xref: /linux/fs/btrfs/defrag.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "transaction.h"
10 #include "locking.h"
11 #include "accessors.h"
12 #include "messages.h"
13 #include "delalloc-space.h"
14 #include "subpage.h"
15 #include "defrag.h"
16 #include "file-item.h"
17 #include "super.h"
18 
19 static struct kmem_cache *btrfs_inode_defrag_cachep;
20 
21 /*
22  * When auto defrag is enabled we queue up these defrag structs to remember
23  * which inodes need defragging passes.
24  */
25 struct inode_defrag {
26 	struct rb_node rb_node;
27 	/* Inode number */
28 	u64 ino;
29 	/*
30 	 * Transid where the defrag was added, we search for extents newer than
31 	 * this.
32 	 */
33 	u64 transid;
34 
35 	/* Root objectid */
36 	u64 root;
37 
38 	/*
39 	 * The extent size threshold for autodefrag.
40 	 *
41 	 * This value is different for compressed/non-compressed extents, thus
42 	 * needs to be passed from higher layer.
43 	 * (aka, inode_should_defrag())
44 	 */
45 	u32 extent_thresh;
46 };
47 
48 static int __compare_inode_defrag(struct inode_defrag *defrag1,
49 				  struct inode_defrag *defrag2)
50 {
51 	if (defrag1->root > defrag2->root)
52 		return 1;
53 	else if (defrag1->root < defrag2->root)
54 		return -1;
55 	else if (defrag1->ino > defrag2->ino)
56 		return 1;
57 	else if (defrag1->ino < defrag2->ino)
58 		return -1;
59 	else
60 		return 0;
61 }
62 
63 /*
64  * Pop a record for an inode into the defrag tree.  The lock must be held
65  * already.
66  *
67  * If you're inserting a record for an older transid than an existing record,
68  * the transid already in the tree is lowered.
69  *
70  * If an existing record is found the defrag item you pass in is freed.
71  */
72 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
73 				    struct inode_defrag *defrag)
74 {
75 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
76 	struct inode_defrag *entry;
77 	struct rb_node **p;
78 	struct rb_node *parent = NULL;
79 	int ret;
80 
81 	p = &fs_info->defrag_inodes.rb_node;
82 	while (*p) {
83 		parent = *p;
84 		entry = rb_entry(parent, struct inode_defrag, rb_node);
85 
86 		ret = __compare_inode_defrag(defrag, entry);
87 		if (ret < 0)
88 			p = &parent->rb_left;
89 		else if (ret > 0)
90 			p = &parent->rb_right;
91 		else {
92 			/*
93 			 * If we're reinserting an entry for an old defrag run,
94 			 * make sure to lower the transid of our existing
95 			 * record.
96 			 */
97 			if (defrag->transid < entry->transid)
98 				entry->transid = defrag->transid;
99 			entry->extent_thresh = min(defrag->extent_thresh,
100 						   entry->extent_thresh);
101 			return -EEXIST;
102 		}
103 	}
104 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
105 	rb_link_node(&defrag->rb_node, parent, p);
106 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
107 	return 0;
108 }
109 
110 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
111 {
112 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
113 		return 0;
114 
115 	if (btrfs_fs_closing(fs_info))
116 		return 0;
117 
118 	return 1;
119 }
120 
121 /*
122  * Insert a defrag record for this inode if auto defrag is enabled.
123  */
124 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
125 			   struct btrfs_inode *inode, u32 extent_thresh)
126 {
127 	struct btrfs_root *root = inode->root;
128 	struct btrfs_fs_info *fs_info = root->fs_info;
129 	struct inode_defrag *defrag;
130 	u64 transid;
131 	int ret;
132 
133 	if (!__need_auto_defrag(fs_info))
134 		return 0;
135 
136 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
137 		return 0;
138 
139 	if (trans)
140 		transid = trans->transid;
141 	else
142 		transid = btrfs_get_root_last_trans(root);
143 
144 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
145 	if (!defrag)
146 		return -ENOMEM;
147 
148 	defrag->ino = btrfs_ino(inode);
149 	defrag->transid = transid;
150 	defrag->root = btrfs_root_id(root);
151 	defrag->extent_thresh = extent_thresh;
152 
153 	spin_lock(&fs_info->defrag_inodes_lock);
154 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
155 		/*
156 		 * If we set IN_DEFRAG flag and evict the inode from memory,
157 		 * and then re-read this inode, this new inode doesn't have
158 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
159 		 */
160 		ret = __btrfs_add_inode_defrag(inode, defrag);
161 		if (ret)
162 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
163 	} else {
164 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
165 	}
166 	spin_unlock(&fs_info->defrag_inodes_lock);
167 	return 0;
168 }
169 
170 /*
171  * Pick the defragable inode that we want, if it doesn't exist, we will get the
172  * next one.
173  */
174 static struct inode_defrag *btrfs_pick_defrag_inode(
175 			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
176 {
177 	struct inode_defrag *entry = NULL;
178 	struct inode_defrag tmp;
179 	struct rb_node *p;
180 	struct rb_node *parent = NULL;
181 	int ret;
182 
183 	tmp.ino = ino;
184 	tmp.root = root;
185 
186 	spin_lock(&fs_info->defrag_inodes_lock);
187 	p = fs_info->defrag_inodes.rb_node;
188 	while (p) {
189 		parent = p;
190 		entry = rb_entry(parent, struct inode_defrag, rb_node);
191 
192 		ret = __compare_inode_defrag(&tmp, entry);
193 		if (ret < 0)
194 			p = parent->rb_left;
195 		else if (ret > 0)
196 			p = parent->rb_right;
197 		else
198 			goto out;
199 	}
200 
201 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
202 		parent = rb_next(parent);
203 		if (parent)
204 			entry = rb_entry(parent, struct inode_defrag, rb_node);
205 		else
206 			entry = NULL;
207 	}
208 out:
209 	if (entry)
210 		rb_erase(parent, &fs_info->defrag_inodes);
211 	spin_unlock(&fs_info->defrag_inodes_lock);
212 	return entry;
213 }
214 
215 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
216 {
217 	struct inode_defrag *defrag;
218 	struct rb_node *node;
219 
220 	spin_lock(&fs_info->defrag_inodes_lock);
221 	node = rb_first(&fs_info->defrag_inodes);
222 	while (node) {
223 		rb_erase(node, &fs_info->defrag_inodes);
224 		defrag = rb_entry(node, struct inode_defrag, rb_node);
225 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
226 
227 		cond_resched_lock(&fs_info->defrag_inodes_lock);
228 
229 		node = rb_first(&fs_info->defrag_inodes);
230 	}
231 	spin_unlock(&fs_info->defrag_inodes_lock);
232 }
233 
234 #define BTRFS_DEFRAG_BATCH	1024
235 
236 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
237 				    struct inode_defrag *defrag)
238 {
239 	struct btrfs_root *inode_root;
240 	struct inode *inode;
241 	struct btrfs_ioctl_defrag_range_args range;
242 	int ret = 0;
243 	u64 cur = 0;
244 
245 again:
246 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
247 		goto cleanup;
248 	if (!__need_auto_defrag(fs_info))
249 		goto cleanup;
250 
251 	/* Get the inode */
252 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
253 	if (IS_ERR(inode_root)) {
254 		ret = PTR_ERR(inode_root);
255 		goto cleanup;
256 	}
257 
258 	inode = btrfs_iget(defrag->ino, inode_root);
259 	btrfs_put_root(inode_root);
260 	if (IS_ERR(inode)) {
261 		ret = PTR_ERR(inode);
262 		goto cleanup;
263 	}
264 
265 	if (cur >= i_size_read(inode)) {
266 		iput(inode);
267 		goto cleanup;
268 	}
269 
270 	/* Do a chunk of defrag */
271 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
272 	memset(&range, 0, sizeof(range));
273 	range.len = (u64)-1;
274 	range.start = cur;
275 	range.extent_thresh = defrag->extent_thresh;
276 
277 	sb_start_write(fs_info->sb);
278 	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
279 				       BTRFS_DEFRAG_BATCH);
280 	sb_end_write(fs_info->sb);
281 	iput(inode);
282 
283 	if (ret < 0)
284 		goto cleanup;
285 
286 	cur = max(cur + fs_info->sectorsize, range.start);
287 	goto again;
288 
289 cleanup:
290 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
291 	return ret;
292 }
293 
294 /*
295  * Run through the list of inodes in the FS that need defragging.
296  */
297 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
298 {
299 	struct inode_defrag *defrag;
300 	u64 first_ino = 0;
301 	u64 root_objectid = 0;
302 
303 	atomic_inc(&fs_info->defrag_running);
304 	while (1) {
305 		/* Pause the auto defragger. */
306 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
307 			break;
308 
309 		if (!__need_auto_defrag(fs_info))
310 			break;
311 
312 		/* find an inode to defrag */
313 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
314 		if (!defrag) {
315 			if (root_objectid || first_ino) {
316 				root_objectid = 0;
317 				first_ino = 0;
318 				continue;
319 			} else {
320 				break;
321 			}
322 		}
323 
324 		first_ino = defrag->ino + 1;
325 		root_objectid = defrag->root;
326 
327 		__btrfs_run_defrag_inode(fs_info, defrag);
328 	}
329 	atomic_dec(&fs_info->defrag_running);
330 
331 	/*
332 	 * During unmount, we use the transaction_wait queue to wait for the
333 	 * defragger to stop.
334 	 */
335 	wake_up(&fs_info->transaction_wait);
336 	return 0;
337 }
338 
339 /*
340  * Check if two blocks addresses are close, used by defrag.
341  */
342 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
343 {
344 	if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
345 		return true;
346 	if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
347 		return true;
348 	return false;
349 }
350 
351 /*
352  * Go through all the leaves pointed to by a node and reallocate them so that
353  * disk order is close to key order.
354  */
355 static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
356 			      struct btrfs_root *root,
357 			      struct extent_buffer *parent,
358 			      int start_slot, u64 *last_ret,
359 			      struct btrfs_key *progress)
360 {
361 	struct btrfs_fs_info *fs_info = root->fs_info;
362 	const u32 blocksize = fs_info->nodesize;
363 	const int end_slot = btrfs_header_nritems(parent) - 1;
364 	u64 search_start = *last_ret;
365 	u64 last_block = 0;
366 	int ret = 0;
367 	bool progress_passed = false;
368 
369 	/*
370 	 * COWing must happen through a running transaction, which always
371 	 * matches the current fs generation (it's a transaction with a state
372 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
373 	 * into error state to prevent the commit of any transaction.
374 	 */
375 	if (unlikely(trans->transaction != fs_info->running_transaction ||
376 		     trans->transid != fs_info->generation)) {
377 		btrfs_abort_transaction(trans, -EUCLEAN);
378 		btrfs_crit(fs_info,
379 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
380 			   parent->start, btrfs_root_id(root), trans->transid,
381 			   fs_info->running_transaction->transid,
382 			   fs_info->generation);
383 		return -EUCLEAN;
384 	}
385 
386 	if (btrfs_header_nritems(parent) <= 1)
387 		return 0;
388 
389 	for (int i = start_slot; i <= end_slot; i++) {
390 		struct extent_buffer *cur;
391 		struct btrfs_disk_key disk_key;
392 		u64 blocknr;
393 		u64 other;
394 		bool close = true;
395 
396 		btrfs_node_key(parent, &disk_key, i);
397 		if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
398 			continue;
399 
400 		progress_passed = true;
401 		blocknr = btrfs_node_blockptr(parent, i);
402 		if (last_block == 0)
403 			last_block = blocknr;
404 
405 		if (i > 0) {
406 			other = btrfs_node_blockptr(parent, i - 1);
407 			close = close_blocks(blocknr, other, blocksize);
408 		}
409 		if (!close && i < end_slot) {
410 			other = btrfs_node_blockptr(parent, i + 1);
411 			close = close_blocks(blocknr, other, blocksize);
412 		}
413 		if (close) {
414 			last_block = blocknr;
415 			continue;
416 		}
417 
418 		cur = btrfs_read_node_slot(parent, i);
419 		if (IS_ERR(cur))
420 			return PTR_ERR(cur);
421 		if (search_start == 0)
422 			search_start = last_block;
423 
424 		btrfs_tree_lock(cur);
425 		ret = btrfs_force_cow_block(trans, root, cur, parent, i,
426 					    &cur, search_start,
427 					    min(16 * blocksize,
428 						(end_slot - i) * blocksize),
429 					    BTRFS_NESTING_COW);
430 		if (ret) {
431 			btrfs_tree_unlock(cur);
432 			free_extent_buffer(cur);
433 			break;
434 		}
435 		search_start = cur->start;
436 		last_block = cur->start;
437 		*last_ret = search_start;
438 		btrfs_tree_unlock(cur);
439 		free_extent_buffer(cur);
440 	}
441 	return ret;
442 }
443 
444 /*
445  * Defrag all the leaves in a given btree.
446  * Read all the leaves and try to get key order to
447  * better reflect disk order
448  */
449 
450 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
451 			       struct btrfs_root *root)
452 {
453 	struct btrfs_path *path = NULL;
454 	struct btrfs_key key;
455 	int ret = 0;
456 	int wret;
457 	int level;
458 	int next_key_ret = 0;
459 	u64 last_ret = 0;
460 
461 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
462 		goto out;
463 
464 	path = btrfs_alloc_path();
465 	if (!path) {
466 		ret = -ENOMEM;
467 		goto out;
468 	}
469 
470 	level = btrfs_header_level(root->node);
471 
472 	if (level == 0)
473 		goto out;
474 
475 	if (root->defrag_progress.objectid == 0) {
476 		struct extent_buffer *root_node;
477 		u32 nritems;
478 
479 		root_node = btrfs_lock_root_node(root);
480 		nritems = btrfs_header_nritems(root_node);
481 		root->defrag_max.objectid = 0;
482 		/* from above we know this is not a leaf */
483 		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
484 				      nritems - 1);
485 		btrfs_tree_unlock(root_node);
486 		free_extent_buffer(root_node);
487 		memset(&key, 0, sizeof(key));
488 	} else {
489 		memcpy(&key, &root->defrag_progress, sizeof(key));
490 	}
491 
492 	path->keep_locks = 1;
493 
494 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
495 	if (ret < 0)
496 		goto out;
497 	if (ret > 0) {
498 		ret = 0;
499 		goto out;
500 	}
501 	btrfs_release_path(path);
502 	/*
503 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
504 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
505 	 * a deadlock (attempting to write lock an already write locked leaf).
506 	 */
507 	path->lowest_level = 1;
508 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
509 
510 	if (wret < 0) {
511 		ret = wret;
512 		goto out;
513 	}
514 	if (!path->nodes[1]) {
515 		ret = 0;
516 		goto out;
517 	}
518 	/*
519 	 * The node at level 1 must always be locked when our path has
520 	 * keep_locks set and lowest_level is 1, regardless of the value of
521 	 * path->slots[1].
522 	 */
523 	ASSERT(path->locks[1] != 0);
524 	ret = btrfs_realloc_node(trans, root,
525 				 path->nodes[1], 0,
526 				 &last_ret,
527 				 &root->defrag_progress);
528 	if (ret) {
529 		WARN_ON(ret == -EAGAIN);
530 		goto out;
531 	}
532 	/*
533 	 * Now that we reallocated the node we can find the next key. Note that
534 	 * btrfs_find_next_key() can release our path and do another search
535 	 * without COWing, this is because even with path->keep_locks = 1,
536 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
537 	 * node when path->slots[node_level - 1] does not point to the last
538 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
539 	 * we search for the next key after reallocating our node.
540 	 */
541 	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
542 	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
543 					   BTRFS_OLDEST_GENERATION);
544 	if (next_key_ret == 0) {
545 		memcpy(&root->defrag_progress, &key, sizeof(key));
546 		ret = -EAGAIN;
547 	}
548 out:
549 	btrfs_free_path(path);
550 	if (ret == -EAGAIN) {
551 		if (root->defrag_max.objectid > root->defrag_progress.objectid)
552 			goto done;
553 		if (root->defrag_max.type > root->defrag_progress.type)
554 			goto done;
555 		if (root->defrag_max.offset > root->defrag_progress.offset)
556 			goto done;
557 		ret = 0;
558 	}
559 done:
560 	if (ret != -EAGAIN)
561 		memset(&root->defrag_progress, 0,
562 		       sizeof(root->defrag_progress));
563 
564 	return ret;
565 }
566 
567 /*
568  * Defrag a given btree.  Every leaf in the btree is read and defragmented.
569  */
570 int btrfs_defrag_root(struct btrfs_root *root)
571 {
572 	struct btrfs_fs_info *fs_info = root->fs_info;
573 	int ret;
574 
575 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
576 		return 0;
577 
578 	while (1) {
579 		struct btrfs_trans_handle *trans;
580 
581 		trans = btrfs_start_transaction(root, 0);
582 		if (IS_ERR(trans)) {
583 			ret = PTR_ERR(trans);
584 			break;
585 		}
586 
587 		ret = btrfs_defrag_leaves(trans, root);
588 
589 		btrfs_end_transaction(trans);
590 		btrfs_btree_balance_dirty(fs_info);
591 		cond_resched();
592 
593 		if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
594 			break;
595 
596 		if (btrfs_defrag_cancelled(fs_info)) {
597 			btrfs_debug(fs_info, "defrag_root cancelled");
598 			ret = -EAGAIN;
599 			break;
600 		}
601 	}
602 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
603 	return ret;
604 }
605 
606 /*
607  * Defrag specific helper to get an extent map.
608  *
609  * Differences between this and btrfs_get_extent() are:
610  *
611  * - No extent_map will be added to inode->extent_tree
612  *   To reduce memory usage in the long run.
613  *
614  * - Extra optimization to skip file extents older than @newer_than
615  *   By using btrfs_search_forward() we can skip entire file ranges that
616  *   have extents created in past transactions, because btrfs_search_forward()
617  *   will not visit leaves and nodes with a generation smaller than given
618  *   minimal generation threshold (@newer_than).
619  *
620  * Return valid em if we find a file extent matching the requirement.
621  * Return NULL if we can not find a file extent matching the requirement.
622  *
623  * Return ERR_PTR() for error.
624  */
625 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
626 					    u64 start, u64 newer_than)
627 {
628 	struct btrfs_root *root = inode->root;
629 	struct btrfs_file_extent_item *fi;
630 	struct btrfs_path path = { 0 };
631 	struct extent_map *em;
632 	struct btrfs_key key;
633 	u64 ino = btrfs_ino(inode);
634 	int ret;
635 
636 	em = alloc_extent_map();
637 	if (!em) {
638 		ret = -ENOMEM;
639 		goto err;
640 	}
641 
642 	key.objectid = ino;
643 	key.type = BTRFS_EXTENT_DATA_KEY;
644 	key.offset = start;
645 
646 	if (newer_than) {
647 		ret = btrfs_search_forward(root, &key, &path, newer_than);
648 		if (ret < 0)
649 			goto err;
650 		/* Can't find anything newer */
651 		if (ret > 0)
652 			goto not_found;
653 	} else {
654 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
655 		if (ret < 0)
656 			goto err;
657 	}
658 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
659 		/*
660 		 * If btrfs_search_slot() makes path to point beyond nritems,
661 		 * we should not have an empty leaf, as this inode must at
662 		 * least have its INODE_ITEM.
663 		 */
664 		ASSERT(btrfs_header_nritems(path.nodes[0]));
665 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
666 	}
667 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
668 	/* Perfect match, no need to go one slot back */
669 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
670 	    key.offset == start)
671 		goto iterate;
672 
673 	/* We didn't find a perfect match, needs to go one slot back */
674 	if (path.slots[0] > 0) {
675 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
676 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
677 			path.slots[0]--;
678 	}
679 
680 iterate:
681 	/* Iterate through the path to find a file extent covering @start */
682 	while (true) {
683 		u64 extent_end;
684 
685 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
686 			goto next;
687 
688 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
689 
690 		/*
691 		 * We may go one slot back to INODE_REF/XATTR item, then
692 		 * need to go forward until we reach an EXTENT_DATA.
693 		 * But we should still has the correct ino as key.objectid.
694 		 */
695 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
696 			goto next;
697 
698 		/* It's beyond our target range, definitely not extent found */
699 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
700 			goto not_found;
701 
702 		/*
703 		 *	|	|<- File extent ->|
704 		 *	\- start
705 		 *
706 		 * This means there is a hole between start and key.offset.
707 		 */
708 		if (key.offset > start) {
709 			em->start = start;
710 			em->disk_bytenr = EXTENT_MAP_HOLE;
711 			em->disk_num_bytes = 0;
712 			em->ram_bytes = 0;
713 			em->offset = 0;
714 			em->len = key.offset - start;
715 			break;
716 		}
717 
718 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
719 				    struct btrfs_file_extent_item);
720 		extent_end = btrfs_file_extent_end(&path);
721 
722 		/*
723 		 *	|<- file extent ->|	|
724 		 *				\- start
725 		 *
726 		 * We haven't reached start, search next slot.
727 		 */
728 		if (extent_end <= start)
729 			goto next;
730 
731 		/* Now this extent covers @start, convert it to em */
732 		btrfs_extent_item_to_extent_map(inode, &path, fi, em);
733 		break;
734 next:
735 		ret = btrfs_next_item(root, &path);
736 		if (ret < 0)
737 			goto err;
738 		if (ret > 0)
739 			goto not_found;
740 	}
741 	btrfs_release_path(&path);
742 	return em;
743 
744 not_found:
745 	btrfs_release_path(&path);
746 	free_extent_map(em);
747 	return NULL;
748 
749 err:
750 	btrfs_release_path(&path);
751 	free_extent_map(em);
752 	return ERR_PTR(ret);
753 }
754 
755 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
756 					       u64 newer_than, bool locked)
757 {
758 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
759 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
760 	struct extent_map *em;
761 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
762 
763 	/*
764 	 * Hopefully we have this extent in the tree already, try without the
765 	 * full extent lock.
766 	 */
767 	read_lock(&em_tree->lock);
768 	em = lookup_extent_mapping(em_tree, start, sectorsize);
769 	read_unlock(&em_tree->lock);
770 
771 	/*
772 	 * We can get a merged extent, in that case, we need to re-search
773 	 * tree to get the original em for defrag.
774 	 *
775 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
776 	 * this em, as either we don't care about the generation, or the
777 	 * merged extent map will be rejected anyway.
778 	 */
779 	if (em && (em->flags & EXTENT_FLAG_MERGED) &&
780 	    newer_than && em->generation >= newer_than) {
781 		free_extent_map(em);
782 		em = NULL;
783 	}
784 
785 	if (!em) {
786 		struct extent_state *cached = NULL;
787 		u64 end = start + sectorsize - 1;
788 
789 		/* Get the big lock and read metadata off disk. */
790 		if (!locked)
791 			lock_extent(io_tree, start, end, &cached);
792 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
793 		if (!locked)
794 			unlock_extent(io_tree, start, end, &cached);
795 
796 		if (IS_ERR(em))
797 			return NULL;
798 	}
799 
800 	return em;
801 }
802 
803 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
804 				   const struct extent_map *em)
805 {
806 	if (extent_map_is_compressed(em))
807 		return BTRFS_MAX_COMPRESSED;
808 	return fs_info->max_extent_size;
809 }
810 
811 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
812 				     u32 extent_thresh, u64 newer_than, bool locked)
813 {
814 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
815 	struct extent_map *next;
816 	bool ret = false;
817 
818 	/* This is the last extent */
819 	if (em->start + em->len >= i_size_read(inode))
820 		return false;
821 
822 	/*
823 	 * Here we need to pass @newer_then when checking the next extent, or
824 	 * we will hit a case we mark current extent for defrag, but the next
825 	 * one will not be a target.
826 	 * This will just cause extra IO without really reducing the fragments.
827 	 */
828 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
829 	/* No more em or hole */
830 	if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE)
831 		goto out;
832 	if (next->flags & EXTENT_FLAG_PREALLOC)
833 		goto out;
834 	/*
835 	 * If the next extent is at its max capacity, defragging current extent
836 	 * makes no sense, as the total number of extents won't change.
837 	 */
838 	if (next->len >= get_extent_max_capacity(fs_info, em))
839 		goto out;
840 	/* Skip older extent */
841 	if (next->generation < newer_than)
842 		goto out;
843 	/* Also check extent size */
844 	if (next->len >= extent_thresh)
845 		goto out;
846 
847 	ret = true;
848 out:
849 	free_extent_map(next);
850 	return ret;
851 }
852 
853 /*
854  * Prepare one page to be defragged.
855  *
856  * This will ensure:
857  *
858  * - Returned page is locked and has been set up properly.
859  * - No ordered extent exists in the page.
860  * - The page is uptodate.
861  *
862  * NOTE: Caller should also wait for page writeback after the cluster is
863  * prepared, here we don't do writeback wait for each page.
864  */
865 static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
866 {
867 	struct address_space *mapping = inode->vfs_inode.i_mapping;
868 	gfp_t mask = btrfs_alloc_write_mask(mapping);
869 	u64 page_start = (u64)index << PAGE_SHIFT;
870 	u64 page_end = page_start + PAGE_SIZE - 1;
871 	struct extent_state *cached_state = NULL;
872 	struct folio *folio;
873 	int ret;
874 
875 again:
876 	folio = __filemap_get_folio(mapping, index,
877 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
878 	if (IS_ERR(folio))
879 		return folio;
880 
881 	/*
882 	 * Since we can defragment files opened read-only, we can encounter
883 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
884 	 * can't do I/O using huge pages yet, so return an error for now.
885 	 * Filesystem transparent huge pages are typically only used for
886 	 * executables that explicitly enable them, so this isn't very
887 	 * restrictive.
888 	 */
889 	if (folio_test_large(folio)) {
890 		folio_unlock(folio);
891 		folio_put(folio);
892 		return ERR_PTR(-ETXTBSY);
893 	}
894 
895 	ret = set_folio_extent_mapped(folio);
896 	if (ret < 0) {
897 		folio_unlock(folio);
898 		folio_put(folio);
899 		return ERR_PTR(ret);
900 	}
901 
902 	/* Wait for any existing ordered extent in the range */
903 	while (1) {
904 		struct btrfs_ordered_extent *ordered;
905 
906 		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
907 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
908 		unlock_extent(&inode->io_tree, page_start, page_end,
909 			      &cached_state);
910 		if (!ordered)
911 			break;
912 
913 		folio_unlock(folio);
914 		btrfs_start_ordered_extent(ordered);
915 		btrfs_put_ordered_extent(ordered);
916 		folio_lock(folio);
917 		/*
918 		 * We unlocked the folio above, so we need check if it was
919 		 * released or not.
920 		 */
921 		if (folio->mapping != mapping || !folio->private) {
922 			folio_unlock(folio);
923 			folio_put(folio);
924 			goto again;
925 		}
926 	}
927 
928 	/*
929 	 * Now the page range has no ordered extent any more.  Read the page to
930 	 * make it uptodate.
931 	 */
932 	if (!folio_test_uptodate(folio)) {
933 		btrfs_read_folio(NULL, folio);
934 		folio_lock(folio);
935 		if (folio->mapping != mapping || !folio->private) {
936 			folio_unlock(folio);
937 			folio_put(folio);
938 			goto again;
939 		}
940 		if (!folio_test_uptodate(folio)) {
941 			folio_unlock(folio);
942 			folio_put(folio);
943 			return ERR_PTR(-EIO);
944 		}
945 	}
946 	return folio;
947 }
948 
949 struct defrag_target_range {
950 	struct list_head list;
951 	u64 start;
952 	u64 len;
953 };
954 
955 /*
956  * Collect all valid target extents.
957  *
958  * @start:	   file offset to lookup
959  * @len:	   length to lookup
960  * @extent_thresh: file extent size threshold, any extent size >= this value
961  *		   will be ignored
962  * @newer_than:    only defrag extents newer than this value
963  * @do_compress:   whether the defrag is doing compression
964  *		   if true, @extent_thresh will be ignored and all regular
965  *		   file extents meeting @newer_than will be targets.
966  * @locked:	   if the range has already held extent lock
967  * @target_list:   list of targets file extents
968  */
969 static int defrag_collect_targets(struct btrfs_inode *inode,
970 				  u64 start, u64 len, u32 extent_thresh,
971 				  u64 newer_than, bool do_compress,
972 				  bool locked, struct list_head *target_list,
973 				  u64 *last_scanned_ret)
974 {
975 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
976 	bool last_is_target = false;
977 	u64 cur = start;
978 	int ret = 0;
979 
980 	while (cur < start + len) {
981 		struct extent_map *em;
982 		struct defrag_target_range *new;
983 		bool next_mergeable = true;
984 		u64 range_len;
985 
986 		last_is_target = false;
987 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
988 		if (!em)
989 			break;
990 
991 		/*
992 		 * If the file extent is an inlined one, we may still want to
993 		 * defrag it (fallthrough) if it will cause a regular extent.
994 		 * This is for users who want to convert inline extents to
995 		 * regular ones through max_inline= mount option.
996 		 */
997 		if (em->disk_bytenr == EXTENT_MAP_INLINE &&
998 		    em->len <= inode->root->fs_info->max_inline)
999 			goto next;
1000 
1001 		/* Skip holes and preallocated extents. */
1002 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
1003 		    (em->flags & EXTENT_FLAG_PREALLOC))
1004 			goto next;
1005 
1006 		/* Skip older extent */
1007 		if (em->generation < newer_than)
1008 			goto next;
1009 
1010 		/* This em is under writeback, no need to defrag */
1011 		if (em->generation == (u64)-1)
1012 			goto next;
1013 
1014 		/*
1015 		 * Our start offset might be in the middle of an existing extent
1016 		 * map, so take that into account.
1017 		 */
1018 		range_len = em->len - (cur - em->start);
1019 		/*
1020 		 * If this range of the extent map is already flagged for delalloc,
1021 		 * skip it, because:
1022 		 *
1023 		 * 1) We could deadlock later, when trying to reserve space for
1024 		 *    delalloc, because in case we can't immediately reserve space
1025 		 *    the flusher can start delalloc and wait for the respective
1026 		 *    ordered extents to complete. The deadlock would happen
1027 		 *    because we do the space reservation while holding the range
1028 		 *    locked, and starting writeback, or finishing an ordered
1029 		 *    extent, requires locking the range;
1030 		 *
1031 		 * 2) If there's delalloc there, it means there's dirty pages for
1032 		 *    which writeback has not started yet (we clean the delalloc
1033 		 *    flag when starting writeback and after creating an ordered
1034 		 *    extent). If we mark pages in an adjacent range for defrag,
1035 		 *    then we will have a larger contiguous range for delalloc,
1036 		 *    very likely resulting in a larger extent after writeback is
1037 		 *    triggered (except in a case of free space fragmentation).
1038 		 */
1039 		if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
1040 					  EXTENT_DELALLOC))
1041 			goto next;
1042 
1043 		/*
1044 		 * For do_compress case, we want to compress all valid file
1045 		 * extents, thus no @extent_thresh or mergeable check.
1046 		 */
1047 		if (do_compress)
1048 			goto add;
1049 
1050 		/* Skip too large extent */
1051 		if (em->len >= extent_thresh)
1052 			goto next;
1053 
1054 		/*
1055 		 * Skip extents already at its max capacity, this is mostly for
1056 		 * compressed extents, which max cap is only 128K.
1057 		 */
1058 		if (em->len >= get_extent_max_capacity(fs_info, em))
1059 			goto next;
1060 
1061 		/*
1062 		 * Normally there are no more extents after an inline one, thus
1063 		 * @next_mergeable will normally be false and not defragged.
1064 		 * So if an inline extent passed all above checks, just add it
1065 		 * for defrag, and be converted to regular extents.
1066 		 */
1067 		if (em->disk_bytenr == EXTENT_MAP_INLINE)
1068 			goto add;
1069 
1070 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1071 						extent_thresh, newer_than, locked);
1072 		if (!next_mergeable) {
1073 			struct defrag_target_range *last;
1074 
1075 			/* Empty target list, no way to merge with last entry */
1076 			if (list_empty(target_list))
1077 				goto next;
1078 			last = list_entry(target_list->prev,
1079 					  struct defrag_target_range, list);
1080 			/* Not mergeable with last entry */
1081 			if (last->start + last->len != cur)
1082 				goto next;
1083 
1084 			/* Mergeable, fall through to add it to @target_list. */
1085 		}
1086 
1087 add:
1088 		last_is_target = true;
1089 		range_len = min(extent_map_end(em), start + len) - cur;
1090 		/*
1091 		 * This one is a good target, check if it can be merged into
1092 		 * last range of the target list.
1093 		 */
1094 		if (!list_empty(target_list)) {
1095 			struct defrag_target_range *last;
1096 
1097 			last = list_entry(target_list->prev,
1098 					  struct defrag_target_range, list);
1099 			ASSERT(last->start + last->len <= cur);
1100 			if (last->start + last->len == cur) {
1101 				/* Mergeable, enlarge the last entry */
1102 				last->len += range_len;
1103 				goto next;
1104 			}
1105 			/* Fall through to allocate a new entry */
1106 		}
1107 
1108 		/* Allocate new defrag_target_range */
1109 		new = kmalloc(sizeof(*new), GFP_NOFS);
1110 		if (!new) {
1111 			free_extent_map(em);
1112 			ret = -ENOMEM;
1113 			break;
1114 		}
1115 		new->start = cur;
1116 		new->len = range_len;
1117 		list_add_tail(&new->list, target_list);
1118 
1119 next:
1120 		cur = extent_map_end(em);
1121 		free_extent_map(em);
1122 	}
1123 	if (ret < 0) {
1124 		struct defrag_target_range *entry;
1125 		struct defrag_target_range *tmp;
1126 
1127 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1128 			list_del_init(&entry->list);
1129 			kfree(entry);
1130 		}
1131 	}
1132 	if (!ret && last_scanned_ret) {
1133 		/*
1134 		 * If the last extent is not a target, the caller can skip to
1135 		 * the end of that extent.
1136 		 * Otherwise, we can only go the end of the specified range.
1137 		 */
1138 		if (!last_is_target)
1139 			*last_scanned_ret = max(cur, *last_scanned_ret);
1140 		else
1141 			*last_scanned_ret = max(start + len, *last_scanned_ret);
1142 	}
1143 	return ret;
1144 }
1145 
1146 #define CLUSTER_SIZE	(SZ_256K)
1147 static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1148 
1149 /*
1150  * Defrag one contiguous target range.
1151  *
1152  * @inode:	target inode
1153  * @target:	target range to defrag
1154  * @pages:	locked pages covering the defrag range
1155  * @nr_pages:	number of locked pages
1156  *
1157  * Caller should ensure:
1158  *
1159  * - Pages are prepared
1160  *   Pages should be locked, no ordered extent in the pages range,
1161  *   no writeback.
1162  *
1163  * - Extent bits are locked
1164  */
1165 static int defrag_one_locked_target(struct btrfs_inode *inode,
1166 				    struct defrag_target_range *target,
1167 				    struct folio **folios, int nr_pages,
1168 				    struct extent_state **cached_state)
1169 {
1170 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1171 	struct extent_changeset *data_reserved = NULL;
1172 	const u64 start = target->start;
1173 	const u64 len = target->len;
1174 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1175 	unsigned long start_index = start >> PAGE_SHIFT;
1176 	unsigned long first_index = folios[0]->index;
1177 	int ret = 0;
1178 	int i;
1179 
1180 	ASSERT(last_index - first_index + 1 <= nr_pages);
1181 
1182 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1183 	if (ret < 0)
1184 		return ret;
1185 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1186 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1187 			 EXTENT_DEFRAG, cached_state);
1188 	set_extent_bit(&inode->io_tree, start, start + len - 1,
1189 		       EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1190 
1191 	/* Update the page status */
1192 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1193 		folio_clear_checked(folios[i]);
1194 		btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len);
1195 	}
1196 	btrfs_delalloc_release_extents(inode, len);
1197 	extent_changeset_free(data_reserved);
1198 
1199 	return ret;
1200 }
1201 
1202 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1203 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1204 			    u64 *last_scanned_ret)
1205 {
1206 	struct extent_state *cached_state = NULL;
1207 	struct defrag_target_range *entry;
1208 	struct defrag_target_range *tmp;
1209 	LIST_HEAD(target_list);
1210 	struct folio **folios;
1211 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1212 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1213 	u64 start_index = start >> PAGE_SHIFT;
1214 	unsigned int nr_pages = last_index - start_index + 1;
1215 	int ret = 0;
1216 	int i;
1217 
1218 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1219 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1220 
1221 	folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
1222 	if (!folios)
1223 		return -ENOMEM;
1224 
1225 	/* Prepare all pages */
1226 	for (i = 0; i < nr_pages; i++) {
1227 		folios[i] = defrag_prepare_one_folio(inode, start_index + i);
1228 		if (IS_ERR(folios[i])) {
1229 			ret = PTR_ERR(folios[i]);
1230 			nr_pages = i;
1231 			goto free_folios;
1232 		}
1233 	}
1234 	for (i = 0; i < nr_pages; i++)
1235 		folio_wait_writeback(folios[i]);
1236 
1237 	/* Lock the pages range */
1238 	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1239 		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1240 		    &cached_state);
1241 	/*
1242 	 * Now we have a consistent view about the extent map, re-check
1243 	 * which range really needs to be defragged.
1244 	 *
1245 	 * And this time we have extent locked already, pass @locked = true
1246 	 * so that we won't relock the extent range and cause deadlock.
1247 	 */
1248 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1249 				     newer_than, do_compress, true,
1250 				     &target_list, last_scanned_ret);
1251 	if (ret < 0)
1252 		goto unlock_extent;
1253 
1254 	list_for_each_entry(entry, &target_list, list) {
1255 		ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
1256 					       &cached_state);
1257 		if (ret < 0)
1258 			break;
1259 	}
1260 
1261 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1262 		list_del_init(&entry->list);
1263 		kfree(entry);
1264 	}
1265 unlock_extent:
1266 	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1267 		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1268 		      &cached_state);
1269 free_folios:
1270 	for (i = 0; i < nr_pages; i++) {
1271 		folio_unlock(folios[i]);
1272 		folio_put(folios[i]);
1273 	}
1274 	kfree(folios);
1275 	return ret;
1276 }
1277 
1278 static int defrag_one_cluster(struct btrfs_inode *inode,
1279 			      struct file_ra_state *ra,
1280 			      u64 start, u32 len, u32 extent_thresh,
1281 			      u64 newer_than, bool do_compress,
1282 			      unsigned long *sectors_defragged,
1283 			      unsigned long max_sectors,
1284 			      u64 *last_scanned_ret)
1285 {
1286 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1287 	struct defrag_target_range *entry;
1288 	struct defrag_target_range *tmp;
1289 	LIST_HEAD(target_list);
1290 	int ret;
1291 
1292 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1293 				     newer_than, do_compress, false,
1294 				     &target_list, NULL);
1295 	if (ret < 0)
1296 		goto out;
1297 
1298 	list_for_each_entry(entry, &target_list, list) {
1299 		u32 range_len = entry->len;
1300 
1301 		/* Reached or beyond the limit */
1302 		if (max_sectors && *sectors_defragged >= max_sectors) {
1303 			ret = 1;
1304 			break;
1305 		}
1306 
1307 		if (max_sectors)
1308 			range_len = min_t(u32, range_len,
1309 				(max_sectors - *sectors_defragged) * sectorsize);
1310 
1311 		/*
1312 		 * If defrag_one_range() has updated last_scanned_ret,
1313 		 * our range may already be invalid (e.g. hole punched).
1314 		 * Skip if our range is before last_scanned_ret, as there is
1315 		 * no need to defrag the range anymore.
1316 		 */
1317 		if (entry->start + range_len <= *last_scanned_ret)
1318 			continue;
1319 
1320 		if (ra)
1321 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1322 				ra, NULL, entry->start >> PAGE_SHIFT,
1323 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1324 				(entry->start >> PAGE_SHIFT) + 1);
1325 		/*
1326 		 * Here we may not defrag any range if holes are punched before
1327 		 * we locked the pages.
1328 		 * But that's fine, it only affects the @sectors_defragged
1329 		 * accounting.
1330 		 */
1331 		ret = defrag_one_range(inode, entry->start, range_len,
1332 				       extent_thresh, newer_than, do_compress,
1333 				       last_scanned_ret);
1334 		if (ret < 0)
1335 			break;
1336 		*sectors_defragged += range_len >>
1337 				      inode->root->fs_info->sectorsize_bits;
1338 	}
1339 out:
1340 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1341 		list_del_init(&entry->list);
1342 		kfree(entry);
1343 	}
1344 	if (ret >= 0)
1345 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1346 	return ret;
1347 }
1348 
1349 /*
1350  * Entry point to file defragmentation.
1351  *
1352  * @inode:	   inode to be defragged
1353  * @ra:		   readahead state (can be NUL)
1354  * @range:	   defrag options including range and flags
1355  * @newer_than:	   minimum transid to defrag
1356  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1357  *		   will be defragged.
1358  *
1359  * Return <0 for error.
1360  * Return >=0 for the number of sectors defragged, and range->start will be updated
1361  * to indicate the file offset where next defrag should be started at.
1362  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1363  *  defragging all the range).
1364  */
1365 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1366 		      struct btrfs_ioctl_defrag_range_args *range,
1367 		      u64 newer_than, unsigned long max_to_defrag)
1368 {
1369 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1370 	unsigned long sectors_defragged = 0;
1371 	u64 isize = i_size_read(inode);
1372 	u64 cur;
1373 	u64 last_byte;
1374 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1375 	bool ra_allocated = false;
1376 	int compress_type = BTRFS_COMPRESS_ZLIB;
1377 	int ret = 0;
1378 	u32 extent_thresh = range->extent_thresh;
1379 	pgoff_t start_index;
1380 
1381 	if (isize == 0)
1382 		return 0;
1383 
1384 	if (range->start >= isize)
1385 		return -EINVAL;
1386 
1387 	if (do_compress) {
1388 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1389 			return -EINVAL;
1390 		if (range->compress_type)
1391 			compress_type = range->compress_type;
1392 	}
1393 
1394 	if (extent_thresh == 0)
1395 		extent_thresh = SZ_256K;
1396 
1397 	if (range->start + range->len > range->start) {
1398 		/* Got a specific range */
1399 		last_byte = min(isize, range->start + range->len);
1400 	} else {
1401 		/* Defrag until file end */
1402 		last_byte = isize;
1403 	}
1404 
1405 	/* Align the range */
1406 	cur = round_down(range->start, fs_info->sectorsize);
1407 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1408 
1409 	/*
1410 	 * If we were not given a ra, allocate a readahead context. As
1411 	 * readahead is just an optimization, defrag will work without it so
1412 	 * we don't error out.
1413 	 */
1414 	if (!ra) {
1415 		ra_allocated = true;
1416 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1417 		if (ra)
1418 			file_ra_state_init(ra, inode->i_mapping);
1419 	}
1420 
1421 	/*
1422 	 * Make writeback start from the beginning of the range, so that the
1423 	 * defrag range can be written sequentially.
1424 	 */
1425 	start_index = cur >> PAGE_SHIFT;
1426 	if (start_index < inode->i_mapping->writeback_index)
1427 		inode->i_mapping->writeback_index = start_index;
1428 
1429 	while (cur < last_byte) {
1430 		const unsigned long prev_sectors_defragged = sectors_defragged;
1431 		u64 last_scanned = cur;
1432 		u64 cluster_end;
1433 
1434 		if (btrfs_defrag_cancelled(fs_info)) {
1435 			ret = -EAGAIN;
1436 			break;
1437 		}
1438 
1439 		/* We want the cluster end at page boundary when possible */
1440 		cluster_end = (((cur >> PAGE_SHIFT) +
1441 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1442 		cluster_end = min(cluster_end, last_byte);
1443 
1444 		btrfs_inode_lock(BTRFS_I(inode), 0);
1445 		if (IS_SWAPFILE(inode)) {
1446 			ret = -ETXTBSY;
1447 			btrfs_inode_unlock(BTRFS_I(inode), 0);
1448 			break;
1449 		}
1450 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1451 			btrfs_inode_unlock(BTRFS_I(inode), 0);
1452 			break;
1453 		}
1454 		if (do_compress)
1455 			BTRFS_I(inode)->defrag_compress = compress_type;
1456 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1457 				cluster_end + 1 - cur, extent_thresh,
1458 				newer_than, do_compress, &sectors_defragged,
1459 				max_to_defrag, &last_scanned);
1460 
1461 		if (sectors_defragged > prev_sectors_defragged)
1462 			balance_dirty_pages_ratelimited(inode->i_mapping);
1463 
1464 		btrfs_inode_unlock(BTRFS_I(inode), 0);
1465 		if (ret < 0)
1466 			break;
1467 		cur = max(cluster_end + 1, last_scanned);
1468 		if (ret > 0) {
1469 			ret = 0;
1470 			break;
1471 		}
1472 		cond_resched();
1473 	}
1474 
1475 	if (ra_allocated)
1476 		kfree(ra);
1477 	/*
1478 	 * Update range.start for autodefrag, this will indicate where to start
1479 	 * in next run.
1480 	 */
1481 	range->start = cur;
1482 	if (sectors_defragged) {
1483 		/*
1484 		 * We have defragged some sectors, for compression case they
1485 		 * need to be written back immediately.
1486 		 */
1487 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1488 			filemap_flush(inode->i_mapping);
1489 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1490 				     &BTRFS_I(inode)->runtime_flags))
1491 				filemap_flush(inode->i_mapping);
1492 		}
1493 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1494 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1495 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1496 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1497 		ret = sectors_defragged;
1498 	}
1499 	if (do_compress) {
1500 		btrfs_inode_lock(BTRFS_I(inode), 0);
1501 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1502 		btrfs_inode_unlock(BTRFS_I(inode), 0);
1503 	}
1504 	return ret;
1505 }
1506 
1507 void __cold btrfs_auto_defrag_exit(void)
1508 {
1509 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1510 }
1511 
1512 int __init btrfs_auto_defrag_init(void)
1513 {
1514 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1515 					sizeof(struct inode_defrag), 0, 0, NULL);
1516 	if (!btrfs_inode_defrag_cachep)
1517 		return -ENOMEM;
1518 
1519 	return 0;
1520 }
1521