xref: /linux/fs/btrfs/defrag.c (revision c060f8168bdf22aa986970955af99702d142dfbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "transaction.h"
10 #include "locking.h"
11 #include "accessors.h"
12 #include "messages.h"
13 #include "delalloc-space.h"
14 #include "subpage.h"
15 #include "defrag.h"
16 #include "file-item.h"
17 #include "super.h"
18 
19 static struct kmem_cache *btrfs_inode_defrag_cachep;
20 
21 /*
22  * When auto defrag is enabled we queue up these defrag structs to remember
23  * which inodes need defragging passes.
24  */
25 struct inode_defrag {
26 	struct rb_node rb_node;
27 	/* Inode number */
28 	u64 ino;
29 	/*
30 	 * Transid where the defrag was added, we search for extents newer than
31 	 * this.
32 	 */
33 	u64 transid;
34 
35 	/* Root objectid */
36 	u64 root;
37 
38 	/*
39 	 * The extent size threshold for autodefrag.
40 	 *
41 	 * This value is different for compressed/non-compressed extents, thus
42 	 * needs to be passed from higher layer.
43 	 * (aka, inode_should_defrag())
44 	 */
45 	u32 extent_thresh;
46 };
47 
48 static int compare_inode_defrag(const struct inode_defrag *defrag1,
49 				const struct inode_defrag *defrag2)
50 {
51 	if (defrag1->root > defrag2->root)
52 		return 1;
53 	else if (defrag1->root < defrag2->root)
54 		return -1;
55 	else if (defrag1->ino > defrag2->ino)
56 		return 1;
57 	else if (defrag1->ino < defrag2->ino)
58 		return -1;
59 	else
60 		return 0;
61 }
62 
63 /*
64  * Insert a record for an inode into the defrag tree.  The lock must be held
65  * already.
66  *
67  * If you're inserting a record for an older transid than an existing record,
68  * the transid already in the tree is lowered.
69  */
70 static int btrfs_insert_inode_defrag(struct btrfs_inode *inode,
71 				     struct inode_defrag *defrag)
72 {
73 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
74 	struct inode_defrag *entry;
75 	struct rb_node **p;
76 	struct rb_node *parent = NULL;
77 	int ret;
78 
79 	p = &fs_info->defrag_inodes.rb_node;
80 	while (*p) {
81 		parent = *p;
82 		entry = rb_entry(parent, struct inode_defrag, rb_node);
83 
84 		ret = compare_inode_defrag(defrag, entry);
85 		if (ret < 0)
86 			p = &parent->rb_left;
87 		else if (ret > 0)
88 			p = &parent->rb_right;
89 		else {
90 			/*
91 			 * If we're reinserting an entry for an old defrag run,
92 			 * make sure to lower the transid of our existing
93 			 * record.
94 			 */
95 			if (defrag->transid < entry->transid)
96 				entry->transid = defrag->transid;
97 			entry->extent_thresh = min(defrag->extent_thresh,
98 						   entry->extent_thresh);
99 			return -EEXIST;
100 		}
101 	}
102 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
103 	rb_link_node(&defrag->rb_node, parent, p);
104 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
105 	return 0;
106 }
107 
108 static inline int need_auto_defrag(struct btrfs_fs_info *fs_info)
109 {
110 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
111 		return 0;
112 
113 	if (btrfs_fs_closing(fs_info))
114 		return 0;
115 
116 	return 1;
117 }
118 
119 /*
120  * Insert a defrag record for this inode if auto defrag is enabled. No errors
121  * returned as they're not considered fatal.
122  */
123 void btrfs_add_inode_defrag(struct btrfs_inode *inode, u32 extent_thresh)
124 {
125 	struct btrfs_root *root = inode->root;
126 	struct btrfs_fs_info *fs_info = root->fs_info;
127 	struct inode_defrag *defrag;
128 	int ret;
129 
130 	if (!need_auto_defrag(fs_info))
131 		return;
132 
133 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
134 		return;
135 
136 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
137 	if (!defrag)
138 		return;
139 
140 	defrag->ino = btrfs_ino(inode);
141 	defrag->transid = btrfs_get_root_last_trans(root);
142 	defrag->root = btrfs_root_id(root);
143 	defrag->extent_thresh = extent_thresh;
144 
145 	spin_lock(&fs_info->defrag_inodes_lock);
146 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
147 		/*
148 		 * If we set IN_DEFRAG flag and evict the inode from memory,
149 		 * and then re-read this inode, this new inode doesn't have
150 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
151 		 */
152 		ret = btrfs_insert_inode_defrag(inode, defrag);
153 		if (ret)
154 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
155 	} else {
156 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
157 	}
158 	spin_unlock(&fs_info->defrag_inodes_lock);
159 }
160 
161 /*
162  * Pick the defragable inode that we want, if it doesn't exist, we will get the
163  * next one.
164  */
165 static struct inode_defrag *btrfs_pick_defrag_inode(
166 			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
167 {
168 	struct inode_defrag *entry = NULL;
169 	struct inode_defrag tmp;
170 	struct rb_node *p;
171 	struct rb_node *parent = NULL;
172 	int ret;
173 
174 	tmp.ino = ino;
175 	tmp.root = root;
176 
177 	spin_lock(&fs_info->defrag_inodes_lock);
178 	p = fs_info->defrag_inodes.rb_node;
179 	while (p) {
180 		parent = p;
181 		entry = rb_entry(parent, struct inode_defrag, rb_node);
182 
183 		ret = compare_inode_defrag(&tmp, entry);
184 		if (ret < 0)
185 			p = parent->rb_left;
186 		else if (ret > 0)
187 			p = parent->rb_right;
188 		else
189 			goto out;
190 	}
191 
192 	if (parent && compare_inode_defrag(&tmp, entry) > 0) {
193 		parent = rb_next(parent);
194 		if (parent)
195 			entry = rb_entry(parent, struct inode_defrag, rb_node);
196 		else
197 			entry = NULL;
198 	}
199 out:
200 	if (entry)
201 		rb_erase(parent, &fs_info->defrag_inodes);
202 	spin_unlock(&fs_info->defrag_inodes_lock);
203 	return entry;
204 }
205 
206 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
207 {
208 	struct inode_defrag *defrag, *next;
209 
210 	spin_lock(&fs_info->defrag_inodes_lock);
211 
212 	rbtree_postorder_for_each_entry_safe(defrag, next,
213 					     &fs_info->defrag_inodes, rb_node)
214 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
215 
216 	fs_info->defrag_inodes = RB_ROOT;
217 
218 	spin_unlock(&fs_info->defrag_inodes_lock);
219 }
220 
221 #define BTRFS_DEFRAG_BATCH	1024
222 
223 static int btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
224 				  struct inode_defrag *defrag,
225 				  struct file_ra_state *ra)
226 {
227 	struct btrfs_root *inode_root;
228 	struct inode *inode;
229 	struct btrfs_ioctl_defrag_range_args range;
230 	int ret = 0;
231 	u64 cur = 0;
232 
233 again:
234 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
235 		goto cleanup;
236 	if (!need_auto_defrag(fs_info))
237 		goto cleanup;
238 
239 	/* Get the inode */
240 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
241 	if (IS_ERR(inode_root)) {
242 		ret = PTR_ERR(inode_root);
243 		goto cleanup;
244 	}
245 
246 	inode = btrfs_iget(defrag->ino, inode_root);
247 	btrfs_put_root(inode_root);
248 	if (IS_ERR(inode)) {
249 		ret = PTR_ERR(inode);
250 		goto cleanup;
251 	}
252 
253 	if (cur >= i_size_read(inode)) {
254 		iput(inode);
255 		goto cleanup;
256 	}
257 
258 	/* Do a chunk of defrag */
259 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
260 	memset(&range, 0, sizeof(range));
261 	range.len = (u64)-1;
262 	range.start = cur;
263 	range.extent_thresh = defrag->extent_thresh;
264 	file_ra_state_init(ra, inode->i_mapping);
265 
266 	sb_start_write(fs_info->sb);
267 	ret = btrfs_defrag_file(inode, ra, &range, defrag->transid,
268 				       BTRFS_DEFRAG_BATCH);
269 	sb_end_write(fs_info->sb);
270 	iput(inode);
271 
272 	if (ret < 0)
273 		goto cleanup;
274 
275 	cur = max(cur + fs_info->sectorsize, range.start);
276 	goto again;
277 
278 cleanup:
279 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
280 	return ret;
281 }
282 
283 /*
284  * Run through the list of inodes in the FS that need defragging.
285  */
286 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
287 {
288 	struct inode_defrag *defrag;
289 	u64 first_ino = 0;
290 	u64 root_objectid = 0;
291 
292 	atomic_inc(&fs_info->defrag_running);
293 	while (1) {
294 		struct file_ra_state ra = { 0 };
295 
296 		/* Pause the auto defragger. */
297 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
298 			break;
299 
300 		if (!need_auto_defrag(fs_info))
301 			break;
302 
303 		/* find an inode to defrag */
304 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
305 		if (!defrag) {
306 			if (root_objectid || first_ino) {
307 				root_objectid = 0;
308 				first_ino = 0;
309 				continue;
310 			} else {
311 				break;
312 			}
313 		}
314 
315 		first_ino = defrag->ino + 1;
316 		root_objectid = defrag->root;
317 
318 		btrfs_run_defrag_inode(fs_info, defrag, &ra);
319 	}
320 	atomic_dec(&fs_info->defrag_running);
321 
322 	/*
323 	 * During unmount, we use the transaction_wait queue to wait for the
324 	 * defragger to stop.
325 	 */
326 	wake_up(&fs_info->transaction_wait);
327 	return 0;
328 }
329 
330 /*
331  * Check if two blocks addresses are close, used by defrag.
332  */
333 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
334 {
335 	if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
336 		return true;
337 	if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
338 		return true;
339 	return false;
340 }
341 
342 /*
343  * Go through all the leaves pointed to by a node and reallocate them so that
344  * disk order is close to key order.
345  */
346 static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
347 			      struct btrfs_root *root,
348 			      struct extent_buffer *parent,
349 			      int start_slot, u64 *last_ret,
350 			      struct btrfs_key *progress)
351 {
352 	struct btrfs_fs_info *fs_info = root->fs_info;
353 	const u32 blocksize = fs_info->nodesize;
354 	const int end_slot = btrfs_header_nritems(parent) - 1;
355 	u64 search_start = *last_ret;
356 	u64 last_block = 0;
357 	int ret = 0;
358 	bool progress_passed = false;
359 
360 	/*
361 	 * COWing must happen through a running transaction, which always
362 	 * matches the current fs generation (it's a transaction with a state
363 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
364 	 * into error state to prevent the commit of any transaction.
365 	 */
366 	if (unlikely(trans->transaction != fs_info->running_transaction ||
367 		     trans->transid != fs_info->generation)) {
368 		btrfs_abort_transaction(trans, -EUCLEAN);
369 		btrfs_crit(fs_info,
370 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
371 			   parent->start, btrfs_root_id(root), trans->transid,
372 			   fs_info->running_transaction->transid,
373 			   fs_info->generation);
374 		return -EUCLEAN;
375 	}
376 
377 	if (btrfs_header_nritems(parent) <= 1)
378 		return 0;
379 
380 	for (int i = start_slot; i <= end_slot; i++) {
381 		struct extent_buffer *cur;
382 		struct btrfs_disk_key disk_key;
383 		u64 blocknr;
384 		u64 other;
385 		bool close = true;
386 
387 		btrfs_node_key(parent, &disk_key, i);
388 		if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
389 			continue;
390 
391 		progress_passed = true;
392 		blocknr = btrfs_node_blockptr(parent, i);
393 		if (last_block == 0)
394 			last_block = blocknr;
395 
396 		if (i > 0) {
397 			other = btrfs_node_blockptr(parent, i - 1);
398 			close = close_blocks(blocknr, other, blocksize);
399 		}
400 		if (!close && i < end_slot) {
401 			other = btrfs_node_blockptr(parent, i + 1);
402 			close = close_blocks(blocknr, other, blocksize);
403 		}
404 		if (close) {
405 			last_block = blocknr;
406 			continue;
407 		}
408 
409 		cur = btrfs_read_node_slot(parent, i);
410 		if (IS_ERR(cur))
411 			return PTR_ERR(cur);
412 		if (search_start == 0)
413 			search_start = last_block;
414 
415 		btrfs_tree_lock(cur);
416 		ret = btrfs_force_cow_block(trans, root, cur, parent, i,
417 					    &cur, search_start,
418 					    min(16 * blocksize,
419 						(end_slot - i) * blocksize),
420 					    BTRFS_NESTING_COW);
421 		if (ret) {
422 			btrfs_tree_unlock(cur);
423 			free_extent_buffer(cur);
424 			break;
425 		}
426 		search_start = cur->start;
427 		last_block = cur->start;
428 		*last_ret = search_start;
429 		btrfs_tree_unlock(cur);
430 		free_extent_buffer(cur);
431 	}
432 	return ret;
433 }
434 
435 /*
436  * Defrag all the leaves in a given btree.
437  * Read all the leaves and try to get key order to
438  * better reflect disk order
439  */
440 
441 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
442 			       struct btrfs_root *root)
443 {
444 	struct btrfs_path *path = NULL;
445 	struct btrfs_key key;
446 	int ret = 0;
447 	int wret;
448 	int level;
449 	int next_key_ret = 0;
450 	u64 last_ret = 0;
451 
452 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
453 		goto out;
454 
455 	path = btrfs_alloc_path();
456 	if (!path) {
457 		ret = -ENOMEM;
458 		goto out;
459 	}
460 
461 	level = btrfs_header_level(root->node);
462 
463 	if (level == 0)
464 		goto out;
465 
466 	if (root->defrag_progress.objectid == 0) {
467 		struct extent_buffer *root_node;
468 		u32 nritems;
469 
470 		root_node = btrfs_lock_root_node(root);
471 		nritems = btrfs_header_nritems(root_node);
472 		root->defrag_max.objectid = 0;
473 		/* from above we know this is not a leaf */
474 		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
475 				      nritems - 1);
476 		btrfs_tree_unlock(root_node);
477 		free_extent_buffer(root_node);
478 		memset(&key, 0, sizeof(key));
479 	} else {
480 		memcpy(&key, &root->defrag_progress, sizeof(key));
481 	}
482 
483 	path->keep_locks = 1;
484 
485 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
486 	if (ret < 0)
487 		goto out;
488 	if (ret > 0) {
489 		ret = 0;
490 		goto out;
491 	}
492 	btrfs_release_path(path);
493 	/*
494 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
495 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
496 	 * a deadlock (attempting to write lock an already write locked leaf).
497 	 */
498 	path->lowest_level = 1;
499 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
500 
501 	if (wret < 0) {
502 		ret = wret;
503 		goto out;
504 	}
505 	if (!path->nodes[1]) {
506 		ret = 0;
507 		goto out;
508 	}
509 	/*
510 	 * The node at level 1 must always be locked when our path has
511 	 * keep_locks set and lowest_level is 1, regardless of the value of
512 	 * path->slots[1].
513 	 */
514 	ASSERT(path->locks[1] != 0);
515 	ret = btrfs_realloc_node(trans, root,
516 				 path->nodes[1], 0,
517 				 &last_ret,
518 				 &root->defrag_progress);
519 	if (ret) {
520 		WARN_ON(ret == -EAGAIN);
521 		goto out;
522 	}
523 	/*
524 	 * Now that we reallocated the node we can find the next key. Note that
525 	 * btrfs_find_next_key() can release our path and do another search
526 	 * without COWing, this is because even with path->keep_locks = 1,
527 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
528 	 * node when path->slots[node_level - 1] does not point to the last
529 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
530 	 * we search for the next key after reallocating our node.
531 	 */
532 	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
533 	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
534 					   BTRFS_OLDEST_GENERATION);
535 	if (next_key_ret == 0) {
536 		memcpy(&root->defrag_progress, &key, sizeof(key));
537 		ret = -EAGAIN;
538 	}
539 out:
540 	btrfs_free_path(path);
541 	if (ret == -EAGAIN) {
542 		if (root->defrag_max.objectid > root->defrag_progress.objectid)
543 			goto done;
544 		if (root->defrag_max.type > root->defrag_progress.type)
545 			goto done;
546 		if (root->defrag_max.offset > root->defrag_progress.offset)
547 			goto done;
548 		ret = 0;
549 	}
550 done:
551 	if (ret != -EAGAIN)
552 		memset(&root->defrag_progress, 0,
553 		       sizeof(root->defrag_progress));
554 
555 	return ret;
556 }
557 
558 /*
559  * Defrag a given btree.  Every leaf in the btree is read and defragmented.
560  */
561 int btrfs_defrag_root(struct btrfs_root *root)
562 {
563 	struct btrfs_fs_info *fs_info = root->fs_info;
564 	int ret;
565 
566 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
567 		return 0;
568 
569 	while (1) {
570 		struct btrfs_trans_handle *trans;
571 
572 		trans = btrfs_start_transaction(root, 0);
573 		if (IS_ERR(trans)) {
574 			ret = PTR_ERR(trans);
575 			break;
576 		}
577 
578 		ret = btrfs_defrag_leaves(trans, root);
579 
580 		btrfs_end_transaction(trans);
581 		btrfs_btree_balance_dirty(fs_info);
582 		cond_resched();
583 
584 		if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
585 			break;
586 
587 		if (btrfs_defrag_cancelled(fs_info)) {
588 			btrfs_debug(fs_info, "defrag_root cancelled");
589 			ret = -EAGAIN;
590 			break;
591 		}
592 	}
593 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
594 	return ret;
595 }
596 
597 /*
598  * Defrag specific helper to get an extent map.
599  *
600  * Differences between this and btrfs_get_extent() are:
601  *
602  * - No extent_map will be added to inode->extent_tree
603  *   To reduce memory usage in the long run.
604  *
605  * - Extra optimization to skip file extents older than @newer_than
606  *   By using btrfs_search_forward() we can skip entire file ranges that
607  *   have extents created in past transactions, because btrfs_search_forward()
608  *   will not visit leaves and nodes with a generation smaller than given
609  *   minimal generation threshold (@newer_than).
610  *
611  * Return valid em if we find a file extent matching the requirement.
612  * Return NULL if we can not find a file extent matching the requirement.
613  *
614  * Return ERR_PTR() for error.
615  */
616 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
617 					    u64 start, u64 newer_than)
618 {
619 	struct btrfs_root *root = inode->root;
620 	struct btrfs_file_extent_item *fi;
621 	struct btrfs_path path = { 0 };
622 	struct extent_map *em;
623 	struct btrfs_key key;
624 	u64 ino = btrfs_ino(inode);
625 	int ret;
626 
627 	em = alloc_extent_map();
628 	if (!em) {
629 		ret = -ENOMEM;
630 		goto err;
631 	}
632 
633 	key.objectid = ino;
634 	key.type = BTRFS_EXTENT_DATA_KEY;
635 	key.offset = start;
636 
637 	if (newer_than) {
638 		ret = btrfs_search_forward(root, &key, &path, newer_than);
639 		if (ret < 0)
640 			goto err;
641 		/* Can't find anything newer */
642 		if (ret > 0)
643 			goto not_found;
644 	} else {
645 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
646 		if (ret < 0)
647 			goto err;
648 	}
649 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
650 		/*
651 		 * If btrfs_search_slot() makes path to point beyond nritems,
652 		 * we should not have an empty leaf, as this inode must at
653 		 * least have its INODE_ITEM.
654 		 */
655 		ASSERT(btrfs_header_nritems(path.nodes[0]));
656 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
657 	}
658 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
659 	/* Perfect match, no need to go one slot back */
660 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
661 	    key.offset == start)
662 		goto iterate;
663 
664 	/* We didn't find a perfect match, needs to go one slot back */
665 	if (path.slots[0] > 0) {
666 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
667 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
668 			path.slots[0]--;
669 	}
670 
671 iterate:
672 	/* Iterate through the path to find a file extent covering @start */
673 	while (true) {
674 		u64 extent_end;
675 
676 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
677 			goto next;
678 
679 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
680 
681 		/*
682 		 * We may go one slot back to INODE_REF/XATTR item, then
683 		 * need to go forward until we reach an EXTENT_DATA.
684 		 * But we should still has the correct ino as key.objectid.
685 		 */
686 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
687 			goto next;
688 
689 		/* It's beyond our target range, definitely not extent found */
690 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
691 			goto not_found;
692 
693 		/*
694 		 *	|	|<- File extent ->|
695 		 *	\- start
696 		 *
697 		 * This means there is a hole between start and key.offset.
698 		 */
699 		if (key.offset > start) {
700 			em->start = start;
701 			em->disk_bytenr = EXTENT_MAP_HOLE;
702 			em->disk_num_bytes = 0;
703 			em->ram_bytes = 0;
704 			em->offset = 0;
705 			em->len = key.offset - start;
706 			break;
707 		}
708 
709 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
710 				    struct btrfs_file_extent_item);
711 		extent_end = btrfs_file_extent_end(&path);
712 
713 		/*
714 		 *	|<- file extent ->|	|
715 		 *				\- start
716 		 *
717 		 * We haven't reached start, search next slot.
718 		 */
719 		if (extent_end <= start)
720 			goto next;
721 
722 		/* Now this extent covers @start, convert it to em */
723 		btrfs_extent_item_to_extent_map(inode, &path, fi, em);
724 		break;
725 next:
726 		ret = btrfs_next_item(root, &path);
727 		if (ret < 0)
728 			goto err;
729 		if (ret > 0)
730 			goto not_found;
731 	}
732 	btrfs_release_path(&path);
733 	return em;
734 
735 not_found:
736 	btrfs_release_path(&path);
737 	free_extent_map(em);
738 	return NULL;
739 
740 err:
741 	btrfs_release_path(&path);
742 	free_extent_map(em);
743 	return ERR_PTR(ret);
744 }
745 
746 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
747 					       u64 newer_than, bool locked)
748 {
749 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
750 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
751 	struct extent_map *em;
752 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
753 
754 	/*
755 	 * Hopefully we have this extent in the tree already, try without the
756 	 * full extent lock.
757 	 */
758 	read_lock(&em_tree->lock);
759 	em = lookup_extent_mapping(em_tree, start, sectorsize);
760 	read_unlock(&em_tree->lock);
761 
762 	/*
763 	 * We can get a merged extent, in that case, we need to re-search
764 	 * tree to get the original em for defrag.
765 	 *
766 	 * This is because even if we have adjacent extents that are contiguous
767 	 * and compatible (same type and flags), we still want to defrag them
768 	 * so that we use less metadata (extent items in the extent tree and
769 	 * file extent items in the inode's subvolume tree).
770 	 */
771 	if (em && (em->flags & EXTENT_FLAG_MERGED)) {
772 		free_extent_map(em);
773 		em = NULL;
774 	}
775 
776 	if (!em) {
777 		struct extent_state *cached = NULL;
778 		u64 end = start + sectorsize - 1;
779 
780 		/* Get the big lock and read metadata off disk. */
781 		if (!locked)
782 			lock_extent(io_tree, start, end, &cached);
783 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
784 		if (!locked)
785 			unlock_extent(io_tree, start, end, &cached);
786 
787 		if (IS_ERR(em))
788 			return NULL;
789 	}
790 
791 	return em;
792 }
793 
794 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
795 				   const struct extent_map *em)
796 {
797 	if (extent_map_is_compressed(em))
798 		return BTRFS_MAX_COMPRESSED;
799 	return fs_info->max_extent_size;
800 }
801 
802 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
803 				     u32 extent_thresh, u64 newer_than, bool locked)
804 {
805 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
806 	struct extent_map *next;
807 	bool ret = false;
808 
809 	/* This is the last extent */
810 	if (em->start + em->len >= i_size_read(inode))
811 		return false;
812 
813 	/*
814 	 * Here we need to pass @newer_then when checking the next extent, or
815 	 * we will hit a case we mark current extent for defrag, but the next
816 	 * one will not be a target.
817 	 * This will just cause extra IO without really reducing the fragments.
818 	 */
819 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
820 	/* No more em or hole */
821 	if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE)
822 		goto out;
823 	if (next->flags & EXTENT_FLAG_PREALLOC)
824 		goto out;
825 	/*
826 	 * If the next extent is at its max capacity, defragging current extent
827 	 * makes no sense, as the total number of extents won't change.
828 	 */
829 	if (next->len >= get_extent_max_capacity(fs_info, em))
830 		goto out;
831 	/* Skip older extent */
832 	if (next->generation < newer_than)
833 		goto out;
834 	/* Also check extent size */
835 	if (next->len >= extent_thresh)
836 		goto out;
837 
838 	ret = true;
839 out:
840 	free_extent_map(next);
841 	return ret;
842 }
843 
844 /*
845  * Prepare one page to be defragged.
846  *
847  * This will ensure:
848  *
849  * - Returned page is locked and has been set up properly.
850  * - No ordered extent exists in the page.
851  * - The page is uptodate.
852  *
853  * NOTE: Caller should also wait for page writeback after the cluster is
854  * prepared, here we don't do writeback wait for each page.
855  */
856 static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
857 {
858 	struct address_space *mapping = inode->vfs_inode.i_mapping;
859 	gfp_t mask = btrfs_alloc_write_mask(mapping);
860 	u64 page_start = (u64)index << PAGE_SHIFT;
861 	u64 page_end = page_start + PAGE_SIZE - 1;
862 	struct extent_state *cached_state = NULL;
863 	struct folio *folio;
864 	int ret;
865 
866 again:
867 	folio = __filemap_get_folio(mapping, index,
868 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
869 	if (IS_ERR(folio))
870 		return folio;
871 
872 	/*
873 	 * Since we can defragment files opened read-only, we can encounter
874 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
875 	 * can't do I/O using huge pages yet, so return an error for now.
876 	 * Filesystem transparent huge pages are typically only used for
877 	 * executables that explicitly enable them, so this isn't very
878 	 * restrictive.
879 	 */
880 	if (folio_test_large(folio)) {
881 		folio_unlock(folio);
882 		folio_put(folio);
883 		return ERR_PTR(-ETXTBSY);
884 	}
885 
886 	ret = set_folio_extent_mapped(folio);
887 	if (ret < 0) {
888 		folio_unlock(folio);
889 		folio_put(folio);
890 		return ERR_PTR(ret);
891 	}
892 
893 	/* Wait for any existing ordered extent in the range */
894 	while (1) {
895 		struct btrfs_ordered_extent *ordered;
896 
897 		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
898 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
899 		unlock_extent(&inode->io_tree, page_start, page_end,
900 			      &cached_state);
901 		if (!ordered)
902 			break;
903 
904 		folio_unlock(folio);
905 		btrfs_start_ordered_extent(ordered);
906 		btrfs_put_ordered_extent(ordered);
907 		folio_lock(folio);
908 		/*
909 		 * We unlocked the folio above, so we need check if it was
910 		 * released or not.
911 		 */
912 		if (folio->mapping != mapping || !folio->private) {
913 			folio_unlock(folio);
914 			folio_put(folio);
915 			goto again;
916 		}
917 	}
918 
919 	/*
920 	 * Now the page range has no ordered extent any more.  Read the page to
921 	 * make it uptodate.
922 	 */
923 	if (!folio_test_uptodate(folio)) {
924 		btrfs_read_folio(NULL, folio);
925 		folio_lock(folio);
926 		if (folio->mapping != mapping || !folio->private) {
927 			folio_unlock(folio);
928 			folio_put(folio);
929 			goto again;
930 		}
931 		if (!folio_test_uptodate(folio)) {
932 			folio_unlock(folio);
933 			folio_put(folio);
934 			return ERR_PTR(-EIO);
935 		}
936 	}
937 	return folio;
938 }
939 
940 struct defrag_target_range {
941 	struct list_head list;
942 	u64 start;
943 	u64 len;
944 };
945 
946 /*
947  * Collect all valid target extents.
948  *
949  * @start:	   file offset to lookup
950  * @len:	   length to lookup
951  * @extent_thresh: file extent size threshold, any extent size >= this value
952  *		   will be ignored
953  * @newer_than:    only defrag extents newer than this value
954  * @do_compress:   whether the defrag is doing compression
955  *		   if true, @extent_thresh will be ignored and all regular
956  *		   file extents meeting @newer_than will be targets.
957  * @locked:	   if the range has already held extent lock
958  * @target_list:   list of targets file extents
959  */
960 static int defrag_collect_targets(struct btrfs_inode *inode,
961 				  u64 start, u64 len, u32 extent_thresh,
962 				  u64 newer_than, bool do_compress,
963 				  bool locked, struct list_head *target_list,
964 				  u64 *last_scanned_ret)
965 {
966 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
967 	bool last_is_target = false;
968 	u64 cur = start;
969 	int ret = 0;
970 
971 	while (cur < start + len) {
972 		struct extent_map *em;
973 		struct defrag_target_range *new;
974 		bool next_mergeable = true;
975 		u64 range_len;
976 
977 		last_is_target = false;
978 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
979 		if (!em)
980 			break;
981 
982 		/*
983 		 * If the file extent is an inlined one, we may still want to
984 		 * defrag it (fallthrough) if it will cause a regular extent.
985 		 * This is for users who want to convert inline extents to
986 		 * regular ones through max_inline= mount option.
987 		 */
988 		if (em->disk_bytenr == EXTENT_MAP_INLINE &&
989 		    em->len <= inode->root->fs_info->max_inline)
990 			goto next;
991 
992 		/* Skip holes and preallocated extents. */
993 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
994 		    (em->flags & EXTENT_FLAG_PREALLOC))
995 			goto next;
996 
997 		/* Skip older extent */
998 		if (em->generation < newer_than)
999 			goto next;
1000 
1001 		/* This em is under writeback, no need to defrag */
1002 		if (em->generation == (u64)-1)
1003 			goto next;
1004 
1005 		/*
1006 		 * Our start offset might be in the middle of an existing extent
1007 		 * map, so take that into account.
1008 		 */
1009 		range_len = em->len - (cur - em->start);
1010 		/*
1011 		 * If this range of the extent map is already flagged for delalloc,
1012 		 * skip it, because:
1013 		 *
1014 		 * 1) We could deadlock later, when trying to reserve space for
1015 		 *    delalloc, because in case we can't immediately reserve space
1016 		 *    the flusher can start delalloc and wait for the respective
1017 		 *    ordered extents to complete. The deadlock would happen
1018 		 *    because we do the space reservation while holding the range
1019 		 *    locked, and starting writeback, or finishing an ordered
1020 		 *    extent, requires locking the range;
1021 		 *
1022 		 * 2) If there's delalloc there, it means there's dirty pages for
1023 		 *    which writeback has not started yet (we clean the delalloc
1024 		 *    flag when starting writeback and after creating an ordered
1025 		 *    extent). If we mark pages in an adjacent range for defrag,
1026 		 *    then we will have a larger contiguous range for delalloc,
1027 		 *    very likely resulting in a larger extent after writeback is
1028 		 *    triggered (except in a case of free space fragmentation).
1029 		 */
1030 		if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
1031 					  EXTENT_DELALLOC))
1032 			goto next;
1033 
1034 		/*
1035 		 * For do_compress case, we want to compress all valid file
1036 		 * extents, thus no @extent_thresh or mergeable check.
1037 		 */
1038 		if (do_compress)
1039 			goto add;
1040 
1041 		/* Skip too large extent */
1042 		if (em->len >= extent_thresh)
1043 			goto next;
1044 
1045 		/*
1046 		 * Skip extents already at its max capacity, this is mostly for
1047 		 * compressed extents, which max cap is only 128K.
1048 		 */
1049 		if (em->len >= get_extent_max_capacity(fs_info, em))
1050 			goto next;
1051 
1052 		/*
1053 		 * Normally there are no more extents after an inline one, thus
1054 		 * @next_mergeable will normally be false and not defragged.
1055 		 * So if an inline extent passed all above checks, just add it
1056 		 * for defrag, and be converted to regular extents.
1057 		 */
1058 		if (em->disk_bytenr == EXTENT_MAP_INLINE)
1059 			goto add;
1060 
1061 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1062 						extent_thresh, newer_than, locked);
1063 		if (!next_mergeable) {
1064 			struct defrag_target_range *last;
1065 
1066 			/* Empty target list, no way to merge with last entry */
1067 			if (list_empty(target_list))
1068 				goto next;
1069 			last = list_entry(target_list->prev,
1070 					  struct defrag_target_range, list);
1071 			/* Not mergeable with last entry */
1072 			if (last->start + last->len != cur)
1073 				goto next;
1074 
1075 			/* Mergeable, fall through to add it to @target_list. */
1076 		}
1077 
1078 add:
1079 		last_is_target = true;
1080 		range_len = min(extent_map_end(em), start + len) - cur;
1081 		/*
1082 		 * This one is a good target, check if it can be merged into
1083 		 * last range of the target list.
1084 		 */
1085 		if (!list_empty(target_list)) {
1086 			struct defrag_target_range *last;
1087 
1088 			last = list_entry(target_list->prev,
1089 					  struct defrag_target_range, list);
1090 			ASSERT(last->start + last->len <= cur);
1091 			if (last->start + last->len == cur) {
1092 				/* Mergeable, enlarge the last entry */
1093 				last->len += range_len;
1094 				goto next;
1095 			}
1096 			/* Fall through to allocate a new entry */
1097 		}
1098 
1099 		/* Allocate new defrag_target_range */
1100 		new = kmalloc(sizeof(*new), GFP_NOFS);
1101 		if (!new) {
1102 			free_extent_map(em);
1103 			ret = -ENOMEM;
1104 			break;
1105 		}
1106 		new->start = cur;
1107 		new->len = range_len;
1108 		list_add_tail(&new->list, target_list);
1109 
1110 next:
1111 		cur = extent_map_end(em);
1112 		free_extent_map(em);
1113 	}
1114 	if (ret < 0) {
1115 		struct defrag_target_range *entry;
1116 		struct defrag_target_range *tmp;
1117 
1118 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1119 			list_del_init(&entry->list);
1120 			kfree(entry);
1121 		}
1122 	}
1123 	if (!ret && last_scanned_ret) {
1124 		/*
1125 		 * If the last extent is not a target, the caller can skip to
1126 		 * the end of that extent.
1127 		 * Otherwise, we can only go the end of the specified range.
1128 		 */
1129 		if (!last_is_target)
1130 			*last_scanned_ret = max(cur, *last_scanned_ret);
1131 		else
1132 			*last_scanned_ret = max(start + len, *last_scanned_ret);
1133 	}
1134 	return ret;
1135 }
1136 
1137 #define CLUSTER_SIZE	(SZ_256K)
1138 static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1139 
1140 /*
1141  * Defrag one contiguous target range.
1142  *
1143  * @inode:	target inode
1144  * @target:	target range to defrag
1145  * @pages:	locked pages covering the defrag range
1146  * @nr_pages:	number of locked pages
1147  *
1148  * Caller should ensure:
1149  *
1150  * - Pages are prepared
1151  *   Pages should be locked, no ordered extent in the pages range,
1152  *   no writeback.
1153  *
1154  * - Extent bits are locked
1155  */
1156 static int defrag_one_locked_target(struct btrfs_inode *inode,
1157 				    struct defrag_target_range *target,
1158 				    struct folio **folios, int nr_pages,
1159 				    struct extent_state **cached_state)
1160 {
1161 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1162 	struct extent_changeset *data_reserved = NULL;
1163 	const u64 start = target->start;
1164 	const u64 len = target->len;
1165 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1166 	unsigned long start_index = start >> PAGE_SHIFT;
1167 	unsigned long first_index = folios[0]->index;
1168 	int ret = 0;
1169 	int i;
1170 
1171 	ASSERT(last_index - first_index + 1 <= nr_pages);
1172 
1173 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1174 	if (ret < 0)
1175 		return ret;
1176 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1177 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1178 			 EXTENT_DEFRAG, cached_state);
1179 	set_extent_bit(&inode->io_tree, start, start + len - 1,
1180 		       EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1181 
1182 	/* Update the page status */
1183 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1184 		folio_clear_checked(folios[i]);
1185 		btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len);
1186 	}
1187 	btrfs_delalloc_release_extents(inode, len);
1188 	extent_changeset_free(data_reserved);
1189 
1190 	return ret;
1191 }
1192 
1193 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1194 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1195 			    u64 *last_scanned_ret)
1196 {
1197 	struct extent_state *cached_state = NULL;
1198 	struct defrag_target_range *entry;
1199 	struct defrag_target_range *tmp;
1200 	LIST_HEAD(target_list);
1201 	struct folio **folios;
1202 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1203 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1204 	u64 start_index = start >> PAGE_SHIFT;
1205 	unsigned int nr_pages = last_index - start_index + 1;
1206 	int ret = 0;
1207 	int i;
1208 
1209 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1210 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1211 
1212 	folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
1213 	if (!folios)
1214 		return -ENOMEM;
1215 
1216 	/* Prepare all pages */
1217 	for (i = 0; i < nr_pages; i++) {
1218 		folios[i] = defrag_prepare_one_folio(inode, start_index + i);
1219 		if (IS_ERR(folios[i])) {
1220 			ret = PTR_ERR(folios[i]);
1221 			nr_pages = i;
1222 			goto free_folios;
1223 		}
1224 	}
1225 	for (i = 0; i < nr_pages; i++)
1226 		folio_wait_writeback(folios[i]);
1227 
1228 	/* Lock the pages range */
1229 	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1230 		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1231 		    &cached_state);
1232 	/*
1233 	 * Now we have a consistent view about the extent map, re-check
1234 	 * which range really needs to be defragged.
1235 	 *
1236 	 * And this time we have extent locked already, pass @locked = true
1237 	 * so that we won't relock the extent range and cause deadlock.
1238 	 */
1239 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1240 				     newer_than, do_compress, true,
1241 				     &target_list, last_scanned_ret);
1242 	if (ret < 0)
1243 		goto unlock_extent;
1244 
1245 	list_for_each_entry(entry, &target_list, list) {
1246 		ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
1247 					       &cached_state);
1248 		if (ret < 0)
1249 			break;
1250 	}
1251 
1252 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1253 		list_del_init(&entry->list);
1254 		kfree(entry);
1255 	}
1256 unlock_extent:
1257 	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1258 		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1259 		      &cached_state);
1260 free_folios:
1261 	for (i = 0; i < nr_pages; i++) {
1262 		folio_unlock(folios[i]);
1263 		folio_put(folios[i]);
1264 	}
1265 	kfree(folios);
1266 	return ret;
1267 }
1268 
1269 static int defrag_one_cluster(struct btrfs_inode *inode,
1270 			      struct file_ra_state *ra,
1271 			      u64 start, u32 len, u32 extent_thresh,
1272 			      u64 newer_than, bool do_compress,
1273 			      unsigned long *sectors_defragged,
1274 			      unsigned long max_sectors,
1275 			      u64 *last_scanned_ret)
1276 {
1277 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1278 	struct defrag_target_range *entry;
1279 	struct defrag_target_range *tmp;
1280 	LIST_HEAD(target_list);
1281 	int ret;
1282 
1283 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1284 				     newer_than, do_compress, false,
1285 				     &target_list, NULL);
1286 	if (ret < 0)
1287 		goto out;
1288 
1289 	list_for_each_entry(entry, &target_list, list) {
1290 		u32 range_len = entry->len;
1291 
1292 		/* Reached or beyond the limit */
1293 		if (max_sectors && *sectors_defragged >= max_sectors) {
1294 			ret = 1;
1295 			break;
1296 		}
1297 
1298 		if (max_sectors)
1299 			range_len = min_t(u32, range_len,
1300 				(max_sectors - *sectors_defragged) * sectorsize);
1301 
1302 		/*
1303 		 * If defrag_one_range() has updated last_scanned_ret,
1304 		 * our range may already be invalid (e.g. hole punched).
1305 		 * Skip if our range is before last_scanned_ret, as there is
1306 		 * no need to defrag the range anymore.
1307 		 */
1308 		if (entry->start + range_len <= *last_scanned_ret)
1309 			continue;
1310 
1311 		page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1312 				ra, NULL, entry->start >> PAGE_SHIFT,
1313 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1314 				(entry->start >> PAGE_SHIFT) + 1);
1315 		/*
1316 		 * Here we may not defrag any range if holes are punched before
1317 		 * we locked the pages.
1318 		 * But that's fine, it only affects the @sectors_defragged
1319 		 * accounting.
1320 		 */
1321 		ret = defrag_one_range(inode, entry->start, range_len,
1322 				       extent_thresh, newer_than, do_compress,
1323 				       last_scanned_ret);
1324 		if (ret < 0)
1325 			break;
1326 		*sectors_defragged += range_len >>
1327 				      inode->root->fs_info->sectorsize_bits;
1328 	}
1329 out:
1330 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1331 		list_del_init(&entry->list);
1332 		kfree(entry);
1333 	}
1334 	if (ret >= 0)
1335 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1336 	return ret;
1337 }
1338 
1339 /*
1340  * Entry point to file defragmentation.
1341  *
1342  * @inode:	   inode to be defragged
1343  * @ra:		   readahead state
1344  * @range:	   defrag options including range and flags
1345  * @newer_than:	   minimum transid to defrag
1346  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1347  *		   will be defragged.
1348  *
1349  * Return <0 for error.
1350  * Return >=0 for the number of sectors defragged, and range->start will be updated
1351  * to indicate the file offset where next defrag should be started at.
1352  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1353  *  defragging all the range).
1354  */
1355 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1356 		      struct btrfs_ioctl_defrag_range_args *range,
1357 		      u64 newer_than, unsigned long max_to_defrag)
1358 {
1359 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1360 	unsigned long sectors_defragged = 0;
1361 	u64 isize = i_size_read(inode);
1362 	u64 cur;
1363 	u64 last_byte;
1364 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1365 	int compress_type = BTRFS_COMPRESS_ZLIB;
1366 	int ret = 0;
1367 	u32 extent_thresh = range->extent_thresh;
1368 	pgoff_t start_index;
1369 
1370 	ASSERT(ra);
1371 
1372 	if (isize == 0)
1373 		return 0;
1374 
1375 	if (range->start >= isize)
1376 		return -EINVAL;
1377 
1378 	if (do_compress) {
1379 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1380 			return -EINVAL;
1381 		if (range->compress_type)
1382 			compress_type = range->compress_type;
1383 	}
1384 
1385 	if (extent_thresh == 0)
1386 		extent_thresh = SZ_256K;
1387 
1388 	if (range->start + range->len > range->start) {
1389 		/* Got a specific range */
1390 		last_byte = min(isize, range->start + range->len);
1391 	} else {
1392 		/* Defrag until file end */
1393 		last_byte = isize;
1394 	}
1395 
1396 	/* Align the range */
1397 	cur = round_down(range->start, fs_info->sectorsize);
1398 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1399 
1400 	/*
1401 	 * Make writeback start from the beginning of the range, so that the
1402 	 * defrag range can be written sequentially.
1403 	 */
1404 	start_index = cur >> PAGE_SHIFT;
1405 	if (start_index < inode->i_mapping->writeback_index)
1406 		inode->i_mapping->writeback_index = start_index;
1407 
1408 	while (cur < last_byte) {
1409 		const unsigned long prev_sectors_defragged = sectors_defragged;
1410 		u64 last_scanned = cur;
1411 		u64 cluster_end;
1412 
1413 		if (btrfs_defrag_cancelled(fs_info)) {
1414 			ret = -EAGAIN;
1415 			break;
1416 		}
1417 
1418 		/* We want the cluster end at page boundary when possible */
1419 		cluster_end = (((cur >> PAGE_SHIFT) +
1420 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1421 		cluster_end = min(cluster_end, last_byte);
1422 
1423 		btrfs_inode_lock(BTRFS_I(inode), 0);
1424 		if (IS_SWAPFILE(inode)) {
1425 			ret = -ETXTBSY;
1426 			btrfs_inode_unlock(BTRFS_I(inode), 0);
1427 			break;
1428 		}
1429 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1430 			btrfs_inode_unlock(BTRFS_I(inode), 0);
1431 			break;
1432 		}
1433 		if (do_compress)
1434 			BTRFS_I(inode)->defrag_compress = compress_type;
1435 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1436 				cluster_end + 1 - cur, extent_thresh,
1437 				newer_than, do_compress, &sectors_defragged,
1438 				max_to_defrag, &last_scanned);
1439 
1440 		if (sectors_defragged > prev_sectors_defragged)
1441 			balance_dirty_pages_ratelimited(inode->i_mapping);
1442 
1443 		btrfs_inode_unlock(BTRFS_I(inode), 0);
1444 		if (ret < 0)
1445 			break;
1446 		cur = max(cluster_end + 1, last_scanned);
1447 		if (ret > 0) {
1448 			ret = 0;
1449 			break;
1450 		}
1451 		cond_resched();
1452 	}
1453 
1454 	/*
1455 	 * Update range.start for autodefrag, this will indicate where to start
1456 	 * in next run.
1457 	 */
1458 	range->start = cur;
1459 	if (sectors_defragged) {
1460 		/*
1461 		 * We have defragged some sectors, for compression case they
1462 		 * need to be written back immediately.
1463 		 */
1464 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1465 			filemap_flush(inode->i_mapping);
1466 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1467 				     &BTRFS_I(inode)->runtime_flags))
1468 				filemap_flush(inode->i_mapping);
1469 		}
1470 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1471 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1472 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1473 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1474 		ret = sectors_defragged;
1475 	}
1476 	if (do_compress) {
1477 		btrfs_inode_lock(BTRFS_I(inode), 0);
1478 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1479 		btrfs_inode_unlock(BTRFS_I(inode), 0);
1480 	}
1481 	return ret;
1482 }
1483 
1484 void __cold btrfs_auto_defrag_exit(void)
1485 {
1486 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1487 }
1488 
1489 int __init btrfs_auto_defrag_init(void)
1490 {
1491 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1492 					sizeof(struct inode_defrag), 0, 0, NULL);
1493 	if (!btrfs_inode_defrag_cachep)
1494 		return -ENOMEM;
1495 
1496 	return 0;
1497 }
1498