1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "ctree.h" 4 #include "delalloc-space.h" 5 #include "block-rsv.h" 6 #include "btrfs_inode.h" 7 #include "space-info.h" 8 #include "transaction.h" 9 #include "qgroup.h" 10 #include "block-group.h" 11 12 /* 13 * HOW DOES THIS WORK 14 * 15 * There are two stages to data reservations, one for data and one for metadata 16 * to handle the new extents and checksums generated by writing data. 17 * 18 * 19 * DATA RESERVATION 20 * The general flow of the data reservation is as follows 21 * 22 * -> Reserve 23 * We call into btrfs_reserve_data_bytes() for the user request bytes that 24 * they wish to write. We make this reservation and add it to 25 * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree 26 * for the range and carry on if this is buffered, or follow up trying to 27 * make a real allocation if we are pre-allocating or doing O_DIRECT. 28 * 29 * -> Use 30 * At writepages()/prealloc/O_DIRECT time we will call into 31 * btrfs_reserve_extent() for some part or all of this range of bytes. We 32 * will make the allocation and subtract space_info->bytes_may_use by the 33 * original requested length and increase the space_info->bytes_reserved by 34 * the allocated length. This distinction is important because compression 35 * may allocate a smaller on disk extent than we previously reserved. 36 * 37 * -> Allocation 38 * finish_ordered_io() will insert the new file extent item for this range, 39 * and then add a delayed ref update for the extent tree. Once that delayed 40 * ref is written the extent size is subtracted from 41 * space_info->bytes_reserved and added to space_info->bytes_used. 42 * 43 * Error handling 44 * 45 * -> By the reservation maker 46 * This is the simplest case, we haven't completed our operation and we know 47 * how much we reserved, we can simply call 48 * btrfs_free_reserved_data_space*() and it will be removed from 49 * space_info->bytes_may_use. 50 * 51 * -> After the reservation has been made, but before cow_file_range() 52 * This is specifically for the delalloc case. You must clear 53 * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will 54 * be subtracted from space_info->bytes_may_use. 55 * 56 * METADATA RESERVATION 57 * The general metadata reservation lifetimes are discussed elsewhere, this 58 * will just focus on how it is used for delalloc space. 59 * 60 * We keep track of two things on a per inode bases 61 * 62 * ->outstanding_extents 63 * This is the number of file extent items we'll need to handle all of the 64 * outstanding DELALLOC space we have in this inode. We limit the maximum 65 * size of an extent, so a large contiguous dirty area may require more than 66 * one outstanding_extent, which is why count_max_extents() is used to 67 * determine how many outstanding_extents get added. 68 * 69 * ->csum_bytes 70 * This is essentially how many dirty bytes we have for this inode, so we 71 * can calculate the number of checksum items we would have to add in order 72 * to checksum our outstanding data. 73 * 74 * We keep a per-inode block_rsv in order to make it easier to keep track of 75 * our reservation. We use btrfs_calculate_inode_block_rsv_size() to 76 * calculate the current theoretical maximum reservation we would need for the 77 * metadata for this inode. We call this and then adjust our reservation as 78 * necessary, either by attempting to reserve more space, or freeing up excess 79 * space. 80 * 81 * OUTSTANDING_EXTENTS HANDLING 82 * 83 * ->outstanding_extents is used for keeping track of how many extents we will 84 * need to use for this inode, and it will fluctuate depending on where you are 85 * in the life cycle of the dirty data. Consider the following normal case for 86 * a completely clean inode, with a num_bytes < our maximum allowed extent size 87 * 88 * -> reserve 89 * ->outstanding_extents += 1 (current value is 1) 90 * 91 * -> set_delalloc 92 * ->outstanding_extents += 1 (currrent value is 2) 93 * 94 * -> btrfs_delalloc_release_extents() 95 * ->outstanding_extents -= 1 (current value is 1) 96 * 97 * We must call this once we are done, as we hold our reservation for the 98 * duration of our operation, and then assume set_delalloc will update the 99 * counter appropriately. 100 * 101 * -> add ordered extent 102 * ->outstanding_extents += 1 (current value is 2) 103 * 104 * -> btrfs_clear_delalloc_extent 105 * ->outstanding_extents -= 1 (current value is 1) 106 * 107 * -> finish_ordered_io/btrfs_remove_ordered_extent 108 * ->outstanding_extents -= 1 (current value is 0) 109 * 110 * Each stage is responsible for their own accounting of the extent, thus 111 * making error handling and cleanup easier. 112 */ 113 114 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 115 { 116 struct btrfs_root *root = inode->root; 117 struct btrfs_fs_info *fs_info = root->fs_info; 118 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 119 u64 used; 120 int ret = 0; 121 int need_commit = 2; 122 int have_pinned_space; 123 124 /* Make sure bytes are sectorsize aligned */ 125 bytes = ALIGN(bytes, fs_info->sectorsize); 126 127 if (btrfs_is_free_space_inode(inode)) { 128 need_commit = 0; 129 ASSERT(current->journal_info); 130 } 131 132 again: 133 /* Make sure we have enough space to handle the data first */ 134 spin_lock(&data_sinfo->lock); 135 used = btrfs_space_info_used(data_sinfo, true); 136 137 if (used + bytes > data_sinfo->total_bytes) { 138 struct btrfs_trans_handle *trans; 139 140 /* 141 * If we don't have enough free bytes in this space then we need 142 * to alloc a new chunk. 143 */ 144 if (!data_sinfo->full) { 145 u64 alloc_target; 146 147 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 148 spin_unlock(&data_sinfo->lock); 149 150 alloc_target = btrfs_data_alloc_profile(fs_info); 151 /* 152 * It is ugly that we don't call nolock join 153 * transaction for the free space inode case here. 154 * But it is safe because we only do the data space 155 * reservation for the free space cache in the 156 * transaction context, the common join transaction 157 * just increase the counter of the current transaction 158 * handler, doesn't try to acquire the trans_lock of 159 * the fs. 160 */ 161 trans = btrfs_join_transaction(root); 162 if (IS_ERR(trans)) 163 return PTR_ERR(trans); 164 165 ret = btrfs_chunk_alloc(trans, alloc_target, 166 CHUNK_ALLOC_NO_FORCE); 167 btrfs_end_transaction(trans); 168 if (ret < 0) { 169 if (ret != -ENOSPC) 170 return ret; 171 else { 172 have_pinned_space = 1; 173 goto commit_trans; 174 } 175 } 176 177 goto again; 178 } 179 180 /* 181 * If we don't have enough pinned space to deal with this 182 * allocation, and no removed chunk in current transaction, 183 * don't bother committing the transaction. 184 */ 185 have_pinned_space = __percpu_counter_compare( 186 &data_sinfo->total_bytes_pinned, 187 used + bytes - data_sinfo->total_bytes, 188 BTRFS_TOTAL_BYTES_PINNED_BATCH); 189 spin_unlock(&data_sinfo->lock); 190 191 /* Commit the current transaction and try again */ 192 commit_trans: 193 if (need_commit) { 194 need_commit--; 195 196 if (need_commit > 0) { 197 btrfs_start_delalloc_roots(fs_info, -1); 198 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 199 (u64)-1); 200 } 201 202 trans = btrfs_join_transaction(root); 203 if (IS_ERR(trans)) 204 return PTR_ERR(trans); 205 if (have_pinned_space >= 0 || 206 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 207 &trans->transaction->flags) || 208 need_commit > 0) { 209 ret = btrfs_commit_transaction(trans); 210 if (ret) 211 return ret; 212 /* 213 * The cleaner kthread might still be doing iput 214 * operations. Wait for it to finish so that 215 * more space is released. We don't need to 216 * explicitly run the delayed iputs here because 217 * the commit_transaction would have woken up 218 * the cleaner. 219 */ 220 ret = btrfs_wait_on_delayed_iputs(fs_info); 221 if (ret) 222 return ret; 223 goto again; 224 } else { 225 btrfs_end_transaction(trans); 226 } 227 } 228 229 trace_btrfs_space_reservation(fs_info, 230 "space_info:enospc", 231 data_sinfo->flags, bytes, 1); 232 return -ENOSPC; 233 } 234 btrfs_space_info_update_bytes_may_use(fs_info, data_sinfo, bytes); 235 spin_unlock(&data_sinfo->lock); 236 237 return 0; 238 } 239 240 int btrfs_check_data_free_space(struct inode *inode, 241 struct extent_changeset **reserved, u64 start, u64 len) 242 { 243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 244 int ret; 245 246 /* align the range */ 247 len = round_up(start + len, fs_info->sectorsize) - 248 round_down(start, fs_info->sectorsize); 249 start = round_down(start, fs_info->sectorsize); 250 251 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 252 if (ret < 0) 253 return ret; 254 255 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 256 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 257 if (ret < 0) 258 btrfs_free_reserved_data_space_noquota(inode, start, len); 259 else 260 ret = 0; 261 return ret; 262 } 263 264 /* 265 * Called if we need to clear a data reservation for this inode 266 * Normally in a error case. 267 * 268 * This one will *NOT* use accurate qgroup reserved space API, just for case 269 * which we can't sleep and is sure it won't affect qgroup reserved space. 270 * Like clear_bit_hook(). 271 */ 272 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 273 u64 len) 274 { 275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 276 struct btrfs_space_info *data_sinfo; 277 278 /* Make sure the range is aligned to sectorsize */ 279 len = round_up(start + len, fs_info->sectorsize) - 280 round_down(start, fs_info->sectorsize); 281 start = round_down(start, fs_info->sectorsize); 282 283 data_sinfo = fs_info->data_sinfo; 284 spin_lock(&data_sinfo->lock); 285 btrfs_space_info_update_bytes_may_use(fs_info, data_sinfo, -len); 286 spin_unlock(&data_sinfo->lock); 287 } 288 289 /* 290 * Called if we need to clear a data reservation for this inode 291 * Normally in a error case. 292 * 293 * This one will handle the per-inode data rsv map for accurate reserved 294 * space framework. 295 */ 296 void btrfs_free_reserved_data_space(struct inode *inode, 297 struct extent_changeset *reserved, u64 start, u64 len) 298 { 299 struct btrfs_root *root = BTRFS_I(inode)->root; 300 301 /* Make sure the range is aligned to sectorsize */ 302 len = round_up(start + len, root->fs_info->sectorsize) - 303 round_down(start, root->fs_info->sectorsize); 304 start = round_down(start, root->fs_info->sectorsize); 305 306 btrfs_free_reserved_data_space_noquota(inode, start, len); 307 btrfs_qgroup_free_data(inode, reserved, start, len); 308 } 309 310 /** 311 * btrfs_inode_rsv_release - release any excessive reservation. 312 * @inode - the inode we need to release from. 313 * @qgroup_free - free or convert qgroup meta. 314 * Unlike normal operation, qgroup meta reservation needs to know if we are 315 * freeing qgroup reservation or just converting it into per-trans. Normally 316 * @qgroup_free is true for error handling, and false for normal release. 317 * 318 * This is the same as btrfs_block_rsv_release, except that it handles the 319 * tracepoint for the reservation. 320 */ 321 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 322 { 323 struct btrfs_fs_info *fs_info = inode->root->fs_info; 324 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 325 u64 released = 0; 326 u64 qgroup_to_release = 0; 327 328 /* 329 * Since we statically set the block_rsv->size we just want to say we 330 * are releasing 0 bytes, and then we'll just get the reservation over 331 * the size free'd. 332 */ 333 released = btrfs_block_rsv_release(fs_info, block_rsv, 0, 334 &qgroup_to_release); 335 if (released > 0) 336 trace_btrfs_space_reservation(fs_info, "delalloc", 337 btrfs_ino(inode), released, 0); 338 if (qgroup_free) 339 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 340 else 341 btrfs_qgroup_convert_reserved_meta(inode->root, 342 qgroup_to_release); 343 } 344 345 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 346 struct btrfs_inode *inode) 347 { 348 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 349 u64 reserve_size = 0; 350 u64 qgroup_rsv_size = 0; 351 u64 csum_leaves; 352 unsigned outstanding_extents; 353 354 lockdep_assert_held(&inode->lock); 355 outstanding_extents = inode->outstanding_extents; 356 357 /* 358 * Insert size for the number of outstanding extents, 1 normal size for 359 * updating the inode. 360 */ 361 if (outstanding_extents) { 362 reserve_size = btrfs_calc_insert_metadata_size(fs_info, 363 outstanding_extents); 364 reserve_size += btrfs_calc_metadata_size(fs_info, 1); 365 } 366 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 367 inode->csum_bytes); 368 reserve_size += btrfs_calc_insert_metadata_size(fs_info, 369 csum_leaves); 370 /* 371 * For qgroup rsv, the calculation is very simple: 372 * account one nodesize for each outstanding extent 373 * 374 * This is overestimating in most cases. 375 */ 376 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; 377 378 spin_lock(&block_rsv->lock); 379 block_rsv->size = reserve_size; 380 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 381 spin_unlock(&block_rsv->lock); 382 } 383 384 static void calc_inode_reservations(struct btrfs_fs_info *fs_info, 385 u64 num_bytes, u64 *meta_reserve, 386 u64 *qgroup_reserve) 387 { 388 u64 nr_extents = count_max_extents(num_bytes); 389 u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes); 390 u64 inode_update = btrfs_calc_metadata_size(fs_info, 1); 391 392 *meta_reserve = btrfs_calc_insert_metadata_size(fs_info, 393 nr_extents + csum_leaves); 394 395 /* 396 * finish_ordered_io has to update the inode, so add the space required 397 * for an inode update. 398 */ 399 *meta_reserve += inode_update; 400 *qgroup_reserve = nr_extents * fs_info->nodesize; 401 } 402 403 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 404 { 405 struct btrfs_root *root = inode->root; 406 struct btrfs_fs_info *fs_info = root->fs_info; 407 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 408 u64 meta_reserve, qgroup_reserve; 409 unsigned nr_extents; 410 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 411 int ret = 0; 412 413 /* 414 * If we are a free space inode we need to not flush since we will be in 415 * the middle of a transaction commit. We also don't need the delalloc 416 * mutex since we won't race with anybody. We need this mostly to make 417 * lockdep shut its filthy mouth. 418 * 419 * If we have a transaction open (can happen if we call truncate_block 420 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 421 */ 422 if (btrfs_is_free_space_inode(inode)) { 423 flush = BTRFS_RESERVE_NO_FLUSH; 424 } else { 425 if (current->journal_info) 426 flush = BTRFS_RESERVE_FLUSH_LIMIT; 427 428 if (btrfs_transaction_in_commit(fs_info)) 429 schedule_timeout(1); 430 } 431 432 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 433 434 /* 435 * We always want to do it this way, every other way is wrong and ends 436 * in tears. Pre-reserving the amount we are going to add will always 437 * be the right way, because otherwise if we have enough parallelism we 438 * could end up with thousands of inodes all holding little bits of 439 * reservations they were able to make previously and the only way to 440 * reclaim that space is to ENOSPC out the operations and clear 441 * everything out and try again, which is bad. This way we just 442 * over-reserve slightly, and clean up the mess when we are done. 443 */ 444 calc_inode_reservations(fs_info, num_bytes, &meta_reserve, 445 &qgroup_reserve); 446 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true); 447 if (ret) 448 return ret; 449 ret = btrfs_reserve_metadata_bytes(root, block_rsv, meta_reserve, flush); 450 if (ret) { 451 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve); 452 return ret; 453 } 454 455 /* 456 * Now we need to update our outstanding extents and csum bytes _first_ 457 * and then add the reservation to the block_rsv. This keeps us from 458 * racing with an ordered completion or some such that would think it 459 * needs to free the reservation we just made. 460 */ 461 spin_lock(&inode->lock); 462 nr_extents = count_max_extents(num_bytes); 463 btrfs_mod_outstanding_extents(inode, nr_extents); 464 inode->csum_bytes += num_bytes; 465 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 466 spin_unlock(&inode->lock); 467 468 /* Now we can safely add our space to our block rsv */ 469 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false); 470 trace_btrfs_space_reservation(root->fs_info, "delalloc", 471 btrfs_ino(inode), meta_reserve, 1); 472 473 spin_lock(&block_rsv->lock); 474 block_rsv->qgroup_rsv_reserved += qgroup_reserve; 475 spin_unlock(&block_rsv->lock); 476 477 return 0; 478 } 479 480 /** 481 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 482 * @inode: the inode to release the reservation for. 483 * @num_bytes: the number of bytes we are releasing. 484 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 485 * 486 * This will release the metadata reservation for an inode. This can be called 487 * once we complete IO for a given set of bytes to release their metadata 488 * reservations, or on error for the same reason. 489 */ 490 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 491 bool qgroup_free) 492 { 493 struct btrfs_fs_info *fs_info = inode->root->fs_info; 494 495 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 496 spin_lock(&inode->lock); 497 inode->csum_bytes -= num_bytes; 498 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 499 spin_unlock(&inode->lock); 500 501 if (btrfs_is_testing(fs_info)) 502 return; 503 504 btrfs_inode_rsv_release(inode, qgroup_free); 505 } 506 507 /** 508 * btrfs_delalloc_release_extents - release our outstanding_extents 509 * @inode: the inode to balance the reservation for. 510 * @num_bytes: the number of bytes we originally reserved with 511 * 512 * When we reserve space we increase outstanding_extents for the extents we may 513 * add. Once we've set the range as delalloc or created our ordered extents we 514 * have outstanding_extents to track the real usage, so we use this to free our 515 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 516 * with btrfs_delalloc_reserve_metadata. 517 */ 518 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 519 { 520 struct btrfs_fs_info *fs_info = inode->root->fs_info; 521 unsigned num_extents; 522 523 spin_lock(&inode->lock); 524 num_extents = count_max_extents(num_bytes); 525 btrfs_mod_outstanding_extents(inode, -num_extents); 526 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 527 spin_unlock(&inode->lock); 528 529 if (btrfs_is_testing(fs_info)) 530 return; 531 532 btrfs_inode_rsv_release(inode, true); 533 } 534 535 /** 536 * btrfs_delalloc_reserve_space - reserve data and metadata space for 537 * delalloc 538 * @inode: inode we're writing to 539 * @start: start range we are writing to 540 * @len: how long the range we are writing to 541 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 542 * current reservation. 543 * 544 * This will do the following things 545 * 546 * - reserve space in data space info for num bytes 547 * and reserve precious corresponding qgroup space 548 * (Done in check_data_free_space) 549 * 550 * - reserve space for metadata space, based on the number of outstanding 551 * extents and how much csums will be needed 552 * also reserve metadata space in a per root over-reserve method. 553 * - add to the inodes->delalloc_bytes 554 * - add it to the fs_info's delalloc inodes list. 555 * (Above 3 all done in delalloc_reserve_metadata) 556 * 557 * Return 0 for success 558 * Return <0 for error(-ENOSPC or -EQUOT) 559 */ 560 int btrfs_delalloc_reserve_space(struct inode *inode, 561 struct extent_changeset **reserved, u64 start, u64 len) 562 { 563 int ret; 564 565 ret = btrfs_check_data_free_space(inode, reserved, start, len); 566 if (ret < 0) 567 return ret; 568 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 569 if (ret < 0) 570 btrfs_free_reserved_data_space(inode, *reserved, start, len); 571 return ret; 572 } 573 574 /** 575 * btrfs_delalloc_release_space - release data and metadata space for delalloc 576 * @inode: inode we're releasing space for 577 * @start: start position of the space already reserved 578 * @len: the len of the space already reserved 579 * @release_bytes: the len of the space we consumed or didn't use 580 * 581 * This function will release the metadata space that was not used and will 582 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 583 * list if there are no delalloc bytes left. 584 * Also it will handle the qgroup reserved space. 585 */ 586 void btrfs_delalloc_release_space(struct inode *inode, 587 struct extent_changeset *reserved, 588 u64 start, u64 len, bool qgroup_free) 589 { 590 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); 591 btrfs_free_reserved_data_space(inode, reserved, start, len); 592 } 593