1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0); 32 if (!delayed_node_cache) 33 return -ENOMEM; 34 return 0; 35 } 36 37 void __cold btrfs_delayed_inode_exit(void) 38 { 39 kmem_cache_destroy(delayed_node_cache); 40 } 41 42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root) 43 { 44 atomic_set(&delayed_root->items, 0); 45 atomic_set(&delayed_root->items_seq, 0); 46 delayed_root->nodes = 0; 47 spin_lock_init(&delayed_root->lock); 48 init_waitqueue_head(&delayed_root->wait); 49 INIT_LIST_HEAD(&delayed_root->node_list); 50 INIT_LIST_HEAD(&delayed_root->prepare_list); 51 } 52 53 static inline void btrfs_init_delayed_node( 54 struct btrfs_delayed_node *delayed_node, 55 struct btrfs_root *root, u64 inode_id) 56 { 57 delayed_node->root = root; 58 delayed_node->inode_id = inode_id; 59 refcount_set(&delayed_node->refs, 0); 60 btrfs_delayed_node_ref_tracker_dir_init(delayed_node); 61 delayed_node->ins_root = RB_ROOT_CACHED; 62 delayed_node->del_root = RB_ROOT_CACHED; 63 mutex_init(&delayed_node->mutex); 64 INIT_LIST_HEAD(&delayed_node->n_list); 65 INIT_LIST_HEAD(&delayed_node->p_list); 66 } 67 68 static struct btrfs_delayed_node *btrfs_get_delayed_node( 69 struct btrfs_inode *btrfs_inode, 70 struct btrfs_ref_tracker *tracker) 71 { 72 struct btrfs_root *root = btrfs_inode->root; 73 u64 ino = btrfs_ino(btrfs_inode); 74 struct btrfs_delayed_node *node; 75 76 node = READ_ONCE(btrfs_inode->delayed_node); 77 if (node) { 78 refcount_inc(&node->refs); 79 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS); 80 return node; 81 } 82 83 xa_lock(&root->delayed_nodes); 84 node = xa_load(&root->delayed_nodes, ino); 85 86 if (node) { 87 if (btrfs_inode->delayed_node) { 88 refcount_inc(&node->refs); /* can be accessed */ 89 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 90 BUG_ON(btrfs_inode->delayed_node != node); 91 xa_unlock(&root->delayed_nodes); 92 return node; 93 } 94 95 /* 96 * It's possible that we're racing into the middle of removing 97 * this node from the xarray. In this case, the refcount 98 * was zero and it should never go back to one. Just return 99 * NULL like it was never in the xarray at all; our release 100 * function is in the process of removing it. 101 * 102 * Some implementations of refcount_inc refuse to bump the 103 * refcount once it has hit zero. If we don't do this dance 104 * here, refcount_inc() may decide to just WARN_ONCE() instead 105 * of actually bumping the refcount. 106 * 107 * If this node is properly in the xarray, we want to bump the 108 * refcount twice, once for the inode and once for this get 109 * operation. 110 */ 111 if (refcount_inc_not_zero(&node->refs)) { 112 refcount_inc(&node->refs); 113 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 114 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, 115 GFP_ATOMIC); 116 btrfs_inode->delayed_node = node; 117 } else { 118 node = NULL; 119 } 120 121 xa_unlock(&root->delayed_nodes); 122 return node; 123 } 124 xa_unlock(&root->delayed_nodes); 125 126 return NULL; 127 } 128 129 /* 130 * Look up an existing delayed node associated with @btrfs_inode or create a new 131 * one and insert it to the delayed nodes of the root. 132 * 133 * Return the delayed node, or error pointer on failure. 134 */ 135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 136 struct btrfs_inode *btrfs_inode, 137 struct btrfs_ref_tracker *tracker) 138 { 139 struct btrfs_delayed_node *node; 140 struct btrfs_root *root = btrfs_inode->root; 141 u64 ino = btrfs_ino(btrfs_inode); 142 int ret; 143 void *ptr; 144 145 again: 146 node = btrfs_get_delayed_node(btrfs_inode, tracker); 147 if (node) 148 return node; 149 150 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 151 if (!node) 152 return ERR_PTR(-ENOMEM); 153 btrfs_init_delayed_node(node, root, ino); 154 155 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ 156 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); 157 if (ret == -ENOMEM) { 158 btrfs_delayed_node_ref_tracker_dir_exit(node); 159 kmem_cache_free(delayed_node_cache, node); 160 return ERR_PTR(-ENOMEM); 161 } 162 xa_lock(&root->delayed_nodes); 163 ptr = xa_load(&root->delayed_nodes, ino); 164 if (ptr) { 165 /* Somebody inserted it, go back and read it. */ 166 xa_unlock(&root->delayed_nodes); 167 btrfs_delayed_node_ref_tracker_dir_exit(node); 168 kmem_cache_free(delayed_node_cache, node); 169 node = NULL; 170 goto again; 171 } 172 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); 173 ASSERT(xa_err(ptr) != -EINVAL); 174 ASSERT(xa_err(ptr) != -ENOMEM); 175 ASSERT(ptr == NULL); 176 177 /* Cached in the inode and can be accessed. */ 178 refcount_set(&node->refs, 2); 179 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 180 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_ATOMIC); 181 182 btrfs_inode->delayed_node = node; 183 xa_unlock(&root->delayed_nodes); 184 185 return node; 186 } 187 188 /* 189 * Call it when holding delayed_node->mutex 190 * 191 * If mod = 1, add this node into the prepared list. 192 */ 193 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 194 struct btrfs_delayed_node *node, 195 int mod) 196 { 197 spin_lock(&root->lock); 198 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 199 if (!list_empty(&node->p_list)) 200 list_move_tail(&node->p_list, &root->prepare_list); 201 else if (mod) 202 list_add_tail(&node->p_list, &root->prepare_list); 203 } else { 204 list_add_tail(&node->n_list, &root->node_list); 205 list_add_tail(&node->p_list, &root->prepare_list); 206 refcount_inc(&node->refs); /* inserted into list */ 207 btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker, 208 GFP_ATOMIC); 209 root->nodes++; 210 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 211 } 212 spin_unlock(&root->lock); 213 } 214 215 /* Call it when holding delayed_node->mutex */ 216 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 217 struct btrfs_delayed_node *node) 218 { 219 spin_lock(&root->lock); 220 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 221 root->nodes--; 222 btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker); 223 refcount_dec(&node->refs); /* not in the list */ 224 list_del_init(&node->n_list); 225 if (!list_empty(&node->p_list)) 226 list_del_init(&node->p_list); 227 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 228 } 229 spin_unlock(&root->lock); 230 } 231 232 static struct btrfs_delayed_node *btrfs_first_delayed_node( 233 struct btrfs_delayed_root *delayed_root, 234 struct btrfs_ref_tracker *tracker) 235 { 236 struct btrfs_delayed_node *node; 237 238 spin_lock(&delayed_root->lock); 239 node = list_first_entry_or_null(&delayed_root->node_list, 240 struct btrfs_delayed_node, n_list); 241 if (node) { 242 refcount_inc(&node->refs); 243 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 244 } 245 spin_unlock(&delayed_root->lock); 246 247 return node; 248 } 249 250 static struct btrfs_delayed_node *btrfs_next_delayed_node( 251 struct btrfs_delayed_node *node, 252 struct btrfs_ref_tracker *tracker) 253 { 254 struct btrfs_delayed_root *delayed_root; 255 struct list_head *p; 256 struct btrfs_delayed_node *next = NULL; 257 258 delayed_root = node->root->fs_info->delayed_root; 259 spin_lock(&delayed_root->lock); 260 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 261 /* not in the list */ 262 if (list_empty(&delayed_root->node_list)) 263 goto out; 264 p = delayed_root->node_list.next; 265 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 266 goto out; 267 else 268 p = node->n_list.next; 269 270 next = list_entry(p, struct btrfs_delayed_node, n_list); 271 refcount_inc(&next->refs); 272 btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC); 273 out: 274 spin_unlock(&delayed_root->lock); 275 276 return next; 277 } 278 279 static void __btrfs_release_delayed_node( 280 struct btrfs_delayed_node *delayed_node, 281 int mod, struct btrfs_ref_tracker *tracker) 282 { 283 struct btrfs_delayed_root *delayed_root; 284 285 if (!delayed_node) 286 return; 287 288 delayed_root = delayed_node->root->fs_info->delayed_root; 289 290 mutex_lock(&delayed_node->mutex); 291 if (delayed_node->count) 292 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 293 else 294 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 295 mutex_unlock(&delayed_node->mutex); 296 297 btrfs_delayed_node_ref_tracker_free(delayed_node, tracker); 298 if (refcount_dec_and_test(&delayed_node->refs)) { 299 struct btrfs_root *root = delayed_node->root; 300 301 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 302 /* 303 * Once our refcount goes to zero, nobody is allowed to bump it 304 * back up. We can delete it now. 305 */ 306 ASSERT(refcount_read(&delayed_node->refs) == 0); 307 btrfs_delayed_node_ref_tracker_dir_exit(delayed_node); 308 kmem_cache_free(delayed_node_cache, delayed_node); 309 } 310 } 311 312 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node, 313 struct btrfs_ref_tracker *tracker) 314 { 315 __btrfs_release_delayed_node(node, 0, tracker); 316 } 317 318 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 319 struct btrfs_delayed_root *delayed_root, 320 struct btrfs_ref_tracker *tracker) 321 { 322 struct btrfs_delayed_node *node; 323 324 spin_lock(&delayed_root->lock); 325 node = list_first_entry_or_null(&delayed_root->prepare_list, 326 struct btrfs_delayed_node, p_list); 327 if (node) { 328 list_del_init(&node->p_list); 329 refcount_inc(&node->refs); 330 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 331 } 332 spin_unlock(&delayed_root->lock); 333 334 return node; 335 } 336 337 static inline void btrfs_release_prepared_delayed_node( 338 struct btrfs_delayed_node *node, 339 struct btrfs_ref_tracker *tracker) 340 { 341 __btrfs_release_delayed_node(node, 1, tracker); 342 } 343 344 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 345 struct btrfs_delayed_node *node, 346 enum btrfs_delayed_item_type type) 347 { 348 struct btrfs_delayed_item *item; 349 350 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 351 if (item) { 352 item->data_len = data_len; 353 item->type = type; 354 item->bytes_reserved = 0; 355 item->delayed_node = node; 356 RB_CLEAR_NODE(&item->rb_node); 357 INIT_LIST_HEAD(&item->log_list); 358 item->logged = false; 359 refcount_set(&item->refs, 1); 360 } 361 return item; 362 } 363 364 static int delayed_item_index_cmp(const void *key, const struct rb_node *node) 365 { 366 const u64 *index = key; 367 const struct btrfs_delayed_item *delayed_item = rb_entry(node, 368 struct btrfs_delayed_item, rb_node); 369 370 if (delayed_item->index < *index) 371 return 1; 372 else if (delayed_item->index > *index) 373 return -1; 374 375 return 0; 376 } 377 378 /* 379 * Look up the delayed item by key. 380 * 381 * @delayed_node: pointer to the delayed node 382 * @index: the dir index value to lookup (offset of a dir index key) 383 * 384 * Note: if we don't find the right item, we will return the prev item and 385 * the next item. 386 */ 387 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 388 struct rb_root *root, 389 u64 index) 390 { 391 struct rb_node *node; 392 393 node = rb_find(&index, root, delayed_item_index_cmp); 394 return rb_entry_safe(node, struct btrfs_delayed_item, rb_node); 395 } 396 397 static int btrfs_delayed_item_cmp(const struct rb_node *new, 398 const struct rb_node *exist) 399 { 400 const struct btrfs_delayed_item *new_item = 401 rb_entry(new, struct btrfs_delayed_item, rb_node); 402 403 return delayed_item_index_cmp(&new_item->index, exist); 404 } 405 406 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 407 struct btrfs_delayed_item *ins) 408 { 409 struct rb_root_cached *root; 410 struct rb_node *exist; 411 412 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 413 root = &delayed_node->ins_root; 414 else 415 root = &delayed_node->del_root; 416 417 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp); 418 if (exist) 419 return -EEXIST; 420 421 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 422 ins->index >= delayed_node->index_cnt) 423 delayed_node->index_cnt = ins->index + 1; 424 425 delayed_node->count++; 426 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 427 return 0; 428 } 429 430 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 431 { 432 int seq = atomic_inc_return(&delayed_root->items_seq); 433 434 /* atomic_dec_return implies a barrier */ 435 if ((atomic_dec_return(&delayed_root->items) < 436 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 437 cond_wake_up_nomb(&delayed_root->wait); 438 } 439 440 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 441 { 442 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 443 struct rb_root_cached *root; 444 struct btrfs_delayed_root *delayed_root; 445 446 /* Not inserted, ignore it. */ 447 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 448 return; 449 450 /* If it's in a rbtree, then we need to have delayed node locked. */ 451 lockdep_assert_held(&delayed_node->mutex); 452 453 delayed_root = delayed_node->root->fs_info->delayed_root; 454 455 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 456 root = &delayed_node->ins_root; 457 else 458 root = &delayed_node->del_root; 459 460 rb_erase_cached(&delayed_item->rb_node, root); 461 RB_CLEAR_NODE(&delayed_item->rb_node); 462 delayed_node->count--; 463 464 finish_one_item(delayed_root); 465 } 466 467 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 468 { 469 if (item) { 470 __btrfs_remove_delayed_item(item); 471 if (refcount_dec_and_test(&item->refs)) 472 kfree(item); 473 } 474 } 475 476 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 477 struct btrfs_delayed_node *delayed_node) 478 { 479 struct rb_node *p = rb_first_cached(&delayed_node->ins_root); 480 481 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 482 } 483 484 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 485 struct btrfs_delayed_node *delayed_node) 486 { 487 struct rb_node *p = rb_first_cached(&delayed_node->del_root); 488 489 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 490 } 491 492 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 493 struct btrfs_delayed_item *item) 494 { 495 struct rb_node *p = rb_next(&item->rb_node); 496 497 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 498 } 499 500 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 501 struct btrfs_delayed_item *item) 502 { 503 struct btrfs_block_rsv *src_rsv; 504 struct btrfs_block_rsv *dst_rsv; 505 struct btrfs_fs_info *fs_info = trans->fs_info; 506 u64 num_bytes; 507 int ret; 508 509 if (!trans->bytes_reserved) 510 return 0; 511 512 src_rsv = trans->block_rsv; 513 dst_rsv = &fs_info->delayed_block_rsv; 514 515 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 516 517 /* 518 * Here we migrate space rsv from transaction rsv, since have already 519 * reserved space when starting a transaction. So no need to reserve 520 * qgroup space here. 521 */ 522 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 523 if (!ret) { 524 trace_btrfs_space_reservation(fs_info, "delayed_item", 525 item->delayed_node->inode_id, 526 num_bytes, 1); 527 /* 528 * For insertions we track reserved metadata space by accounting 529 * for the number of leaves that will be used, based on the delayed 530 * node's curr_index_batch_size and index_item_leaves fields. 531 */ 532 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 533 item->bytes_reserved = num_bytes; 534 } 535 536 return ret; 537 } 538 539 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 540 struct btrfs_delayed_item *item) 541 { 542 struct btrfs_block_rsv *rsv; 543 struct btrfs_fs_info *fs_info = root->fs_info; 544 545 if (!item->bytes_reserved) 546 return; 547 548 rsv = &fs_info->delayed_block_rsv; 549 /* 550 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 551 * to release/reserve qgroup space. 552 */ 553 trace_btrfs_space_reservation(fs_info, "delayed_item", 554 item->delayed_node->inode_id, 555 item->bytes_reserved, 0); 556 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 557 } 558 559 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 560 unsigned int num_leaves) 561 { 562 struct btrfs_fs_info *fs_info = node->root->fs_info; 563 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 564 565 /* There are no space reservations during log replay, bail out. */ 566 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 567 return; 568 569 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 570 bytes, 0); 571 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 572 } 573 574 static int btrfs_delayed_inode_reserve_metadata( 575 struct btrfs_trans_handle *trans, 576 struct btrfs_root *root, 577 struct btrfs_delayed_node *node) 578 { 579 struct btrfs_fs_info *fs_info = root->fs_info; 580 struct btrfs_block_rsv *src_rsv; 581 struct btrfs_block_rsv *dst_rsv; 582 u64 num_bytes; 583 int ret; 584 585 src_rsv = trans->block_rsv; 586 dst_rsv = &fs_info->delayed_block_rsv; 587 588 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 589 590 /* 591 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 592 * which doesn't reserve space for speed. This is a problem since we 593 * still need to reserve space for this update, so try to reserve the 594 * space. 595 * 596 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 597 * we always reserve enough to update the inode item. 598 */ 599 if (!src_rsv || (!trans->bytes_reserved && 600 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 601 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 602 BTRFS_QGROUP_RSV_META_PREALLOC, true); 603 if (ret < 0) 604 return ret; 605 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 606 BTRFS_RESERVE_NO_FLUSH); 607 /* NO_FLUSH could only fail with -ENOSPC */ 608 ASSERT(ret == 0 || ret == -ENOSPC); 609 if (ret) 610 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 611 } else { 612 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 613 } 614 615 if (!ret) { 616 trace_btrfs_space_reservation(fs_info, "delayed_inode", 617 node->inode_id, num_bytes, 1); 618 node->bytes_reserved = num_bytes; 619 } 620 621 return ret; 622 } 623 624 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 625 struct btrfs_delayed_node *node, 626 bool qgroup_free) 627 { 628 struct btrfs_block_rsv *rsv; 629 630 if (!node->bytes_reserved) 631 return; 632 633 rsv = &fs_info->delayed_block_rsv; 634 trace_btrfs_space_reservation(fs_info, "delayed_inode", 635 node->inode_id, node->bytes_reserved, 0); 636 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 637 if (qgroup_free) 638 btrfs_qgroup_free_meta_prealloc(node->root, 639 node->bytes_reserved); 640 else 641 btrfs_qgroup_convert_reserved_meta(node->root, 642 node->bytes_reserved); 643 node->bytes_reserved = 0; 644 } 645 646 /* 647 * Insert a single delayed item or a batch of delayed items, as many as possible 648 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 649 * in the rbtree, and if there's a gap between two consecutive dir index items, 650 * then it means at some point we had delayed dir indexes to add but they got 651 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 652 * into the subvolume tree. Dir index keys also have their offsets coming from a 653 * monotonically increasing counter, so we can't get new keys with an offset that 654 * fits within a gap between delayed dir index items. 655 */ 656 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 657 struct btrfs_root *root, 658 struct btrfs_path *path, 659 struct btrfs_delayed_item *first_item) 660 { 661 struct btrfs_fs_info *fs_info = root->fs_info; 662 struct btrfs_delayed_node *node = first_item->delayed_node; 663 LIST_HEAD(item_list); 664 struct btrfs_delayed_item *curr; 665 struct btrfs_delayed_item *next; 666 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 667 struct btrfs_item_batch batch; 668 struct btrfs_key first_key; 669 const u32 first_data_size = first_item->data_len; 670 int total_size; 671 char *ins_data = NULL; 672 int ret; 673 bool continuous_keys_only = false; 674 675 lockdep_assert_held(&node->mutex); 676 677 /* 678 * During normal operation the delayed index offset is continuously 679 * increasing, so we can batch insert all items as there will not be any 680 * overlapping keys in the tree. 681 * 682 * The exception to this is log replay, where we may have interleaved 683 * offsets in the tree, so our batch needs to be continuous keys only in 684 * order to ensure we do not end up with out of order items in our leaf. 685 */ 686 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 687 continuous_keys_only = true; 688 689 /* 690 * For delayed items to insert, we track reserved metadata bytes based 691 * on the number of leaves that we will use. 692 * See btrfs_insert_delayed_dir_index() and 693 * btrfs_delayed_item_reserve_metadata()). 694 */ 695 ASSERT(first_item->bytes_reserved == 0); 696 697 list_add_tail(&first_item->tree_list, &item_list); 698 batch.total_data_size = first_data_size; 699 batch.nr = 1; 700 total_size = first_data_size + sizeof(struct btrfs_item); 701 curr = first_item; 702 703 while (true) { 704 int next_size; 705 706 next = __btrfs_next_delayed_item(curr); 707 if (!next) 708 break; 709 710 /* 711 * We cannot allow gaps in the key space if we're doing log 712 * replay. 713 */ 714 if (continuous_keys_only && (next->index != curr->index + 1)) 715 break; 716 717 ASSERT(next->bytes_reserved == 0); 718 719 next_size = next->data_len + sizeof(struct btrfs_item); 720 if (total_size + next_size > max_size) 721 break; 722 723 list_add_tail(&next->tree_list, &item_list); 724 batch.nr++; 725 total_size += next_size; 726 batch.total_data_size += next->data_len; 727 curr = next; 728 } 729 730 if (batch.nr == 1) { 731 first_key.objectid = node->inode_id; 732 first_key.type = BTRFS_DIR_INDEX_KEY; 733 first_key.offset = first_item->index; 734 batch.keys = &first_key; 735 batch.data_sizes = &first_data_size; 736 } else { 737 struct btrfs_key *ins_keys; 738 u32 *ins_sizes; 739 int i = 0; 740 741 ins_data = kmalloc_array(batch.nr, 742 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS); 743 if (!ins_data) { 744 ret = -ENOMEM; 745 goto out; 746 } 747 ins_sizes = (u32 *)ins_data; 748 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 749 batch.keys = ins_keys; 750 batch.data_sizes = ins_sizes; 751 list_for_each_entry(curr, &item_list, tree_list) { 752 ins_keys[i].objectid = node->inode_id; 753 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 754 ins_keys[i].offset = curr->index; 755 ins_sizes[i] = curr->data_len; 756 i++; 757 } 758 } 759 760 ret = btrfs_insert_empty_items(trans, root, path, &batch); 761 if (ret) 762 goto out; 763 764 list_for_each_entry(curr, &item_list, tree_list) { 765 char *data_ptr; 766 767 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 768 write_extent_buffer(path->nodes[0], &curr->data, 769 (unsigned long)data_ptr, curr->data_len); 770 path->slots[0]++; 771 } 772 773 /* 774 * Now release our path before releasing the delayed items and their 775 * metadata reservations, so that we don't block other tasks for more 776 * time than needed. 777 */ 778 btrfs_release_path(path); 779 780 ASSERT(node->index_item_leaves > 0); 781 782 /* 783 * For normal operations we will batch an entire leaf's worth of delayed 784 * items, so if there are more items to process we can decrement 785 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 786 * 787 * However for log replay we may not have inserted an entire leaf's 788 * worth of items, we may have not had continuous items, so decrementing 789 * here would mess up the index_item_leaves accounting. For this case 790 * only clean up the accounting when there are no items left. 791 */ 792 if (next && !continuous_keys_only) { 793 /* 794 * We inserted one batch of items into a leaf a there are more 795 * items to flush in a future batch, now release one unit of 796 * metadata space from the delayed block reserve, corresponding 797 * the leaf we just flushed to. 798 */ 799 btrfs_delayed_item_release_leaves(node, 1); 800 node->index_item_leaves--; 801 } else if (!next) { 802 /* 803 * There are no more items to insert. We can have a number of 804 * reserved leaves > 1 here - this happens when many dir index 805 * items are added and then removed before they are flushed (file 806 * names with a very short life, never span a transaction). So 807 * release all remaining leaves. 808 */ 809 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 810 node->index_item_leaves = 0; 811 } 812 813 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 814 list_del(&curr->tree_list); 815 btrfs_release_delayed_item(curr); 816 } 817 out: 818 kfree(ins_data); 819 return ret; 820 } 821 822 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 823 struct btrfs_path *path, 824 struct btrfs_root *root, 825 struct btrfs_delayed_node *node) 826 { 827 int ret = 0; 828 829 while (ret == 0) { 830 struct btrfs_delayed_item *curr; 831 832 mutex_lock(&node->mutex); 833 curr = __btrfs_first_delayed_insertion_item(node); 834 if (!curr) { 835 mutex_unlock(&node->mutex); 836 break; 837 } 838 ret = btrfs_insert_delayed_item(trans, root, path, curr); 839 mutex_unlock(&node->mutex); 840 } 841 842 return ret; 843 } 844 845 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 846 struct btrfs_root *root, 847 struct btrfs_path *path, 848 struct btrfs_delayed_item *item) 849 { 850 const u64 ino = item->delayed_node->inode_id; 851 struct btrfs_fs_info *fs_info = root->fs_info; 852 struct btrfs_delayed_item *curr, *next; 853 struct extent_buffer *leaf = path->nodes[0]; 854 LIST_HEAD(batch_list); 855 int nitems, slot, last_slot; 856 int ret; 857 u64 total_reserved_size = item->bytes_reserved; 858 859 ASSERT(leaf != NULL); 860 861 slot = path->slots[0]; 862 last_slot = btrfs_header_nritems(leaf) - 1; 863 /* 864 * Our caller always gives us a path pointing to an existing item, so 865 * this can not happen. 866 */ 867 ASSERT(slot <= last_slot); 868 if (WARN_ON(slot > last_slot)) 869 return -ENOENT; 870 871 nitems = 1; 872 curr = item; 873 list_add_tail(&curr->tree_list, &batch_list); 874 875 /* 876 * Keep checking if the next delayed item matches the next item in the 877 * leaf - if so, we can add it to the batch of items to delete from the 878 * leaf. 879 */ 880 while (slot < last_slot) { 881 struct btrfs_key key; 882 883 next = __btrfs_next_delayed_item(curr); 884 if (!next) 885 break; 886 887 slot++; 888 btrfs_item_key_to_cpu(leaf, &key, slot); 889 if (key.objectid != ino || 890 key.type != BTRFS_DIR_INDEX_KEY || 891 key.offset != next->index) 892 break; 893 nitems++; 894 curr = next; 895 list_add_tail(&curr->tree_list, &batch_list); 896 total_reserved_size += curr->bytes_reserved; 897 } 898 899 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 900 if (ret) 901 return ret; 902 903 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 904 if (total_reserved_size > 0) { 905 /* 906 * Check btrfs_delayed_item_reserve_metadata() to see why we 907 * don't need to release/reserve qgroup space. 908 */ 909 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 910 total_reserved_size, 0); 911 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 912 total_reserved_size, NULL); 913 } 914 915 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 916 list_del(&curr->tree_list); 917 btrfs_release_delayed_item(curr); 918 } 919 920 return 0; 921 } 922 923 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 924 struct btrfs_path *path, 925 struct btrfs_root *root, 926 struct btrfs_delayed_node *node) 927 { 928 struct btrfs_key key; 929 int ret = 0; 930 931 key.objectid = node->inode_id; 932 key.type = BTRFS_DIR_INDEX_KEY; 933 934 while (ret == 0) { 935 struct btrfs_delayed_item *item; 936 937 mutex_lock(&node->mutex); 938 item = __btrfs_first_delayed_deletion_item(node); 939 if (!item) { 940 mutex_unlock(&node->mutex); 941 break; 942 } 943 944 key.offset = item->index; 945 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 946 if (ret > 0) { 947 /* 948 * There's no matching item in the leaf. This means we 949 * have already deleted this item in a past run of the 950 * delayed items. We ignore errors when running delayed 951 * items from an async context, through a work queue job 952 * running btrfs_async_run_delayed_root(), and don't 953 * release delayed items that failed to complete. This 954 * is because we will retry later, and at transaction 955 * commit time we always run delayed items and will 956 * then deal with errors if they fail to run again. 957 * 958 * So just release delayed items for which we can't find 959 * an item in the tree, and move to the next item. 960 */ 961 btrfs_release_path(path); 962 btrfs_release_delayed_item(item); 963 ret = 0; 964 } else if (ret == 0) { 965 ret = btrfs_batch_delete_items(trans, root, path, item); 966 btrfs_release_path(path); 967 } 968 969 /* 970 * We unlock and relock on each iteration, this is to prevent 971 * blocking other tasks for too long while we are being run from 972 * the async context (work queue job). Those tasks are typically 973 * running system calls like creat/mkdir/rename/unlink/etc which 974 * need to add delayed items to this delayed node. 975 */ 976 mutex_unlock(&node->mutex); 977 } 978 979 return ret; 980 } 981 982 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 983 { 984 struct btrfs_delayed_root *delayed_root; 985 986 if (delayed_node && 987 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 988 ASSERT(delayed_node->root); 989 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 990 delayed_node->count--; 991 992 delayed_root = delayed_node->root->fs_info->delayed_root; 993 finish_one_item(delayed_root); 994 } 995 } 996 997 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 998 { 999 1000 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 1001 struct btrfs_delayed_root *delayed_root; 1002 1003 ASSERT(delayed_node->root); 1004 delayed_node->count--; 1005 1006 delayed_root = delayed_node->root->fs_info->delayed_root; 1007 finish_one_item(delayed_root); 1008 } 1009 } 1010 1011 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1012 struct btrfs_root *root, 1013 struct btrfs_path *path, 1014 struct btrfs_delayed_node *node) 1015 { 1016 struct btrfs_fs_info *fs_info = root->fs_info; 1017 struct btrfs_key key; 1018 struct btrfs_inode_item *inode_item; 1019 struct extent_buffer *leaf; 1020 int mod; 1021 int ret; 1022 1023 key.objectid = node->inode_id; 1024 key.type = BTRFS_INODE_ITEM_KEY; 1025 key.offset = 0; 1026 1027 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1028 mod = -1; 1029 else 1030 mod = 1; 1031 1032 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1033 if (ret > 0) 1034 ret = -ENOENT; 1035 if (ret < 0) { 1036 /* 1037 * If we fail to update the delayed inode we need to abort the 1038 * transaction, because we could leave the inode with the 1039 * improper counts behind. 1040 */ 1041 if (unlikely(ret != -ENOENT)) 1042 btrfs_abort_transaction(trans, ret); 1043 goto out; 1044 } 1045 1046 leaf = path->nodes[0]; 1047 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1048 struct btrfs_inode_item); 1049 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1050 sizeof(struct btrfs_inode_item)); 1051 1052 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1053 goto out; 1054 1055 /* 1056 * Now we're going to delete the INODE_REF/EXTREF, which should be the 1057 * only one ref left. Check if the next item is an INODE_REF/EXTREF. 1058 * 1059 * But if we're the last item already, release and search for the last 1060 * INODE_REF/EXTREF. 1061 */ 1062 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { 1063 key.objectid = node->inode_id; 1064 key.type = BTRFS_INODE_EXTREF_KEY; 1065 key.offset = (u64)-1; 1066 1067 btrfs_release_path(path); 1068 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1069 if (unlikely(ret < 0)) { 1070 btrfs_abort_transaction(trans, ret); 1071 goto err_out; 1072 } 1073 ASSERT(ret > 0); 1074 ASSERT(path->slots[0] > 0); 1075 ret = 0; 1076 path->slots[0]--; 1077 leaf = path->nodes[0]; 1078 } else { 1079 path->slots[0]++; 1080 } 1081 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1082 if (key.objectid != node->inode_id) 1083 goto out; 1084 if (key.type != BTRFS_INODE_REF_KEY && 1085 key.type != BTRFS_INODE_EXTREF_KEY) 1086 goto out; 1087 1088 /* 1089 * Delayed iref deletion is for the inode who has only one link, 1090 * so there is only one iref. The case that several irefs are 1091 * in the same item doesn't exist. 1092 */ 1093 ret = btrfs_del_item(trans, root, path); 1094 if (ret < 0) 1095 btrfs_abort_transaction(trans, ret); 1096 out: 1097 btrfs_release_delayed_iref(node); 1098 btrfs_release_path(path); 1099 err_out: 1100 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1101 btrfs_release_delayed_inode(node); 1102 return ret; 1103 } 1104 1105 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1106 struct btrfs_root *root, 1107 struct btrfs_path *path, 1108 struct btrfs_delayed_node *node) 1109 { 1110 int ret; 1111 1112 mutex_lock(&node->mutex); 1113 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1114 mutex_unlock(&node->mutex); 1115 return 0; 1116 } 1117 1118 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1119 mutex_unlock(&node->mutex); 1120 return ret; 1121 } 1122 1123 static inline int 1124 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1125 struct btrfs_path *path, 1126 struct btrfs_delayed_node *node) 1127 { 1128 int ret; 1129 1130 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1131 if (ret) 1132 return ret; 1133 1134 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1135 if (ret) 1136 return ret; 1137 1138 ret = btrfs_record_root_in_trans(trans, node->root); 1139 if (ret) 1140 return ret; 1141 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1142 return ret; 1143 } 1144 1145 /* 1146 * Called when committing the transaction. 1147 * Returns 0 on success. 1148 * Returns < 0 on error and returns with an aborted transaction with any 1149 * outstanding delayed items cleaned up. 1150 */ 1151 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1152 { 1153 struct btrfs_fs_info *fs_info = trans->fs_info; 1154 struct btrfs_delayed_root *delayed_root; 1155 struct btrfs_delayed_node *curr_node, *prev_node; 1156 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; 1157 struct btrfs_path *path; 1158 struct btrfs_block_rsv *block_rsv; 1159 int ret = 0; 1160 bool count = (nr > 0); 1161 1162 if (TRANS_ABORTED(trans)) 1163 return -EIO; 1164 1165 path = btrfs_alloc_path(); 1166 if (!path) 1167 return -ENOMEM; 1168 1169 block_rsv = trans->block_rsv; 1170 trans->block_rsv = &fs_info->delayed_block_rsv; 1171 1172 delayed_root = fs_info->delayed_root; 1173 1174 curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker); 1175 while (curr_node && (!count || nr--)) { 1176 ret = __btrfs_commit_inode_delayed_items(trans, path, 1177 curr_node); 1178 if (unlikely(ret)) { 1179 btrfs_abort_transaction(trans, ret); 1180 break; 1181 } 1182 1183 prev_node = curr_node; 1184 prev_delayed_node_tracker = curr_delayed_node_tracker; 1185 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); 1186 /* 1187 * See the comment below about releasing path before releasing 1188 * node. If the commit of delayed items was successful the path 1189 * should always be released, but in case of an error, it may 1190 * point to locked extent buffers (a leaf at the very least). 1191 */ 1192 ASSERT(path->nodes[0] == NULL); 1193 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); 1194 } 1195 1196 /* 1197 * Release the path to avoid a potential deadlock and lockdep splat when 1198 * releasing the delayed node, as that requires taking the delayed node's 1199 * mutex. If another task starts running delayed items before we take 1200 * the mutex, it will first lock the mutex and then it may try to lock 1201 * the same btree path (leaf). 1202 */ 1203 btrfs_free_path(path); 1204 1205 if (curr_node) 1206 btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker); 1207 trans->block_rsv = block_rsv; 1208 1209 return ret; 1210 } 1211 1212 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1213 { 1214 return __btrfs_run_delayed_items(trans, -1); 1215 } 1216 1217 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1218 { 1219 return __btrfs_run_delayed_items(trans, nr); 1220 } 1221 1222 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1223 struct btrfs_inode *inode) 1224 { 1225 struct btrfs_ref_tracker delayed_node_tracker; 1226 struct btrfs_delayed_node *delayed_node = 1227 btrfs_get_delayed_node(inode, &delayed_node_tracker); 1228 BTRFS_PATH_AUTO_FREE(path); 1229 struct btrfs_block_rsv *block_rsv; 1230 int ret; 1231 1232 if (!delayed_node) 1233 return 0; 1234 1235 mutex_lock(&delayed_node->mutex); 1236 if (!delayed_node->count) { 1237 mutex_unlock(&delayed_node->mutex); 1238 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1239 return 0; 1240 } 1241 mutex_unlock(&delayed_node->mutex); 1242 1243 path = btrfs_alloc_path(); 1244 if (!path) { 1245 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1246 return -ENOMEM; 1247 } 1248 1249 block_rsv = trans->block_rsv; 1250 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1251 1252 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1253 1254 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1255 trans->block_rsv = block_rsv; 1256 1257 return ret; 1258 } 1259 1260 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1261 { 1262 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1263 struct btrfs_trans_handle *trans; 1264 struct btrfs_ref_tracker delayed_node_tracker; 1265 struct btrfs_delayed_node *delayed_node; 1266 struct btrfs_path *path; 1267 struct btrfs_block_rsv *block_rsv; 1268 int ret; 1269 1270 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1271 if (!delayed_node) 1272 return 0; 1273 1274 mutex_lock(&delayed_node->mutex); 1275 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1276 mutex_unlock(&delayed_node->mutex); 1277 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1278 return 0; 1279 } 1280 mutex_unlock(&delayed_node->mutex); 1281 1282 trans = btrfs_join_transaction(delayed_node->root); 1283 if (IS_ERR(trans)) { 1284 ret = PTR_ERR(trans); 1285 goto out; 1286 } 1287 1288 path = btrfs_alloc_path(); 1289 if (!path) { 1290 ret = -ENOMEM; 1291 goto trans_out; 1292 } 1293 1294 block_rsv = trans->block_rsv; 1295 trans->block_rsv = &fs_info->delayed_block_rsv; 1296 1297 mutex_lock(&delayed_node->mutex); 1298 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1299 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1300 path, delayed_node); 1301 else 1302 ret = 0; 1303 mutex_unlock(&delayed_node->mutex); 1304 1305 btrfs_free_path(path); 1306 trans->block_rsv = block_rsv; 1307 trans_out: 1308 btrfs_end_transaction(trans); 1309 btrfs_btree_balance_dirty(fs_info); 1310 out: 1311 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1312 1313 return ret; 1314 } 1315 1316 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1317 { 1318 struct btrfs_delayed_node *delayed_node; 1319 1320 delayed_node = READ_ONCE(inode->delayed_node); 1321 if (!delayed_node) 1322 return; 1323 1324 inode->delayed_node = NULL; 1325 1326 btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker); 1327 } 1328 1329 struct btrfs_async_delayed_work { 1330 struct btrfs_delayed_root *delayed_root; 1331 int nr; 1332 struct btrfs_work work; 1333 }; 1334 1335 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1336 { 1337 struct btrfs_async_delayed_work *async_work; 1338 struct btrfs_delayed_root *delayed_root; 1339 struct btrfs_trans_handle *trans; 1340 struct btrfs_path *path; 1341 struct btrfs_delayed_node *delayed_node = NULL; 1342 struct btrfs_ref_tracker delayed_node_tracker; 1343 struct btrfs_root *root; 1344 struct btrfs_block_rsv *block_rsv; 1345 int total_done = 0; 1346 1347 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1348 delayed_root = async_work->delayed_root; 1349 1350 path = btrfs_alloc_path(); 1351 if (!path) 1352 goto out; 1353 1354 do { 1355 if (atomic_read(&delayed_root->items) < 1356 BTRFS_DELAYED_BACKGROUND / 2) 1357 break; 1358 1359 delayed_node = btrfs_first_prepared_delayed_node(delayed_root, 1360 &delayed_node_tracker); 1361 if (!delayed_node) 1362 break; 1363 1364 root = delayed_node->root; 1365 1366 trans = btrfs_join_transaction(root); 1367 if (IS_ERR(trans)) { 1368 btrfs_release_path(path); 1369 btrfs_release_prepared_delayed_node(delayed_node, 1370 &delayed_node_tracker); 1371 total_done++; 1372 continue; 1373 } 1374 1375 block_rsv = trans->block_rsv; 1376 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1377 1378 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1379 1380 trans->block_rsv = block_rsv; 1381 btrfs_end_transaction(trans); 1382 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1383 1384 btrfs_release_path(path); 1385 btrfs_release_prepared_delayed_node(delayed_node, 1386 &delayed_node_tracker); 1387 total_done++; 1388 1389 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1390 || total_done < async_work->nr); 1391 1392 btrfs_free_path(path); 1393 out: 1394 wake_up(&delayed_root->wait); 1395 kfree(async_work); 1396 } 1397 1398 1399 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1400 struct btrfs_fs_info *fs_info, int nr) 1401 { 1402 struct btrfs_async_delayed_work *async_work; 1403 1404 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1405 if (!async_work) 1406 return -ENOMEM; 1407 1408 async_work->delayed_root = delayed_root; 1409 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); 1410 async_work->nr = nr; 1411 1412 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1413 return 0; 1414 } 1415 1416 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1417 { 1418 struct btrfs_ref_tracker delayed_node_tracker; 1419 struct btrfs_delayed_node *node; 1420 1421 node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker); 1422 if (WARN_ON(node)) { 1423 btrfs_delayed_node_ref_tracker_free(node, 1424 &delayed_node_tracker); 1425 refcount_dec(&node->refs); 1426 } 1427 } 1428 1429 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1430 { 1431 int val = atomic_read(&delayed_root->items_seq); 1432 1433 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1434 return true; 1435 1436 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1437 return true; 1438 1439 return false; 1440 } 1441 1442 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1443 { 1444 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1445 1446 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1447 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1448 return; 1449 1450 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1451 int seq; 1452 int ret; 1453 1454 seq = atomic_read(&delayed_root->items_seq); 1455 1456 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1457 if (ret) 1458 return; 1459 1460 wait_event_interruptible(delayed_root->wait, 1461 could_end_wait(delayed_root, seq)); 1462 return; 1463 } 1464 1465 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1466 } 1467 1468 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1469 { 1470 struct btrfs_fs_info *fs_info = trans->fs_info; 1471 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1472 1473 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1474 return; 1475 1476 /* 1477 * Adding the new dir index item does not require touching another 1478 * leaf, so we can release 1 unit of metadata that was previously 1479 * reserved when starting the transaction. This applies only to 1480 * the case where we had a transaction start and excludes the 1481 * transaction join case (when replaying log trees). 1482 */ 1483 trace_btrfs_space_reservation(fs_info, "transaction", 1484 trans->transid, bytes, 0); 1485 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1486 ASSERT(trans->bytes_reserved >= bytes); 1487 trans->bytes_reserved -= bytes; 1488 } 1489 1490 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1491 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1492 const char *name, int name_len, 1493 struct btrfs_inode *dir, 1494 const struct btrfs_disk_key *disk_key, u8 flags, 1495 u64 index) 1496 { 1497 struct btrfs_fs_info *fs_info = trans->fs_info; 1498 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1499 struct btrfs_delayed_node *delayed_node; 1500 struct btrfs_ref_tracker delayed_node_tracker; 1501 struct btrfs_delayed_item *delayed_item; 1502 struct btrfs_dir_item *dir_item; 1503 bool reserve_leaf_space; 1504 u32 data_len; 1505 int ret; 1506 1507 delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); 1508 if (IS_ERR(delayed_node)) 1509 return PTR_ERR(delayed_node); 1510 1511 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1512 delayed_node, 1513 BTRFS_DELAYED_INSERTION_ITEM); 1514 if (!delayed_item) { 1515 ret = -ENOMEM; 1516 goto release_node; 1517 } 1518 1519 delayed_item->index = index; 1520 1521 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1522 dir_item->location = *disk_key; 1523 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1524 btrfs_set_stack_dir_data_len(dir_item, 0); 1525 btrfs_set_stack_dir_name_len(dir_item, name_len); 1526 btrfs_set_stack_dir_flags(dir_item, flags); 1527 memcpy((char *)(dir_item + 1), name, name_len); 1528 1529 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1530 1531 mutex_lock(&delayed_node->mutex); 1532 1533 /* 1534 * First attempt to insert the delayed item. This is to make the error 1535 * handling path simpler in case we fail (-EEXIST). There's no risk of 1536 * any other task coming in and running the delayed item before we do 1537 * the metadata space reservation below, because we are holding the 1538 * delayed node's mutex and that mutex must also be locked before the 1539 * node's delayed items can be run. 1540 */ 1541 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1542 if (unlikely(ret)) { 1543 btrfs_err(trans->fs_info, 1544 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1545 name_len, name, index, btrfs_root_id(delayed_node->root), 1546 delayed_node->inode_id, dir->index_cnt, 1547 delayed_node->index_cnt, ret); 1548 btrfs_release_delayed_item(delayed_item); 1549 btrfs_release_dir_index_item_space(trans); 1550 mutex_unlock(&delayed_node->mutex); 1551 goto release_node; 1552 } 1553 1554 if (delayed_node->index_item_leaves == 0 || 1555 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1556 delayed_node->curr_index_batch_size = data_len; 1557 reserve_leaf_space = true; 1558 } else { 1559 delayed_node->curr_index_batch_size += data_len; 1560 reserve_leaf_space = false; 1561 } 1562 1563 if (reserve_leaf_space) { 1564 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1565 /* 1566 * Space was reserved for a dir index item insertion when we 1567 * started the transaction, so getting a failure here should be 1568 * impossible. 1569 */ 1570 if (WARN_ON(ret)) { 1571 btrfs_release_delayed_item(delayed_item); 1572 mutex_unlock(&delayed_node->mutex); 1573 goto release_node; 1574 } 1575 1576 delayed_node->index_item_leaves++; 1577 } else { 1578 btrfs_release_dir_index_item_space(trans); 1579 } 1580 mutex_unlock(&delayed_node->mutex); 1581 1582 release_node: 1583 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1584 return ret; 1585 } 1586 1587 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node, 1588 u64 index) 1589 { 1590 struct btrfs_delayed_item *item; 1591 1592 mutex_lock(&node->mutex); 1593 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1594 if (!item) { 1595 mutex_unlock(&node->mutex); 1596 return false; 1597 } 1598 1599 /* 1600 * For delayed items to insert, we track reserved metadata bytes based 1601 * on the number of leaves that we will use. 1602 * See btrfs_insert_delayed_dir_index() and 1603 * btrfs_delayed_item_reserve_metadata()). 1604 */ 1605 ASSERT(item->bytes_reserved == 0); 1606 ASSERT(node->index_item_leaves > 0); 1607 1608 /* 1609 * If there's only one leaf reserved, we can decrement this item from the 1610 * current batch, otherwise we can not because we don't know which leaf 1611 * it belongs to. With the current limit on delayed items, we rarely 1612 * accumulate enough dir index items to fill more than one leaf (even 1613 * when using a leaf size of 4K). 1614 */ 1615 if (node->index_item_leaves == 1) { 1616 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1617 1618 ASSERT(node->curr_index_batch_size >= data_len); 1619 node->curr_index_batch_size -= data_len; 1620 } 1621 1622 btrfs_release_delayed_item(item); 1623 1624 /* If we now have no more dir index items, we can release all leaves. */ 1625 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1626 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1627 node->index_item_leaves = 0; 1628 } 1629 1630 mutex_unlock(&node->mutex); 1631 return true; 1632 } 1633 1634 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1635 struct btrfs_inode *dir, u64 index) 1636 { 1637 struct btrfs_delayed_node *node; 1638 struct btrfs_ref_tracker delayed_node_tracker; 1639 struct btrfs_delayed_item *item; 1640 int ret; 1641 1642 node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); 1643 if (IS_ERR(node)) 1644 return PTR_ERR(node); 1645 1646 if (btrfs_delete_delayed_insertion_item(node, index)) { 1647 ret = 0; 1648 goto end; 1649 } 1650 1651 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1652 if (!item) { 1653 ret = -ENOMEM; 1654 goto end; 1655 } 1656 1657 item->index = index; 1658 1659 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1660 /* 1661 * we have reserved enough space when we start a new transaction, 1662 * so reserving metadata failure is impossible. 1663 */ 1664 if (ret < 0) { 1665 btrfs_err(trans->fs_info, 1666 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d", 1667 index, btrfs_root_id(node->root), node->inode_id, ret); 1668 btrfs_release_delayed_item(item); 1669 goto end; 1670 } 1671 1672 mutex_lock(&node->mutex); 1673 ret = __btrfs_add_delayed_item(node, item); 1674 if (unlikely(ret)) { 1675 btrfs_err(trans->fs_info, 1676 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d", 1677 index, btrfs_root_id(node->root), node->inode_id, ret); 1678 btrfs_delayed_item_release_metadata(dir->root, item); 1679 btrfs_release_delayed_item(item); 1680 } 1681 mutex_unlock(&node->mutex); 1682 end: 1683 btrfs_release_delayed_node(node, &delayed_node_tracker); 1684 return ret; 1685 } 1686 1687 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1688 { 1689 struct btrfs_ref_tracker delayed_node_tracker; 1690 struct btrfs_delayed_node *delayed_node; 1691 1692 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1693 if (!delayed_node) 1694 return -ENOENT; 1695 1696 /* 1697 * Since we have held i_mutex of this directory, it is impossible that 1698 * a new directory index is added into the delayed node and index_cnt 1699 * is updated now. So we needn't lock the delayed node. 1700 */ 1701 if (!delayed_node->index_cnt) { 1702 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1703 return -EINVAL; 1704 } 1705 1706 inode->index_cnt = delayed_node->index_cnt; 1707 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1708 return 0; 1709 } 1710 1711 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode, 1712 u64 last_index, 1713 struct list_head *ins_list, 1714 struct list_head *del_list) 1715 { 1716 struct btrfs_delayed_node *delayed_node; 1717 struct btrfs_delayed_item *item; 1718 struct btrfs_ref_tracker delayed_node_tracker; 1719 1720 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1721 if (!delayed_node) 1722 return false; 1723 1724 /* 1725 * We can only do one readdir with delayed items at a time because of 1726 * item->readdir_list. 1727 */ 1728 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1729 btrfs_inode_lock(inode, 0); 1730 1731 mutex_lock(&delayed_node->mutex); 1732 item = __btrfs_first_delayed_insertion_item(delayed_node); 1733 while (item && item->index <= last_index) { 1734 refcount_inc(&item->refs); 1735 list_add_tail(&item->readdir_list, ins_list); 1736 item = __btrfs_next_delayed_item(item); 1737 } 1738 1739 item = __btrfs_first_delayed_deletion_item(delayed_node); 1740 while (item && item->index <= last_index) { 1741 refcount_inc(&item->refs); 1742 list_add_tail(&item->readdir_list, del_list); 1743 item = __btrfs_next_delayed_item(item); 1744 } 1745 mutex_unlock(&delayed_node->mutex); 1746 /* 1747 * This delayed node is still cached in the btrfs inode, so refs 1748 * must be > 1 now, and we needn't check it is going to be freed 1749 * or not. 1750 * 1751 * Besides that, this function is used to read dir, we do not 1752 * insert/delete delayed items in this period. So we also needn't 1753 * requeue or dequeue this delayed node. 1754 */ 1755 btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker); 1756 refcount_dec(&delayed_node->refs); 1757 1758 return true; 1759 } 1760 1761 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode, 1762 struct list_head *ins_list, 1763 struct list_head *del_list) 1764 { 1765 struct btrfs_delayed_item *curr, *next; 1766 1767 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1768 list_del(&curr->readdir_list); 1769 if (refcount_dec_and_test(&curr->refs)) 1770 kfree(curr); 1771 } 1772 1773 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1774 list_del(&curr->readdir_list); 1775 if (refcount_dec_and_test(&curr->refs)) 1776 kfree(curr); 1777 } 1778 1779 /* 1780 * The VFS is going to do up_read(), so we need to downgrade back to a 1781 * read lock. 1782 */ 1783 downgrade_write(&inode->vfs_inode.i_rwsem); 1784 } 1785 1786 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index) 1787 { 1788 struct btrfs_delayed_item *curr; 1789 bool ret = false; 1790 1791 list_for_each_entry(curr, del_list, readdir_list) { 1792 if (curr->index > index) 1793 break; 1794 if (curr->index == index) { 1795 ret = true; 1796 break; 1797 } 1798 } 1799 return ret; 1800 } 1801 1802 /* 1803 * Read dir info stored in the delayed tree. 1804 */ 1805 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1806 const struct list_head *ins_list) 1807 { 1808 struct btrfs_dir_item *di; 1809 struct btrfs_delayed_item *curr, *next; 1810 struct btrfs_key location; 1811 char *name; 1812 int name_len; 1813 unsigned char d_type; 1814 1815 /* 1816 * Changing the data of the delayed item is impossible. So 1817 * we needn't lock them. And we have held i_mutex of the 1818 * directory, nobody can delete any directory indexes now. 1819 */ 1820 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1821 bool over; 1822 1823 list_del(&curr->readdir_list); 1824 1825 if (curr->index < ctx->pos) { 1826 if (refcount_dec_and_test(&curr->refs)) 1827 kfree(curr); 1828 continue; 1829 } 1830 1831 ctx->pos = curr->index; 1832 1833 di = (struct btrfs_dir_item *)curr->data; 1834 name = (char *)(di + 1); 1835 name_len = btrfs_stack_dir_name_len(di); 1836 1837 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1838 btrfs_disk_key_to_cpu(&location, &di->location); 1839 1840 over = !dir_emit(ctx, name, name_len, location.objectid, d_type); 1841 1842 if (refcount_dec_and_test(&curr->refs)) 1843 kfree(curr); 1844 1845 if (over) 1846 return true; 1847 ctx->pos++; 1848 } 1849 return false; 1850 } 1851 1852 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1853 struct btrfs_inode_item *inode_item, 1854 struct btrfs_inode *inode) 1855 { 1856 struct inode *vfs_inode = &inode->vfs_inode; 1857 u64 flags; 1858 1859 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode)); 1860 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode)); 1861 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size); 1862 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode); 1863 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink); 1864 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode)); 1865 btrfs_set_stack_inode_generation(inode_item, inode->generation); 1866 btrfs_set_stack_inode_sequence(inode_item, 1867 inode_peek_iversion(vfs_inode)); 1868 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1869 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev); 1870 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags); 1871 btrfs_set_stack_inode_flags(inode_item, flags); 1872 btrfs_set_stack_inode_block_group(inode_item, 0); 1873 1874 btrfs_set_stack_timespec_sec(&inode_item->atime, 1875 inode_get_atime_sec(vfs_inode)); 1876 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1877 inode_get_atime_nsec(vfs_inode)); 1878 1879 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1880 inode_get_mtime_sec(vfs_inode)); 1881 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1882 inode_get_mtime_nsec(vfs_inode)); 1883 1884 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1885 inode_get_ctime_sec(vfs_inode)); 1886 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1887 inode_get_ctime_nsec(vfs_inode)); 1888 1889 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec); 1890 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec); 1891 } 1892 1893 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev) 1894 { 1895 struct btrfs_delayed_node *delayed_node; 1896 struct btrfs_ref_tracker delayed_node_tracker; 1897 struct btrfs_inode_item *inode_item; 1898 struct inode *vfs_inode = &inode->vfs_inode; 1899 1900 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1901 if (!delayed_node) 1902 return -ENOENT; 1903 1904 mutex_lock(&delayed_node->mutex); 1905 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1906 mutex_unlock(&delayed_node->mutex); 1907 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1908 return -ENOENT; 1909 } 1910 1911 inode_item = &delayed_node->inode_item; 1912 1913 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item)); 1914 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item)); 1915 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1916 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item); 1917 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item)); 1918 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item)); 1919 inode->generation = btrfs_stack_inode_generation(inode_item); 1920 inode->last_trans = btrfs_stack_inode_transid(inode_item); 1921 1922 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item)); 1923 vfs_inode->i_rdev = 0; 1924 *rdev = btrfs_stack_inode_rdev(inode_item); 1925 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1926 &inode->flags, &inode->ro_flags); 1927 1928 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime), 1929 btrfs_stack_timespec_nsec(&inode_item->atime)); 1930 1931 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime), 1932 btrfs_stack_timespec_nsec(&inode_item->mtime)); 1933 1934 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1935 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1936 1937 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); 1938 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); 1939 1940 vfs_inode->i_generation = inode->generation; 1941 if (S_ISDIR(vfs_inode->i_mode)) 1942 inode->index_cnt = (u64)-1; 1943 1944 mutex_unlock(&delayed_node->mutex); 1945 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1946 return 0; 1947 } 1948 1949 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1950 struct btrfs_inode *inode) 1951 { 1952 struct btrfs_root *root = inode->root; 1953 struct btrfs_delayed_node *delayed_node; 1954 struct btrfs_ref_tracker delayed_node_tracker; 1955 int ret = 0; 1956 1957 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); 1958 if (IS_ERR(delayed_node)) 1959 return PTR_ERR(delayed_node); 1960 1961 mutex_lock(&delayed_node->mutex); 1962 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1963 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1964 goto release_node; 1965 } 1966 1967 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1968 if (ret) 1969 goto release_node; 1970 1971 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1972 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1973 delayed_node->count++; 1974 atomic_inc(&root->fs_info->delayed_root->items); 1975 release_node: 1976 mutex_unlock(&delayed_node->mutex); 1977 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1978 return ret; 1979 } 1980 1981 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1982 { 1983 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1984 struct btrfs_delayed_node *delayed_node; 1985 struct btrfs_ref_tracker delayed_node_tracker; 1986 1987 /* 1988 * we don't do delayed inode updates during log recovery because it 1989 * leads to enospc problems. This means we also can't do 1990 * delayed inode refs 1991 */ 1992 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1993 return -EAGAIN; 1994 1995 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); 1996 if (IS_ERR(delayed_node)) 1997 return PTR_ERR(delayed_node); 1998 1999 /* 2000 * We don't reserve space for inode ref deletion is because: 2001 * - We ONLY do async inode ref deletion for the inode who has only 2002 * one link(i_nlink == 1), it means there is only one inode ref. 2003 * And in most case, the inode ref and the inode item are in the 2004 * same leaf, and we will deal with them at the same time. 2005 * Since we are sure we will reserve the space for the inode item, 2006 * it is unnecessary to reserve space for inode ref deletion. 2007 * - If the inode ref and the inode item are not in the same leaf, 2008 * We also needn't worry about enospc problem, because we reserve 2009 * much more space for the inode update than it needs. 2010 * - At the worst, we can steal some space from the global reservation. 2011 * It is very rare. 2012 */ 2013 mutex_lock(&delayed_node->mutex); 2014 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 2015 goto release_node; 2016 2017 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 2018 delayed_node->count++; 2019 atomic_inc(&fs_info->delayed_root->items); 2020 release_node: 2021 mutex_unlock(&delayed_node->mutex); 2022 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 2023 return 0; 2024 } 2025 2026 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 2027 { 2028 struct btrfs_root *root = delayed_node->root; 2029 struct btrfs_fs_info *fs_info = root->fs_info; 2030 struct btrfs_delayed_item *curr_item, *prev_item; 2031 2032 mutex_lock(&delayed_node->mutex); 2033 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 2034 while (curr_item) { 2035 prev_item = curr_item; 2036 curr_item = __btrfs_next_delayed_item(prev_item); 2037 btrfs_release_delayed_item(prev_item); 2038 } 2039 2040 if (delayed_node->index_item_leaves > 0) { 2041 btrfs_delayed_item_release_leaves(delayed_node, 2042 delayed_node->index_item_leaves); 2043 delayed_node->index_item_leaves = 0; 2044 } 2045 2046 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2047 while (curr_item) { 2048 btrfs_delayed_item_release_metadata(root, curr_item); 2049 prev_item = curr_item; 2050 curr_item = __btrfs_next_delayed_item(prev_item); 2051 btrfs_release_delayed_item(prev_item); 2052 } 2053 2054 btrfs_release_delayed_iref(delayed_node); 2055 2056 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2057 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2058 btrfs_release_delayed_inode(delayed_node); 2059 } 2060 mutex_unlock(&delayed_node->mutex); 2061 } 2062 2063 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2064 { 2065 struct btrfs_delayed_node *delayed_node; 2066 struct btrfs_ref_tracker delayed_node_tracker; 2067 2068 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2069 if (!delayed_node) 2070 return; 2071 2072 __btrfs_kill_delayed_node(delayed_node); 2073 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 2074 } 2075 2076 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2077 { 2078 unsigned long index = 0; 2079 struct btrfs_delayed_node *delayed_nodes[8]; 2080 struct btrfs_ref_tracker delayed_node_trackers[8]; 2081 2082 while (1) { 2083 struct btrfs_delayed_node *node; 2084 int count; 2085 2086 xa_lock(&root->delayed_nodes); 2087 if (xa_empty(&root->delayed_nodes)) { 2088 xa_unlock(&root->delayed_nodes); 2089 return; 2090 } 2091 2092 count = 0; 2093 xa_for_each_start(&root->delayed_nodes, index, node, index) { 2094 /* 2095 * Don't increase refs in case the node is dead and 2096 * about to be removed from the tree in the loop below 2097 */ 2098 if (refcount_inc_not_zero(&node->refs)) { 2099 btrfs_delayed_node_ref_tracker_alloc(node, 2100 &delayed_node_trackers[count], 2101 GFP_ATOMIC); 2102 delayed_nodes[count] = node; 2103 count++; 2104 } 2105 if (count >= ARRAY_SIZE(delayed_nodes)) 2106 break; 2107 } 2108 xa_unlock(&root->delayed_nodes); 2109 index++; 2110 2111 for (int i = 0; i < count; i++) { 2112 __btrfs_kill_delayed_node(delayed_nodes[i]); 2113 btrfs_release_delayed_node(delayed_nodes[i], 2114 &delayed_node_trackers[i]); 2115 btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]); 2116 } 2117 } 2118 } 2119 2120 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2121 { 2122 struct btrfs_delayed_node *curr_node, *prev_node; 2123 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; 2124 2125 curr_node = btrfs_first_delayed_node(fs_info->delayed_root, 2126 &curr_delayed_node_tracker); 2127 while (curr_node) { 2128 __btrfs_kill_delayed_node(curr_node); 2129 2130 prev_node = curr_node; 2131 prev_delayed_node_tracker = curr_delayed_node_tracker; 2132 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); 2133 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); 2134 } 2135 } 2136 2137 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2138 struct list_head *ins_list, 2139 struct list_head *del_list) 2140 { 2141 struct btrfs_delayed_node *node; 2142 struct btrfs_delayed_item *item; 2143 struct btrfs_ref_tracker delayed_node_tracker; 2144 2145 node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2146 if (!node) 2147 return; 2148 2149 mutex_lock(&node->mutex); 2150 item = __btrfs_first_delayed_insertion_item(node); 2151 while (item) { 2152 /* 2153 * It's possible that the item is already in a log list. This 2154 * can happen in case two tasks are trying to log the same 2155 * directory. For example if we have tasks A and task B: 2156 * 2157 * Task A collected the delayed items into a log list while 2158 * under the inode's log_mutex (at btrfs_log_inode()), but it 2159 * only releases the items after logging the inodes they point 2160 * to (if they are new inodes), which happens after unlocking 2161 * the log mutex; 2162 * 2163 * Task B enters btrfs_log_inode() and acquires the log_mutex 2164 * of the same directory inode, before task B releases the 2165 * delayed items. This can happen for example when logging some 2166 * inode we need to trigger logging of its parent directory, so 2167 * logging two files that have the same parent directory can 2168 * lead to this. 2169 * 2170 * If this happens, just ignore delayed items already in a log 2171 * list. All the tasks logging the directory are under a log 2172 * transaction and whichever finishes first can not sync the log 2173 * before the other completes and leaves the log transaction. 2174 */ 2175 if (!item->logged && list_empty(&item->log_list)) { 2176 refcount_inc(&item->refs); 2177 list_add_tail(&item->log_list, ins_list); 2178 } 2179 item = __btrfs_next_delayed_item(item); 2180 } 2181 2182 item = __btrfs_first_delayed_deletion_item(node); 2183 while (item) { 2184 /* It may be non-empty, for the same reason mentioned above. */ 2185 if (!item->logged && list_empty(&item->log_list)) { 2186 refcount_inc(&item->refs); 2187 list_add_tail(&item->log_list, del_list); 2188 } 2189 item = __btrfs_next_delayed_item(item); 2190 } 2191 mutex_unlock(&node->mutex); 2192 2193 /* 2194 * We are called during inode logging, which means the inode is in use 2195 * and can not be evicted before we finish logging the inode. So we never 2196 * have the last reference on the delayed inode. 2197 * Also, we don't use btrfs_release_delayed_node() because that would 2198 * requeue the delayed inode (change its order in the list of prepared 2199 * nodes) and we don't want to do such change because we don't create or 2200 * delete delayed items. 2201 */ 2202 ASSERT(refcount_read(&node->refs) > 1); 2203 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); 2204 refcount_dec(&node->refs); 2205 } 2206 2207 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2208 struct list_head *ins_list, 2209 struct list_head *del_list) 2210 { 2211 struct btrfs_delayed_node *node; 2212 struct btrfs_delayed_item *item; 2213 struct btrfs_delayed_item *next; 2214 struct btrfs_ref_tracker delayed_node_tracker; 2215 2216 node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2217 if (!node) 2218 return; 2219 2220 mutex_lock(&node->mutex); 2221 2222 list_for_each_entry_safe(item, next, ins_list, log_list) { 2223 item->logged = true; 2224 list_del_init(&item->log_list); 2225 if (refcount_dec_and_test(&item->refs)) 2226 kfree(item); 2227 } 2228 2229 list_for_each_entry_safe(item, next, del_list, log_list) { 2230 item->logged = true; 2231 list_del_init(&item->log_list); 2232 if (refcount_dec_and_test(&item->refs)) 2233 kfree(item); 2234 } 2235 2236 mutex_unlock(&node->mutex); 2237 2238 /* 2239 * We are called during inode logging, which means the inode is in use 2240 * and can not be evicted before we finish logging the inode. So we never 2241 * have the last reference on the delayed inode. 2242 * Also, we don't use btrfs_release_delayed_node() because that would 2243 * requeue the delayed inode (change its order in the list of prepared 2244 * nodes) and we don't want to do such change because we don't create or 2245 * delete delayed items. 2246 */ 2247 ASSERT(refcount_read(&node->refs) > 1); 2248 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); 2249 refcount_dec(&node->refs); 2250 } 2251