1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "ctree.h" 4 #include "delalloc-space.h" 5 #include "block-rsv.h" 6 #include "btrfs_inode.h" 7 #include "space-info.h" 8 #include "transaction.h" 9 #include "qgroup.h" 10 #include "block-group.h" 11 12 /* 13 * HOW DOES THIS WORK 14 * 15 * There are two stages to data reservations, one for data and one for metadata 16 * to handle the new extents and checksums generated by writing data. 17 * 18 * 19 * DATA RESERVATION 20 * The general flow of the data reservation is as follows 21 * 22 * -> Reserve 23 * We call into btrfs_reserve_data_bytes() for the user request bytes that 24 * they wish to write. We make this reservation and add it to 25 * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree 26 * for the range and carry on if this is buffered, or follow up trying to 27 * make a real allocation if we are pre-allocating or doing O_DIRECT. 28 * 29 * -> Use 30 * At writepages()/prealloc/O_DIRECT time we will call into 31 * btrfs_reserve_extent() for some part or all of this range of bytes. We 32 * will make the allocation and subtract space_info->bytes_may_use by the 33 * original requested length and increase the space_info->bytes_reserved by 34 * the allocated length. This distinction is important because compression 35 * may allocate a smaller on disk extent than we previously reserved. 36 * 37 * -> Allocation 38 * finish_ordered_io() will insert the new file extent item for this range, 39 * and then add a delayed ref update for the extent tree. Once that delayed 40 * ref is written the extent size is subtracted from 41 * space_info->bytes_reserved and added to space_info->bytes_used. 42 * 43 * Error handling 44 * 45 * -> By the reservation maker 46 * This is the simplest case, we haven't completed our operation and we know 47 * how much we reserved, we can simply call 48 * btrfs_free_reserved_data_space*() and it will be removed from 49 * space_info->bytes_may_use. 50 * 51 * -> After the reservation has been made, but before cow_file_range() 52 * This is specifically for the delalloc case. You must clear 53 * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will 54 * be subtracted from space_info->bytes_may_use. 55 * 56 * METADATA RESERVATION 57 * The general metadata reservation lifetimes are discussed elsewhere, this 58 * will just focus on how it is used for delalloc space. 59 * 60 * We keep track of two things on a per inode bases 61 * 62 * ->outstanding_extents 63 * This is the number of file extent items we'll need to handle all of the 64 * outstanding DELALLOC space we have in this inode. We limit the maximum 65 * size of an extent, so a large contiguous dirty area may require more than 66 * one outstanding_extent, which is why count_max_extents() is used to 67 * determine how many outstanding_extents get added. 68 * 69 * ->csum_bytes 70 * This is essentially how many dirty bytes we have for this inode, so we 71 * can calculate the number of checksum items we would have to add in order 72 * to checksum our outstanding data. 73 * 74 * We keep a per-inode block_rsv in order to make it easier to keep track of 75 * our reservation. We use btrfs_calculate_inode_block_rsv_size() to 76 * calculate the current theoretical maximum reservation we would need for the 77 * metadata for this inode. We call this and then adjust our reservation as 78 * necessary, either by attempting to reserve more space, or freeing up excess 79 * space. 80 * 81 * OUTSTANDING_EXTENTS HANDLING 82 * 83 * ->outstanding_extents is used for keeping track of how many extents we will 84 * need to use for this inode, and it will fluctuate depending on where you are 85 * in the life cycle of the dirty data. Consider the following normal case for 86 * a completely clean inode, with a num_bytes < our maximum allowed extent size 87 * 88 * -> reserve 89 * ->outstanding_extents += 1 (current value is 1) 90 * 91 * -> set_delalloc 92 * ->outstanding_extents += 1 (current value is 2) 93 * 94 * -> btrfs_delalloc_release_extents() 95 * ->outstanding_extents -= 1 (current value is 1) 96 * 97 * We must call this once we are done, as we hold our reservation for the 98 * duration of our operation, and then assume set_delalloc will update the 99 * counter appropriately. 100 * 101 * -> add ordered extent 102 * ->outstanding_extents += 1 (current value is 2) 103 * 104 * -> btrfs_clear_delalloc_extent 105 * ->outstanding_extents -= 1 (current value is 1) 106 * 107 * -> finish_ordered_io/btrfs_remove_ordered_extent 108 * ->outstanding_extents -= 1 (current value is 0) 109 * 110 * Each stage is responsible for their own accounting of the extent, thus 111 * making error handling and cleanup easier. 112 */ 113 114 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 115 { 116 struct btrfs_root *root = inode->root; 117 struct btrfs_fs_info *fs_info = root->fs_info; 118 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 119 120 /* Make sure bytes are sectorsize aligned */ 121 bytes = ALIGN(bytes, fs_info->sectorsize); 122 123 if (btrfs_is_free_space_inode(inode)) 124 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 125 126 return btrfs_reserve_data_bytes(fs_info, bytes, flush); 127 } 128 129 int btrfs_check_data_free_space(struct btrfs_inode *inode, 130 struct extent_changeset **reserved, u64 start, u64 len) 131 { 132 struct btrfs_fs_info *fs_info = inode->root->fs_info; 133 int ret; 134 135 /* align the range */ 136 len = round_up(start + len, fs_info->sectorsize) - 137 round_down(start, fs_info->sectorsize); 138 start = round_down(start, fs_info->sectorsize); 139 140 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 141 if (ret < 0) 142 return ret; 143 144 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 145 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 146 if (ret < 0) { 147 btrfs_free_reserved_data_space_noquota(fs_info, len); 148 extent_changeset_free(*reserved); 149 *reserved = NULL; 150 } else { 151 ret = 0; 152 } 153 return ret; 154 } 155 156 /* 157 * Called if we need to clear a data reservation for this inode 158 * Normally in a error case. 159 * 160 * This one will *NOT* use accurate qgroup reserved space API, just for case 161 * which we can't sleep and is sure it won't affect qgroup reserved space. 162 * Like clear_bit_hook(). 163 */ 164 void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info, 165 u64 len) 166 { 167 struct btrfs_space_info *data_sinfo; 168 169 ASSERT(IS_ALIGNED(len, fs_info->sectorsize)); 170 171 data_sinfo = fs_info->data_sinfo; 172 btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len); 173 } 174 175 /* 176 * Called if we need to clear a data reservation for this inode 177 * Normally in a error case. 178 * 179 * This one will handle the per-inode data rsv map for accurate reserved 180 * space framework. 181 */ 182 void btrfs_free_reserved_data_space(struct btrfs_inode *inode, 183 struct extent_changeset *reserved, u64 start, u64 len) 184 { 185 struct btrfs_fs_info *fs_info = inode->root->fs_info; 186 187 /* Make sure the range is aligned to sectorsize */ 188 len = round_up(start + len, fs_info->sectorsize) - 189 round_down(start, fs_info->sectorsize); 190 start = round_down(start, fs_info->sectorsize); 191 192 btrfs_free_reserved_data_space_noquota(fs_info, len); 193 btrfs_qgroup_free_data(inode, reserved, start, len); 194 } 195 196 /** 197 * Release any excessive reservation 198 * 199 * @inode: the inode we need to release from 200 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup 201 * meta reservation needs to know if we are freeing qgroup 202 * reservation or just converting it into per-trans. Normally 203 * @qgroup_free is true for error handling, and false for normal 204 * release. 205 * 206 * This is the same as btrfs_block_rsv_release, except that it handles the 207 * tracepoint for the reservation. 208 */ 209 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 210 { 211 struct btrfs_fs_info *fs_info = inode->root->fs_info; 212 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 213 u64 released = 0; 214 u64 qgroup_to_release = 0; 215 216 /* 217 * Since we statically set the block_rsv->size we just want to say we 218 * are releasing 0 bytes, and then we'll just get the reservation over 219 * the size free'd. 220 */ 221 released = btrfs_block_rsv_release(fs_info, block_rsv, 0, 222 &qgroup_to_release); 223 if (released > 0) 224 trace_btrfs_space_reservation(fs_info, "delalloc", 225 btrfs_ino(inode), released, 0); 226 if (qgroup_free) 227 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 228 else 229 btrfs_qgroup_convert_reserved_meta(inode->root, 230 qgroup_to_release); 231 } 232 233 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 234 struct btrfs_inode *inode) 235 { 236 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 237 u64 reserve_size = 0; 238 u64 qgroup_rsv_size = 0; 239 u64 csum_leaves; 240 unsigned outstanding_extents; 241 242 lockdep_assert_held(&inode->lock); 243 outstanding_extents = inode->outstanding_extents; 244 245 /* 246 * Insert size for the number of outstanding extents, 1 normal size for 247 * updating the inode. 248 */ 249 if (outstanding_extents) { 250 reserve_size = btrfs_calc_insert_metadata_size(fs_info, 251 outstanding_extents); 252 reserve_size += btrfs_calc_metadata_size(fs_info, 1); 253 } 254 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 255 inode->csum_bytes); 256 reserve_size += btrfs_calc_insert_metadata_size(fs_info, 257 csum_leaves); 258 /* 259 * For qgroup rsv, the calculation is very simple: 260 * account one nodesize for each outstanding extent 261 * 262 * This is overestimating in most cases. 263 */ 264 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; 265 266 spin_lock(&block_rsv->lock); 267 block_rsv->size = reserve_size; 268 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 269 spin_unlock(&block_rsv->lock); 270 } 271 272 static void calc_inode_reservations(struct btrfs_fs_info *fs_info, 273 u64 num_bytes, u64 disk_num_bytes, 274 u64 *meta_reserve, u64 *qgroup_reserve) 275 { 276 u64 nr_extents = count_max_extents(fs_info, num_bytes); 277 u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes); 278 u64 inode_update = btrfs_calc_metadata_size(fs_info, 1); 279 280 *meta_reserve = btrfs_calc_insert_metadata_size(fs_info, 281 nr_extents + csum_leaves); 282 283 /* 284 * finish_ordered_io has to update the inode, so add the space required 285 * for an inode update. 286 */ 287 *meta_reserve += inode_update; 288 *qgroup_reserve = nr_extents * fs_info->nodesize; 289 } 290 291 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 292 u64 disk_num_bytes, bool noflush) 293 { 294 struct btrfs_root *root = inode->root; 295 struct btrfs_fs_info *fs_info = root->fs_info; 296 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 297 u64 meta_reserve, qgroup_reserve; 298 unsigned nr_extents; 299 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 300 int ret = 0; 301 302 /* 303 * If we are a free space inode we need to not flush since we will be in 304 * the middle of a transaction commit. We also don't need the delalloc 305 * mutex since we won't race with anybody. We need this mostly to make 306 * lockdep shut its filthy mouth. 307 * 308 * If we have a transaction open (can happen if we call truncate_block 309 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 310 */ 311 if (noflush || btrfs_is_free_space_inode(inode)) { 312 flush = BTRFS_RESERVE_NO_FLUSH; 313 } else { 314 if (current->journal_info) 315 flush = BTRFS_RESERVE_FLUSH_LIMIT; 316 317 if (btrfs_transaction_in_commit(fs_info)) 318 schedule_timeout(1); 319 } 320 321 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 322 disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize); 323 324 /* 325 * We always want to do it this way, every other way is wrong and ends 326 * in tears. Pre-reserving the amount we are going to add will always 327 * be the right way, because otherwise if we have enough parallelism we 328 * could end up with thousands of inodes all holding little bits of 329 * reservations they were able to make previously and the only way to 330 * reclaim that space is to ENOSPC out the operations and clear 331 * everything out and try again, which is bad. This way we just 332 * over-reserve slightly, and clean up the mess when we are done. 333 */ 334 calc_inode_reservations(fs_info, num_bytes, disk_num_bytes, 335 &meta_reserve, &qgroup_reserve); 336 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true, 337 noflush); 338 if (ret) 339 return ret; 340 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, meta_reserve, flush); 341 if (ret) { 342 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve); 343 return ret; 344 } 345 346 /* 347 * Now we need to update our outstanding extents and csum bytes _first_ 348 * and then add the reservation to the block_rsv. This keeps us from 349 * racing with an ordered completion or some such that would think it 350 * needs to free the reservation we just made. 351 */ 352 spin_lock(&inode->lock); 353 nr_extents = count_max_extents(fs_info, num_bytes); 354 btrfs_mod_outstanding_extents(inode, nr_extents); 355 inode->csum_bytes += disk_num_bytes; 356 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 357 spin_unlock(&inode->lock); 358 359 /* Now we can safely add our space to our block rsv */ 360 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false); 361 trace_btrfs_space_reservation(root->fs_info, "delalloc", 362 btrfs_ino(inode), meta_reserve, 1); 363 364 spin_lock(&block_rsv->lock); 365 block_rsv->qgroup_rsv_reserved += qgroup_reserve; 366 spin_unlock(&block_rsv->lock); 367 368 return 0; 369 } 370 371 /** 372 * Release a metadata reservation for an inode 373 * 374 * @inode: the inode to release the reservation for. 375 * @num_bytes: the number of bytes we are releasing. 376 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 377 * 378 * This will release the metadata reservation for an inode. This can be called 379 * once we complete IO for a given set of bytes to release their metadata 380 * reservations, or on error for the same reason. 381 */ 382 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 383 bool qgroup_free) 384 { 385 struct btrfs_fs_info *fs_info = inode->root->fs_info; 386 387 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 388 spin_lock(&inode->lock); 389 inode->csum_bytes -= num_bytes; 390 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 391 spin_unlock(&inode->lock); 392 393 if (btrfs_is_testing(fs_info)) 394 return; 395 396 btrfs_inode_rsv_release(inode, qgroup_free); 397 } 398 399 /** 400 * btrfs_delalloc_release_extents - release our outstanding_extents 401 * @inode: the inode to balance the reservation for. 402 * @num_bytes: the number of bytes we originally reserved with 403 * 404 * When we reserve space we increase outstanding_extents for the extents we may 405 * add. Once we've set the range as delalloc or created our ordered extents we 406 * have outstanding_extents to track the real usage, so we use this to free our 407 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 408 * with btrfs_delalloc_reserve_metadata. 409 */ 410 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 411 { 412 struct btrfs_fs_info *fs_info = inode->root->fs_info; 413 unsigned num_extents; 414 415 spin_lock(&inode->lock); 416 num_extents = count_max_extents(fs_info, num_bytes); 417 btrfs_mod_outstanding_extents(inode, -num_extents); 418 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 419 spin_unlock(&inode->lock); 420 421 if (btrfs_is_testing(fs_info)) 422 return; 423 424 btrfs_inode_rsv_release(inode, true); 425 } 426 427 /** 428 * btrfs_delalloc_reserve_space - reserve data and metadata space for 429 * delalloc 430 * @inode: inode we're writing to 431 * @start: start range we are writing to 432 * @len: how long the range we are writing to 433 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 434 * current reservation. 435 * 436 * This will do the following things 437 * 438 * - reserve space in data space info for num bytes 439 * and reserve precious corresponding qgroup space 440 * (Done in check_data_free_space) 441 * 442 * - reserve space for metadata space, based on the number of outstanding 443 * extents and how much csums will be needed 444 * also reserve metadata space in a per root over-reserve method. 445 * - add to the inodes->delalloc_bytes 446 * - add it to the fs_info's delalloc inodes list. 447 * (Above 3 all done in delalloc_reserve_metadata) 448 * 449 * Return 0 for success 450 * Return <0 for error(-ENOSPC or -EQUOT) 451 */ 452 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode, 453 struct extent_changeset **reserved, u64 start, u64 len) 454 { 455 int ret; 456 457 ret = btrfs_check_data_free_space(inode, reserved, start, len); 458 if (ret < 0) 459 return ret; 460 ret = btrfs_delalloc_reserve_metadata(inode, len, len, false); 461 if (ret < 0) { 462 btrfs_free_reserved_data_space(inode, *reserved, start, len); 463 extent_changeset_free(*reserved); 464 *reserved = NULL; 465 } 466 return ret; 467 } 468 469 /** 470 * Release data and metadata space for delalloc 471 * 472 * @inode: inode we're releasing space for 473 * @reserved: list of changed/reserved ranges 474 * @start: start position of the space already reserved 475 * @len: length of the space already reserved 476 * @qgroup_free: should qgroup reserved-space also be freed 477 * 478 * This function will release the metadata space that was not used and will 479 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 480 * list if there are no delalloc bytes left. 481 * Also it will handle the qgroup reserved space. 482 */ 483 void btrfs_delalloc_release_space(struct btrfs_inode *inode, 484 struct extent_changeset *reserved, 485 u64 start, u64 len, bool qgroup_free) 486 { 487 btrfs_delalloc_release_metadata(inode, len, qgroup_free); 488 btrfs_free_reserved_data_space(inode, reserved, start, len); 489 } 490