1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22
23 #define BTRFS_DELAYED_WRITEBACK 512
24 #define BTRFS_DELAYED_BACKGROUND 128
25 #define BTRFS_DELAYED_BATCH 16
26
27 static struct kmem_cache *delayed_node_cache;
28
btrfs_delayed_inode_init(void)29 int __init btrfs_delayed_inode_init(void)
30 {
31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 if (!delayed_node_cache)
33 return -ENOMEM;
34 return 0;
35 }
36
btrfs_delayed_inode_exit(void)37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 kmem_cache_destroy(delayed_node_cache);
40 }
41
btrfs_init_delayed_root(struct btrfs_delayed_root * delayed_root)42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 atomic_set(&delayed_root->items, 0);
45 atomic_set(&delayed_root->items_seq, 0);
46 delayed_root->nodes = 0;
47 spin_lock_init(&delayed_root->lock);
48 init_waitqueue_head(&delayed_root->wait);
49 INIT_LIST_HEAD(&delayed_root->node_list);
50 INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)53 static inline void btrfs_init_delayed_node(
54 struct btrfs_delayed_node *delayed_node,
55 struct btrfs_root *root, u64 inode_id)
56 {
57 delayed_node->root = root;
58 delayed_node->inode_id = inode_id;
59 refcount_set(&delayed_node->refs, 0);
60 btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61 delayed_node->ins_root = RB_ROOT_CACHED;
62 delayed_node->del_root = RB_ROOT_CACHED;
63 mutex_init(&delayed_node->mutex);
64 INIT_LIST_HEAD(&delayed_node->n_list);
65 INIT_LIST_HEAD(&delayed_node->p_list);
66 }
67
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)68 static struct btrfs_delayed_node *btrfs_get_delayed_node(
69 struct btrfs_inode *btrfs_inode,
70 struct btrfs_ref_tracker *tracker)
71 {
72 struct btrfs_root *root = btrfs_inode->root;
73 u64 ino = btrfs_ino(btrfs_inode);
74 struct btrfs_delayed_node *node;
75
76 node = READ_ONCE(btrfs_inode->delayed_node);
77 if (node) {
78 refcount_inc(&node->refs);
79 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80 return node;
81 }
82
83 xa_lock(&root->delayed_nodes);
84 node = xa_load(&root->delayed_nodes, ino);
85
86 if (node) {
87 if (btrfs_inode->delayed_node) {
88 refcount_inc(&node->refs); /* can be accessed */
89 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90 BUG_ON(btrfs_inode->delayed_node != node);
91 xa_unlock(&root->delayed_nodes);
92 return node;
93 }
94
95 /*
96 * It's possible that we're racing into the middle of removing
97 * this node from the xarray. In this case, the refcount
98 * was zero and it should never go back to one. Just return
99 * NULL like it was never in the xarray at all; our release
100 * function is in the process of removing it.
101 *
102 * Some implementations of refcount_inc refuse to bump the
103 * refcount once it has hit zero. If we don't do this dance
104 * here, refcount_inc() may decide to just WARN_ONCE() instead
105 * of actually bumping the refcount.
106 *
107 * If this node is properly in the xarray, we want to bump the
108 * refcount twice, once for the inode and once for this get
109 * operation.
110 */
111 if (refcount_inc_not_zero(&node->refs)) {
112 refcount_inc(&node->refs);
113 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115 GFP_ATOMIC);
116 btrfs_inode->delayed_node = node;
117 } else {
118 node = NULL;
119 }
120
121 xa_unlock(&root->delayed_nodes);
122 return node;
123 }
124 xa_unlock(&root->delayed_nodes);
125
126 return NULL;
127 }
128
129 /*
130 * Look up an existing delayed node associated with @btrfs_inode or create a new
131 * one and insert it to the delayed nodes of the root.
132 *
133 * Return the delayed node, or error pointer on failure.
134 */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode,struct btrfs_ref_tracker * tracker)135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136 struct btrfs_inode *btrfs_inode,
137 struct btrfs_ref_tracker *tracker)
138 {
139 struct btrfs_delayed_node *node;
140 struct btrfs_root *root = btrfs_inode->root;
141 u64 ino = btrfs_ino(btrfs_inode);
142 int ret;
143 void *ptr;
144
145 again:
146 node = btrfs_get_delayed_node(btrfs_inode, tracker);
147 if (node)
148 return node;
149
150 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151 if (!node)
152 return ERR_PTR(-ENOMEM);
153 btrfs_init_delayed_node(node, root, ino);
154
155 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
156 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
157 if (ret == -ENOMEM) {
158 btrfs_delayed_node_ref_tracker_dir_exit(node);
159 kmem_cache_free(delayed_node_cache, node);
160 return ERR_PTR(-ENOMEM);
161 }
162 xa_lock(&root->delayed_nodes);
163 ptr = xa_load(&root->delayed_nodes, ino);
164 if (ptr) {
165 /* Somebody inserted it, go back and read it. */
166 xa_unlock(&root->delayed_nodes);
167 btrfs_delayed_node_ref_tracker_dir_exit(node);
168 kmem_cache_free(delayed_node_cache, node);
169 node = NULL;
170 goto again;
171 }
172 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173 ASSERT(xa_err(ptr) != -EINVAL);
174 ASSERT(xa_err(ptr) != -ENOMEM);
175 ASSERT(ptr == NULL);
176
177 /* Cached in the inode and can be accessed. */
178 refcount_set(&node->refs, 2);
179 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
180 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_ATOMIC);
181
182 btrfs_inode->delayed_node = node;
183 xa_unlock(&root->delayed_nodes);
184
185 return node;
186 }
187
188 /*
189 * Call it when holding delayed_node->mutex
190 *
191 * If mod = 1, add this node into the prepared list.
192 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)193 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
194 struct btrfs_delayed_node *node,
195 int mod)
196 {
197 spin_lock(&root->lock);
198 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
199 if (!list_empty(&node->p_list))
200 list_move_tail(&node->p_list, &root->prepare_list);
201 else if (mod)
202 list_add_tail(&node->p_list, &root->prepare_list);
203 } else {
204 list_add_tail(&node->n_list, &root->node_list);
205 list_add_tail(&node->p_list, &root->prepare_list);
206 refcount_inc(&node->refs); /* inserted into list */
207 btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
208 GFP_ATOMIC);
209 root->nodes++;
210 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
211 }
212 spin_unlock(&root->lock);
213 }
214
215 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)216 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
217 struct btrfs_delayed_node *node)
218 {
219 spin_lock(&root->lock);
220 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
221 root->nodes--;
222 btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
223 refcount_dec(&node->refs); /* not in the list */
224 list_del_init(&node->n_list);
225 if (!list_empty(&node->p_list))
226 list_del_init(&node->p_list);
227 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
228 }
229 spin_unlock(&root->lock);
230 }
231
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)232 static struct btrfs_delayed_node *btrfs_first_delayed_node(
233 struct btrfs_delayed_root *delayed_root,
234 struct btrfs_ref_tracker *tracker)
235 {
236 struct btrfs_delayed_node *node;
237
238 spin_lock(&delayed_root->lock);
239 node = list_first_entry_or_null(&delayed_root->node_list,
240 struct btrfs_delayed_node, n_list);
241 if (node) {
242 refcount_inc(&node->refs);
243 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
244 }
245 spin_unlock(&delayed_root->lock);
246
247 return node;
248 }
249
btrfs_next_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)250 static struct btrfs_delayed_node *btrfs_next_delayed_node(
251 struct btrfs_delayed_node *node,
252 struct btrfs_ref_tracker *tracker)
253 {
254 struct btrfs_delayed_root *delayed_root;
255 struct list_head *p;
256 struct btrfs_delayed_node *next = NULL;
257
258 delayed_root = node->root->fs_info->delayed_root;
259 spin_lock(&delayed_root->lock);
260 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
261 /* not in the list */
262 if (list_empty(&delayed_root->node_list))
263 goto out;
264 p = delayed_root->node_list.next;
265 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
266 goto out;
267 else
268 p = node->n_list.next;
269
270 next = list_entry(p, struct btrfs_delayed_node, n_list);
271 refcount_inc(&next->refs);
272 btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
273 out:
274 spin_unlock(&delayed_root->lock);
275
276 return next;
277 }
278
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod,struct btrfs_ref_tracker * tracker)279 static void __btrfs_release_delayed_node(
280 struct btrfs_delayed_node *delayed_node,
281 int mod, struct btrfs_ref_tracker *tracker)
282 {
283 struct btrfs_delayed_root *delayed_root;
284
285 if (!delayed_node)
286 return;
287
288 delayed_root = delayed_node->root->fs_info->delayed_root;
289
290 mutex_lock(&delayed_node->mutex);
291 if (delayed_node->count)
292 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
293 else
294 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
295 mutex_unlock(&delayed_node->mutex);
296
297 btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
298 if (refcount_dec_and_test(&delayed_node->refs)) {
299 struct btrfs_root *root = delayed_node->root;
300
301 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
302 /*
303 * Once our refcount goes to zero, nobody is allowed to bump it
304 * back up. We can delete it now.
305 */
306 ASSERT(refcount_read(&delayed_node->refs) == 0);
307 btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
308 kmem_cache_free(delayed_node_cache, delayed_node);
309 }
310 }
311
btrfs_release_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)312 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
313 struct btrfs_ref_tracker *tracker)
314 {
315 __btrfs_release_delayed_node(node, 0, tracker);
316 }
317
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_ref_tracker * tracker)318 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
319 struct btrfs_delayed_root *delayed_root,
320 struct btrfs_ref_tracker *tracker)
321 {
322 struct btrfs_delayed_node *node;
323
324 spin_lock(&delayed_root->lock);
325 node = list_first_entry_or_null(&delayed_root->prepare_list,
326 struct btrfs_delayed_node, p_list);
327 if (node) {
328 list_del_init(&node->p_list);
329 refcount_inc(&node->refs);
330 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
331 }
332 spin_unlock(&delayed_root->lock);
333
334 return node;
335 }
336
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node,struct btrfs_ref_tracker * tracker)337 static inline void btrfs_release_prepared_delayed_node(
338 struct btrfs_delayed_node *node,
339 struct btrfs_ref_tracker *tracker)
340 {
341 __btrfs_release_delayed_node(node, 1, tracker);
342 }
343
btrfs_alloc_delayed_item(u16 data_len,struct btrfs_delayed_node * node,enum btrfs_delayed_item_type type)344 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
345 struct btrfs_delayed_node *node,
346 enum btrfs_delayed_item_type type)
347 {
348 struct btrfs_delayed_item *item;
349
350 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
351 if (item) {
352 item->data_len = data_len;
353 item->type = type;
354 item->bytes_reserved = 0;
355 item->delayed_node = node;
356 RB_CLEAR_NODE(&item->rb_node);
357 INIT_LIST_HEAD(&item->log_list);
358 item->logged = false;
359 refcount_set(&item->refs, 1);
360 }
361 return item;
362 }
363
delayed_item_index_cmp(const void * key,const struct rb_node * node)364 static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
365 {
366 const u64 *index = key;
367 const struct btrfs_delayed_item *delayed_item = rb_entry(node,
368 struct btrfs_delayed_item, rb_node);
369
370 if (delayed_item->index < *index)
371 return 1;
372 else if (delayed_item->index > *index)
373 return -1;
374
375 return 0;
376 }
377
378 /*
379 * Look up the delayed item by key.
380 *
381 * @delayed_node: pointer to the delayed node
382 * @index: the dir index value to lookup (offset of a dir index key)
383 *
384 * Note: if we don't find the right item, we will return the prev item and
385 * the next item.
386 */
__btrfs_lookup_delayed_item(struct rb_root * root,u64 index)387 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
388 struct rb_root *root,
389 u64 index)
390 {
391 struct rb_node *node;
392
393 node = rb_find(&index, root, delayed_item_index_cmp);
394 return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
395 }
396
btrfs_delayed_item_cmp(const struct rb_node * new,const struct rb_node * exist)397 static int btrfs_delayed_item_cmp(const struct rb_node *new,
398 const struct rb_node *exist)
399 {
400 const struct btrfs_delayed_item *new_item =
401 rb_entry(new, struct btrfs_delayed_item, rb_node);
402
403 return delayed_item_index_cmp(&new_item->index, exist);
404 }
405
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins)406 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
407 struct btrfs_delayed_item *ins)
408 {
409 struct rb_root_cached *root;
410 struct rb_node *exist;
411
412 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
413 root = &delayed_node->ins_root;
414 else
415 root = &delayed_node->del_root;
416
417 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
418 if (exist)
419 return -EEXIST;
420
421 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
422 ins->index >= delayed_node->index_cnt)
423 delayed_node->index_cnt = ins->index + 1;
424
425 delayed_node->count++;
426 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
427 return 0;
428 }
429
finish_one_item(struct btrfs_delayed_root * delayed_root)430 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
431 {
432 int seq = atomic_inc_return(&delayed_root->items_seq);
433
434 /* atomic_dec_return implies a barrier */
435 if ((atomic_dec_return(&delayed_root->items) <
436 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
437 cond_wake_up_nomb(&delayed_root->wait);
438 }
439
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)440 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
441 {
442 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
443 struct rb_root_cached *root;
444 struct btrfs_delayed_root *delayed_root;
445
446 /* Not inserted, ignore it. */
447 if (RB_EMPTY_NODE(&delayed_item->rb_node))
448 return;
449
450 /* If it's in a rbtree, then we need to have delayed node locked. */
451 lockdep_assert_held(&delayed_node->mutex);
452
453 delayed_root = delayed_node->root->fs_info->delayed_root;
454
455 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
456 root = &delayed_node->ins_root;
457 else
458 root = &delayed_node->del_root;
459
460 rb_erase_cached(&delayed_item->rb_node, root);
461 RB_CLEAR_NODE(&delayed_item->rb_node);
462 delayed_node->count--;
463
464 finish_one_item(delayed_root);
465 }
466
btrfs_release_delayed_item(struct btrfs_delayed_item * item)467 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
468 {
469 if (item) {
470 __btrfs_remove_delayed_item(item);
471 if (refcount_dec_and_test(&item->refs))
472 kfree(item);
473 }
474 }
475
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)476 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
477 struct btrfs_delayed_node *delayed_node)
478 {
479 struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
480
481 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
482 }
483
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)484 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
485 struct btrfs_delayed_node *delayed_node)
486 {
487 struct rb_node *p = rb_first_cached(&delayed_node->del_root);
488
489 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
490 }
491
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)492 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
493 struct btrfs_delayed_item *item)
494 {
495 struct rb_node *p = rb_next(&item->rb_node);
496
497 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
498 }
499
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_delayed_item * item)500 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
501 struct btrfs_delayed_item *item)
502 {
503 struct btrfs_block_rsv *src_rsv;
504 struct btrfs_block_rsv *dst_rsv;
505 struct btrfs_fs_info *fs_info = trans->fs_info;
506 u64 num_bytes;
507 int ret;
508
509 if (!trans->bytes_reserved)
510 return 0;
511
512 src_rsv = trans->block_rsv;
513 dst_rsv = &fs_info->delayed_block_rsv;
514
515 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
516
517 /*
518 * Here we migrate space rsv from transaction rsv, since have already
519 * reserved space when starting a transaction. So no need to reserve
520 * qgroup space here.
521 */
522 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
523 if (!ret) {
524 trace_btrfs_space_reservation(fs_info, "delayed_item",
525 item->delayed_node->inode_id,
526 num_bytes, 1);
527 /*
528 * For insertions we track reserved metadata space by accounting
529 * for the number of leaves that will be used, based on the delayed
530 * node's curr_index_batch_size and index_item_leaves fields.
531 */
532 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
533 item->bytes_reserved = num_bytes;
534 }
535
536 return ret;
537 }
538
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)539 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
540 struct btrfs_delayed_item *item)
541 {
542 struct btrfs_block_rsv *rsv;
543 struct btrfs_fs_info *fs_info = root->fs_info;
544
545 if (!item->bytes_reserved)
546 return;
547
548 rsv = &fs_info->delayed_block_rsv;
549 /*
550 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
551 * to release/reserve qgroup space.
552 */
553 trace_btrfs_space_reservation(fs_info, "delayed_item",
554 item->delayed_node->inode_id,
555 item->bytes_reserved, 0);
556 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
557 }
558
btrfs_delayed_item_release_leaves(struct btrfs_delayed_node * node,unsigned int num_leaves)559 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
560 unsigned int num_leaves)
561 {
562 struct btrfs_fs_info *fs_info = node->root->fs_info;
563 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
564
565 /* There are no space reservations during log replay, bail out. */
566 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
567 return;
568
569 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
570 bytes, 0);
571 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
572 }
573
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)574 static int btrfs_delayed_inode_reserve_metadata(
575 struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct btrfs_delayed_node *node)
578 {
579 struct btrfs_fs_info *fs_info = root->fs_info;
580 struct btrfs_block_rsv *src_rsv;
581 struct btrfs_block_rsv *dst_rsv;
582 u64 num_bytes;
583 int ret;
584
585 src_rsv = trans->block_rsv;
586 dst_rsv = &fs_info->delayed_block_rsv;
587
588 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
589
590 /*
591 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
592 * which doesn't reserve space for speed. This is a problem since we
593 * still need to reserve space for this update, so try to reserve the
594 * space.
595 *
596 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
597 * we always reserve enough to update the inode item.
598 */
599 if (!src_rsv || (!trans->bytes_reserved &&
600 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
601 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
602 BTRFS_QGROUP_RSV_META_PREALLOC, true);
603 if (ret < 0)
604 return ret;
605 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
606 BTRFS_RESERVE_NO_FLUSH);
607 /* NO_FLUSH could only fail with -ENOSPC */
608 ASSERT(ret == 0 || ret == -ENOSPC);
609 if (ret)
610 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
611 } else {
612 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
613 }
614
615 if (!ret) {
616 trace_btrfs_space_reservation(fs_info, "delayed_inode",
617 node->inode_id, num_bytes, 1);
618 node->bytes_reserved = num_bytes;
619 }
620
621 return ret;
622 }
623
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)624 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
625 struct btrfs_delayed_node *node,
626 bool qgroup_free)
627 {
628 struct btrfs_block_rsv *rsv;
629
630 if (!node->bytes_reserved)
631 return;
632
633 rsv = &fs_info->delayed_block_rsv;
634 trace_btrfs_space_reservation(fs_info, "delayed_inode",
635 node->inode_id, node->bytes_reserved, 0);
636 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
637 if (qgroup_free)
638 btrfs_qgroup_free_meta_prealloc(node->root,
639 node->bytes_reserved);
640 else
641 btrfs_qgroup_convert_reserved_meta(node->root,
642 node->bytes_reserved);
643 node->bytes_reserved = 0;
644 }
645
646 /*
647 * Insert a single delayed item or a batch of delayed items, as many as possible
648 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
649 * in the rbtree, and if there's a gap between two consecutive dir index items,
650 * then it means at some point we had delayed dir indexes to add but they got
651 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
652 * into the subvolume tree. Dir index keys also have their offsets coming from a
653 * monotonically increasing counter, so we can't get new keys with an offset that
654 * fits within a gap between delayed dir index items.
655 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)656 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct btrfs_delayed_item *first_item)
660 {
661 struct btrfs_fs_info *fs_info = root->fs_info;
662 struct btrfs_delayed_node *node = first_item->delayed_node;
663 LIST_HEAD(item_list);
664 struct btrfs_delayed_item *curr;
665 struct btrfs_delayed_item *next;
666 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
667 struct btrfs_item_batch batch;
668 struct btrfs_key first_key;
669 const u32 first_data_size = first_item->data_len;
670 int total_size;
671 char AUTO_KFREE(ins_data);
672 int ret;
673 bool continuous_keys_only = false;
674
675 lockdep_assert_held(&node->mutex);
676
677 /*
678 * During normal operation the delayed index offset is continuously
679 * increasing, so we can batch insert all items as there will not be any
680 * overlapping keys in the tree.
681 *
682 * The exception to this is log replay, where we may have interleaved
683 * offsets in the tree, so our batch needs to be continuous keys only in
684 * order to ensure we do not end up with out of order items in our leaf.
685 */
686 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
687 continuous_keys_only = true;
688
689 /*
690 * For delayed items to insert, we track reserved metadata bytes based
691 * on the number of leaves that we will use.
692 * See btrfs_insert_delayed_dir_index() and
693 * btrfs_delayed_item_reserve_metadata()).
694 */
695 ASSERT(first_item->bytes_reserved == 0);
696
697 list_add_tail(&first_item->tree_list, &item_list);
698 batch.total_data_size = first_data_size;
699 batch.nr = 1;
700 total_size = first_data_size + sizeof(struct btrfs_item);
701 curr = first_item;
702
703 while (true) {
704 int next_size;
705
706 next = __btrfs_next_delayed_item(curr);
707 if (!next)
708 break;
709
710 /*
711 * We cannot allow gaps in the key space if we're doing log
712 * replay.
713 */
714 if (continuous_keys_only && (next->index != curr->index + 1))
715 break;
716
717 ASSERT(next->bytes_reserved == 0);
718
719 next_size = next->data_len + sizeof(struct btrfs_item);
720 if (total_size + next_size > max_size)
721 break;
722
723 list_add_tail(&next->tree_list, &item_list);
724 batch.nr++;
725 total_size += next_size;
726 batch.total_data_size += next->data_len;
727 curr = next;
728 }
729
730 if (batch.nr == 1) {
731 first_key.objectid = node->inode_id;
732 first_key.type = BTRFS_DIR_INDEX_KEY;
733 first_key.offset = first_item->index;
734 batch.keys = &first_key;
735 batch.data_sizes = &first_data_size;
736 } else {
737 struct btrfs_key *ins_keys;
738 u32 *ins_sizes;
739 int i = 0;
740
741 ins_data = kmalloc_array(batch.nr,
742 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
743 if (!ins_data)
744 return -ENOMEM;
745 ins_sizes = (u32 *)ins_data;
746 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
747 batch.keys = ins_keys;
748 batch.data_sizes = ins_sizes;
749 list_for_each_entry(curr, &item_list, tree_list) {
750 ins_keys[i].objectid = node->inode_id;
751 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
752 ins_keys[i].offset = curr->index;
753 ins_sizes[i] = curr->data_len;
754 i++;
755 }
756 }
757
758 ret = btrfs_insert_empty_items(trans, root, path, &batch);
759 if (ret)
760 return ret;
761
762 list_for_each_entry(curr, &item_list, tree_list) {
763 char *data_ptr;
764
765 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
766 write_extent_buffer(path->nodes[0], &curr->data,
767 (unsigned long)data_ptr, curr->data_len);
768 path->slots[0]++;
769 }
770
771 /*
772 * Now release our path before releasing the delayed items and their
773 * metadata reservations, so that we don't block other tasks for more
774 * time than needed.
775 */
776 btrfs_release_path(path);
777
778 ASSERT(node->index_item_leaves > 0);
779
780 /*
781 * For normal operations we will batch an entire leaf's worth of delayed
782 * items, so if there are more items to process we can decrement
783 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
784 *
785 * However for log replay we may not have inserted an entire leaf's
786 * worth of items, we may have not had continuous items, so decrementing
787 * here would mess up the index_item_leaves accounting. For this case
788 * only clean up the accounting when there are no items left.
789 */
790 if (next && !continuous_keys_only) {
791 /*
792 * We inserted one batch of items into a leaf a there are more
793 * items to flush in a future batch, now release one unit of
794 * metadata space from the delayed block reserve, corresponding
795 * the leaf we just flushed to.
796 */
797 btrfs_delayed_item_release_leaves(node, 1);
798 node->index_item_leaves--;
799 } else if (!next) {
800 /*
801 * There are no more items to insert. We can have a number of
802 * reserved leaves > 1 here - this happens when many dir index
803 * items are added and then removed before they are flushed (file
804 * names with a very short life, never span a transaction). So
805 * release all remaining leaves.
806 */
807 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
808 node->index_item_leaves = 0;
809 }
810
811 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
812 list_del(&curr->tree_list);
813 btrfs_release_delayed_item(curr);
814 }
815
816 return 0;
817 }
818
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)819 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
820 struct btrfs_path *path,
821 struct btrfs_root *root,
822 struct btrfs_delayed_node *node)
823 {
824 int ret = 0;
825
826 while (ret == 0) {
827 struct btrfs_delayed_item *curr;
828
829 mutex_lock(&node->mutex);
830 curr = __btrfs_first_delayed_insertion_item(node);
831 if (!curr) {
832 mutex_unlock(&node->mutex);
833 break;
834 }
835 ret = btrfs_insert_delayed_item(trans, root, path, curr);
836 mutex_unlock(&node->mutex);
837 }
838
839 return ret;
840 }
841
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)842 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
843 struct btrfs_root *root,
844 struct btrfs_path *path,
845 struct btrfs_delayed_item *item)
846 {
847 const u64 ino = item->delayed_node->inode_id;
848 struct btrfs_fs_info *fs_info = root->fs_info;
849 struct btrfs_delayed_item *curr, *next;
850 struct extent_buffer *leaf = path->nodes[0];
851 LIST_HEAD(batch_list);
852 int nitems, slot, last_slot;
853 int ret;
854 u64 total_reserved_size = item->bytes_reserved;
855
856 ASSERT(leaf != NULL);
857
858 slot = path->slots[0];
859 last_slot = btrfs_header_nritems(leaf) - 1;
860 /*
861 * Our caller always gives us a path pointing to an existing item, so
862 * this can not happen.
863 */
864 ASSERT(slot <= last_slot);
865 if (WARN_ON(slot > last_slot))
866 return -ENOENT;
867
868 nitems = 1;
869 curr = item;
870 list_add_tail(&curr->tree_list, &batch_list);
871
872 /*
873 * Keep checking if the next delayed item matches the next item in the
874 * leaf - if so, we can add it to the batch of items to delete from the
875 * leaf.
876 */
877 while (slot < last_slot) {
878 struct btrfs_key key;
879
880 next = __btrfs_next_delayed_item(curr);
881 if (!next)
882 break;
883
884 slot++;
885 btrfs_item_key_to_cpu(leaf, &key, slot);
886 if (key.objectid != ino ||
887 key.type != BTRFS_DIR_INDEX_KEY ||
888 key.offset != next->index)
889 break;
890 nitems++;
891 curr = next;
892 list_add_tail(&curr->tree_list, &batch_list);
893 total_reserved_size += curr->bytes_reserved;
894 }
895
896 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
897 if (ret)
898 return ret;
899
900 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
901 if (total_reserved_size > 0) {
902 /*
903 * Check btrfs_delayed_item_reserve_metadata() to see why we
904 * don't need to release/reserve qgroup space.
905 */
906 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
907 total_reserved_size, 0);
908 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
909 total_reserved_size, NULL);
910 }
911
912 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
913 list_del(&curr->tree_list);
914 btrfs_release_delayed_item(curr);
915 }
916
917 return 0;
918 }
919
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)920 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
921 struct btrfs_path *path,
922 struct btrfs_root *root,
923 struct btrfs_delayed_node *node)
924 {
925 struct btrfs_key key;
926 int ret = 0;
927
928 key.objectid = node->inode_id;
929 key.type = BTRFS_DIR_INDEX_KEY;
930
931 while (ret == 0) {
932 struct btrfs_delayed_item *item;
933
934 mutex_lock(&node->mutex);
935 item = __btrfs_first_delayed_deletion_item(node);
936 if (!item) {
937 mutex_unlock(&node->mutex);
938 break;
939 }
940
941 key.offset = item->index;
942 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
943 if (ret > 0) {
944 /*
945 * There's no matching item in the leaf. This means we
946 * have already deleted this item in a past run of the
947 * delayed items. We ignore errors when running delayed
948 * items from an async context, through a work queue job
949 * running btrfs_async_run_delayed_root(), and don't
950 * release delayed items that failed to complete. This
951 * is because we will retry later, and at transaction
952 * commit time we always run delayed items and will
953 * then deal with errors if they fail to run again.
954 *
955 * So just release delayed items for which we can't find
956 * an item in the tree, and move to the next item.
957 */
958 btrfs_release_path(path);
959 btrfs_release_delayed_item(item);
960 ret = 0;
961 } else if (ret == 0) {
962 ret = btrfs_batch_delete_items(trans, root, path, item);
963 btrfs_release_path(path);
964 }
965
966 /*
967 * We unlock and relock on each iteration, this is to prevent
968 * blocking other tasks for too long while we are being run from
969 * the async context (work queue job). Those tasks are typically
970 * running system calls like creat/mkdir/rename/unlink/etc which
971 * need to add delayed items to this delayed node.
972 */
973 mutex_unlock(&node->mutex);
974 }
975
976 return ret;
977 }
978
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)979 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
980 {
981 struct btrfs_delayed_root *delayed_root;
982
983 if (delayed_node &&
984 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
985 ASSERT(delayed_node->root);
986 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
987 delayed_node->count--;
988
989 delayed_root = delayed_node->root->fs_info->delayed_root;
990 finish_one_item(delayed_root);
991 }
992 }
993
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)994 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
995 {
996
997 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
998 struct btrfs_delayed_root *delayed_root;
999
1000 ASSERT(delayed_node->root);
1001 delayed_node->count--;
1002
1003 delayed_root = delayed_node->root->fs_info->delayed_root;
1004 finish_one_item(delayed_root);
1005 }
1006 }
1007
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1008 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1009 struct btrfs_root *root,
1010 struct btrfs_path *path,
1011 struct btrfs_delayed_node *node)
1012 {
1013 struct btrfs_fs_info *fs_info = root->fs_info;
1014 struct btrfs_key key;
1015 struct btrfs_inode_item *inode_item;
1016 struct extent_buffer *leaf;
1017 int mod;
1018 int ret;
1019
1020 key.objectid = node->inode_id;
1021 key.type = BTRFS_INODE_ITEM_KEY;
1022 key.offset = 0;
1023
1024 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1025 mod = -1;
1026 else
1027 mod = 1;
1028
1029 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1030 if (ret > 0)
1031 ret = -ENOENT;
1032 if (ret < 0) {
1033 /*
1034 * If we fail to update the delayed inode we need to abort the
1035 * transaction, because we could leave the inode with the
1036 * improper counts behind.
1037 */
1038 if (unlikely(ret != -ENOENT))
1039 btrfs_abort_transaction(trans, ret);
1040 goto out;
1041 }
1042
1043 leaf = path->nodes[0];
1044 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045 struct btrfs_inode_item);
1046 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047 sizeof(struct btrfs_inode_item));
1048
1049 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050 goto out;
1051
1052 /*
1053 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1054 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1055 *
1056 * But if we're the last item already, release and search for the last
1057 * INODE_REF/EXTREF.
1058 */
1059 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1060 key.objectid = node->inode_id;
1061 key.type = BTRFS_INODE_EXTREF_KEY;
1062 key.offset = (u64)-1;
1063
1064 btrfs_release_path(path);
1065 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1066 if (unlikely(ret < 0)) {
1067 btrfs_abort_transaction(trans, ret);
1068 goto err_out;
1069 }
1070 ASSERT(ret > 0);
1071 ASSERT(path->slots[0] > 0);
1072 ret = 0;
1073 path->slots[0]--;
1074 leaf = path->nodes[0];
1075 } else {
1076 path->slots[0]++;
1077 }
1078 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1079 if (key.objectid != node->inode_id)
1080 goto out;
1081 if (key.type != BTRFS_INODE_REF_KEY &&
1082 key.type != BTRFS_INODE_EXTREF_KEY)
1083 goto out;
1084
1085 /*
1086 * Delayed iref deletion is for the inode who has only one link,
1087 * so there is only one iref. The case that several irefs are
1088 * in the same item doesn't exist.
1089 */
1090 ret = btrfs_del_item(trans, root, path);
1091 if (ret < 0)
1092 btrfs_abort_transaction(trans, ret);
1093 out:
1094 btrfs_release_delayed_iref(node);
1095 btrfs_release_path(path);
1096 err_out:
1097 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1098 btrfs_release_delayed_inode(node);
1099 return ret;
1100 }
1101
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1102 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1103 struct btrfs_root *root,
1104 struct btrfs_path *path,
1105 struct btrfs_delayed_node *node)
1106 {
1107 int ret;
1108
1109 mutex_lock(&node->mutex);
1110 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1111 mutex_unlock(&node->mutex);
1112 return 0;
1113 }
1114
1115 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1116 mutex_unlock(&node->mutex);
1117 return ret;
1118 }
1119
1120 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1121 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1122 struct btrfs_path *path,
1123 struct btrfs_delayed_node *node)
1124 {
1125 int ret;
1126
1127 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1128 if (ret)
1129 return ret;
1130
1131 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1132 if (ret)
1133 return ret;
1134
1135 ret = btrfs_record_root_in_trans(trans, node->root);
1136 if (ret)
1137 return ret;
1138 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1139 return ret;
1140 }
1141
1142 /*
1143 * Called when committing the transaction.
1144 * Returns 0 on success.
1145 * Returns < 0 on error and returns with an aborted transaction with any
1146 * outstanding delayed items cleaned up.
1147 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1148 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1149 {
1150 struct btrfs_fs_info *fs_info = trans->fs_info;
1151 struct btrfs_delayed_root *delayed_root;
1152 struct btrfs_delayed_node *curr_node, *prev_node;
1153 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1154 struct btrfs_path *path;
1155 struct btrfs_block_rsv *block_rsv;
1156 int ret = 0;
1157 bool count = (nr > 0);
1158
1159 if (TRANS_ABORTED(trans))
1160 return -EIO;
1161
1162 path = btrfs_alloc_path();
1163 if (!path)
1164 return -ENOMEM;
1165
1166 block_rsv = trans->block_rsv;
1167 trans->block_rsv = &fs_info->delayed_block_rsv;
1168
1169 delayed_root = fs_info->delayed_root;
1170
1171 curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker);
1172 while (curr_node && (!count || nr--)) {
1173 ret = __btrfs_commit_inode_delayed_items(trans, path,
1174 curr_node);
1175 if (unlikely(ret)) {
1176 btrfs_abort_transaction(trans, ret);
1177 break;
1178 }
1179
1180 prev_node = curr_node;
1181 prev_delayed_node_tracker = curr_delayed_node_tracker;
1182 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1183 /*
1184 * See the comment below about releasing path before releasing
1185 * node. If the commit of delayed items was successful the path
1186 * should always be released, but in case of an error, it may
1187 * point to locked extent buffers (a leaf at the very least).
1188 */
1189 ASSERT(path->nodes[0] == NULL);
1190 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1191 }
1192
1193 /*
1194 * Release the path to avoid a potential deadlock and lockdep splat when
1195 * releasing the delayed node, as that requires taking the delayed node's
1196 * mutex. If another task starts running delayed items before we take
1197 * the mutex, it will first lock the mutex and then it may try to lock
1198 * the same btree path (leaf).
1199 */
1200 btrfs_free_path(path);
1201
1202 if (curr_node)
1203 btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1204 trans->block_rsv = block_rsv;
1205
1206 return ret;
1207 }
1208
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1209 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1210 {
1211 return __btrfs_run_delayed_items(trans, -1);
1212 }
1213
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1214 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1215 {
1216 return __btrfs_run_delayed_items(trans, nr);
1217 }
1218
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1219 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1220 struct btrfs_inode *inode)
1221 {
1222 struct btrfs_ref_tracker delayed_node_tracker;
1223 struct btrfs_delayed_node *delayed_node =
1224 btrfs_get_delayed_node(inode, &delayed_node_tracker);
1225 BTRFS_PATH_AUTO_FREE(path);
1226 struct btrfs_block_rsv *block_rsv;
1227 int ret;
1228
1229 if (!delayed_node)
1230 return 0;
1231
1232 mutex_lock(&delayed_node->mutex);
1233 if (!delayed_node->count) {
1234 mutex_unlock(&delayed_node->mutex);
1235 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1236 return 0;
1237 }
1238 mutex_unlock(&delayed_node->mutex);
1239
1240 path = btrfs_alloc_path();
1241 if (!path) {
1242 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1243 return -ENOMEM;
1244 }
1245
1246 block_rsv = trans->block_rsv;
1247 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1248
1249 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1250
1251 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1252 trans->block_rsv = block_rsv;
1253
1254 return ret;
1255 }
1256
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1257 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1258 {
1259 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1260 struct btrfs_trans_handle *trans;
1261 struct btrfs_ref_tracker delayed_node_tracker;
1262 struct btrfs_delayed_node *delayed_node;
1263 struct btrfs_path *path;
1264 struct btrfs_block_rsv *block_rsv;
1265 int ret;
1266
1267 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1268 if (!delayed_node)
1269 return 0;
1270
1271 mutex_lock(&delayed_node->mutex);
1272 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1273 mutex_unlock(&delayed_node->mutex);
1274 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1275 return 0;
1276 }
1277 mutex_unlock(&delayed_node->mutex);
1278
1279 trans = btrfs_join_transaction(delayed_node->root);
1280 if (IS_ERR(trans)) {
1281 ret = PTR_ERR(trans);
1282 goto out;
1283 }
1284
1285 path = btrfs_alloc_path();
1286 if (!path) {
1287 ret = -ENOMEM;
1288 goto trans_out;
1289 }
1290
1291 block_rsv = trans->block_rsv;
1292 trans->block_rsv = &fs_info->delayed_block_rsv;
1293
1294 mutex_lock(&delayed_node->mutex);
1295 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1296 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1297 path, delayed_node);
1298 else
1299 ret = 0;
1300 mutex_unlock(&delayed_node->mutex);
1301
1302 btrfs_free_path(path);
1303 trans->block_rsv = block_rsv;
1304 trans_out:
1305 btrfs_end_transaction(trans);
1306 btrfs_btree_balance_dirty(fs_info);
1307 out:
1308 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1309
1310 return ret;
1311 }
1312
btrfs_remove_delayed_node(struct btrfs_inode * inode)1313 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1314 {
1315 struct btrfs_delayed_node *delayed_node;
1316
1317 delayed_node = READ_ONCE(inode->delayed_node);
1318 if (!delayed_node)
1319 return;
1320
1321 inode->delayed_node = NULL;
1322
1323 btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1324 }
1325
1326 struct btrfs_async_delayed_work {
1327 struct btrfs_delayed_root *delayed_root;
1328 int nr;
1329 struct btrfs_work work;
1330 };
1331
btrfs_async_run_delayed_root(struct btrfs_work * work)1332 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1333 {
1334 struct btrfs_async_delayed_work *async_work;
1335 struct btrfs_delayed_root *delayed_root;
1336 struct btrfs_trans_handle *trans;
1337 struct btrfs_path *path;
1338 struct btrfs_delayed_node *delayed_node = NULL;
1339 struct btrfs_ref_tracker delayed_node_tracker;
1340 struct btrfs_root *root;
1341 struct btrfs_block_rsv *block_rsv;
1342 int total_done = 0;
1343
1344 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1345 delayed_root = async_work->delayed_root;
1346
1347 path = btrfs_alloc_path();
1348 if (!path)
1349 goto out;
1350
1351 do {
1352 if (atomic_read(&delayed_root->items) <
1353 BTRFS_DELAYED_BACKGROUND / 2)
1354 break;
1355
1356 delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1357 &delayed_node_tracker);
1358 if (!delayed_node)
1359 break;
1360
1361 root = delayed_node->root;
1362
1363 trans = btrfs_join_transaction(root);
1364 if (IS_ERR(trans)) {
1365 btrfs_release_path(path);
1366 btrfs_release_prepared_delayed_node(delayed_node,
1367 &delayed_node_tracker);
1368 total_done++;
1369 continue;
1370 }
1371
1372 block_rsv = trans->block_rsv;
1373 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1374
1375 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1376
1377 trans->block_rsv = block_rsv;
1378 btrfs_end_transaction(trans);
1379 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1380
1381 btrfs_release_path(path);
1382 btrfs_release_prepared_delayed_node(delayed_node,
1383 &delayed_node_tracker);
1384 total_done++;
1385
1386 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1387 || total_done < async_work->nr);
1388
1389 btrfs_free_path(path);
1390 out:
1391 wake_up(&delayed_root->wait);
1392 kfree(async_work);
1393 }
1394
1395
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1396 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1397 struct btrfs_fs_info *fs_info, int nr)
1398 {
1399 struct btrfs_async_delayed_work *async_work;
1400
1401 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1402 if (!async_work)
1403 return -ENOMEM;
1404
1405 async_work->delayed_root = delayed_root;
1406 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1407 async_work->nr = nr;
1408
1409 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1410 return 0;
1411 }
1412
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1413 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1414 {
1415 struct btrfs_ref_tracker delayed_node_tracker;
1416 struct btrfs_delayed_node *node;
1417
1418 node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker);
1419 if (WARN_ON(node)) {
1420 btrfs_delayed_node_ref_tracker_free(node,
1421 &delayed_node_tracker);
1422 refcount_dec(&node->refs);
1423 }
1424 }
1425
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1426 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1427 {
1428 int val = atomic_read(&delayed_root->items_seq);
1429
1430 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1431 return true;
1432
1433 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1434 return true;
1435
1436 return false;
1437 }
1438
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1439 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1440 {
1441 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1442
1443 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1444 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1445 return;
1446
1447 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1448 int seq;
1449 int ret;
1450
1451 seq = atomic_read(&delayed_root->items_seq);
1452
1453 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1454 if (ret)
1455 return;
1456
1457 wait_event_interruptible(delayed_root->wait,
1458 could_end_wait(delayed_root, seq));
1459 return;
1460 }
1461
1462 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1463 }
1464
btrfs_release_dir_index_item_space(struct btrfs_trans_handle * trans)1465 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1466 {
1467 struct btrfs_fs_info *fs_info = trans->fs_info;
1468 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1469
1470 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1471 return;
1472
1473 /*
1474 * Adding the new dir index item does not require touching another
1475 * leaf, so we can release 1 unit of metadata that was previously
1476 * reserved when starting the transaction. This applies only to
1477 * the case where we had a transaction start and excludes the
1478 * transaction join case (when replaying log trees).
1479 */
1480 trace_btrfs_space_reservation(fs_info, "transaction",
1481 trans->transid, bytes, 0);
1482 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1483 ASSERT(trans->bytes_reserved >= bytes);
1484 trans->bytes_reserved -= bytes;
1485 }
1486
1487 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,const struct btrfs_disk_key * disk_key,u8 flags,u64 index)1488 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1489 const char *name, int name_len,
1490 struct btrfs_inode *dir,
1491 const struct btrfs_disk_key *disk_key, u8 flags,
1492 u64 index)
1493 {
1494 struct btrfs_fs_info *fs_info = trans->fs_info;
1495 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1496 struct btrfs_delayed_node *delayed_node;
1497 struct btrfs_ref_tracker delayed_node_tracker;
1498 struct btrfs_delayed_item *delayed_item;
1499 struct btrfs_dir_item *dir_item;
1500 bool reserve_leaf_space;
1501 u32 data_len;
1502 int ret;
1503
1504 delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1505 if (IS_ERR(delayed_node))
1506 return PTR_ERR(delayed_node);
1507
1508 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1509 delayed_node,
1510 BTRFS_DELAYED_INSERTION_ITEM);
1511 if (!delayed_item) {
1512 ret = -ENOMEM;
1513 goto release_node;
1514 }
1515
1516 delayed_item->index = index;
1517
1518 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1519 dir_item->location = *disk_key;
1520 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1521 btrfs_set_stack_dir_data_len(dir_item, 0);
1522 btrfs_set_stack_dir_name_len(dir_item, name_len);
1523 btrfs_set_stack_dir_flags(dir_item, flags);
1524 memcpy((char *)(dir_item + 1), name, name_len);
1525
1526 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1527
1528 mutex_lock(&delayed_node->mutex);
1529
1530 /*
1531 * First attempt to insert the delayed item. This is to make the error
1532 * handling path simpler in case we fail (-EEXIST). There's no risk of
1533 * any other task coming in and running the delayed item before we do
1534 * the metadata space reservation below, because we are holding the
1535 * delayed node's mutex and that mutex must also be locked before the
1536 * node's delayed items can be run.
1537 */
1538 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1539 if (unlikely(ret)) {
1540 btrfs_err(trans->fs_info,
1541 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1542 name_len, name, index, btrfs_root_id(delayed_node->root),
1543 delayed_node->inode_id, dir->index_cnt,
1544 delayed_node->index_cnt, ret);
1545 btrfs_release_delayed_item(delayed_item);
1546 btrfs_release_dir_index_item_space(trans);
1547 mutex_unlock(&delayed_node->mutex);
1548 goto release_node;
1549 }
1550
1551 if (delayed_node->index_item_leaves == 0 ||
1552 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1553 delayed_node->curr_index_batch_size = data_len;
1554 reserve_leaf_space = true;
1555 } else {
1556 delayed_node->curr_index_batch_size += data_len;
1557 reserve_leaf_space = false;
1558 }
1559
1560 if (reserve_leaf_space) {
1561 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1562 /*
1563 * Space was reserved for a dir index item insertion when we
1564 * started the transaction, so getting a failure here should be
1565 * impossible.
1566 */
1567 if (WARN_ON(ret)) {
1568 btrfs_release_delayed_item(delayed_item);
1569 mutex_unlock(&delayed_node->mutex);
1570 goto release_node;
1571 }
1572
1573 delayed_node->index_item_leaves++;
1574 } else {
1575 btrfs_release_dir_index_item_space(trans);
1576 }
1577 mutex_unlock(&delayed_node->mutex);
1578
1579 release_node:
1580 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1581 return ret;
1582 }
1583
btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node * node,u64 index)1584 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1585 u64 index)
1586 {
1587 struct btrfs_delayed_item *item;
1588
1589 mutex_lock(&node->mutex);
1590 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1591 if (!item) {
1592 mutex_unlock(&node->mutex);
1593 return false;
1594 }
1595
1596 /*
1597 * For delayed items to insert, we track reserved metadata bytes based
1598 * on the number of leaves that we will use.
1599 * See btrfs_insert_delayed_dir_index() and
1600 * btrfs_delayed_item_reserve_metadata()).
1601 */
1602 ASSERT(item->bytes_reserved == 0);
1603 ASSERT(node->index_item_leaves > 0);
1604
1605 /*
1606 * If there's only one leaf reserved, we can decrement this item from the
1607 * current batch, otherwise we can not because we don't know which leaf
1608 * it belongs to. With the current limit on delayed items, we rarely
1609 * accumulate enough dir index items to fill more than one leaf (even
1610 * when using a leaf size of 4K).
1611 */
1612 if (node->index_item_leaves == 1) {
1613 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1614
1615 ASSERT(node->curr_index_batch_size >= data_len);
1616 node->curr_index_batch_size -= data_len;
1617 }
1618
1619 btrfs_release_delayed_item(item);
1620
1621 /* If we now have no more dir index items, we can release all leaves. */
1622 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1623 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1624 node->index_item_leaves = 0;
1625 }
1626
1627 mutex_unlock(&node->mutex);
1628 return true;
1629 }
1630
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1631 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1632 struct btrfs_inode *dir, u64 index)
1633 {
1634 struct btrfs_delayed_node *node;
1635 struct btrfs_ref_tracker delayed_node_tracker;
1636 struct btrfs_delayed_item *item;
1637 int ret;
1638
1639 node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1640 if (IS_ERR(node))
1641 return PTR_ERR(node);
1642
1643 if (btrfs_delete_delayed_insertion_item(node, index)) {
1644 ret = 0;
1645 goto end;
1646 }
1647
1648 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1649 if (!item) {
1650 ret = -ENOMEM;
1651 goto end;
1652 }
1653
1654 item->index = index;
1655
1656 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1657 /*
1658 * we have reserved enough space when we start a new transaction,
1659 * so reserving metadata failure is impossible.
1660 */
1661 if (ret < 0) {
1662 btrfs_err(trans->fs_info,
1663 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1664 index, btrfs_root_id(node->root), node->inode_id, ret);
1665 btrfs_release_delayed_item(item);
1666 goto end;
1667 }
1668
1669 mutex_lock(&node->mutex);
1670 ret = __btrfs_add_delayed_item(node, item);
1671 if (unlikely(ret)) {
1672 btrfs_err(trans->fs_info,
1673 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1674 index, btrfs_root_id(node->root), node->inode_id, ret);
1675 btrfs_delayed_item_release_metadata(dir->root, item);
1676 btrfs_release_delayed_item(item);
1677 }
1678 mutex_unlock(&node->mutex);
1679 end:
1680 btrfs_release_delayed_node(node, &delayed_node_tracker);
1681 return ret;
1682 }
1683
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1684 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1685 {
1686 struct btrfs_ref_tracker delayed_node_tracker;
1687 struct btrfs_delayed_node *delayed_node;
1688
1689 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1690 if (!delayed_node)
1691 return -ENOENT;
1692
1693 /*
1694 * Since we have held i_mutex of this directory, it is impossible that
1695 * a new directory index is added into the delayed node and index_cnt
1696 * is updated now. So we needn't lock the delayed node.
1697 */
1698 if (!delayed_node->index_cnt) {
1699 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1700 return -EINVAL;
1701 }
1702
1703 inode->index_cnt = delayed_node->index_cnt;
1704 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1705 return 0;
1706 }
1707
btrfs_readdir_get_delayed_items(struct btrfs_inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1708 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1709 u64 last_index,
1710 struct list_head *ins_list,
1711 struct list_head *del_list)
1712 {
1713 struct btrfs_delayed_node *delayed_node;
1714 struct btrfs_delayed_item *item;
1715 struct btrfs_ref_tracker delayed_node_tracker;
1716
1717 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1718 if (!delayed_node)
1719 return false;
1720
1721 /*
1722 * We can only do one readdir with delayed items at a time because of
1723 * item->readdir_list.
1724 */
1725 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1726 btrfs_inode_lock(inode, 0);
1727
1728 mutex_lock(&delayed_node->mutex);
1729 item = __btrfs_first_delayed_insertion_item(delayed_node);
1730 while (item && item->index <= last_index) {
1731 refcount_inc(&item->refs);
1732 list_add_tail(&item->readdir_list, ins_list);
1733 item = __btrfs_next_delayed_item(item);
1734 }
1735
1736 item = __btrfs_first_delayed_deletion_item(delayed_node);
1737 while (item && item->index <= last_index) {
1738 refcount_inc(&item->refs);
1739 list_add_tail(&item->readdir_list, del_list);
1740 item = __btrfs_next_delayed_item(item);
1741 }
1742 mutex_unlock(&delayed_node->mutex);
1743 /*
1744 * This delayed node is still cached in the btrfs inode, so refs
1745 * must be > 1 now, and we needn't check it is going to be freed
1746 * or not.
1747 *
1748 * Besides that, this function is used to read dir, we do not
1749 * insert/delete delayed items in this period. So we also needn't
1750 * requeue or dequeue this delayed node.
1751 */
1752 btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1753 refcount_dec(&delayed_node->refs);
1754
1755 return true;
1756 }
1757
btrfs_readdir_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)1758 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1759 struct list_head *ins_list,
1760 struct list_head *del_list)
1761 {
1762 struct btrfs_delayed_item *curr, *next;
1763
1764 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1765 list_del(&curr->readdir_list);
1766 if (refcount_dec_and_test(&curr->refs))
1767 kfree(curr);
1768 }
1769
1770 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1771 list_del(&curr->readdir_list);
1772 if (refcount_dec_and_test(&curr->refs))
1773 kfree(curr);
1774 }
1775
1776 /*
1777 * The VFS is going to do up_read(), so we need to downgrade back to a
1778 * read lock.
1779 */
1780 downgrade_write(&inode->vfs_inode.i_rwsem);
1781 }
1782
btrfs_should_delete_dir_index(const struct list_head * del_list,u64 index)1783 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1784 {
1785 struct btrfs_delayed_item *curr;
1786 bool ret = false;
1787
1788 list_for_each_entry(curr, del_list, readdir_list) {
1789 if (curr->index > index)
1790 break;
1791 if (curr->index == index) {
1792 ret = true;
1793 break;
1794 }
1795 }
1796 return ret;
1797 }
1798
1799 /*
1800 * Read dir info stored in the delayed tree.
1801 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,const struct list_head * ins_list)1802 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1803 const struct list_head *ins_list)
1804 {
1805 struct btrfs_dir_item *di;
1806 struct btrfs_delayed_item *curr, *next;
1807 struct btrfs_key location;
1808 char *name;
1809 int name_len;
1810 unsigned char d_type;
1811
1812 /*
1813 * Changing the data of the delayed item is impossible. So
1814 * we needn't lock them. And we have held i_mutex of the
1815 * directory, nobody can delete any directory indexes now.
1816 */
1817 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1818 bool over;
1819
1820 list_del(&curr->readdir_list);
1821
1822 if (curr->index < ctx->pos) {
1823 if (refcount_dec_and_test(&curr->refs))
1824 kfree(curr);
1825 continue;
1826 }
1827
1828 ctx->pos = curr->index;
1829
1830 di = (struct btrfs_dir_item *)curr->data;
1831 name = (char *)(di + 1);
1832 name_len = btrfs_stack_dir_name_len(di);
1833
1834 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1835 btrfs_disk_key_to_cpu(&location, &di->location);
1836
1837 over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1838
1839 if (refcount_dec_and_test(&curr->refs))
1840 kfree(curr);
1841
1842 if (over)
1843 return true;
1844 ctx->pos++;
1845 }
1846 return false;
1847 }
1848
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct btrfs_inode * inode)1849 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1850 struct btrfs_inode_item *inode_item,
1851 struct btrfs_inode *inode)
1852 {
1853 struct inode *vfs_inode = &inode->vfs_inode;
1854 u64 flags;
1855
1856 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1857 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1858 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1859 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1860 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1861 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1862 btrfs_set_stack_inode_generation(inode_item, inode->generation);
1863 btrfs_set_stack_inode_sequence(inode_item,
1864 inode_peek_iversion(vfs_inode));
1865 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1866 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1867 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1868 btrfs_set_stack_inode_flags(inode_item, flags);
1869 btrfs_set_stack_inode_block_group(inode_item, 0);
1870
1871 btrfs_set_stack_timespec_sec(&inode_item->atime,
1872 inode_get_atime_sec(vfs_inode));
1873 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1874 inode_get_atime_nsec(vfs_inode));
1875
1876 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1877 inode_get_mtime_sec(vfs_inode));
1878 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1879 inode_get_mtime_nsec(vfs_inode));
1880
1881 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1882 inode_get_ctime_sec(vfs_inode));
1883 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1884 inode_get_ctime_nsec(vfs_inode));
1885
1886 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1887 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1888 }
1889
btrfs_fill_inode(struct btrfs_inode * inode,u32 * rdev)1890 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1891 {
1892 struct btrfs_delayed_node *delayed_node;
1893 struct btrfs_ref_tracker delayed_node_tracker;
1894 struct btrfs_inode_item *inode_item;
1895 struct inode *vfs_inode = &inode->vfs_inode;
1896
1897 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1898 if (!delayed_node)
1899 return -ENOENT;
1900
1901 mutex_lock(&delayed_node->mutex);
1902 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1903 mutex_unlock(&delayed_node->mutex);
1904 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1905 return -ENOENT;
1906 }
1907
1908 inode_item = &delayed_node->inode_item;
1909
1910 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1911 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1912 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1913 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1914 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1915 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1916 inode->generation = btrfs_stack_inode_generation(inode_item);
1917 inode->last_trans = btrfs_stack_inode_transid(inode_item);
1918
1919 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1920 vfs_inode->i_rdev = 0;
1921 *rdev = btrfs_stack_inode_rdev(inode_item);
1922 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1923 &inode->flags, &inode->ro_flags);
1924
1925 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1926 btrfs_stack_timespec_nsec(&inode_item->atime));
1927
1928 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1929 btrfs_stack_timespec_nsec(&inode_item->mtime));
1930
1931 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1932 btrfs_stack_timespec_nsec(&inode_item->ctime));
1933
1934 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1935 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1936
1937 vfs_inode->i_generation = inode->generation;
1938 if (S_ISDIR(vfs_inode->i_mode))
1939 inode->index_cnt = (u64)-1;
1940
1941 mutex_unlock(&delayed_node->mutex);
1942 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1943 return 0;
1944 }
1945
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1946 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1947 struct btrfs_inode *inode)
1948 {
1949 struct btrfs_root *root = inode->root;
1950 struct btrfs_delayed_node *delayed_node;
1951 struct btrfs_ref_tracker delayed_node_tracker;
1952 int ret = 0;
1953
1954 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1955 if (IS_ERR(delayed_node))
1956 return PTR_ERR(delayed_node);
1957
1958 mutex_lock(&delayed_node->mutex);
1959 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1960 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1961 goto release_node;
1962 }
1963
1964 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1965 if (ret)
1966 goto release_node;
1967
1968 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1969 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1970 delayed_node->count++;
1971 atomic_inc(&root->fs_info->delayed_root->items);
1972 release_node:
1973 mutex_unlock(&delayed_node->mutex);
1974 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1975 return ret;
1976 }
1977
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1978 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1979 {
1980 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1981 struct btrfs_delayed_node *delayed_node;
1982 struct btrfs_ref_tracker delayed_node_tracker;
1983
1984 /*
1985 * we don't do delayed inode updates during log recovery because it
1986 * leads to enospc problems. This means we also can't do
1987 * delayed inode refs
1988 */
1989 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1990 return -EAGAIN;
1991
1992 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1993 if (IS_ERR(delayed_node))
1994 return PTR_ERR(delayed_node);
1995
1996 /*
1997 * We don't reserve space for inode ref deletion is because:
1998 * - We ONLY do async inode ref deletion for the inode who has only
1999 * one link(i_nlink == 1), it means there is only one inode ref.
2000 * And in most case, the inode ref and the inode item are in the
2001 * same leaf, and we will deal with them at the same time.
2002 * Since we are sure we will reserve the space for the inode item,
2003 * it is unnecessary to reserve space for inode ref deletion.
2004 * - If the inode ref and the inode item are not in the same leaf,
2005 * We also needn't worry about enospc problem, because we reserve
2006 * much more space for the inode update than it needs.
2007 * - At the worst, we can steal some space from the global reservation.
2008 * It is very rare.
2009 */
2010 mutex_lock(&delayed_node->mutex);
2011 if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
2012 delayed_node->count++;
2013 atomic_inc(&fs_info->delayed_root->items);
2014 }
2015 mutex_unlock(&delayed_node->mutex);
2016 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2017 return 0;
2018 }
2019
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)2020 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2021 {
2022 struct btrfs_root *root = delayed_node->root;
2023 struct btrfs_fs_info *fs_info = root->fs_info;
2024 struct btrfs_delayed_item *curr_item, *prev_item;
2025
2026 mutex_lock(&delayed_node->mutex);
2027 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2028 while (curr_item) {
2029 prev_item = curr_item;
2030 curr_item = __btrfs_next_delayed_item(prev_item);
2031 btrfs_release_delayed_item(prev_item);
2032 }
2033
2034 if (delayed_node->index_item_leaves > 0) {
2035 btrfs_delayed_item_release_leaves(delayed_node,
2036 delayed_node->index_item_leaves);
2037 delayed_node->index_item_leaves = 0;
2038 }
2039
2040 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2041 while (curr_item) {
2042 btrfs_delayed_item_release_metadata(root, curr_item);
2043 prev_item = curr_item;
2044 curr_item = __btrfs_next_delayed_item(prev_item);
2045 btrfs_release_delayed_item(prev_item);
2046 }
2047
2048 btrfs_release_delayed_iref(delayed_node);
2049
2050 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2051 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2052 btrfs_release_delayed_inode(delayed_node);
2053 }
2054 mutex_unlock(&delayed_node->mutex);
2055 }
2056
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)2057 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2058 {
2059 struct btrfs_delayed_node *delayed_node;
2060 struct btrfs_ref_tracker delayed_node_tracker;
2061
2062 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2063 if (!delayed_node)
2064 return;
2065
2066 __btrfs_kill_delayed_node(delayed_node);
2067 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2068 }
2069
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)2070 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2071 {
2072 unsigned long index = 0;
2073 struct btrfs_delayed_node *delayed_nodes[8];
2074 struct btrfs_ref_tracker delayed_node_trackers[8];
2075
2076 while (1) {
2077 struct btrfs_delayed_node *node;
2078 int count;
2079
2080 xa_lock(&root->delayed_nodes);
2081 if (xa_empty(&root->delayed_nodes)) {
2082 xa_unlock(&root->delayed_nodes);
2083 return;
2084 }
2085
2086 count = 0;
2087 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2088 /*
2089 * Don't increase refs in case the node is dead and
2090 * about to be removed from the tree in the loop below
2091 */
2092 if (refcount_inc_not_zero(&node->refs)) {
2093 btrfs_delayed_node_ref_tracker_alloc(node,
2094 &delayed_node_trackers[count],
2095 GFP_ATOMIC);
2096 delayed_nodes[count] = node;
2097 count++;
2098 }
2099 if (count >= ARRAY_SIZE(delayed_nodes))
2100 break;
2101 }
2102 xa_unlock(&root->delayed_nodes);
2103 index++;
2104
2105 for (int i = 0; i < count; i++) {
2106 __btrfs_kill_delayed_node(delayed_nodes[i]);
2107 btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2108 btrfs_release_delayed_node(delayed_nodes[i],
2109 &delayed_node_trackers[i]);
2110 }
2111 }
2112 }
2113
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2114 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2115 {
2116 struct btrfs_delayed_node *curr_node, *prev_node;
2117 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2118
2119 curr_node = btrfs_first_delayed_node(fs_info->delayed_root,
2120 &curr_delayed_node_tracker);
2121 while (curr_node) {
2122 __btrfs_kill_delayed_node(curr_node);
2123
2124 prev_node = curr_node;
2125 prev_delayed_node_tracker = curr_delayed_node_tracker;
2126 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2127 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2128 }
2129 }
2130
btrfs_log_get_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2131 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2132 struct list_head *ins_list,
2133 struct list_head *del_list)
2134 {
2135 struct btrfs_delayed_node *node;
2136 struct btrfs_delayed_item *item;
2137 struct btrfs_ref_tracker delayed_node_tracker;
2138
2139 node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2140 if (!node)
2141 return;
2142
2143 mutex_lock(&node->mutex);
2144 item = __btrfs_first_delayed_insertion_item(node);
2145 while (item) {
2146 /*
2147 * It's possible that the item is already in a log list. This
2148 * can happen in case two tasks are trying to log the same
2149 * directory. For example if we have tasks A and task B:
2150 *
2151 * Task A collected the delayed items into a log list while
2152 * under the inode's log_mutex (at btrfs_log_inode()), but it
2153 * only releases the items after logging the inodes they point
2154 * to (if they are new inodes), which happens after unlocking
2155 * the log mutex;
2156 *
2157 * Task B enters btrfs_log_inode() and acquires the log_mutex
2158 * of the same directory inode, before task B releases the
2159 * delayed items. This can happen for example when logging some
2160 * inode we need to trigger logging of its parent directory, so
2161 * logging two files that have the same parent directory can
2162 * lead to this.
2163 *
2164 * If this happens, just ignore delayed items already in a log
2165 * list. All the tasks logging the directory are under a log
2166 * transaction and whichever finishes first can not sync the log
2167 * before the other completes and leaves the log transaction.
2168 */
2169 if (!item->logged && list_empty(&item->log_list)) {
2170 refcount_inc(&item->refs);
2171 list_add_tail(&item->log_list, ins_list);
2172 }
2173 item = __btrfs_next_delayed_item(item);
2174 }
2175
2176 item = __btrfs_first_delayed_deletion_item(node);
2177 while (item) {
2178 /* It may be non-empty, for the same reason mentioned above. */
2179 if (!item->logged && list_empty(&item->log_list)) {
2180 refcount_inc(&item->refs);
2181 list_add_tail(&item->log_list, del_list);
2182 }
2183 item = __btrfs_next_delayed_item(item);
2184 }
2185 mutex_unlock(&node->mutex);
2186
2187 /*
2188 * We are called during inode logging, which means the inode is in use
2189 * and can not be evicted before we finish logging the inode. So we never
2190 * have the last reference on the delayed inode.
2191 * Also, we don't use btrfs_release_delayed_node() because that would
2192 * requeue the delayed inode (change its order in the list of prepared
2193 * nodes) and we don't want to do such change because we don't create or
2194 * delete delayed items.
2195 */
2196 ASSERT(refcount_read(&node->refs) > 1);
2197 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2198 refcount_dec(&node->refs);
2199 }
2200
btrfs_log_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2201 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2202 struct list_head *ins_list,
2203 struct list_head *del_list)
2204 {
2205 struct btrfs_delayed_node *node;
2206 struct btrfs_delayed_item *item;
2207 struct btrfs_delayed_item *next;
2208 struct btrfs_ref_tracker delayed_node_tracker;
2209
2210 node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2211 if (!node)
2212 return;
2213
2214 mutex_lock(&node->mutex);
2215
2216 list_for_each_entry_safe(item, next, ins_list, log_list) {
2217 item->logged = true;
2218 list_del_init(&item->log_list);
2219 if (refcount_dec_and_test(&item->refs))
2220 kfree(item);
2221 }
2222
2223 list_for_each_entry_safe(item, next, del_list, log_list) {
2224 item->logged = true;
2225 list_del_init(&item->log_list);
2226 if (refcount_dec_and_test(&item->refs))
2227 kfree(item);
2228 }
2229
2230 mutex_unlock(&node->mutex);
2231
2232 /*
2233 * We are called during inode logging, which means the inode is in use
2234 * and can not be evicted before we finish logging the inode. So we never
2235 * have the last reference on the delayed inode.
2236 * Also, we don't use btrfs_release_delayed_node() because that would
2237 * requeue the delayed inode (change its order in the list of prepared
2238 * nodes) and we don't want to do such change because we don't create or
2239 * delete delayed items.
2240 */
2241 ASSERT(refcount_read(&node->refs) > 1);
2242 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2243 refcount_dec(&node->refs);
2244 }
2245