 again:
125 	node = btrfs_get_delayed_node(btrfs_inode);
126 	if (node)
127 		return node;
128 
129 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 	if (!node)
131 		return ERR_PTR(-ENOMEM);
132 	btrfs_init_delayed_node(node, root, ino);
133 
134 	/* cached in the btrfs inode and can be accessed */
135 	refcount_set(&node->refs, 2);
136 
137 	ret = radix_tree_preload(GFP_NOFS);
138 	if (ret) {
139 		kmem_cache_free(delayed_node_cache, node);
140 		return ERR_PTR(ret);
141 	}
142 
143 	spin_lock(&root->inode_lock);
144 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 	if (ret == -EEXIST) {
146 		spin_unlock(&root->inode_lock);
147 		kmem_cache_free(delayed_node_cache, node);
148 		radix_tree_preload_end();
149 		goto again;
150 	}
151 	btrfs_inode->delayed_node = node;
152 	spin_unlock(&root->inode_lock);
153 	radix_tree_preload_end();
154 
155 	return node;
156 }
157 
158 /*
159  * Call it when holding delayed_node->mutex
160  *
161  * If mod = 1, add this node into the prepared list.
162  */
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 				     struct btrfs_delayed_node *node,
165 				     int mod)
166 {
167 	spin_lock(&root->lock);
168 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 		if (!list_empty(&node->p_list))
170 			list_move_tail(&node->p_list, &root->prepare_list);
171 		else if (mod)
172 			list_add_tail(&node->p_list, &root->prepare_list);
173 	} else {
174 		list_add_tail(&node->n_list, &root->node_list);
175 		list_add_tail(&node->p_list, &root->prepare_list);
176 		refcount_inc(&node->refs);	/* inserted into list */
177 		root->nodes++;
178 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 	}
180 	spin_unlock(&root->lock);
181 }
182 
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 				       struct btrfs_delayed_node *node)
186 {
187 	spin_lock(&root->lock);
188 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 		root->nodes--;
190 		refcount_dec(&node->refs);	/* not in the list */
191 		list_del_init(&node->n_list);
192 		if (!list_empty(&node->p_list))
193 			list_del_init(&node->p_list);
194 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 	}
196 	spin_unlock(&root->lock);
197 }
198 
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 			struct btrfs_delayed_root *delayed_root)
201 {
202 	struct list_head *p;
203 	struct btrfs_delayed_node *node = NULL;
204 
205 	spin_lock(&delayed_root->lock);
206 	if (list_empty(&delayed_root->node_list))
207 		goto out;
208 
209 	p = delayed_root->node_list.next;
210 	node = list_entry(p, struct btrfs_delayed_node, n_list);
211 	refcount_inc(&node->refs);
212 out:
213 	spin_unlock(&delayed_root->lock);
214 
215 	return node;
216 }
217 
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 						struct btrfs_delayed_node *node)
220 {
221 	struct btrfs_delayed_root *delayed_root;
222 	struct list_head *p;
223 	struct btrfs_delayed_node *next = NULL;
224 
225 	delayed_root = node->root->fs_info->delayed_root;
226 	spin_lock(&delayed_root->lock);
227 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 		/* not in the list */
229 		if (list_empty(&delayed_root->node_list))
230 			goto out;
231 		p = delayed_root->node_list.next;
232 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 		goto out;
234 	else
235 		p = node->n_list.next;
236 
237 	next = list_entry(p, struct btrfs_delayed_node, n_list);
238 	refcount_inc(&next->refs);
239 out:
240 	spin_unlock(&delayed_root->lock);
241 
242 	return next;
243 }
244 
245 static void __btrfs_release_delayed_node(
246 				struct btrfs_delayed_node *delayed_node,
247 				int mod)
248 {
249 	struct btrfs_delayed_root *delayed_root;
250 
251 	if (!delayed_node)
252 		return;
253 
254 	delayed_root = delayed_node->root->fs_info->delayed_root;
255 
256 	mutex_lock(&delayed_node->mutex);
257 	if (delayed_node->count)
258 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 	else
260 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 	mutex_unlock(&delayed_node->mutex);
262 
263 	if (refcount_dec_and_test(&delayed_node->refs)) {
264 		struct btrfs_root *root = delayed_node->root;
265 
266 		spin_lock(&root->inode_lock);
267 		/*
268 		 * Once our refcount goes to zero, nobody is allowed to bump it
269 		 * back up.  We can delete it now.
270 		 */
271 		ASSERT(refcount_read(&delayed_node->refs) == 0);
272 		radix_tree_delete(&root->delayed_nodes_tree,
273 				  delayed_node->inode_id);
274 		spin_unlock(&root->inode_lock);
275 		kmem_cache_free(delayed_node_cache, delayed_node);
276 	}
277 }
278 
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 	__btrfs_release_delayed_node(node, 0);
282 }
283 
284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 					struct btrfs_delayed_root *delayed_root)
286 {
287 	struct list_head *p;
288 	struct btrfs_delayed_node *node = NULL;
289 
290 	spin_lock(&delayed_root->lock);
291 	if (list_empty(&delayed_root->prepare_list))
292 		goto out;
293 
294 	p = delayed_root->prepare_list.next;
295 	list_del_init(p);
296 	node = list_entry(p, struct btrfs_delayed_node, p_list);
297 	refcount_inc(&node->refs);
298 out:
299 	spin_unlock(&delayed_root->lock);
300 
301 	return node;
302 }
303 
304 static inline void btrfs_release_prepared_delayed_node(
305 					struct btrfs_delayed_node *node)
306 {
307 	__btrfs_release_delayed_node(node, 1);
308 }
309 
310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 					   struct btrfs_delayed_node *node,
312 					   enum btrfs_delayed_item_type type)
313 {
314 	struct btrfs_delayed_item *item;
315 
316 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
317 	if (item) {
318 		item->data_len = data_len;
319 		item->type = type;
320 		item->bytes_reserved = 0;
321 		item->delayed_node = node;
322 		RB_CLEAR_NODE(&item->rb_node);
323 		INIT_LIST_HEAD(&item->log_list);
324 		item->logged = false;
325 		refcount_set(&item->refs, 1);
326 	}
327 	return item;
328 }
329 
330 /*
331  * __btrfs_lookup_delayed_item - look up the delayed item by key
332  * @delayed_node: pointer to the delayed node
333  * @index:	  the dir index value to lookup (offset of a dir index key)
334  *
335  * Note: if we don't find the right item, we will return the prev item and
336  * the next item.
337  */
338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 				struct rb_root *root,
340 				u64 index)
341 {
342 	struct rb_node *node = root->rb_node;
343 	struct btrfs_delayed_item *delayed_item = NULL;
344 
345 	while (node) {
346 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 					rb_node);
348 		if (delayed_item->index < index)
349 			node = node->rb_right;
350 		else if (delayed_item->index > index)
351 			node = node->rb_left;
352 		else
353 			return delayed_item;
354 	}
355 
356 	return NULL;
357 }
358 
359 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
360 				    struct btrfs_delayed_item *ins)
361 {
362 	struct rb_node **p, *node;
363 	struct rb_node *parent_node = NULL;
364 	struct rb_root_cached *root;
365 	struct btrfs_delayed_item *item;
366 	bool leftmost = true;
367 
368 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
369 		root = &delayed_node->ins_root;
370 	else
371 		root = &delayed_node->del_root;
372 
373 	p = &root->rb_root.rb_node;
374 	node = &ins->rb_node;
375 
376 	while (*p) {
377 		parent_node = *p;
378 		item = rb_entry(parent_node, struct btrfs_delayed_item,
379 				 rb_node);
380 
381 		if (item->index < ins->index) {
382 			p = &(*p)->rb_right;
383 			leftmost = false;
384 		} else if (item->index > ins->index) {
385 			p = &(*p)->rb_left;
386 		} else {
387 			return -EEXIST;
388 		}
389 	}
390 
391 	rb_link_node(node, parent_node, p);
392 	rb_insert_color_cached(node, root, leftmost);
393 
394 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395 	    ins->index >= delayed_node->index_cnt)
396 		delayed_node->index_cnt = ins->index + 1;
397 
398 	delayed_node->count++;
399 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 	return 0;
401 }
402 
403 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404 {
405 	int seq = atomic_inc_return(&delayed_root->items_seq);
406 
407 	/* atomic_dec_return implies a barrier */
408 	if ((atomic_dec_return(&delayed_root->items) <
409 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 		cond_wake_up_nomb(&delayed_root->wait);
411 }
412 
413 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414 {
415 	struct rb_root_cached *root;
416 	struct btrfs_delayed_root *delayed_root;
417 
418 	/* Not inserted, ignore it. */
419 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
420 		return;
421 
422 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
423 
424 	BUG_ON(!delayed_root);
425 
426 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
427 		root = &delayed_item->delayed_node->ins_root;
428 	else
429 		root = &delayed_item->delayed_node->del_root;
430 
431 	rb_erase_cached(&delayed_item->rb_node, root);
432 	RB_CLEAR_NODE(&delayed_item->rb_node);
433 	delayed_item->delayed_node->count--;
434 
435 	finish_one_item(delayed_root);
436 }
437 
438 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
439 {
440 	if (item) {
441 		__btrfs_remove_delayed_item(item);
442 		if (refcount_dec_and_test(&item->refs))
443 			kfree(item);
444 	}
445 }
446 
447 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
448 					struct btrfs_delayed_node *delayed_node)
449 {
450 	struct rb_node *p;
451 	struct btrfs_delayed_item *item = NULL;
452 
453 	p = rb_first_cached(&delayed_node->ins_root);
454 	if (p)
455 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
456 
457 	return item;
458 }
459 
460 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
461 					struct btrfs_delayed_node *delayed_node)
462 {
463 	struct rb_node *p;
464 	struct btrfs_delayed_item *item = NULL;
465 
466 	p = rb_first_cached(&delayed_node->del_root);
467 	if (p)
468 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
469 
470 	return item;
471 }
472 
473 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
474 						struct btrfs_delayed_item *item)
475 {
476 	struct rb_node *p;
477 	struct btrfs_delayed_item *next = NULL;
478 
479 	p = rb_next(&item->rb_node);
480 	if (p)
481 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
482 
483 	return next;
484 }
485 
486 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
487 					       struct btrfs_delayed_item *item)
488 {
489 	struct btrfs_block_rsv *src_rsv;
490 	struct btrfs_block_rsv *dst_rsv;
491 	struct btrfs_fs_info *fs_info = trans->fs_info;
492 	u64 num_bytes;
493 	int ret;
494 
495 	if (!trans->bytes_reserved)
496 		return 0;
497 
498 	src_rsv = trans->block_rsv;
499 	dst_rsv = &fs_info->delayed_block_rsv;
500 
501 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
502 
503 	/*
504 	 * Here we migrate space rsv from transaction rsv, since have already
505 	 * reserved space when starting a transaction.  So no need to reserve
506 	 * qgroup space here.
507 	 */
508 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
509 	if (!ret) {
510 		trace_btrfs_space_reservation(fs_info, "delayed_item",
511 					      item->delayed_node->inode_id,
512 					      num_bytes, 1);
513 		/*
514 		 * For insertions we track reserved metadata space by accounting
515 		 * for the number of leaves that will be used, based on the delayed
516 		 * node's index_items_size field.
517 		 */
518 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
519 			item->bytes_reserved = num_bytes;
520 	}
521 
522 	return ret;
523 }
524 
525 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
526 						struct btrfs_delayed_item *item)
527 {
528 	struct btrfs_block_rsv *rsv;
529 	struct btrfs_fs_info *fs_info = root->fs_info;
530 
531 	if (!item->bytes_reserved)
532 		return;
533 
534 	rsv = &fs_info->delayed_block_rsv;
535 	/*
536 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
537 	 * to release/reserve qgroup space.
538 	 */
539 	trace_btrfs_space_reservation(fs_info, "delayed_item",
540 				      item->delayed_node->inode_id,
541 				      item->bytes_reserved, 0);
542 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
543 }
544 
545 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
546 					      unsigned int num_leaves)
547 {
548 	struct btrfs_fs_info *fs_info = node->root->fs_info;
549 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
550 
551 	/* There are no space reservations during log replay, bail out. */
552 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
553 		return;
554 
555 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
556 				      bytes, 0);
557 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
558 }
559 
560 static int btrfs_delayed_inode_reserve_metadata(
561 					struct btrfs_trans_handle *trans,
562 					struct btrfs_root *root,
563 					struct btrfs_delayed_node *node)
564 {
565 	struct btrfs_fs_info *fs_info = root->fs_info;
566 	struct btrfs_block_rsv *src_rsv;
567 	struct btrfs_block_rsv *dst_rsv;
568 	u64 num_bytes;
569 	int ret;
570 
571 	src_rsv = trans->block_rsv;
572 	dst_rsv = &fs_info->delayed_block_rsv;
573 
574 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
575 
576 	/*
577 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
578 	 * which doesn't reserve space for speed.  This is a problem since we
579 	 * still need to reserve space for this update, so try to reserve the
580 	 * space.
581 	 *
582 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
583 	 * we always reserve enough to update the inode item.
584 	 */
585 	if (!src_rsv || (!trans->bytes_reserved &&
586 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
587 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
588 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
589 		if (ret < 0)
590 			return ret;
591 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
592 					  BTRFS_RESERVE_NO_FLUSH);
593 		/* NO_FLUSH could only fail with -ENOSPC */
594 		ASSERT(ret == 0 || ret == -ENOSPC);
595 		if (ret)
596 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
597 	} else {
598 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
599 	}
600 
601 	if (!ret) {
602 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
603 					      node->inode_id, num_bytes, 1);
604 		node->bytes_reserved = num_bytes;
605 	}
606 
607 	return ret;
608 }
609 
610 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
611 						struct btrfs_delayed_node *node,
612 						bool qgroup_free)
613 {
614 	struct btrfs_block_rsv *rsv;
615 
616 	if (!node->bytes_reserved)
617 		return;
618 
619 	rsv = &fs_info->delayed_block_rsv;
620 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
621 				      node->inode_id, node->bytes_reserved, 0);
622 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
623 	if (qgroup_free)
624 		btrfs_qgroup_free_meta_prealloc(node->root,
625 				node->bytes_reserved);
626 	else
627 		btrfs_qgroup_convert_reserved_meta(node->root,
628 				node->bytes_reserved);
629 	node->bytes_reserved = 0;
630 }
631 
632 /*
633  * Insert a single delayed item or a batch of delayed items, as many as possible
634  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
635  * in the rbtree, and if there's a gap between two consecutive dir index items,
636  * then it means at some point we had delayed dir indexes to add but they got
637  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
638  * into the subvolume tree. Dir index keys also have their offsets coming from a
639  * monotonically increasing counter, so we can't get new keys with an offset that
640  * fits within a gap between delayed dir index items.
641  */
642 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
643 				     struct btrfs_root *root,
644 				     struct btrfs_path *path,
645 				     struct btrfs_delayed_item *first_item)
646 {
647 	struct btrfs_fs_info *fs_info = root->fs_info;
648 	struct btrfs_delayed_node *node = first_item->delayed_node;
649 	LIST_HEAD(item_list);
650 	struct btrfs_delayed_item *curr;
651 	struct btrfs_delayed_item *next;
652 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
653 	struct btrfs_item_batch batch;
654 	struct btrfs_key first_key;
655 	const u32 first_data_size = first_item->data_len;
656 	int total_size;
657 	char *ins_data = NULL;
658 	int ret;
659 	bool continuous_keys_only = false;
660 
661 	lockdep_assert_held(&node->mutex);
662 
663 	/*
664 	 * During normal operation the delayed index offset is continuously
665 	 * increasing, so we can batch insert all items as there will not be any
666 	 * overlapping keys in the tree.
667 	 *
668 	 * The exception to this is log replay, where we may have interleaved
669 	 * offsets in the tree, so our batch needs to be continuous keys only in
670 	 * order to ensure we do not end up with out of order items in our leaf.
671 	 */
672 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
673 		continuous_keys_only = true;
674 
675 	/*
676 	 * For delayed items to insert, we track reserved metadata bytes based
677 	 * on the number of leaves that we will use.
678 	 * See btrfs_insert_delayed_dir_index() and
679 	 * btrfs_delayed_item_reserve_metadata()).
680 	 */
681 	ASSERT(first_item->bytes_reserved == 0);
682 
683 	list_add_tail(&first_item->tree_list, &item_list);
684 	batch.total_data_size = first_data_size;
685 	batch.nr = 1;
686 	total_size = first_data_size + sizeof(struct btrfs_item);
687 	curr = first_item;
688 
689 	while (true) {
690 		int next_size;
691 
692 		next = __btrfs_next_delayed_item(curr);
693 		if (!next)
694 			break;
695 
696 		/*
697 		 * We cannot allow gaps in the key space if we're doing log
698 		 * replay.
699 		 */
700 		if (continuous_keys_only && (next->index != curr->index + 1))
701 			break;
702 
703 		ASSERT(next->bytes_reserved == 0);
704 
705 		next_size = next->data_len + sizeof(struct btrfs_item);
706 		if (total_size + next_size > max_size)
707 			break;
708 
709 		list_add_tail(&next->tree_list, &item_list);
710 		batch.nr++;
711 		total_size += next_size;
712 		batch.total_data_size += next->data_len;
713 		curr = next;
714 	}
715 
716 	if (batch.nr == 1) {
717 		first_key.objectid = node->inode_id;
718 		first_key.type = BTRFS_DIR_INDEX_KEY;
719 		first_key.offset = first_item->index;
720 		batch.keys = &first_key;
721 		batch.data_sizes = &first_data_size;
722 	} else {
723 		struct btrfs_key *ins_keys;
724 		u32 *ins_sizes;
725 		int i = 0;
726 
727 		ins_data = kmalloc(batch.nr * sizeof(u32) +
728 				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
729 		if (!ins_data) {
730 			ret = -ENOMEM;
731 			goto out;
732 		}
733 		ins_sizes = (u32 *)ins_data;
734 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
735 		batch.keys = ins_keys;
736 		batch.data_sizes = ins_sizes;
737 		list_for_each_entry(curr, &item_list, tree_list) {
738 			ins_keys[i].objectid = node->inode_id;
739 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
740 			ins_keys[i].offset = curr->index;
741 			ins_sizes[i] = curr->data_len;
742 			i++;
743 		}
744 	}
745 
746 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
747 	if (ret)
748 		goto out;
749 
750 	list_for_each_entry(curr, &item_list, tree_list) {
751 		char *data_ptr;
752 
753 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
754 		write_extent_buffer(path->nodes[0], &curr->data,
755 				    (unsigned long)data_ptr, curr->data_len);
756 		path->slots[0]++;
757 	}
758 
759 	/*
760 	 * Now release our path before releasing the delayed items and their
761 	 * metadata reservations, so that we don't block other tasks for more
762 	 * time than needed.
763 	 */
764 	btrfs_release_path(path);
765 
766 	ASSERT(node->index_item_leaves > 0);
767 
768 	/*
769 	 * For normal operations we will batch an entire leaf's worth of delayed
770 	 * items, so if there are more items to process we can decrement
771 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
772 	 *
773 	 * However for log replay we may not have inserted an entire leaf's
774 	 * worth of items, we may have not had continuous items, so decrementing
775 	 * here would mess up the index_item_leaves accounting.  For this case
776 	 * only clean up the accounting when there are no items left.
777 	 */
778 	if (next && !continuous_keys_only) {
779 		/*
780 		 * We inserted one batch of items into a leaf a there are more
781 		 * items to flush in a future batch, now release one unit of
782 		 * metadata space from the delayed block reserve, corresponding
783 		 * the leaf we just flushed to.
784 		 */
785 		btrfs_delayed_item_release_leaves(node, 1);
786 		node->index_item_leaves--;
787 	} else if (!next) {
788 		/*
789 		 * There are no more items to insert. We can have a number of
790 		 * reserved leaves > 1 here - this happens when many dir index
791 		 * items are added and then removed before they are flushed (file
792 		 * names with a very short life, never span a transaction). So
793 		 * release all remaining leaves.
794 		 */
795 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
796 		node->index_item_leaves = 0;
797 	}
798 
799 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
800 		list_del(&curr->tree_list);
801 		btrfs_release_delayed_item(curr);
802 	}
803 out:
804 	kfree(ins_data);
805 	return ret;
806 }
807 
808 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
809 				      struct btrfs_path *path,
810 				      struct btrfs_root *root,
811 				      struct btrfs_delayed_node *node)
812 {
813 	int ret = 0;
814 
815 	while (ret == 0) {
816 		struct btrfs_delayed_item *curr;
817 
818 		mutex_lock(&node->mutex);
819 		curr = __btrfs_first_delayed_insertion_item(node);
820 		if (!curr) {
821 			mutex_unlock(&node->mutex);
822 			break;
823 		}
824 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 		mutex_unlock(&node->mutex);
826 	}
827 
828 	return ret;
829 }
830 
831 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
832 				    struct btrfs_root *root,
833 				    struct btrfs_path *path,
834 				    struct btrfs_delayed_item *item)
835 {
836 	const u64 ino = item->delayed_node->inode_id;
837 	struct btrfs_fs_info *fs_info = root->fs_info;
838 	struct btrfs_delayed_item *curr, *next;
839 	struct extent_buffer *leaf = path->nodes[0];
840 	LIST_HEAD(batch_list);
841 	int nitems, slot, last_slot;
842 	int ret;
843 	u64 total_reserved_size = item->bytes_reserved;
844 
845 	ASSERT(leaf != NULL);
846 
847 	slot = path->slots[0];
848 	last_slot = btrfs_header_nritems(leaf) - 1;
849 	/*
850 	 * Our caller always gives us a path pointing to an existing item, so
851 	 * this can not happen.
852 	 */
853 	ASSERT(slot <= last_slot);
854 	if (WARN_ON(slot > last_slot))
855 		return -ENOENT;
856 
857 	nitems = 1;
858 	curr = item;
859 	list_add_tail(&curr->tree_list, &batch_list);
860 
861 	/*
862 	 * Keep checking if the next delayed item matches the next item in the
863 	 * leaf - if so, we can add it to the batch of items to delete from the
864 	 * leaf.
865 	 */
866 	while (slot < last_slot) {
867 		struct btrfs_key key;
868 
869 		next = __btrfs_next_delayed_item(curr);
870 		if (!next)
871 			break;
872 
873 		slot++;
874 		btrfs_item_key_to_cpu(leaf, &key, slot);
875 		if (key.objectid != ino ||
876 		    key.type != BTRFS_DIR_INDEX_KEY ||
877 		    key.offset != next->index)
878 			break;
879 		nitems++;
880 		curr = next;
881 		list_add_tail(&curr->tree_list, &batch_list);
882 		total_reserved_size += curr->bytes_reserved;
883 	}
884 
885 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
886 	if (ret)
887 		return ret;
888 
889 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
890 	if (total_reserved_size > 0) {
891 		/*
892 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
893 		 * don't need to release/reserve qgroup space.
894 		 */
895 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
896 					      total_reserved_size, 0);
897 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
898 					total_reserved_size, NULL);
899 	}
900 
901 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
902 		list_del(&curr->tree_list);
903 		btrfs_release_delayed_item(curr);
904 	}
905 
906 	return 0;
907 }
908 
909 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
910 				      struct btrfs_path *path,
911 				      struct btrfs_root *root,
912 				      struct btrfs_delayed_node *node)
913 {
914 	struct btrfs_key key;
915 	int ret = 0;
916 
917 	key.objectid = node->inode_id;
918 	key.type = BTRFS_DIR_INDEX_KEY;
919 
920 	while (ret == 0) {
921 		struct btrfs_delayed_item *item;
922 
923 		mutex_lock(&node->mutex);
924 		item = __btrfs_first_delayed_deletion_item(node);
925 		if (!item) {
926 			mutex_unlock(&node->mutex);
927 			break;
928 		}
929 
930 		key.offset = item->index;
931 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
932 		if (ret > 0) {
933 			/*
934 			 * There's no matching item in the leaf. This means we
935 			 * have already deleted this item in a past run of the
936 			 * delayed items. We ignore errors when running delayed
937 			 * items from an async context, through a work queue job
938 			 * running btrfs_async_run_delayed_root(), and don't
939 			 * release delayed items that failed to complete. This
940 			 * is because we will retry later, and at transaction
941 			 * commit time we always run delayed items and will
942 			 * then deal with errors if they fail to run again.
943 			 *
944 			 * So just release delayed items for which we can't find
945 			 * an item in the tree, and move to the next item.
946 			 */
947 			btrfs_release_path(path);
948 			btrfs_release_delayed_item(item);
949 			ret = 0;
950 		} else if (ret == 0) {
951 			ret = btrfs_batch_delete_items(trans, root, path, item);
952 			btrfs_release_path(path);
953 		}
954 
955 		/*
956 		 * We unlock and relock on each iteration, this is to prevent
957 		 * blocking other tasks for too long while we are being run from
958 		 * the async context (work queue job). Those tasks are typically
959 		 * running system calls like creat/mkdir/rename/unlink/etc which
960 		 * need to add delayed items to this delayed node.
961 		 */
962 		mutex_unlock(&node->mutex);
963 	}
964 
965 	return ret;
966 }
967 
968 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
969 {
970 	struct btrfs_delayed_root *delayed_root;
971 
972 	if (delayed_node &&
973 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
974 		BUG_ON(!delayed_node->root);
975 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
976 		delayed_node->count--;
977 
978 		delayed_root = delayed_node->root->fs_info->delayed_root;
979 		finish_one_item(delayed_root);
980 	}
981 }
982 
983 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
984 {
985 
986 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
987 		struct btrfs_delayed_root *delayed_root;
988 
989 		ASSERT(delayed_node->root);
990 		delayed_node->count--;
991 
992 		delayed_root = delayed_node->root->fs_info->delayed_root;
993 		finish_one_item(delayed_root);
994 	}
995 }
996 
997 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998 					struct btrfs_root *root,
999 					struct btrfs_path *path,
1000 					struct btrfs_delayed_node *node)
1001 {
1002 	struct btrfs_fs_info *fs_info = root->fs_info;
1003 	struct btrfs_key key;
1004 	struct btrfs_inode_item *inode_item;
1005 	struct extent_buffer *leaf;
1006 	int mod;
1007 	int ret;
1008 
1009 	key.objectid = node->inode_id;
1010 	key.type = BTRFS_INODE_ITEM_KEY;
1011 	key.offset = 0;
1012 
1013 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1014 		mod = -1;
1015 	else
1016 		mod = 1;
1017 
1018 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1019 	if (ret > 0)
1020 		ret = -ENOENT;
1021 	if (ret < 0)
1022 		goto out;
1023 
1024 	leaf = path->nodes[0];
1025 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1026 				    struct btrfs_inode_item);
1027 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1028 			    sizeof(struct btrfs_inode_item));
1029 	btrfs_mark_buffer_dirty(leaf);
1030 
1031 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1032 		goto out;
1033 
1034 	path->slots[0]++;
1035 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1036 		goto search;
1037 again:
1038 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1039 	if (key.objectid != node->inode_id)
1040 		goto out;
1041 
1042 	if (key.type != BTRFS_INODE_REF_KEY &&
1043 	    key.type != BTRFS_INODE_EXTREF_KEY)
1044 		goto out;
1045 
1046 	/*
1047 	 * Delayed iref deletion is for the inode who has only one link,
1048 	 * so there is only one iref. The case that several irefs are
1049 	 * in the same item doesn't exist.
1050 	 */
1051 	btrfs_del_item(trans, root, path);
1052 out:
1053 	btrfs_release_delayed_iref(node);
1054 	btrfs_release_path(path);
1055 err_out:
1056 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1057 	btrfs_release_delayed_inode(node);
1058 
1059 	/*
1060 	 * If we fail to update the delayed inode we need to abort the
1061 	 * transaction, because we could leave the inode with the improper
1062 	 * counts behind.
1063 	 */
1064 	if (ret && ret != -ENOENT)
1065 		btrfs_abort_transaction(trans, ret);
1066 
1067 	return ret;
1068 
1069 search:
1070 	btrfs_release_path(path);
1071 
1072 	key.type = BTRFS_INODE_EXTREF_KEY;
1073 	key.offset = -1;
1074 
1075 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1076 	if (ret < 0)
1077 		goto err_out;
1078 	ASSERT(ret);
1079 
1080 	ret = 0;
1081 	leaf = path->nodes[0];
1082 	path->slots[0]--;
1083 	goto again;
1084 }
1085 
1086 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1087 					     struct btrfs_root *root,
1088 					     struct btrfs_path *path,
1089 					     struct btrfs_delayed_node *node)
1090 {
1091 	int ret;
1092 
1093 	mutex_lock(&node->mutex);
1094 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1095 		mutex_unlock(&node->mutex);
1096 		return 0;
1097 	}
1098 
1099 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1100 	mutex_unlock(&node->mutex);
1101 	return ret;
1102 }
1103 
1104 static inline int
1105 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1106 				   struct btrfs_path *path,
1107 				   struct btrfs_delayed_node *node)
1108 {
1109 	int ret;
1110 
1111 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1112 	if (ret)
1113 		return ret;
1114 
1115 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1116 	if (ret)
1117 		return ret;
1118 
1119 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1120 	return ret;
1121 }
1122 
1123 /*
1124  * Called when committing the transaction.
1125  * Returns 0 on success.
1126  * Returns < 0 on error and returns with an aborted transaction with any
1127  * outstanding delayed items cleaned up.
1128  */
1129 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1130 {
1131 	struct btrfs_fs_info *fs_info = trans->fs_info;
1132 	struct btrfs_delayed_root *delayed_root;
1133 	struct btrfs_delayed_node *curr_node, *prev_node;
1134 	struct btrfs_path *path;
1135 	struct btrfs_block_rsv *block_rsv;
1136 	int ret = 0;
1137 	bool count = (nr > 0);
1138 
1139 	if (TRANS_ABORTED(trans))
1140 		return -EIO;
1141 
1142 	path = btrfs_alloc_path();
1143 	if (!path)
1144 		return -ENOMEM;
1145 
1146 	block_rsv = trans->block_rsv;
1147 	trans->block_rsv = &fs_info->delayed_block_rsv;
1148 
1149 	delayed_root = fs_info->delayed_root;
1150 
1151 	curr_node = btrfs_first_delayed_node(delayed_root);
1152 	while (curr_node && (!count || nr--)) {
1153 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1154 							 curr_node);
1155 		if (ret) {
1156 			btrfs_release_delayed_node(curr_node);
1157 			curr_node = NULL;
1158 			btrfs_abort_transaction(trans, ret);
1159 			break;
1160 		}
1161 
1162 		prev_node = curr_node;
1163 		curr_node = btrfs_next_delayed_node(curr_node);
1164 		btrfs_release_delayed_node(prev_node);
1165 	}
1166 
1167 	if (curr_node)
1168 		btrfs_release_delayed_node(curr_node);
1169 	btrfs_free_path(path);
1170 	trans->block_rsv = block_rsv;
1171 
1172 	return ret;
1173 }
1174 
1175 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1176 {
1177 	return __btrfs_run_delayed_items(trans, -1);
1178 }
1179 
1180 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1181 {
1182 	return __btrfs_run_delayed_items(trans, nr);
1183 }
1184 
1185 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1186 				     struct btrfs_inode *inode)
1187 {
1188 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1189 	struct btrfs_path *path;
1190 	struct btrfs_block_rsv *block_rsv;
1191 	int ret;
1192 
1193 	if (!delayed_node)
1194 		return 0;
1195 
1196 	mutex_lock(&delayed_node->mutex);
1197 	if (!delayed_node->count) {
1198 		mutex_unlock(&delayed_node->mutex);
1199 		btrfs_release_delayed_node(delayed_node);
1200 		return 0;
1201 	}
1202 	mutex_unlock(&delayed_node->mutex);
1203 
1204 	path = btrfs_alloc_path();
1205 	if (!path) {
1206 		btrfs_release_delayed_node(delayed_node);
1207 		return -ENOMEM;
1208 	}
1209 
1210 	block_rsv = trans->block_rsv;
1211 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1212 
1213 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1214 
1215 	btrfs_release_delayed_node(delayed_node);
1216 	btrfs_free_path(path);
1217 	trans->block_rsv = block_rsv;
1218 
1219 	return ret;
1220 }
1221 
1222 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1223 {
1224 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1225 	struct btrfs_trans_handle *trans;
1226 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1227 	struct btrfs_path *path;
1228 	struct btrfs_block_rsv *block_rsv;
1229 	int ret;
1230 
1231 	if (!delayed_node)
1232 		return 0;
1233 
1234 	mutex_lock(&delayed_node->mutex);
1235 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1236 		mutex_unlock(&delayed_node->mutex);
1237 		btrfs_release_delayed_node(delayed_node);
1238 		return 0;
1239 	}
1240 	mutex_unlock(&delayed_node->mutex);
1241 
1242 	trans = btrfs_join_transaction(delayed_node->root);
1243 	if (IS_ERR(trans)) {
1244 		ret = PTR_ERR(trans);
1245 		goto out;
1246 	}
1247 
1248 	path = btrfs_alloc_path();
1249 	if (!path) {
1250 		ret = -ENOMEM;
1251 		goto trans_out;
1252 	}
1253 
1254 	block_rsv = trans->block_rsv;
1255 	trans->block_rsv = &fs_info->delayed_block_rsv;
1256 
1257 	mutex_lock(&delayed_node->mutex);
1258 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1259 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1260 						   path, delayed_node);
1261 	else
1262 		ret = 0;
1263 	mutex_unlock(&delayed_node->mutex);
1264 
1265 	btrfs_free_path(path);
1266 	trans->block_rsv = block_rsv;
1267 trans_out:
1268 	btrfs_end_transaction(trans);
1269 	btrfs_btree_balance_dirty(fs_info);
1270 out:
1271 	btrfs_release_delayed_node(delayed_node);
1272 
1273 	return ret;
1274 }
1275 
1276 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1277 {
1278 	struct btrfs_delayed_node *delayed_node;
1279 
1280 	delayed_node = READ_ONCE(inode->delayed_node);
1281 	if (!delayed_node)
1282 		return;
1283 
1284 	inode->delayed_node = NULL;
1285 	btrfs_release_delayed_node(delayed_node);
1286 }
1287 
1288 struct btrfs_async_delayed_work {
1289 	struct btrfs_delayed_root *delayed_root;
1290 	int nr;
1291 	struct btrfs_work work;
1292 };
1293 
1294 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1295 {
1296 	struct btrfs_async_delayed_work *async_work;
1297 	struct btrfs_delayed_root *delayed_root;
1298 	struct btrfs_trans_handle *trans;
1299 	struct btrfs_path *path;
1300 	struct btrfs_delayed_node *delayed_node = NULL;
1301 	struct btrfs_root *root;
1302 	struct btrfs_block_rsv *block_rsv;
1303 	int total_done = 0;
1304 
1305 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1306 	delayed_root = async_work->delayed_root;
1307 
1308 	path = btrfs_alloc_path();
1309 	if (!path)
1310 		goto out;
1311 
1312 	do {
1313 		if (atomic_read(&delayed_root->items) <
1314 		    BTRFS_DELAYED_BACKGROUND / 2)
1315 			break;
1316 
1317 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1318 		if (!delayed_node)
1319 			break;
1320 
1321 		root = delayed_node->root;
1322 
1323 		trans = btrfs_join_transaction(root);
1324 		if (IS_ERR(trans)) {
1325 			btrfs_release_path(path);
1326 			btrfs_release_prepared_delayed_node(delayed_node);
1327 			total_done++;
1328 			continue;
1329 		}
1330 
1331 		block_rsv = trans->block_rsv;
1332 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1333 
1334 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1335 
1336 		trans->block_rsv = block_rsv;
1337 		btrfs_end_transaction(trans);
1338 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1339 
1340 		btrfs_release_path(path);
1341 		btrfs_release_prepared_delayed_node(delayed_node);
1342 		total_done++;
1343 
1344 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1345 		 || total_done < async_work->nr);
1346 
1347 	btrfs_free_path(path);
1348 out:
1349 	wake_up(&delayed_root->wait);
1350 	kfree(async_work);
1351 }
1352 
1353 
1354 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1355 				     struct btrfs_fs_info *fs_info, int nr)
1356 {
1357 	struct btrfs_async_delayed_work *async_work;
1358 
1359 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1360 	if (!async_work)
1361 		return -ENOMEM;
1362 
1363 	async_work->delayed_root = delayed_root;
1364 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1365 			NULL);
1366 	async_work->nr = nr;
1367 
1368 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1369 	return 0;
1370 }
1371 
1372 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1373 {
1374 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1375 }
1376 
1377 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1378 {
1379 	int val = atomic_read(&delayed_root->items_seq);
1380 
1381 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1382 		return 1;
1383 
1384 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1385 		return 1;
1386 
1387 	return 0;
1388 }
1389 
1390 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1391 {
1392 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1393 
1394 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1395 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1396 		return;
1397 
1398 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1399 		int seq;
1400 		int ret;
1401 
1402 		seq = atomic_read(&delayed_root->items_seq);
1403 
1404 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1405 		if (ret)
1406 			return;
1407 
1408 		wait_event_interruptible(delayed_root->wait,
1409 					 could_end_wait(delayed_root, seq));
1410 		return;
1411 	}
1412 
1413 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1414 }
1415 
1416 /* Will return 0 or -ENOMEM */
1417 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1418 				   const char *name, int name_len,
1419 				   struct btrfs_inode *dir,
1420 				   struct btrfs_disk_key *disk_key, u8 flags,
1421 				   u64 index)
1422 {
1423 	struct btrfs_fs_info *fs_info = trans->fs_info;
1424 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1425 	struct btrfs_delayed_node *delayed_node;
1426 	struct btrfs_delayed_item *delayed_item;
1427 	struct btrfs_dir_item *dir_item;
1428 	bool reserve_leaf_space;
1429 	u32 data_len;
1430 	int ret;
1431 
1432 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1433 	if (IS_ERR(delayed_node))
1434 		return PTR_ERR(delayed_node);
1435 
1436 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1437 						delayed_node,
1438 						BTRFS_DELAYED_INSERTION_ITEM);
1439 	if (!delayed_item) {
1440 		ret = -ENOMEM;
1441 		goto release_node;
1442 	}
1443 
1444 	delayed_item->index = index;
1445 
1446 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1447 	dir_item->location = *disk_key;
1448 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1449 	btrfs_set_stack_dir_data_len(dir_item, 0);
1450 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1451 	btrfs_set_stack_dir_flags(dir_item, flags);
1452 	memcpy((char *)(dir_item + 1), name, name_len);
1453 
1454 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1455 
1456 	mutex_lock(&delayed_node->mutex);
1457 
1458 	if (delayed_node->index_item_leaves == 0 ||
1459 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1460 		delayed_node->curr_index_batch_size = data_len;
1461 		reserve_leaf_space = true;
1462 	} else {
1463 		delayed_node->curr_index_batch_size += data_len;
1464 		reserve_leaf_space = false;
1465 	}
1466 
1467 	if (reserve_leaf_space) {
1468 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1469 		/*
1470 		 * Space was reserved for a dir index item insertion when we
1471 		 * started the transaction, so getting a failure here should be
1472 		 * impossible.
1473 		 */
1474 		if (WARN_ON(ret)) {
1475 			mutex_unlock(&delayed_node->mutex);
1476 			btrfs_release_delayed_item(delayed_item);
1477 			goto release_node;
1478 		}
1479 
1480 		delayed_node->index_item_leaves++;
1481 	} else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1482 		const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1483 
1484 		/*
1485 		 * Adding the new dir index item does not require touching another
1486 		 * leaf, so we can release 1 unit of metadata that was previously
1487 		 * reserved when starting the transaction. This applies only to
1488 		 * the case where we had a transaction start and excludes the
1489 		 * transaction join case (when replaying log trees).
1490 		 */
1491 		trace_btrfs_space_reservation(fs_info, "transaction",
1492 					      trans->transid, bytes, 0);
1493 		btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1494 		ASSERT(trans->bytes_reserved >= bytes);
1495 		trans->bytes_reserved -= bytes;
1496 	}
1497 
1498 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1499 	if (unlikely(ret)) {
1500 		btrfs_err(trans->fs_info,
1501 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1502 			  name_len, name, delayed_node->root->root_key.objectid,
1503 			  delayed_node->inode_id, ret);
1504 		BUG();
1505 	}
1506 	mutex_unlock(&delayed_node->mutex);
1507 
1508 release_node:
1509 	btrfs_release_delayed_node(delayed_node);
1510 	return ret;
1511 }
1512 
1513 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1514 					       struct btrfs_delayed_node *node,
1515 					       u64 index)
1516 {
1517 	struct btrfs_delayed_item *item;
1518 
1519 	mutex_lock(&node->mutex);
1520 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1521 	if (!item) {
1522 		mutex_unlock(&node->mutex);
1523 		return 1;
1524 	}
1525 
1526 	/*
1527 	 * For delayed items to insert, we track reserved metadata bytes based
1528 	 * on the number of leaves that we will use.
1529 	 * See btrfs_insert_delayed_dir_index() and
1530 	 * btrfs_delayed_item_reserve_metadata()).
1531 	 */
1532 	ASSERT(item->bytes_reserved == 0);
1533 	ASSERT(node->index_item_leaves > 0);
1534 
1535 	/*
1536 	 * If there's only one leaf reserved, we can decrement this item from the
1537 	 * current batch, otherwise we can not because we don't know which leaf
1538 	 * it belongs to. With the current limit on delayed items, we rarely
1539 	 * accumulate enough dir index items to fill more than one leaf (even
1540 	 * when using a leaf size of 4K).
1541 	 */
1542 	if (node->index_item_leaves == 1) {
1543 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1544 
1545 		ASSERT(node->curr_index_batch_size >= data_len);
1546 		node->curr_index_batch_size -= data_len;
1547 	}
1548 
1549 	btrfs_release_delayed_item(item);
1550 
1551 	/* If we now have no more dir index items, we can release all leaves. */
1552 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1553 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1554 		node->index_item_leaves = 0;
1555 	}
1556 
1557 	mutex_unlock(&node->mutex);
1558 	return 0;
1559 }
1560 
1561 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1562 				   struct btrfs_inode *dir, u64 index)
1563 {
1564 	struct btrfs_delayed_node *node;
1565 	struct btrfs_delayed_item *item;
1566 	int ret;
1567 
1568 	node = btrfs_get_or_create_delayed_node(dir);
1569 	if (IS_ERR(node))
1570 		return PTR_ERR(node);
1571 
1572 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1573 	if (!ret)
1574 		goto end;
1575 
1576 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1577 	if (!item) {
1578 		ret = -ENOMEM;
1579 		goto end;
1580 	}
1581 
1582 	item->index = index;
1583 
1584 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1585 	/*
1586 	 * we have reserved enough space when we start a new transaction,
1587 	 * so reserving metadata failure is impossible.
1588 	 */
1589 	if (ret < 0) {
1590 		btrfs_err(trans->fs_info,
1591 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1592 		btrfs_release_delayed_item(item);
1593 		goto end;
1594 	}
1595 
1596 	mutex_lock(&node->mutex);
1597 	ret = __btrfs_add_delayed_item(node, item);
1598 	if (unlikely(ret)) {
1599 		btrfs_err(trans->fs_info,
1600 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1601 			  index, node->root->root_key.objectid,
1602 			  node->inode_id, ret);
1603 		btrfs_delayed_item_release_metadata(dir->root, item);
1604 		btrfs_release_delayed_item(item);
1605 	}
1606 	mutex_unlock(&node->mutex);
1607 end:
1608 	btrfs_release_delayed_node(node);
1609 	return ret;
1610 }
1611 
1612 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1613 {
1614 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1615 
1616 	if (!delayed_node)
1617 		return -ENOENT;
1618 
1619 	/*
1620 	 * Since we have held i_mutex of this directory, it is impossible that
1621 	 * a new directory index is added into the delayed node and index_cnt
1622 	 * is updated now. So we needn't lock the delayed node.
1623 	 */
1624 	if (!delayed_node->index_cnt) {
1625 		btrfs_release_delayed_node(delayed_node);
1626 		return -EINVAL;
1627 	}
1628 
1629 	inode->index_cnt = delayed_node->index_cnt;
1630 	btrfs_release_delayed_node(delayed_node);
1631 	return 0;
1632 }
1633 
1634 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1635 				     struct list_head *ins_list,
1636 				     struct list_head *del_list)
1637 {
1638 	struct btrfs_delayed_node *delayed_node;
1639 	struct btrfs_delayed_item *item;
1640 
1641 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1642 	if (!delayed_node)
1643 		return false;
1644 
1645 	/*
1646 	 * We can only do one readdir with delayed items at a time because of
1647 	 * item->readdir_list.
1648 	 */
1649 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1650 	btrfs_inode_lock(BTRFS_I(inode), 0);
1651 
1652 	mutex_lock(&delayed_node->mutex);
1653 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1654 	while (item) {
1655 		refcount_inc(&item->refs);
1656 		list_add_tail(&item->readdir_list, ins_list);
1657 		item = __btrfs_next_delayed_item(item);
1658 	}
1659 
1660 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1661 	while (item) {
1662 		refcount_inc(&item->refs);
1663 		list_add_tail(&item->readdir_list, del_list);
1664 		item = __btrfs_next_delayed_item(item);
1665 	}
1666 	mutex_unlock(&delayed_node->mutex);
1667 	/*
1668 	 * This delayed node is still cached in the btrfs inode, so refs
1669 	 * must be > 1 now, and we needn't check it is going to be freed
1670 	 * or not.
1671 	 *
1672 	 * Besides that, this function is used to read dir, we do not
1673 	 * insert/delete delayed items in this period. So we also needn't
1674 	 * requeue or dequeue this delayed node.
1675 	 */
1676 	refcount_dec(&delayed_node->refs);
1677 
1678 	return true;
1679 }
1680 
1681 void btrfs_readdir_put_delayed_items(struct inode *inode,
1682 				     struct list_head *ins_list,
1683 				     struct list_head *del_list)
1684 {
1685 	struct btrfs_delayed_item *curr, *next;
1686 
1687 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1688 		list_del(&curr->readdir_list);
1689 		if (refcount_dec_and_test(&curr->refs))
1690 			kfree(curr);
1691 	}
1692 
1693 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1694 		list_del(&curr->readdir_list);
1695 		if (refcount_dec_and_test(&curr->refs))
1696 			kfree(curr);
1697 	}
1698 
1699 	/*
1700 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1701 	 * read lock.
1702 	 */
1703 	downgrade_write(&inode->i_rwsem);
1704 }
1705 
1706 int btrfs_should_delete_dir_index(struct list_head *del_list,
1707 				  u64 index)
1708 {
1709 	struct btrfs_delayed_item *curr;
1710 	int ret = 0;
1711 
1712 	list_for_each_entry(curr, del_list, readdir_list) {
1713 		if (curr->index > index)
1714 			break;
1715 		if (curr->index == index) {
1716 			ret = 1;
1717 			break;
1718 		}
1719 	}
1720 	return ret;
1721 }
1722 
1723 /*
1724  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1725  *
1726  */
1727 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1728 				    struct list_head *ins_list)
1729 {
1730 	struct btrfs_dir_item *di;
1731 	struct btrfs_delayed_item *curr, *next;
1732 	struct btrfs_key location;
1733 	char *name;
1734 	int name_len;
1735 	int over = 0;
1736 	unsigned char d_type;
1737 
1738 	if (list_empty(ins_list))
1739 		return 0;
1740 
1741 	/*
1742 	 * Changing the data of the delayed item is impossible. So
1743 	 * we needn't lock them. And we have held i_mutex of the
1744 	 * directory, nobody can delete any directory indexes now.
1745 	 */
1746 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1747 		list_del(&curr->readdir_list);
1748 
1749 		if (curr->index < ctx->pos) {
1750 			if (refcount_dec_and_test(&curr->refs))
1751 				kfree(curr);
1752 			continue;
1753 		}
1754 
1755 		ctx->pos = curr->index;
1756 
1757 		di = (struct btrfs_dir_item *)curr->data;
1758 		name = (char *)(di + 1);
1759 		name_len = btrfs_stack_dir_name_len(di);
1760 
1761 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1762 		btrfs_disk_key_to_cpu(&location, &di->location);
1763 
1764 		over = !dir_emit(ctx, name, name_len,
1765 			       location.objectid, d_type);
1766 
1767 		if (refcount_dec_and_test(&curr->refs))
1768 			kfree(curr);
1769 
1770 		if (over)
1771 			return 1;
1772 		ctx->pos++;
1773 	}
1774 	return 0;
1775 }
1776 
1777 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1778 				  struct btrfs_inode_item *inode_item,
1779 				  struct inode *inode)
1780 {
1781 	u64 flags;
1782 
1783 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1784 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1785 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1786 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1787 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1788 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1789 	btrfs_set_stack_inode_generation(inode_item,
1790 					 BTRFS_I(inode)->generation);
1791 	btrfs_set_stack_inode_sequence(inode_item,
1792 				       inode_peek_iversion(inode));
1793 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1794 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1795 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1796 					  BTRFS_I(inode)->ro_flags);
1797 	btrfs_set_stack_inode_flags(inode_item, flags);
1798 	btrfs_set_stack_inode_block_group(inode_item, 0);
1799 
1800 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1801 				     inode->i_atime.tv_sec);
1802 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1803 				      inode->i_atime.tv_nsec);
1804 
1805 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1806 				     inode->i_mtime.tv_sec);
1807 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1808 				      inode->i_mtime.tv_nsec);
1809 
1810 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1811 				     inode->i_ctime.tv_sec);
1812 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1813 				      inode->i_ctime.tv_nsec);
1814 
1815 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1816 				     BTRFS_I(inode)->i_otime.tv_sec);
1817 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1818 				     BTRFS_I(inode)->i_otime.tv_nsec);
1819 }
1820 
1821 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1822 {
1823 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1824 	struct btrfs_delayed_node *delayed_node;
1825 	struct btrfs_inode_item *inode_item;
1826 
1827 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1828 	if (!delayed_node)
1829 		return -ENOENT;
1830 
1831 	mutex_lock(&delayed_node->mutex);
1832 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1833 		mutex_unlock(&delayed_node->mutex);
1834 		btrfs_release_delayed_node(delayed_node);
1835 		return -ENOENT;
1836 	}
1837 
1838 	inode_item = &delayed_node->inode_item;
1839 
1840 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1841 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1842 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1843 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1844 			round_up(i_size_read(inode), fs_info->sectorsize));
1845 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1846 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1847 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1848 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1849         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1850 
1851 	inode_set_iversion_queried(inode,
1852 				   btrfs_stack_inode_sequence(inode_item));
1853 	inode->i_rdev = 0;
1854 	*rdev = btrfs_stack_inode_rdev(inode_item);
1855 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1856 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1857 
1858 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1859 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1860 
1861 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1862 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1863 
1864 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1865 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1866 
1867 	BTRFS_I(inode)->i_otime.tv_sec =
1868 		btrfs_stack_timespec_sec(&inode_item->otime);
1869 	BTRFS_I(inode)->i_otime.tv_nsec =
1870 		btrfs_stack_timespec_nsec(&inode_item->otime);
1871 
1872 	inode->i_generation = BTRFS_I(inode)->generation;
1873 	BTRFS_I(inode)->index_cnt = (u64)-1;
1874 
1875 	mutex_unlock(&delayed_node->mutex);
1876 	btrfs_release_delayed_node(delayed_node);
1877 	return 0;
1878 }
1879 
1880 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1881 			       struct btrfs_root *root,
1882 			       struct btrfs_inode *inode)
1883 {
1884 	struct btrfs_delayed_node *delayed_node;
1885 	int ret = 0;
1886 
1887 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1888 	if (IS_ERR(delayed_node))
1889 		return PTR_ERR(delayed_node);
1890 
1891 	mutex_lock(&delayed_node->mutex);
1892 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1893 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1894 				      &inode->vfs_inode);
1895 		goto release_node;
1896 	}
1897 
1898 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1899 	if (ret)
1900 		goto release_node;
1901 
1902 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1903 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1904 	delayed_node->count++;
1905 	atomic_inc(&root->fs_info->delayed_root->items);
1906 release_node:
1907 	mutex_unlock(&delayed_node->mutex);
1908 	btrfs_release_delayed_node(delayed_node);
1909 	return ret;
1910 }
1911 
1912 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1913 {
1914 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1915 	struct btrfs_delayed_node *delayed_node;
1916 
1917 	/*
1918 	 * we don't do delayed inode updates during log recovery because it
1919 	 * leads to enospc problems.  This means we also can't do
1920 	 * delayed inode refs
1921 	 */
1922 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1923 		return -EAGAIN;
1924 
1925 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1926 	if (IS_ERR(delayed_node))
1927 		return PTR_ERR(delayed_node);
1928 
1929 	/*
1930 	 * We don't reserve space for inode ref deletion is because:
1931 	 * - We ONLY do async inode ref deletion for the inode who has only
1932 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1933 	 *   And in most case, the inode ref and the inode item are in the
1934 	 *   same leaf, and we will deal with them at the same time.
1935 	 *   Since we are sure we will reserve the space for the inode item,
1936 	 *   it is unnecessary to reserve space for inode ref deletion.
1937 	 * - If the inode ref and the inode item are not in the same leaf,
1938 	 *   We also needn't worry about enospc problem, because we reserve
1939 	 *   much more space for the inode update than it needs.
1940 	 * - At the worst, we can steal some space from the global reservation.
1941 	 *   It is very rare.
1942 	 */
1943 	mutex_lock(&delayed_node->mutex);
1944 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1945 		goto release_node;
1946 
1947 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1948 	delayed_node->count++;
1949 	atomic_inc(&fs_info->delayed_root->items);
1950 release_node:
1951 	mutex_unlock(&delayed_node->mutex);
1952 	btrfs_release_delayed_node(delayed_node);
1953 	return 0;
1954 }
1955 
1956 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1957 {
1958 	struct btrfs_root *root = delayed_node->root;
1959 	struct btrfs_fs_info *fs_info = root->fs_info;
1960 	struct btrfs_delayed_item *curr_item, *prev_item;
1961 
1962 	mutex_lock(&delayed_node->mutex);
1963 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1964 	while (curr_item) {
1965 		prev_item = curr_item;
1966 		curr_item = __btrfs_next_delayed_item(prev_item);
1967 		btrfs_release_delayed_item(prev_item);
1968 	}
1969 
1970 	if (delayed_node->index_item_leaves > 0) {
1971 		btrfs_delayed_item_release_leaves(delayed_node,
1972 					  delayed_node->index_item_leaves);
1973 		delayed_node->index_item_leaves = 0;
1974 	}
1975 
1976 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1977 	while (curr_item) {
1978 		btrfs_delayed_item_release_metadata(root, curr_item);
1979 		prev_item = curr_item;
1980 		curr_item = __btrfs_next_delayed_item(prev_item);
1981 		btrfs_release_delayed_item(prev_item);
1982 	}
1983 
1984 	btrfs_release_delayed_iref(delayed_node);
1985 
1986 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1987 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1988 		btrfs_release_delayed_inode(delayed_node);
1989 	}
1990 	mutex_unlock(&delayed_node->mutex);
1991 }
1992 
1993 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1994 {
1995 	struct btrfs_delayed_node *delayed_node;
1996 
1997 	delayed_node = btrfs_get_delayed_node(inode);
1998 	if (!delayed_node)
1999 		return;
2000 
2001 	__btrfs_kill_delayed_node(delayed_node);
2002 	btrfs_release_delayed_node(delayed_node);
2003 }
2004 
2005 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2006 {
2007 	u64 inode_id = 0;
2008 	struct btrfs_delayed_node *delayed_nodes[8];
2009 	int i, n;
2010 
2011 	while (1) {
2012 		spin_lock(&root->inode_lock);
2013 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2014 					   (void **)delayed_nodes, inode_id,
2015 					   ARRAY_SIZE(delayed_nodes));
2016 		if (!n) {
2017 			spin_unlock(&root->inode_lock);
2018 			break;
2019 		}
2020 
2021 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
2022 		for (i = 0; i < n; i++) {
2023 			/*
2024 			 * Don't increase refs in case the node is dead and
2025 			 * about to be removed from the tree in the loop below
2026 			 */
2027 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2028 				delayed_nodes[i] = NULL;
2029 		}
2030 		spin_unlock(&root->inode_lock);
2031 
2032 		for (i = 0; i < n; i++) {
2033 			if (!delayed_nodes[i])
2034 				continue;
2035 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2036 			btrfs_release_delayed_node(delayed_nodes[i]);
2037 		}
2038 	}
2039 }
2040 
2041 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2042 {
2043 	struct btrfs_delayed_node *curr_node, *prev_node;
2044 
2045 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2046 	while (curr_node) {
2047 		__btrfs_kill_delayed_node(curr_node);
2048 
2049 		prev_node = curr_node;
2050 		curr_node = btrfs_next_delayed_node(curr_node);
2051 		btrfs_release_delayed_node(prev_node);
2052 	}
2053 }
2054 
2055 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2056 				 struct list_head *ins_list,
2057 				 struct list_head *del_list)
2058 {
2059 	struct btrfs_delayed_node *node;
2060 	struct btrfs_delayed_item *item;
2061 
2062 	node = btrfs_get_delayed_node(inode);
2063 	if (!node)
2064 		return;
2065 
2066 	mutex_lock(&node->mutex);
2067 	item = __btrfs_first_delayed_insertion_item(node);
2068 	while (item) {
2069 		/*
2070 		 * It's possible that the item is already in a log list. This
2071 		 * can happen in case two tasks are trying to log the same
2072 		 * directory. For example if we have tasks A and task B:
2073 		 *
2074 		 * Task A collected the delayed items into a log list while
2075 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2076 		 * only releases the items after logging the inodes they point
2077 		 * to (if they are new inodes), which happens after unlocking
2078 		 * the log mutex;
2079 		 *
2080 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2081 		 * of the same directory inode, before task B releases the
2082 		 * delayed items. This can happen for example when logging some
2083 		 * inode we need to trigger logging of its parent directory, so
2084 		 * logging two files that have the same parent directory can
2085 		 * lead to this.
2086 		 *
2087 		 * If this happens, just ignore delayed items already in a log
2088 		 * list. All the tasks logging the directory are under a log
2089 		 * transaction and whichever finishes first can not sync the log
2090 		 * before the other completes and leaves the log transaction.
2091 		 */
2092 		if (!item->logged && list_empty(&item->log_list)) {
2093 			refcount_inc(&item->refs);
2094 			list_add_tail(&item->log_list, ins_list);
2095 		}
2096 		item = __btrfs_next_delayed_item(item);
2097 	}
2098 
2099 	item = __btrfs_first_delayed_deletion_item(node);
2100 	while (item) {
2101 		/* It may be non-empty, for the same reason mentioned above. */
2102 		if (!item->logged && list_empty(&item->log_list)) {
2103 			refcount_inc(&item->refs);
2104 			list_add_tail(&item->log_list, del_list);
2105 		}
2106 		item = __btrfs_next_delayed_item(item);
2107 	}
2108 	mutex_unlock(&node->mutex);
2109 
2110 	/*
2111 	 * We are called during inode logging, which means the inode is in use
2112 	 * and can not be evicted before we finish logging the inode. So we never
2113 	 * have the last reference on the delayed inode.
2114 	 * Also, we don't use btrfs_release_delayed_node() because that would
2115 	 * requeue the delayed inode (change its order in the list of prepared
2116 	 * nodes) and we don't want to do such change because we don't create or
2117 	 * delete delayed items.
2118 	 */
2119 	ASSERT(refcount_read(&node->refs) > 1);
2120 	refcount_dec(&node->refs);
2121 }
2122 
2123 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2124 				 struct list_head *ins_list,
2125 				 struct list_head *del_list)
2126 {
2127 	struct btrfs_delayed_node *node;
2128 	struct btrfs_delayed_item *item;
2129 	struct btrfs_delayed_item *next;
2130 
2131 	node = btrfs_get_delayed_node(inode);
2132 	if (!node)
2133 		return;
2134 
2135 	mutex_lock(&node->mutex);
2136 
2137 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2138 		item->logged = true;
2139 		list_del_init(&item->log_list);
2140 		if (refcount_dec_and_test(&item->refs))
2141 			kfree(item);
2142 	}
2143 
2144 	list_for_each_entry_safe(item, next, del_list, log_list) {
2145 		item->logged = true;
2146 		list_del_init(&item->log_list);
2147 		if (refcount_dec_and_test(&item->refs))
2148 			kfree(item);
2149 	}
2150 
2151 	mutex_unlock(&node->mutex);
2152 
2153 	/*
2154 	 * We are called during inode logging, which means the inode is in use
2155 	 * and can not be evicted before we finish logging the inode. So we never
2156 	 * have the last reference on the delayed inode.
2157 	 * Also, we don't use btrfs_release_delayed_node() because that would
2158 	 * requeue the delayed inode (change its order in the list of prepared
2159 	 * nodes) and we don't want to do such change because we don't create or
2160 	 * delete delayed items.
2161 	 */
2162 	ASSERT(refcount_read(&node->refs) > 1);
2163 	refcount_dec(&node->refs);
2164 }
2165