1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0); 32 if (!delayed_node_cache) 33 return -ENOMEM; 34 return 0; 35 } 36 37 void __cold btrfs_delayed_inode_exit(void) 38 { 39 kmem_cache_destroy(delayed_node_cache); 40 } 41 42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root) 43 { 44 atomic_set(&delayed_root->items, 0); 45 atomic_set(&delayed_root->items_seq, 0); 46 delayed_root->nodes = 0; 47 spin_lock_init(&delayed_root->lock); 48 init_waitqueue_head(&delayed_root->wait); 49 INIT_LIST_HEAD(&delayed_root->node_list); 50 INIT_LIST_HEAD(&delayed_root->prepare_list); 51 } 52 53 static inline void btrfs_init_delayed_node( 54 struct btrfs_delayed_node *delayed_node, 55 struct btrfs_root *root, u64 inode_id) 56 { 57 delayed_node->root = root; 58 delayed_node->inode_id = inode_id; 59 refcount_set(&delayed_node->refs, 0); 60 delayed_node->ins_root = RB_ROOT_CACHED; 61 delayed_node->del_root = RB_ROOT_CACHED; 62 mutex_init(&delayed_node->mutex); 63 INIT_LIST_HEAD(&delayed_node->n_list); 64 INIT_LIST_HEAD(&delayed_node->p_list); 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 xa_lock(&root->delayed_nodes); 81 node = xa_load(&root->delayed_nodes, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 xa_unlock(&root->delayed_nodes); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the xarray. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the xarray at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the xarray, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 xa_unlock(&root->delayed_nodes); 115 return node; 116 } 117 xa_unlock(&root->delayed_nodes); 118 119 return NULL; 120 } 121 122 /* Will return either the node or PTR_ERR(-ENOMEM) */ 123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 124 struct btrfs_inode *btrfs_inode) 125 { 126 struct btrfs_delayed_node *node; 127 struct btrfs_root *root = btrfs_inode->root; 128 u64 ino = btrfs_ino(btrfs_inode); 129 int ret; 130 void *ptr; 131 132 again: 133 node = btrfs_get_delayed_node(btrfs_inode); 134 if (node) 135 return node; 136 137 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 138 if (!node) 139 return ERR_PTR(-ENOMEM); 140 btrfs_init_delayed_node(node, root, ino); 141 142 /* Cached in the inode and can be accessed. */ 143 refcount_set(&node->refs, 2); 144 145 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ 146 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); 147 if (ret == -ENOMEM) { 148 kmem_cache_free(delayed_node_cache, node); 149 return ERR_PTR(-ENOMEM); 150 } 151 xa_lock(&root->delayed_nodes); 152 ptr = xa_load(&root->delayed_nodes, ino); 153 if (ptr) { 154 /* Somebody inserted it, go back and read it. */ 155 xa_unlock(&root->delayed_nodes); 156 kmem_cache_free(delayed_node_cache, node); 157 node = NULL; 158 goto again; 159 } 160 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); 161 ASSERT(xa_err(ptr) != -EINVAL); 162 ASSERT(xa_err(ptr) != -ENOMEM); 163 ASSERT(ptr == NULL); 164 btrfs_inode->delayed_node = node; 165 xa_unlock(&root->delayed_nodes); 166 167 return node; 168 } 169 170 /* 171 * Call it when holding delayed_node->mutex 172 * 173 * If mod = 1, add this node into the prepared list. 174 */ 175 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 176 struct btrfs_delayed_node *node, 177 int mod) 178 { 179 spin_lock(&root->lock); 180 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 181 if (!list_empty(&node->p_list)) 182 list_move_tail(&node->p_list, &root->prepare_list); 183 else if (mod) 184 list_add_tail(&node->p_list, &root->prepare_list); 185 } else { 186 list_add_tail(&node->n_list, &root->node_list); 187 list_add_tail(&node->p_list, &root->prepare_list); 188 refcount_inc(&node->refs); /* inserted into list */ 189 root->nodes++; 190 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 191 } 192 spin_unlock(&root->lock); 193 } 194 195 /* Call it when holding delayed_node->mutex */ 196 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 197 struct btrfs_delayed_node *node) 198 { 199 spin_lock(&root->lock); 200 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 201 root->nodes--; 202 refcount_dec(&node->refs); /* not in the list */ 203 list_del_init(&node->n_list); 204 if (!list_empty(&node->p_list)) 205 list_del_init(&node->p_list); 206 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 207 } 208 spin_unlock(&root->lock); 209 } 210 211 static struct btrfs_delayed_node *btrfs_first_delayed_node( 212 struct btrfs_delayed_root *delayed_root) 213 { 214 struct list_head *p; 215 struct btrfs_delayed_node *node = NULL; 216 217 spin_lock(&delayed_root->lock); 218 if (list_empty(&delayed_root->node_list)) 219 goto out; 220 221 p = delayed_root->node_list.next; 222 node = list_entry(p, struct btrfs_delayed_node, n_list); 223 refcount_inc(&node->refs); 224 out: 225 spin_unlock(&delayed_root->lock); 226 227 return node; 228 } 229 230 static struct btrfs_delayed_node *btrfs_next_delayed_node( 231 struct btrfs_delayed_node *node) 232 { 233 struct btrfs_delayed_root *delayed_root; 234 struct list_head *p; 235 struct btrfs_delayed_node *next = NULL; 236 237 delayed_root = node->root->fs_info->delayed_root; 238 spin_lock(&delayed_root->lock); 239 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 240 /* not in the list */ 241 if (list_empty(&delayed_root->node_list)) 242 goto out; 243 p = delayed_root->node_list.next; 244 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 245 goto out; 246 else 247 p = node->n_list.next; 248 249 next = list_entry(p, struct btrfs_delayed_node, n_list); 250 refcount_inc(&next->refs); 251 out: 252 spin_unlock(&delayed_root->lock); 253 254 return next; 255 } 256 257 static void __btrfs_release_delayed_node( 258 struct btrfs_delayed_node *delayed_node, 259 int mod) 260 { 261 struct btrfs_delayed_root *delayed_root; 262 263 if (!delayed_node) 264 return; 265 266 delayed_root = delayed_node->root->fs_info->delayed_root; 267 268 mutex_lock(&delayed_node->mutex); 269 if (delayed_node->count) 270 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 271 else 272 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 273 mutex_unlock(&delayed_node->mutex); 274 275 if (refcount_dec_and_test(&delayed_node->refs)) { 276 struct btrfs_root *root = delayed_node->root; 277 278 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 279 /* 280 * Once our refcount goes to zero, nobody is allowed to bump it 281 * back up. We can delete it now. 282 */ 283 ASSERT(refcount_read(&delayed_node->refs) == 0); 284 kmem_cache_free(delayed_node_cache, delayed_node); 285 } 286 } 287 288 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 289 { 290 __btrfs_release_delayed_node(node, 0); 291 } 292 293 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 294 struct btrfs_delayed_root *delayed_root) 295 { 296 struct list_head *p; 297 struct btrfs_delayed_node *node = NULL; 298 299 spin_lock(&delayed_root->lock); 300 if (list_empty(&delayed_root->prepare_list)) 301 goto out; 302 303 p = delayed_root->prepare_list.next; 304 list_del_init(p); 305 node = list_entry(p, struct btrfs_delayed_node, p_list); 306 refcount_inc(&node->refs); 307 out: 308 spin_unlock(&delayed_root->lock); 309 310 return node; 311 } 312 313 static inline void btrfs_release_prepared_delayed_node( 314 struct btrfs_delayed_node *node) 315 { 316 __btrfs_release_delayed_node(node, 1); 317 } 318 319 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 320 struct btrfs_delayed_node *node, 321 enum btrfs_delayed_item_type type) 322 { 323 struct btrfs_delayed_item *item; 324 325 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 326 if (item) { 327 item->data_len = data_len; 328 item->type = type; 329 item->bytes_reserved = 0; 330 item->delayed_node = node; 331 RB_CLEAR_NODE(&item->rb_node); 332 INIT_LIST_HEAD(&item->log_list); 333 item->logged = false; 334 refcount_set(&item->refs, 1); 335 } 336 return item; 337 } 338 339 /* 340 * Look up the delayed item by key. 341 * 342 * @delayed_node: pointer to the delayed node 343 * @index: the dir index value to lookup (offset of a dir index key) 344 * 345 * Note: if we don't find the right item, we will return the prev item and 346 * the next item. 347 */ 348 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 349 struct rb_root *root, 350 u64 index) 351 { 352 struct rb_node *node = root->rb_node; 353 struct btrfs_delayed_item *delayed_item = NULL; 354 355 while (node) { 356 delayed_item = rb_entry(node, struct btrfs_delayed_item, 357 rb_node); 358 if (delayed_item->index < index) 359 node = node->rb_right; 360 else if (delayed_item->index > index) 361 node = node->rb_left; 362 else 363 return delayed_item; 364 } 365 366 return NULL; 367 } 368 369 static int btrfs_delayed_item_cmp(const struct rb_node *new, 370 const struct rb_node *exist) 371 { 372 const struct btrfs_delayed_item *new_item = 373 rb_entry(new, struct btrfs_delayed_item, rb_node); 374 const struct btrfs_delayed_item *exist_item = 375 rb_entry(exist, struct btrfs_delayed_item, rb_node); 376 377 if (new_item->index < exist_item->index) 378 return -1; 379 if (new_item->index > exist_item->index) 380 return 1; 381 return 0; 382 } 383 384 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 385 struct btrfs_delayed_item *ins) 386 { 387 struct rb_root_cached *root; 388 struct rb_node *exist; 389 390 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 391 root = &delayed_node->ins_root; 392 else 393 root = &delayed_node->del_root; 394 395 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp); 396 if (exist) 397 return -EEXIST; 398 399 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 400 ins->index >= delayed_node->index_cnt) 401 delayed_node->index_cnt = ins->index + 1; 402 403 delayed_node->count++; 404 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 405 return 0; 406 } 407 408 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 409 { 410 int seq = atomic_inc_return(&delayed_root->items_seq); 411 412 /* atomic_dec_return implies a barrier */ 413 if ((atomic_dec_return(&delayed_root->items) < 414 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 415 cond_wake_up_nomb(&delayed_root->wait); 416 } 417 418 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 419 { 420 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 421 struct rb_root_cached *root; 422 struct btrfs_delayed_root *delayed_root; 423 424 /* Not inserted, ignore it. */ 425 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 426 return; 427 428 /* If it's in a rbtree, then we need to have delayed node locked. */ 429 lockdep_assert_held(&delayed_node->mutex); 430 431 delayed_root = delayed_node->root->fs_info->delayed_root; 432 433 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 434 root = &delayed_node->ins_root; 435 else 436 root = &delayed_node->del_root; 437 438 rb_erase_cached(&delayed_item->rb_node, root); 439 RB_CLEAR_NODE(&delayed_item->rb_node); 440 delayed_node->count--; 441 442 finish_one_item(delayed_root); 443 } 444 445 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 446 { 447 if (item) { 448 __btrfs_remove_delayed_item(item); 449 if (refcount_dec_and_test(&item->refs)) 450 kfree(item); 451 } 452 } 453 454 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 455 struct btrfs_delayed_node *delayed_node) 456 { 457 struct rb_node *p; 458 struct btrfs_delayed_item *item = NULL; 459 460 p = rb_first_cached(&delayed_node->ins_root); 461 if (p) 462 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 463 464 return item; 465 } 466 467 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 468 struct btrfs_delayed_node *delayed_node) 469 { 470 struct rb_node *p; 471 struct btrfs_delayed_item *item = NULL; 472 473 p = rb_first_cached(&delayed_node->del_root); 474 if (p) 475 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 476 477 return item; 478 } 479 480 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 481 struct btrfs_delayed_item *item) 482 { 483 struct rb_node *p; 484 struct btrfs_delayed_item *next = NULL; 485 486 p = rb_next(&item->rb_node); 487 if (p) 488 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 489 490 return next; 491 } 492 493 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 494 struct btrfs_delayed_item *item) 495 { 496 struct btrfs_block_rsv *src_rsv; 497 struct btrfs_block_rsv *dst_rsv; 498 struct btrfs_fs_info *fs_info = trans->fs_info; 499 u64 num_bytes; 500 int ret; 501 502 if (!trans->bytes_reserved) 503 return 0; 504 505 src_rsv = trans->block_rsv; 506 dst_rsv = &fs_info->delayed_block_rsv; 507 508 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 509 510 /* 511 * Here we migrate space rsv from transaction rsv, since have already 512 * reserved space when starting a transaction. So no need to reserve 513 * qgroup space here. 514 */ 515 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 516 if (!ret) { 517 trace_btrfs_space_reservation(fs_info, "delayed_item", 518 item->delayed_node->inode_id, 519 num_bytes, 1); 520 /* 521 * For insertions we track reserved metadata space by accounting 522 * for the number of leaves that will be used, based on the delayed 523 * node's curr_index_batch_size and index_item_leaves fields. 524 */ 525 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 526 item->bytes_reserved = num_bytes; 527 } 528 529 return ret; 530 } 531 532 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 533 struct btrfs_delayed_item *item) 534 { 535 struct btrfs_block_rsv *rsv; 536 struct btrfs_fs_info *fs_info = root->fs_info; 537 538 if (!item->bytes_reserved) 539 return; 540 541 rsv = &fs_info->delayed_block_rsv; 542 /* 543 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 544 * to release/reserve qgroup space. 545 */ 546 trace_btrfs_space_reservation(fs_info, "delayed_item", 547 item->delayed_node->inode_id, 548 item->bytes_reserved, 0); 549 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 550 } 551 552 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 553 unsigned int num_leaves) 554 { 555 struct btrfs_fs_info *fs_info = node->root->fs_info; 556 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 557 558 /* There are no space reservations during log replay, bail out. */ 559 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 560 return; 561 562 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 563 bytes, 0); 564 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 565 } 566 567 static int btrfs_delayed_inode_reserve_metadata( 568 struct btrfs_trans_handle *trans, 569 struct btrfs_root *root, 570 struct btrfs_delayed_node *node) 571 { 572 struct btrfs_fs_info *fs_info = root->fs_info; 573 struct btrfs_block_rsv *src_rsv; 574 struct btrfs_block_rsv *dst_rsv; 575 u64 num_bytes; 576 int ret; 577 578 src_rsv = trans->block_rsv; 579 dst_rsv = &fs_info->delayed_block_rsv; 580 581 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 582 583 /* 584 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 585 * which doesn't reserve space for speed. This is a problem since we 586 * still need to reserve space for this update, so try to reserve the 587 * space. 588 * 589 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 590 * we always reserve enough to update the inode item. 591 */ 592 if (!src_rsv || (!trans->bytes_reserved && 593 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 594 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 595 BTRFS_QGROUP_RSV_META_PREALLOC, true); 596 if (ret < 0) 597 return ret; 598 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 599 BTRFS_RESERVE_NO_FLUSH); 600 /* NO_FLUSH could only fail with -ENOSPC */ 601 ASSERT(ret == 0 || ret == -ENOSPC); 602 if (ret) 603 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 604 } else { 605 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 606 } 607 608 if (!ret) { 609 trace_btrfs_space_reservation(fs_info, "delayed_inode", 610 node->inode_id, num_bytes, 1); 611 node->bytes_reserved = num_bytes; 612 } 613 614 return ret; 615 } 616 617 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 618 struct btrfs_delayed_node *node, 619 bool qgroup_free) 620 { 621 struct btrfs_block_rsv *rsv; 622 623 if (!node->bytes_reserved) 624 return; 625 626 rsv = &fs_info->delayed_block_rsv; 627 trace_btrfs_space_reservation(fs_info, "delayed_inode", 628 node->inode_id, node->bytes_reserved, 0); 629 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 630 if (qgroup_free) 631 btrfs_qgroup_free_meta_prealloc(node->root, 632 node->bytes_reserved); 633 else 634 btrfs_qgroup_convert_reserved_meta(node->root, 635 node->bytes_reserved); 636 node->bytes_reserved = 0; 637 } 638 639 /* 640 * Insert a single delayed item or a batch of delayed items, as many as possible 641 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 642 * in the rbtree, and if there's a gap between two consecutive dir index items, 643 * then it means at some point we had delayed dir indexes to add but they got 644 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 645 * into the subvolume tree. Dir index keys also have their offsets coming from a 646 * monotonically increasing counter, so we can't get new keys with an offset that 647 * fits within a gap between delayed dir index items. 648 */ 649 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 650 struct btrfs_root *root, 651 struct btrfs_path *path, 652 struct btrfs_delayed_item *first_item) 653 { 654 struct btrfs_fs_info *fs_info = root->fs_info; 655 struct btrfs_delayed_node *node = first_item->delayed_node; 656 LIST_HEAD(item_list); 657 struct btrfs_delayed_item *curr; 658 struct btrfs_delayed_item *next; 659 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 660 struct btrfs_item_batch batch; 661 struct btrfs_key first_key; 662 const u32 first_data_size = first_item->data_len; 663 int total_size; 664 char *ins_data = NULL; 665 int ret; 666 bool continuous_keys_only = false; 667 668 lockdep_assert_held(&node->mutex); 669 670 /* 671 * During normal operation the delayed index offset is continuously 672 * increasing, so we can batch insert all items as there will not be any 673 * overlapping keys in the tree. 674 * 675 * The exception to this is log replay, where we may have interleaved 676 * offsets in the tree, so our batch needs to be continuous keys only in 677 * order to ensure we do not end up with out of order items in our leaf. 678 */ 679 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 680 continuous_keys_only = true; 681 682 /* 683 * For delayed items to insert, we track reserved metadata bytes based 684 * on the number of leaves that we will use. 685 * See btrfs_insert_delayed_dir_index() and 686 * btrfs_delayed_item_reserve_metadata()). 687 */ 688 ASSERT(first_item->bytes_reserved == 0); 689 690 list_add_tail(&first_item->tree_list, &item_list); 691 batch.total_data_size = first_data_size; 692 batch.nr = 1; 693 total_size = first_data_size + sizeof(struct btrfs_item); 694 curr = first_item; 695 696 while (true) { 697 int next_size; 698 699 next = __btrfs_next_delayed_item(curr); 700 if (!next) 701 break; 702 703 /* 704 * We cannot allow gaps in the key space if we're doing log 705 * replay. 706 */ 707 if (continuous_keys_only && (next->index != curr->index + 1)) 708 break; 709 710 ASSERT(next->bytes_reserved == 0); 711 712 next_size = next->data_len + sizeof(struct btrfs_item); 713 if (total_size + next_size > max_size) 714 break; 715 716 list_add_tail(&next->tree_list, &item_list); 717 batch.nr++; 718 total_size += next_size; 719 batch.total_data_size += next->data_len; 720 curr = next; 721 } 722 723 if (batch.nr == 1) { 724 first_key.objectid = node->inode_id; 725 first_key.type = BTRFS_DIR_INDEX_KEY; 726 first_key.offset = first_item->index; 727 batch.keys = &first_key; 728 batch.data_sizes = &first_data_size; 729 } else { 730 struct btrfs_key *ins_keys; 731 u32 *ins_sizes; 732 int i = 0; 733 734 ins_data = kmalloc(batch.nr * sizeof(u32) + 735 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 736 if (!ins_data) { 737 ret = -ENOMEM; 738 goto out; 739 } 740 ins_sizes = (u32 *)ins_data; 741 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 742 batch.keys = ins_keys; 743 batch.data_sizes = ins_sizes; 744 list_for_each_entry(curr, &item_list, tree_list) { 745 ins_keys[i].objectid = node->inode_id; 746 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 747 ins_keys[i].offset = curr->index; 748 ins_sizes[i] = curr->data_len; 749 i++; 750 } 751 } 752 753 ret = btrfs_insert_empty_items(trans, root, path, &batch); 754 if (ret) 755 goto out; 756 757 list_for_each_entry(curr, &item_list, tree_list) { 758 char *data_ptr; 759 760 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 761 write_extent_buffer(path->nodes[0], &curr->data, 762 (unsigned long)data_ptr, curr->data_len); 763 path->slots[0]++; 764 } 765 766 /* 767 * Now release our path before releasing the delayed items and their 768 * metadata reservations, so that we don't block other tasks for more 769 * time than needed. 770 */ 771 btrfs_release_path(path); 772 773 ASSERT(node->index_item_leaves > 0); 774 775 /* 776 * For normal operations we will batch an entire leaf's worth of delayed 777 * items, so if there are more items to process we can decrement 778 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 779 * 780 * However for log replay we may not have inserted an entire leaf's 781 * worth of items, we may have not had continuous items, so decrementing 782 * here would mess up the index_item_leaves accounting. For this case 783 * only clean up the accounting when there are no items left. 784 */ 785 if (next && !continuous_keys_only) { 786 /* 787 * We inserted one batch of items into a leaf a there are more 788 * items to flush in a future batch, now release one unit of 789 * metadata space from the delayed block reserve, corresponding 790 * the leaf we just flushed to. 791 */ 792 btrfs_delayed_item_release_leaves(node, 1); 793 node->index_item_leaves--; 794 } else if (!next) { 795 /* 796 * There are no more items to insert. We can have a number of 797 * reserved leaves > 1 here - this happens when many dir index 798 * items are added and then removed before they are flushed (file 799 * names with a very short life, never span a transaction). So 800 * release all remaining leaves. 801 */ 802 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 803 node->index_item_leaves = 0; 804 } 805 806 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 807 list_del(&curr->tree_list); 808 btrfs_release_delayed_item(curr); 809 } 810 out: 811 kfree(ins_data); 812 return ret; 813 } 814 815 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 816 struct btrfs_path *path, 817 struct btrfs_root *root, 818 struct btrfs_delayed_node *node) 819 { 820 int ret = 0; 821 822 while (ret == 0) { 823 struct btrfs_delayed_item *curr; 824 825 mutex_lock(&node->mutex); 826 curr = __btrfs_first_delayed_insertion_item(node); 827 if (!curr) { 828 mutex_unlock(&node->mutex); 829 break; 830 } 831 ret = btrfs_insert_delayed_item(trans, root, path, curr); 832 mutex_unlock(&node->mutex); 833 } 834 835 return ret; 836 } 837 838 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 839 struct btrfs_root *root, 840 struct btrfs_path *path, 841 struct btrfs_delayed_item *item) 842 { 843 const u64 ino = item->delayed_node->inode_id; 844 struct btrfs_fs_info *fs_info = root->fs_info; 845 struct btrfs_delayed_item *curr, *next; 846 struct extent_buffer *leaf = path->nodes[0]; 847 LIST_HEAD(batch_list); 848 int nitems, slot, last_slot; 849 int ret; 850 u64 total_reserved_size = item->bytes_reserved; 851 852 ASSERT(leaf != NULL); 853 854 slot = path->slots[0]; 855 last_slot = btrfs_header_nritems(leaf) - 1; 856 /* 857 * Our caller always gives us a path pointing to an existing item, so 858 * this can not happen. 859 */ 860 ASSERT(slot <= last_slot); 861 if (WARN_ON(slot > last_slot)) 862 return -ENOENT; 863 864 nitems = 1; 865 curr = item; 866 list_add_tail(&curr->tree_list, &batch_list); 867 868 /* 869 * Keep checking if the next delayed item matches the next item in the 870 * leaf - if so, we can add it to the batch of items to delete from the 871 * leaf. 872 */ 873 while (slot < last_slot) { 874 struct btrfs_key key; 875 876 next = __btrfs_next_delayed_item(curr); 877 if (!next) 878 break; 879 880 slot++; 881 btrfs_item_key_to_cpu(leaf, &key, slot); 882 if (key.objectid != ino || 883 key.type != BTRFS_DIR_INDEX_KEY || 884 key.offset != next->index) 885 break; 886 nitems++; 887 curr = next; 888 list_add_tail(&curr->tree_list, &batch_list); 889 total_reserved_size += curr->bytes_reserved; 890 } 891 892 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 893 if (ret) 894 return ret; 895 896 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 897 if (total_reserved_size > 0) { 898 /* 899 * Check btrfs_delayed_item_reserve_metadata() to see why we 900 * don't need to release/reserve qgroup space. 901 */ 902 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 903 total_reserved_size, 0); 904 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 905 total_reserved_size, NULL); 906 } 907 908 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 909 list_del(&curr->tree_list); 910 btrfs_release_delayed_item(curr); 911 } 912 913 return 0; 914 } 915 916 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 917 struct btrfs_path *path, 918 struct btrfs_root *root, 919 struct btrfs_delayed_node *node) 920 { 921 struct btrfs_key key; 922 int ret = 0; 923 924 key.objectid = node->inode_id; 925 key.type = BTRFS_DIR_INDEX_KEY; 926 927 while (ret == 0) { 928 struct btrfs_delayed_item *item; 929 930 mutex_lock(&node->mutex); 931 item = __btrfs_first_delayed_deletion_item(node); 932 if (!item) { 933 mutex_unlock(&node->mutex); 934 break; 935 } 936 937 key.offset = item->index; 938 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 939 if (ret > 0) { 940 /* 941 * There's no matching item in the leaf. This means we 942 * have already deleted this item in a past run of the 943 * delayed items. We ignore errors when running delayed 944 * items from an async context, through a work queue job 945 * running btrfs_async_run_delayed_root(), and don't 946 * release delayed items that failed to complete. This 947 * is because we will retry later, and at transaction 948 * commit time we always run delayed items and will 949 * then deal with errors if they fail to run again. 950 * 951 * So just release delayed items for which we can't find 952 * an item in the tree, and move to the next item. 953 */ 954 btrfs_release_path(path); 955 btrfs_release_delayed_item(item); 956 ret = 0; 957 } else if (ret == 0) { 958 ret = btrfs_batch_delete_items(trans, root, path, item); 959 btrfs_release_path(path); 960 } 961 962 /* 963 * We unlock and relock on each iteration, this is to prevent 964 * blocking other tasks for too long while we are being run from 965 * the async context (work queue job). Those tasks are typically 966 * running system calls like creat/mkdir/rename/unlink/etc which 967 * need to add delayed items to this delayed node. 968 */ 969 mutex_unlock(&node->mutex); 970 } 971 972 return ret; 973 } 974 975 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 976 { 977 struct btrfs_delayed_root *delayed_root; 978 979 if (delayed_node && 980 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 981 ASSERT(delayed_node->root); 982 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 983 delayed_node->count--; 984 985 delayed_root = delayed_node->root->fs_info->delayed_root; 986 finish_one_item(delayed_root); 987 } 988 } 989 990 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 991 { 992 993 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 994 struct btrfs_delayed_root *delayed_root; 995 996 ASSERT(delayed_node->root); 997 delayed_node->count--; 998 999 delayed_root = delayed_node->root->fs_info->delayed_root; 1000 finish_one_item(delayed_root); 1001 } 1002 } 1003 1004 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1005 struct btrfs_root *root, 1006 struct btrfs_path *path, 1007 struct btrfs_delayed_node *node) 1008 { 1009 struct btrfs_fs_info *fs_info = root->fs_info; 1010 struct btrfs_key key; 1011 struct btrfs_inode_item *inode_item; 1012 struct extent_buffer *leaf; 1013 int mod; 1014 int ret; 1015 1016 key.objectid = node->inode_id; 1017 key.type = BTRFS_INODE_ITEM_KEY; 1018 key.offset = 0; 1019 1020 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1021 mod = -1; 1022 else 1023 mod = 1; 1024 1025 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1026 if (ret > 0) 1027 ret = -ENOENT; 1028 if (ret < 0) 1029 goto out; 1030 1031 leaf = path->nodes[0]; 1032 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1033 struct btrfs_inode_item); 1034 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1035 sizeof(struct btrfs_inode_item)); 1036 1037 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1038 goto out; 1039 1040 /* 1041 * Now we're going to delete the INODE_REF/EXTREF, which should be the 1042 * only one ref left. Check if the next item is an INODE_REF/EXTREF. 1043 * 1044 * But if we're the last item already, release and search for the last 1045 * INODE_REF/EXTREF. 1046 */ 1047 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { 1048 key.objectid = node->inode_id; 1049 key.type = BTRFS_INODE_EXTREF_KEY; 1050 key.offset = (u64)-1; 1051 1052 btrfs_release_path(path); 1053 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1054 if (ret < 0) 1055 goto err_out; 1056 ASSERT(ret > 0); 1057 ASSERT(path->slots[0] > 0); 1058 ret = 0; 1059 path->slots[0]--; 1060 leaf = path->nodes[0]; 1061 } else { 1062 path->slots[0]++; 1063 } 1064 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1065 if (key.objectid != node->inode_id) 1066 goto out; 1067 if (key.type != BTRFS_INODE_REF_KEY && 1068 key.type != BTRFS_INODE_EXTREF_KEY) 1069 goto out; 1070 1071 /* 1072 * Delayed iref deletion is for the inode who has only one link, 1073 * so there is only one iref. The case that several irefs are 1074 * in the same item doesn't exist. 1075 */ 1076 ret = btrfs_del_item(trans, root, path); 1077 out: 1078 btrfs_release_delayed_iref(node); 1079 btrfs_release_path(path); 1080 err_out: 1081 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1082 btrfs_release_delayed_inode(node); 1083 1084 /* 1085 * If we fail to update the delayed inode we need to abort the 1086 * transaction, because we could leave the inode with the improper 1087 * counts behind. 1088 */ 1089 if (ret && ret != -ENOENT) 1090 btrfs_abort_transaction(trans, ret); 1091 1092 return ret; 1093 } 1094 1095 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct btrfs_path *path, 1098 struct btrfs_delayed_node *node) 1099 { 1100 int ret; 1101 1102 mutex_lock(&node->mutex); 1103 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1104 mutex_unlock(&node->mutex); 1105 return 0; 1106 } 1107 1108 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1109 mutex_unlock(&node->mutex); 1110 return ret; 1111 } 1112 1113 static inline int 1114 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1115 struct btrfs_path *path, 1116 struct btrfs_delayed_node *node) 1117 { 1118 int ret; 1119 1120 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1121 if (ret) 1122 return ret; 1123 1124 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1125 if (ret) 1126 return ret; 1127 1128 ret = btrfs_record_root_in_trans(trans, node->root); 1129 if (ret) 1130 return ret; 1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1132 return ret; 1133 } 1134 1135 /* 1136 * Called when committing the transaction. 1137 * Returns 0 on success. 1138 * Returns < 0 on error and returns with an aborted transaction with any 1139 * outstanding delayed items cleaned up. 1140 */ 1141 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1142 { 1143 struct btrfs_fs_info *fs_info = trans->fs_info; 1144 struct btrfs_delayed_root *delayed_root; 1145 struct btrfs_delayed_node *curr_node, *prev_node; 1146 struct btrfs_path *path; 1147 struct btrfs_block_rsv *block_rsv; 1148 int ret = 0; 1149 bool count = (nr > 0); 1150 1151 if (TRANS_ABORTED(trans)) 1152 return -EIO; 1153 1154 path = btrfs_alloc_path(); 1155 if (!path) 1156 return -ENOMEM; 1157 1158 block_rsv = trans->block_rsv; 1159 trans->block_rsv = &fs_info->delayed_block_rsv; 1160 1161 delayed_root = fs_info->delayed_root; 1162 1163 curr_node = btrfs_first_delayed_node(delayed_root); 1164 while (curr_node && (!count || nr--)) { 1165 ret = __btrfs_commit_inode_delayed_items(trans, path, 1166 curr_node); 1167 if (ret) { 1168 btrfs_abort_transaction(trans, ret); 1169 break; 1170 } 1171 1172 prev_node = curr_node; 1173 curr_node = btrfs_next_delayed_node(curr_node); 1174 /* 1175 * See the comment below about releasing path before releasing 1176 * node. If the commit of delayed items was successful the path 1177 * should always be released, but in case of an error, it may 1178 * point to locked extent buffers (a leaf at the very least). 1179 */ 1180 ASSERT(path->nodes[0] == NULL); 1181 btrfs_release_delayed_node(prev_node); 1182 } 1183 1184 /* 1185 * Release the path to avoid a potential deadlock and lockdep splat when 1186 * releasing the delayed node, as that requires taking the delayed node's 1187 * mutex. If another task starts running delayed items before we take 1188 * the mutex, it will first lock the mutex and then it may try to lock 1189 * the same btree path (leaf). 1190 */ 1191 btrfs_free_path(path); 1192 1193 if (curr_node) 1194 btrfs_release_delayed_node(curr_node); 1195 trans->block_rsv = block_rsv; 1196 1197 return ret; 1198 } 1199 1200 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1201 { 1202 return __btrfs_run_delayed_items(trans, -1); 1203 } 1204 1205 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1206 { 1207 return __btrfs_run_delayed_items(trans, nr); 1208 } 1209 1210 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1211 struct btrfs_inode *inode) 1212 { 1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1214 BTRFS_PATH_AUTO_FREE(path); 1215 struct btrfs_block_rsv *block_rsv; 1216 int ret; 1217 1218 if (!delayed_node) 1219 return 0; 1220 1221 mutex_lock(&delayed_node->mutex); 1222 if (!delayed_node->count) { 1223 mutex_unlock(&delayed_node->mutex); 1224 btrfs_release_delayed_node(delayed_node); 1225 return 0; 1226 } 1227 mutex_unlock(&delayed_node->mutex); 1228 1229 path = btrfs_alloc_path(); 1230 if (!path) { 1231 btrfs_release_delayed_node(delayed_node); 1232 return -ENOMEM; 1233 } 1234 1235 block_rsv = trans->block_rsv; 1236 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1237 1238 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1239 1240 btrfs_release_delayed_node(delayed_node); 1241 trans->block_rsv = block_rsv; 1242 1243 return ret; 1244 } 1245 1246 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1247 { 1248 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1249 struct btrfs_trans_handle *trans; 1250 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1251 struct btrfs_path *path; 1252 struct btrfs_block_rsv *block_rsv; 1253 int ret; 1254 1255 if (!delayed_node) 1256 return 0; 1257 1258 mutex_lock(&delayed_node->mutex); 1259 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1260 mutex_unlock(&delayed_node->mutex); 1261 btrfs_release_delayed_node(delayed_node); 1262 return 0; 1263 } 1264 mutex_unlock(&delayed_node->mutex); 1265 1266 trans = btrfs_join_transaction(delayed_node->root); 1267 if (IS_ERR(trans)) { 1268 ret = PTR_ERR(trans); 1269 goto out; 1270 } 1271 1272 path = btrfs_alloc_path(); 1273 if (!path) { 1274 ret = -ENOMEM; 1275 goto trans_out; 1276 } 1277 1278 block_rsv = trans->block_rsv; 1279 trans->block_rsv = &fs_info->delayed_block_rsv; 1280 1281 mutex_lock(&delayed_node->mutex); 1282 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1283 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1284 path, delayed_node); 1285 else 1286 ret = 0; 1287 mutex_unlock(&delayed_node->mutex); 1288 1289 btrfs_free_path(path); 1290 trans->block_rsv = block_rsv; 1291 trans_out: 1292 btrfs_end_transaction(trans); 1293 btrfs_btree_balance_dirty(fs_info); 1294 out: 1295 btrfs_release_delayed_node(delayed_node); 1296 1297 return ret; 1298 } 1299 1300 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1301 { 1302 struct btrfs_delayed_node *delayed_node; 1303 1304 delayed_node = READ_ONCE(inode->delayed_node); 1305 if (!delayed_node) 1306 return; 1307 1308 inode->delayed_node = NULL; 1309 btrfs_release_delayed_node(delayed_node); 1310 } 1311 1312 struct btrfs_async_delayed_work { 1313 struct btrfs_delayed_root *delayed_root; 1314 int nr; 1315 struct btrfs_work work; 1316 }; 1317 1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1319 { 1320 struct btrfs_async_delayed_work *async_work; 1321 struct btrfs_delayed_root *delayed_root; 1322 struct btrfs_trans_handle *trans; 1323 struct btrfs_path *path; 1324 struct btrfs_delayed_node *delayed_node = NULL; 1325 struct btrfs_root *root; 1326 struct btrfs_block_rsv *block_rsv; 1327 int total_done = 0; 1328 1329 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1330 delayed_root = async_work->delayed_root; 1331 1332 path = btrfs_alloc_path(); 1333 if (!path) 1334 goto out; 1335 1336 do { 1337 if (atomic_read(&delayed_root->items) < 1338 BTRFS_DELAYED_BACKGROUND / 2) 1339 break; 1340 1341 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1342 if (!delayed_node) 1343 break; 1344 1345 root = delayed_node->root; 1346 1347 trans = btrfs_join_transaction(root); 1348 if (IS_ERR(trans)) { 1349 btrfs_release_path(path); 1350 btrfs_release_prepared_delayed_node(delayed_node); 1351 total_done++; 1352 continue; 1353 } 1354 1355 block_rsv = trans->block_rsv; 1356 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1357 1358 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1359 1360 trans->block_rsv = block_rsv; 1361 btrfs_end_transaction(trans); 1362 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1363 1364 btrfs_release_path(path); 1365 btrfs_release_prepared_delayed_node(delayed_node); 1366 total_done++; 1367 1368 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1369 || total_done < async_work->nr); 1370 1371 btrfs_free_path(path); 1372 out: 1373 wake_up(&delayed_root->wait); 1374 kfree(async_work); 1375 } 1376 1377 1378 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1379 struct btrfs_fs_info *fs_info, int nr) 1380 { 1381 struct btrfs_async_delayed_work *async_work; 1382 1383 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1384 if (!async_work) 1385 return -ENOMEM; 1386 1387 async_work->delayed_root = delayed_root; 1388 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); 1389 async_work->nr = nr; 1390 1391 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1392 return 0; 1393 } 1394 1395 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1396 { 1397 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1398 } 1399 1400 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1401 { 1402 int val = atomic_read(&delayed_root->items_seq); 1403 1404 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1405 return 1; 1406 1407 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1408 return 1; 1409 1410 return 0; 1411 } 1412 1413 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1414 { 1415 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1416 1417 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1418 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1419 return; 1420 1421 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1422 int seq; 1423 int ret; 1424 1425 seq = atomic_read(&delayed_root->items_seq); 1426 1427 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1428 if (ret) 1429 return; 1430 1431 wait_event_interruptible(delayed_root->wait, 1432 could_end_wait(delayed_root, seq)); 1433 return; 1434 } 1435 1436 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1437 } 1438 1439 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1440 { 1441 struct btrfs_fs_info *fs_info = trans->fs_info; 1442 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1443 1444 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1445 return; 1446 1447 /* 1448 * Adding the new dir index item does not require touching another 1449 * leaf, so we can release 1 unit of metadata that was previously 1450 * reserved when starting the transaction. This applies only to 1451 * the case where we had a transaction start and excludes the 1452 * transaction join case (when replaying log trees). 1453 */ 1454 trace_btrfs_space_reservation(fs_info, "transaction", 1455 trans->transid, bytes, 0); 1456 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1457 ASSERT(trans->bytes_reserved >= bytes); 1458 trans->bytes_reserved -= bytes; 1459 } 1460 1461 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1462 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1463 const char *name, int name_len, 1464 struct btrfs_inode *dir, 1465 const struct btrfs_disk_key *disk_key, u8 flags, 1466 u64 index) 1467 { 1468 struct btrfs_fs_info *fs_info = trans->fs_info; 1469 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1470 struct btrfs_delayed_node *delayed_node; 1471 struct btrfs_delayed_item *delayed_item; 1472 struct btrfs_dir_item *dir_item; 1473 bool reserve_leaf_space; 1474 u32 data_len; 1475 int ret; 1476 1477 delayed_node = btrfs_get_or_create_delayed_node(dir); 1478 if (IS_ERR(delayed_node)) 1479 return PTR_ERR(delayed_node); 1480 1481 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1482 delayed_node, 1483 BTRFS_DELAYED_INSERTION_ITEM); 1484 if (!delayed_item) { 1485 ret = -ENOMEM; 1486 goto release_node; 1487 } 1488 1489 delayed_item->index = index; 1490 1491 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1492 dir_item->location = *disk_key; 1493 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1494 btrfs_set_stack_dir_data_len(dir_item, 0); 1495 btrfs_set_stack_dir_name_len(dir_item, name_len); 1496 btrfs_set_stack_dir_flags(dir_item, flags); 1497 memcpy((char *)(dir_item + 1), name, name_len); 1498 1499 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1500 1501 mutex_lock(&delayed_node->mutex); 1502 1503 /* 1504 * First attempt to insert the delayed item. This is to make the error 1505 * handling path simpler in case we fail (-EEXIST). There's no risk of 1506 * any other task coming in and running the delayed item before we do 1507 * the metadata space reservation below, because we are holding the 1508 * delayed node's mutex and that mutex must also be locked before the 1509 * node's delayed items can be run. 1510 */ 1511 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1512 if (unlikely(ret)) { 1513 btrfs_err(trans->fs_info, 1514 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1515 name_len, name, index, btrfs_root_id(delayed_node->root), 1516 delayed_node->inode_id, dir->index_cnt, 1517 delayed_node->index_cnt, ret); 1518 btrfs_release_delayed_item(delayed_item); 1519 btrfs_release_dir_index_item_space(trans); 1520 mutex_unlock(&delayed_node->mutex); 1521 goto release_node; 1522 } 1523 1524 if (delayed_node->index_item_leaves == 0 || 1525 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1526 delayed_node->curr_index_batch_size = data_len; 1527 reserve_leaf_space = true; 1528 } else { 1529 delayed_node->curr_index_batch_size += data_len; 1530 reserve_leaf_space = false; 1531 } 1532 1533 if (reserve_leaf_space) { 1534 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1535 /* 1536 * Space was reserved for a dir index item insertion when we 1537 * started the transaction, so getting a failure here should be 1538 * impossible. 1539 */ 1540 if (WARN_ON(ret)) { 1541 btrfs_release_delayed_item(delayed_item); 1542 mutex_unlock(&delayed_node->mutex); 1543 goto release_node; 1544 } 1545 1546 delayed_node->index_item_leaves++; 1547 } else { 1548 btrfs_release_dir_index_item_space(trans); 1549 } 1550 mutex_unlock(&delayed_node->mutex); 1551 1552 release_node: 1553 btrfs_release_delayed_node(delayed_node); 1554 return ret; 1555 } 1556 1557 static int btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node, 1558 u64 index) 1559 { 1560 struct btrfs_delayed_item *item; 1561 1562 mutex_lock(&node->mutex); 1563 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1564 if (!item) { 1565 mutex_unlock(&node->mutex); 1566 return 1; 1567 } 1568 1569 /* 1570 * For delayed items to insert, we track reserved metadata bytes based 1571 * on the number of leaves that we will use. 1572 * See btrfs_insert_delayed_dir_index() and 1573 * btrfs_delayed_item_reserve_metadata()). 1574 */ 1575 ASSERT(item->bytes_reserved == 0); 1576 ASSERT(node->index_item_leaves > 0); 1577 1578 /* 1579 * If there's only one leaf reserved, we can decrement this item from the 1580 * current batch, otherwise we can not because we don't know which leaf 1581 * it belongs to. With the current limit on delayed items, we rarely 1582 * accumulate enough dir index items to fill more than one leaf (even 1583 * when using a leaf size of 4K). 1584 */ 1585 if (node->index_item_leaves == 1) { 1586 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1587 1588 ASSERT(node->curr_index_batch_size >= data_len); 1589 node->curr_index_batch_size -= data_len; 1590 } 1591 1592 btrfs_release_delayed_item(item); 1593 1594 /* If we now have no more dir index items, we can release all leaves. */ 1595 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1596 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1597 node->index_item_leaves = 0; 1598 } 1599 1600 mutex_unlock(&node->mutex); 1601 return 0; 1602 } 1603 1604 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1605 struct btrfs_inode *dir, u64 index) 1606 { 1607 struct btrfs_delayed_node *node; 1608 struct btrfs_delayed_item *item; 1609 int ret; 1610 1611 node = btrfs_get_or_create_delayed_node(dir); 1612 if (IS_ERR(node)) 1613 return PTR_ERR(node); 1614 1615 ret = btrfs_delete_delayed_insertion_item(node, index); 1616 if (!ret) 1617 goto end; 1618 1619 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1620 if (!item) { 1621 ret = -ENOMEM; 1622 goto end; 1623 } 1624 1625 item->index = index; 1626 1627 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1628 /* 1629 * we have reserved enough space when we start a new transaction, 1630 * so reserving metadata failure is impossible. 1631 */ 1632 if (ret < 0) { 1633 btrfs_err(trans->fs_info, 1634 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1635 btrfs_release_delayed_item(item); 1636 goto end; 1637 } 1638 1639 mutex_lock(&node->mutex); 1640 ret = __btrfs_add_delayed_item(node, item); 1641 if (unlikely(ret)) { 1642 btrfs_err(trans->fs_info, 1643 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1644 index, btrfs_root_id(node->root), 1645 node->inode_id, ret); 1646 btrfs_delayed_item_release_metadata(dir->root, item); 1647 btrfs_release_delayed_item(item); 1648 } 1649 mutex_unlock(&node->mutex); 1650 end: 1651 btrfs_release_delayed_node(node); 1652 return ret; 1653 } 1654 1655 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1656 { 1657 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1658 1659 if (!delayed_node) 1660 return -ENOENT; 1661 1662 /* 1663 * Since we have held i_mutex of this directory, it is impossible that 1664 * a new directory index is added into the delayed node and index_cnt 1665 * is updated now. So we needn't lock the delayed node. 1666 */ 1667 if (!delayed_node->index_cnt) { 1668 btrfs_release_delayed_node(delayed_node); 1669 return -EINVAL; 1670 } 1671 1672 inode->index_cnt = delayed_node->index_cnt; 1673 btrfs_release_delayed_node(delayed_node); 1674 return 0; 1675 } 1676 1677 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode, 1678 u64 last_index, 1679 struct list_head *ins_list, 1680 struct list_head *del_list) 1681 { 1682 struct btrfs_delayed_node *delayed_node; 1683 struct btrfs_delayed_item *item; 1684 1685 delayed_node = btrfs_get_delayed_node(inode); 1686 if (!delayed_node) 1687 return false; 1688 1689 /* 1690 * We can only do one readdir with delayed items at a time because of 1691 * item->readdir_list. 1692 */ 1693 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1694 btrfs_inode_lock(inode, 0); 1695 1696 mutex_lock(&delayed_node->mutex); 1697 item = __btrfs_first_delayed_insertion_item(delayed_node); 1698 while (item && item->index <= last_index) { 1699 refcount_inc(&item->refs); 1700 list_add_tail(&item->readdir_list, ins_list); 1701 item = __btrfs_next_delayed_item(item); 1702 } 1703 1704 item = __btrfs_first_delayed_deletion_item(delayed_node); 1705 while (item && item->index <= last_index) { 1706 refcount_inc(&item->refs); 1707 list_add_tail(&item->readdir_list, del_list); 1708 item = __btrfs_next_delayed_item(item); 1709 } 1710 mutex_unlock(&delayed_node->mutex); 1711 /* 1712 * This delayed node is still cached in the btrfs inode, so refs 1713 * must be > 1 now, and we needn't check it is going to be freed 1714 * or not. 1715 * 1716 * Besides that, this function is used to read dir, we do not 1717 * insert/delete delayed items in this period. So we also needn't 1718 * requeue or dequeue this delayed node. 1719 */ 1720 refcount_dec(&delayed_node->refs); 1721 1722 return true; 1723 } 1724 1725 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode, 1726 struct list_head *ins_list, 1727 struct list_head *del_list) 1728 { 1729 struct btrfs_delayed_item *curr, *next; 1730 1731 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1732 list_del(&curr->readdir_list); 1733 if (refcount_dec_and_test(&curr->refs)) 1734 kfree(curr); 1735 } 1736 1737 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1738 list_del(&curr->readdir_list); 1739 if (refcount_dec_and_test(&curr->refs)) 1740 kfree(curr); 1741 } 1742 1743 /* 1744 * The VFS is going to do up_read(), so we need to downgrade back to a 1745 * read lock. 1746 */ 1747 downgrade_write(&inode->vfs_inode.i_rwsem); 1748 } 1749 1750 int btrfs_should_delete_dir_index(const struct list_head *del_list, 1751 u64 index) 1752 { 1753 struct btrfs_delayed_item *curr; 1754 int ret = 0; 1755 1756 list_for_each_entry(curr, del_list, readdir_list) { 1757 if (curr->index > index) 1758 break; 1759 if (curr->index == index) { 1760 ret = 1; 1761 break; 1762 } 1763 } 1764 return ret; 1765 } 1766 1767 /* 1768 * Read dir info stored in the delayed tree. 1769 */ 1770 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1771 const struct list_head *ins_list) 1772 { 1773 struct btrfs_dir_item *di; 1774 struct btrfs_delayed_item *curr, *next; 1775 struct btrfs_key location; 1776 char *name; 1777 int name_len; 1778 int over = 0; 1779 unsigned char d_type; 1780 1781 /* 1782 * Changing the data of the delayed item is impossible. So 1783 * we needn't lock them. And we have held i_mutex of the 1784 * directory, nobody can delete any directory indexes now. 1785 */ 1786 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1787 list_del(&curr->readdir_list); 1788 1789 if (curr->index < ctx->pos) { 1790 if (refcount_dec_and_test(&curr->refs)) 1791 kfree(curr); 1792 continue; 1793 } 1794 1795 ctx->pos = curr->index; 1796 1797 di = (struct btrfs_dir_item *)curr->data; 1798 name = (char *)(di + 1); 1799 name_len = btrfs_stack_dir_name_len(di); 1800 1801 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1802 btrfs_disk_key_to_cpu(&location, &di->location); 1803 1804 over = !dir_emit(ctx, name, name_len, 1805 location.objectid, d_type); 1806 1807 if (refcount_dec_and_test(&curr->refs)) 1808 kfree(curr); 1809 1810 if (over) 1811 return 1; 1812 ctx->pos++; 1813 } 1814 return 0; 1815 } 1816 1817 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1818 struct btrfs_inode_item *inode_item, 1819 struct btrfs_inode *inode) 1820 { 1821 struct inode *vfs_inode = &inode->vfs_inode; 1822 u64 flags; 1823 1824 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode)); 1825 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode)); 1826 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size); 1827 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode); 1828 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink); 1829 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode)); 1830 btrfs_set_stack_inode_generation(inode_item, inode->generation); 1831 btrfs_set_stack_inode_sequence(inode_item, 1832 inode_peek_iversion(vfs_inode)); 1833 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1834 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev); 1835 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags); 1836 btrfs_set_stack_inode_flags(inode_item, flags); 1837 btrfs_set_stack_inode_block_group(inode_item, 0); 1838 1839 btrfs_set_stack_timespec_sec(&inode_item->atime, 1840 inode_get_atime_sec(vfs_inode)); 1841 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1842 inode_get_atime_nsec(vfs_inode)); 1843 1844 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1845 inode_get_mtime_sec(vfs_inode)); 1846 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1847 inode_get_mtime_nsec(vfs_inode)); 1848 1849 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1850 inode_get_ctime_sec(vfs_inode)); 1851 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1852 inode_get_ctime_nsec(vfs_inode)); 1853 1854 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec); 1855 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec); 1856 } 1857 1858 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev) 1859 { 1860 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1861 struct btrfs_delayed_node *delayed_node; 1862 struct btrfs_inode_item *inode_item; 1863 struct inode *vfs_inode = &inode->vfs_inode; 1864 1865 delayed_node = btrfs_get_delayed_node(inode); 1866 if (!delayed_node) 1867 return -ENOENT; 1868 1869 mutex_lock(&delayed_node->mutex); 1870 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1871 mutex_unlock(&delayed_node->mutex); 1872 btrfs_release_delayed_node(delayed_node); 1873 return -ENOENT; 1874 } 1875 1876 inode_item = &delayed_node->inode_item; 1877 1878 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item)); 1879 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item)); 1880 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1881 btrfs_inode_set_file_extent_range(inode, 0, 1882 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 1883 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item); 1884 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item)); 1885 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item)); 1886 inode->generation = btrfs_stack_inode_generation(inode_item); 1887 inode->last_trans = btrfs_stack_inode_transid(inode_item); 1888 1889 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item)); 1890 vfs_inode->i_rdev = 0; 1891 *rdev = btrfs_stack_inode_rdev(inode_item); 1892 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1893 &inode->flags, &inode->ro_flags); 1894 1895 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime), 1896 btrfs_stack_timespec_nsec(&inode_item->atime)); 1897 1898 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime), 1899 btrfs_stack_timespec_nsec(&inode_item->mtime)); 1900 1901 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1902 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1903 1904 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); 1905 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); 1906 1907 vfs_inode->i_generation = inode->generation; 1908 if (S_ISDIR(vfs_inode->i_mode)) 1909 inode->index_cnt = (u64)-1; 1910 1911 mutex_unlock(&delayed_node->mutex); 1912 btrfs_release_delayed_node(delayed_node); 1913 return 0; 1914 } 1915 1916 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1917 struct btrfs_inode *inode) 1918 { 1919 struct btrfs_root *root = inode->root; 1920 struct btrfs_delayed_node *delayed_node; 1921 int ret = 0; 1922 1923 delayed_node = btrfs_get_or_create_delayed_node(inode); 1924 if (IS_ERR(delayed_node)) 1925 return PTR_ERR(delayed_node); 1926 1927 mutex_lock(&delayed_node->mutex); 1928 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1929 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1930 goto release_node; 1931 } 1932 1933 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1934 if (ret) 1935 goto release_node; 1936 1937 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1938 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1939 delayed_node->count++; 1940 atomic_inc(&root->fs_info->delayed_root->items); 1941 release_node: 1942 mutex_unlock(&delayed_node->mutex); 1943 btrfs_release_delayed_node(delayed_node); 1944 return ret; 1945 } 1946 1947 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1948 { 1949 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1950 struct btrfs_delayed_node *delayed_node; 1951 1952 /* 1953 * we don't do delayed inode updates during log recovery because it 1954 * leads to enospc problems. This means we also can't do 1955 * delayed inode refs 1956 */ 1957 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1958 return -EAGAIN; 1959 1960 delayed_node = btrfs_get_or_create_delayed_node(inode); 1961 if (IS_ERR(delayed_node)) 1962 return PTR_ERR(delayed_node); 1963 1964 /* 1965 * We don't reserve space for inode ref deletion is because: 1966 * - We ONLY do async inode ref deletion for the inode who has only 1967 * one link(i_nlink == 1), it means there is only one inode ref. 1968 * And in most case, the inode ref and the inode item are in the 1969 * same leaf, and we will deal with them at the same time. 1970 * Since we are sure we will reserve the space for the inode item, 1971 * it is unnecessary to reserve space for inode ref deletion. 1972 * - If the inode ref and the inode item are not in the same leaf, 1973 * We also needn't worry about enospc problem, because we reserve 1974 * much more space for the inode update than it needs. 1975 * - At the worst, we can steal some space from the global reservation. 1976 * It is very rare. 1977 */ 1978 mutex_lock(&delayed_node->mutex); 1979 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1980 goto release_node; 1981 1982 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1983 delayed_node->count++; 1984 atomic_inc(&fs_info->delayed_root->items); 1985 release_node: 1986 mutex_unlock(&delayed_node->mutex); 1987 btrfs_release_delayed_node(delayed_node); 1988 return 0; 1989 } 1990 1991 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1992 { 1993 struct btrfs_root *root = delayed_node->root; 1994 struct btrfs_fs_info *fs_info = root->fs_info; 1995 struct btrfs_delayed_item *curr_item, *prev_item; 1996 1997 mutex_lock(&delayed_node->mutex); 1998 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1999 while (curr_item) { 2000 prev_item = curr_item; 2001 curr_item = __btrfs_next_delayed_item(prev_item); 2002 btrfs_release_delayed_item(prev_item); 2003 } 2004 2005 if (delayed_node->index_item_leaves > 0) { 2006 btrfs_delayed_item_release_leaves(delayed_node, 2007 delayed_node->index_item_leaves); 2008 delayed_node->index_item_leaves = 0; 2009 } 2010 2011 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2012 while (curr_item) { 2013 btrfs_delayed_item_release_metadata(root, curr_item); 2014 prev_item = curr_item; 2015 curr_item = __btrfs_next_delayed_item(prev_item); 2016 btrfs_release_delayed_item(prev_item); 2017 } 2018 2019 btrfs_release_delayed_iref(delayed_node); 2020 2021 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2022 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2023 btrfs_release_delayed_inode(delayed_node); 2024 } 2025 mutex_unlock(&delayed_node->mutex); 2026 } 2027 2028 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2029 { 2030 struct btrfs_delayed_node *delayed_node; 2031 2032 delayed_node = btrfs_get_delayed_node(inode); 2033 if (!delayed_node) 2034 return; 2035 2036 __btrfs_kill_delayed_node(delayed_node); 2037 btrfs_release_delayed_node(delayed_node); 2038 } 2039 2040 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2041 { 2042 unsigned long index = 0; 2043 struct btrfs_delayed_node *delayed_nodes[8]; 2044 2045 while (1) { 2046 struct btrfs_delayed_node *node; 2047 int count; 2048 2049 xa_lock(&root->delayed_nodes); 2050 if (xa_empty(&root->delayed_nodes)) { 2051 xa_unlock(&root->delayed_nodes); 2052 return; 2053 } 2054 2055 count = 0; 2056 xa_for_each_start(&root->delayed_nodes, index, node, index) { 2057 /* 2058 * Don't increase refs in case the node is dead and 2059 * about to be removed from the tree in the loop below 2060 */ 2061 if (refcount_inc_not_zero(&node->refs)) { 2062 delayed_nodes[count] = node; 2063 count++; 2064 } 2065 if (count >= ARRAY_SIZE(delayed_nodes)) 2066 break; 2067 } 2068 xa_unlock(&root->delayed_nodes); 2069 index++; 2070 2071 for (int i = 0; i < count; i++) { 2072 __btrfs_kill_delayed_node(delayed_nodes[i]); 2073 btrfs_release_delayed_node(delayed_nodes[i]); 2074 } 2075 } 2076 } 2077 2078 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2079 { 2080 struct btrfs_delayed_node *curr_node, *prev_node; 2081 2082 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 2083 while (curr_node) { 2084 __btrfs_kill_delayed_node(curr_node); 2085 2086 prev_node = curr_node; 2087 curr_node = btrfs_next_delayed_node(curr_node); 2088 btrfs_release_delayed_node(prev_node); 2089 } 2090 } 2091 2092 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2093 struct list_head *ins_list, 2094 struct list_head *del_list) 2095 { 2096 struct btrfs_delayed_node *node; 2097 struct btrfs_delayed_item *item; 2098 2099 node = btrfs_get_delayed_node(inode); 2100 if (!node) 2101 return; 2102 2103 mutex_lock(&node->mutex); 2104 item = __btrfs_first_delayed_insertion_item(node); 2105 while (item) { 2106 /* 2107 * It's possible that the item is already in a log list. This 2108 * can happen in case two tasks are trying to log the same 2109 * directory. For example if we have tasks A and task B: 2110 * 2111 * Task A collected the delayed items into a log list while 2112 * under the inode's log_mutex (at btrfs_log_inode()), but it 2113 * only releases the items after logging the inodes they point 2114 * to (if they are new inodes), which happens after unlocking 2115 * the log mutex; 2116 * 2117 * Task B enters btrfs_log_inode() and acquires the log_mutex 2118 * of the same directory inode, before task B releases the 2119 * delayed items. This can happen for example when logging some 2120 * inode we need to trigger logging of its parent directory, so 2121 * logging two files that have the same parent directory can 2122 * lead to this. 2123 * 2124 * If this happens, just ignore delayed items already in a log 2125 * list. All the tasks logging the directory are under a log 2126 * transaction and whichever finishes first can not sync the log 2127 * before the other completes and leaves the log transaction. 2128 */ 2129 if (!item->logged && list_empty(&item->log_list)) { 2130 refcount_inc(&item->refs); 2131 list_add_tail(&item->log_list, ins_list); 2132 } 2133 item = __btrfs_next_delayed_item(item); 2134 } 2135 2136 item = __btrfs_first_delayed_deletion_item(node); 2137 while (item) { 2138 /* It may be non-empty, for the same reason mentioned above. */ 2139 if (!item->logged && list_empty(&item->log_list)) { 2140 refcount_inc(&item->refs); 2141 list_add_tail(&item->log_list, del_list); 2142 } 2143 item = __btrfs_next_delayed_item(item); 2144 } 2145 mutex_unlock(&node->mutex); 2146 2147 /* 2148 * We are called during inode logging, which means the inode is in use 2149 * and can not be evicted before we finish logging the inode. So we never 2150 * have the last reference on the delayed inode. 2151 * Also, we don't use btrfs_release_delayed_node() because that would 2152 * requeue the delayed inode (change its order in the list of prepared 2153 * nodes) and we don't want to do such change because we don't create or 2154 * delete delayed items. 2155 */ 2156 ASSERT(refcount_read(&node->refs) > 1); 2157 refcount_dec(&node->refs); 2158 } 2159 2160 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2161 struct list_head *ins_list, 2162 struct list_head *del_list) 2163 { 2164 struct btrfs_delayed_node *node; 2165 struct btrfs_delayed_item *item; 2166 struct btrfs_delayed_item *next; 2167 2168 node = btrfs_get_delayed_node(inode); 2169 if (!node) 2170 return; 2171 2172 mutex_lock(&node->mutex); 2173 2174 list_for_each_entry_safe(item, next, ins_list, log_list) { 2175 item->logged = true; 2176 list_del_init(&item->log_list); 2177 if (refcount_dec_and_test(&item->refs)) 2178 kfree(item); 2179 } 2180 2181 list_for_each_entry_safe(item, next, del_list, log_list) { 2182 item->logged = true; 2183 list_del_init(&item->log_list); 2184 if (refcount_dec_and_test(&item->refs)) 2185 kfree(item); 2186 } 2187 2188 mutex_unlock(&node->mutex); 2189 2190 /* 2191 * We are called during inode logging, which means the inode is in use 2192 * and can not be evicted before we finish logging the inode. So we never 2193 * have the last reference on the delayed inode. 2194 * Also, we don't use btrfs_release_delayed_node() because that would 2195 * requeue the delayed inode (change its order in the list of prepared 2196 * nodes) and we don't want to do such change because we don't create or 2197 * delete delayed items. 2198 */ 2199 ASSERT(refcount_read(&node->refs) > 1); 2200 refcount_dec(&node->refs); 2201 } 2202