1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include "ctree.h" 8 #include "disk-io.h" 9 #include "transaction.h" 10 #include "locking.h" 11 #include "accessors.h" 12 #include "messages.h" 13 #include "delalloc-space.h" 14 #include "subpage.h" 15 #include "defrag.h" 16 #include "file-item.h" 17 #include "super.h" 18 19 static struct kmem_cache *btrfs_inode_defrag_cachep; 20 21 /* 22 * When auto defrag is enabled we queue up these defrag structs to remember 23 * which inodes need defragging passes. 24 */ 25 struct inode_defrag { 26 struct rb_node rb_node; 27 /* Inode number */ 28 u64 ino; 29 /* 30 * Transid where the defrag was added, we search for extents newer than 31 * this. 32 */ 33 u64 transid; 34 35 /* Root objectid */ 36 u64 root; 37 38 /* 39 * The extent size threshold for autodefrag. 40 * 41 * This value is different for compressed/non-compressed extents, thus 42 * needs to be passed from higher layer. 43 * (aka, inode_should_defrag()) 44 */ 45 u32 extent_thresh; 46 }; 47 48 static int compare_inode_defrag(const struct inode_defrag *defrag1, 49 const struct inode_defrag *defrag2) 50 { 51 if (defrag1->root > defrag2->root) 52 return 1; 53 else if (defrag1->root < defrag2->root) 54 return -1; 55 else if (defrag1->ino > defrag2->ino) 56 return 1; 57 else if (defrag1->ino < defrag2->ino) 58 return -1; 59 else 60 return 0; 61 } 62 63 /* 64 * Insert a record for an inode into the defrag tree. The lock must be held 65 * already. 66 * 67 * If you're inserting a record for an older transid than an existing record, 68 * the transid already in the tree is lowered. 69 */ 70 static int btrfs_insert_inode_defrag(struct btrfs_inode *inode, 71 struct inode_defrag *defrag) 72 { 73 struct btrfs_fs_info *fs_info = inode->root->fs_info; 74 struct inode_defrag *entry; 75 struct rb_node **p; 76 struct rb_node *parent = NULL; 77 int ret; 78 79 p = &fs_info->defrag_inodes.rb_node; 80 while (*p) { 81 parent = *p; 82 entry = rb_entry(parent, struct inode_defrag, rb_node); 83 84 ret = compare_inode_defrag(defrag, entry); 85 if (ret < 0) 86 p = &parent->rb_left; 87 else if (ret > 0) 88 p = &parent->rb_right; 89 else { 90 /* 91 * If we're reinserting an entry for an old defrag run, 92 * make sure to lower the transid of our existing 93 * record. 94 */ 95 if (defrag->transid < entry->transid) 96 entry->transid = defrag->transid; 97 entry->extent_thresh = min(defrag->extent_thresh, 98 entry->extent_thresh); 99 return -EEXIST; 100 } 101 } 102 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 103 rb_link_node(&defrag->rb_node, parent, p); 104 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 105 return 0; 106 } 107 108 static inline int need_auto_defrag(struct btrfs_fs_info *fs_info) 109 { 110 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 111 return 0; 112 113 if (btrfs_fs_closing(fs_info)) 114 return 0; 115 116 return 1; 117 } 118 119 /* 120 * Insert a defrag record for this inode if auto defrag is enabled. No errors 121 * returned as they're not considered fatal. 122 */ 123 void btrfs_add_inode_defrag(struct btrfs_inode *inode, u32 extent_thresh) 124 { 125 struct btrfs_root *root = inode->root; 126 struct btrfs_fs_info *fs_info = root->fs_info; 127 struct inode_defrag *defrag; 128 int ret; 129 130 if (!need_auto_defrag(fs_info)) 131 return; 132 133 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 134 return; 135 136 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 137 if (!defrag) 138 return; 139 140 defrag->ino = btrfs_ino(inode); 141 defrag->transid = btrfs_get_root_last_trans(root); 142 defrag->root = btrfs_root_id(root); 143 defrag->extent_thresh = extent_thresh; 144 145 spin_lock(&fs_info->defrag_inodes_lock); 146 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 147 /* 148 * If we set IN_DEFRAG flag and evict the inode from memory, 149 * and then re-read this inode, this new inode doesn't have 150 * IN_DEFRAG flag. At the case, we may find the existed defrag. 151 */ 152 ret = btrfs_insert_inode_defrag(inode, defrag); 153 if (ret) 154 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 155 } else { 156 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 157 } 158 spin_unlock(&fs_info->defrag_inodes_lock); 159 } 160 161 /* 162 * Pick the defragable inode that we want, if it doesn't exist, we will get the 163 * next one. 164 */ 165 static struct inode_defrag *btrfs_pick_defrag_inode( 166 struct btrfs_fs_info *fs_info, u64 root, u64 ino) 167 { 168 struct inode_defrag *entry = NULL; 169 struct inode_defrag tmp; 170 struct rb_node *p; 171 struct rb_node *parent = NULL; 172 int ret; 173 174 tmp.ino = ino; 175 tmp.root = root; 176 177 spin_lock(&fs_info->defrag_inodes_lock); 178 p = fs_info->defrag_inodes.rb_node; 179 while (p) { 180 parent = p; 181 entry = rb_entry(parent, struct inode_defrag, rb_node); 182 183 ret = compare_inode_defrag(&tmp, entry); 184 if (ret < 0) 185 p = parent->rb_left; 186 else if (ret > 0) 187 p = parent->rb_right; 188 else 189 goto out; 190 } 191 192 if (parent && compare_inode_defrag(&tmp, entry) > 0) { 193 parent = rb_next(parent); 194 if (parent) 195 entry = rb_entry(parent, struct inode_defrag, rb_node); 196 else 197 entry = NULL; 198 } 199 out: 200 if (entry) 201 rb_erase(parent, &fs_info->defrag_inodes); 202 spin_unlock(&fs_info->defrag_inodes_lock); 203 return entry; 204 } 205 206 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 207 { 208 struct inode_defrag *defrag, *next; 209 210 spin_lock(&fs_info->defrag_inodes_lock); 211 212 rbtree_postorder_for_each_entry_safe(defrag, next, 213 &fs_info->defrag_inodes, rb_node) 214 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 215 216 spin_unlock(&fs_info->defrag_inodes_lock); 217 } 218 219 #define BTRFS_DEFRAG_BATCH 1024 220 221 static int btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 222 struct inode_defrag *defrag, 223 struct file_ra_state *ra) 224 { 225 struct btrfs_root *inode_root; 226 struct inode *inode; 227 struct btrfs_ioctl_defrag_range_args range; 228 int ret = 0; 229 u64 cur = 0; 230 231 again: 232 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 233 goto cleanup; 234 if (!need_auto_defrag(fs_info)) 235 goto cleanup; 236 237 /* Get the inode */ 238 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 239 if (IS_ERR(inode_root)) { 240 ret = PTR_ERR(inode_root); 241 goto cleanup; 242 } 243 244 inode = btrfs_iget(defrag->ino, inode_root); 245 btrfs_put_root(inode_root); 246 if (IS_ERR(inode)) { 247 ret = PTR_ERR(inode); 248 goto cleanup; 249 } 250 251 if (cur >= i_size_read(inode)) { 252 iput(inode); 253 goto cleanup; 254 } 255 256 /* Do a chunk of defrag */ 257 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 258 memset(&range, 0, sizeof(range)); 259 range.len = (u64)-1; 260 range.start = cur; 261 range.extent_thresh = defrag->extent_thresh; 262 file_ra_state_init(ra, inode->i_mapping); 263 264 sb_start_write(fs_info->sb); 265 ret = btrfs_defrag_file(inode, ra, &range, defrag->transid, 266 BTRFS_DEFRAG_BATCH); 267 sb_end_write(fs_info->sb); 268 iput(inode); 269 270 if (ret < 0) 271 goto cleanup; 272 273 cur = max(cur + fs_info->sectorsize, range.start); 274 goto again; 275 276 cleanup: 277 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 278 return ret; 279 } 280 281 /* 282 * Run through the list of inodes in the FS that need defragging. 283 */ 284 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 285 { 286 struct inode_defrag *defrag; 287 u64 first_ino = 0; 288 u64 root_objectid = 0; 289 290 atomic_inc(&fs_info->defrag_running); 291 while (1) { 292 struct file_ra_state ra = { 0 }; 293 294 /* Pause the auto defragger. */ 295 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 296 break; 297 298 if (!need_auto_defrag(fs_info)) 299 break; 300 301 /* find an inode to defrag */ 302 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino); 303 if (!defrag) { 304 if (root_objectid || first_ino) { 305 root_objectid = 0; 306 first_ino = 0; 307 continue; 308 } else { 309 break; 310 } 311 } 312 313 first_ino = defrag->ino + 1; 314 root_objectid = defrag->root; 315 316 btrfs_run_defrag_inode(fs_info, defrag, &ra); 317 } 318 atomic_dec(&fs_info->defrag_running); 319 320 /* 321 * During unmount, we use the transaction_wait queue to wait for the 322 * defragger to stop. 323 */ 324 wake_up(&fs_info->transaction_wait); 325 return 0; 326 } 327 328 /* 329 * Check if two blocks addresses are close, used by defrag. 330 */ 331 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize) 332 { 333 if (blocknr < other && other - (blocknr + blocksize) < SZ_32K) 334 return true; 335 if (blocknr > other && blocknr - (other + blocksize) < SZ_32K) 336 return true; 337 return false; 338 } 339 340 /* 341 * Go through all the leaves pointed to by a node and reallocate them so that 342 * disk order is close to key order. 343 */ 344 static int btrfs_realloc_node(struct btrfs_trans_handle *trans, 345 struct btrfs_root *root, 346 struct extent_buffer *parent, 347 int start_slot, u64 *last_ret, 348 struct btrfs_key *progress) 349 { 350 struct btrfs_fs_info *fs_info = root->fs_info; 351 const u32 blocksize = fs_info->nodesize; 352 const int end_slot = btrfs_header_nritems(parent) - 1; 353 u64 search_start = *last_ret; 354 u64 last_block = 0; 355 int ret = 0; 356 bool progress_passed = false; 357 358 /* 359 * COWing must happen through a running transaction, which always 360 * matches the current fs generation (it's a transaction with a state 361 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs 362 * into error state to prevent the commit of any transaction. 363 */ 364 if (unlikely(trans->transaction != fs_info->running_transaction || 365 trans->transid != fs_info->generation)) { 366 btrfs_abort_transaction(trans, -EUCLEAN); 367 btrfs_crit(fs_info, 368 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu", 369 parent->start, btrfs_root_id(root), trans->transid, 370 fs_info->running_transaction->transid, 371 fs_info->generation); 372 return -EUCLEAN; 373 } 374 375 if (btrfs_header_nritems(parent) <= 1) 376 return 0; 377 378 for (int i = start_slot; i <= end_slot; i++) { 379 struct extent_buffer *cur; 380 struct btrfs_disk_key disk_key; 381 u64 blocknr; 382 u64 other; 383 bool close = true; 384 385 btrfs_node_key(parent, &disk_key, i); 386 if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0) 387 continue; 388 389 progress_passed = true; 390 blocknr = btrfs_node_blockptr(parent, i); 391 if (last_block == 0) 392 last_block = blocknr; 393 394 if (i > 0) { 395 other = btrfs_node_blockptr(parent, i - 1); 396 close = close_blocks(blocknr, other, blocksize); 397 } 398 if (!close && i < end_slot) { 399 other = btrfs_node_blockptr(parent, i + 1); 400 close = close_blocks(blocknr, other, blocksize); 401 } 402 if (close) { 403 last_block = blocknr; 404 continue; 405 } 406 407 cur = btrfs_read_node_slot(parent, i); 408 if (IS_ERR(cur)) 409 return PTR_ERR(cur); 410 if (search_start == 0) 411 search_start = last_block; 412 413 btrfs_tree_lock(cur); 414 ret = btrfs_force_cow_block(trans, root, cur, parent, i, 415 &cur, search_start, 416 min(16 * blocksize, 417 (end_slot - i) * blocksize), 418 BTRFS_NESTING_COW); 419 if (ret) { 420 btrfs_tree_unlock(cur); 421 free_extent_buffer(cur); 422 break; 423 } 424 search_start = cur->start; 425 last_block = cur->start; 426 *last_ret = search_start; 427 btrfs_tree_unlock(cur); 428 free_extent_buffer(cur); 429 } 430 return ret; 431 } 432 433 /* 434 * Defrag all the leaves in a given btree. 435 * Read all the leaves and try to get key order to 436 * better reflect disk order 437 */ 438 439 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 440 struct btrfs_root *root) 441 { 442 struct btrfs_path *path = NULL; 443 struct btrfs_key key; 444 int ret = 0; 445 int wret; 446 int level; 447 int next_key_ret = 0; 448 u64 last_ret = 0; 449 450 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 451 goto out; 452 453 path = btrfs_alloc_path(); 454 if (!path) { 455 ret = -ENOMEM; 456 goto out; 457 } 458 459 level = btrfs_header_level(root->node); 460 461 if (level == 0) 462 goto out; 463 464 if (root->defrag_progress.objectid == 0) { 465 struct extent_buffer *root_node; 466 u32 nritems; 467 468 root_node = btrfs_lock_root_node(root); 469 nritems = btrfs_header_nritems(root_node); 470 root->defrag_max.objectid = 0; 471 /* from above we know this is not a leaf */ 472 btrfs_node_key_to_cpu(root_node, &root->defrag_max, 473 nritems - 1); 474 btrfs_tree_unlock(root_node); 475 free_extent_buffer(root_node); 476 memset(&key, 0, sizeof(key)); 477 } else { 478 memcpy(&key, &root->defrag_progress, sizeof(key)); 479 } 480 481 path->keep_locks = 1; 482 483 ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); 484 if (ret < 0) 485 goto out; 486 if (ret > 0) { 487 ret = 0; 488 goto out; 489 } 490 btrfs_release_path(path); 491 /* 492 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all 493 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later 494 * a deadlock (attempting to write lock an already write locked leaf). 495 */ 496 path->lowest_level = 1; 497 wret = btrfs_search_slot(trans, root, &key, path, 0, 1); 498 499 if (wret < 0) { 500 ret = wret; 501 goto out; 502 } 503 if (!path->nodes[1]) { 504 ret = 0; 505 goto out; 506 } 507 /* 508 * The node at level 1 must always be locked when our path has 509 * keep_locks set and lowest_level is 1, regardless of the value of 510 * path->slots[1]. 511 */ 512 ASSERT(path->locks[1] != 0); 513 ret = btrfs_realloc_node(trans, root, 514 path->nodes[1], 0, 515 &last_ret, 516 &root->defrag_progress); 517 if (ret) { 518 WARN_ON(ret == -EAGAIN); 519 goto out; 520 } 521 /* 522 * Now that we reallocated the node we can find the next key. Note that 523 * btrfs_find_next_key() can release our path and do another search 524 * without COWing, this is because even with path->keep_locks = 1, 525 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a 526 * node when path->slots[node_level - 1] does not point to the last 527 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore 528 * we search for the next key after reallocating our node. 529 */ 530 path->slots[1] = btrfs_header_nritems(path->nodes[1]); 531 next_key_ret = btrfs_find_next_key(root, path, &key, 1, 532 BTRFS_OLDEST_GENERATION); 533 if (next_key_ret == 0) { 534 memcpy(&root->defrag_progress, &key, sizeof(key)); 535 ret = -EAGAIN; 536 } 537 out: 538 btrfs_free_path(path); 539 if (ret == -EAGAIN) { 540 if (root->defrag_max.objectid > root->defrag_progress.objectid) 541 goto done; 542 if (root->defrag_max.type > root->defrag_progress.type) 543 goto done; 544 if (root->defrag_max.offset > root->defrag_progress.offset) 545 goto done; 546 ret = 0; 547 } 548 done: 549 if (ret != -EAGAIN) 550 memset(&root->defrag_progress, 0, 551 sizeof(root->defrag_progress)); 552 553 return ret; 554 } 555 556 /* 557 * Defrag a given btree. Every leaf in the btree is read and defragmented. 558 */ 559 int btrfs_defrag_root(struct btrfs_root *root) 560 { 561 struct btrfs_fs_info *fs_info = root->fs_info; 562 int ret; 563 564 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 565 return 0; 566 567 while (1) { 568 struct btrfs_trans_handle *trans; 569 570 trans = btrfs_start_transaction(root, 0); 571 if (IS_ERR(trans)) { 572 ret = PTR_ERR(trans); 573 break; 574 } 575 576 ret = btrfs_defrag_leaves(trans, root); 577 578 btrfs_end_transaction(trans); 579 btrfs_btree_balance_dirty(fs_info); 580 cond_resched(); 581 582 if (btrfs_fs_closing(fs_info) || ret != -EAGAIN) 583 break; 584 585 if (btrfs_defrag_cancelled(fs_info)) { 586 btrfs_debug(fs_info, "defrag_root cancelled"); 587 ret = -EAGAIN; 588 break; 589 } 590 } 591 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 592 return ret; 593 } 594 595 /* 596 * Defrag specific helper to get an extent map. 597 * 598 * Differences between this and btrfs_get_extent() are: 599 * 600 * - No extent_map will be added to inode->extent_tree 601 * To reduce memory usage in the long run. 602 * 603 * - Extra optimization to skip file extents older than @newer_than 604 * By using btrfs_search_forward() we can skip entire file ranges that 605 * have extents created in past transactions, because btrfs_search_forward() 606 * will not visit leaves and nodes with a generation smaller than given 607 * minimal generation threshold (@newer_than). 608 * 609 * Return valid em if we find a file extent matching the requirement. 610 * Return NULL if we can not find a file extent matching the requirement. 611 * 612 * Return ERR_PTR() for error. 613 */ 614 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, 615 u64 start, u64 newer_than) 616 { 617 struct btrfs_root *root = inode->root; 618 struct btrfs_file_extent_item *fi; 619 struct btrfs_path path = { 0 }; 620 struct extent_map *em; 621 struct btrfs_key key; 622 u64 ino = btrfs_ino(inode); 623 int ret; 624 625 em = alloc_extent_map(); 626 if (!em) { 627 ret = -ENOMEM; 628 goto err; 629 } 630 631 key.objectid = ino; 632 key.type = BTRFS_EXTENT_DATA_KEY; 633 key.offset = start; 634 635 if (newer_than) { 636 ret = btrfs_search_forward(root, &key, &path, newer_than); 637 if (ret < 0) 638 goto err; 639 /* Can't find anything newer */ 640 if (ret > 0) 641 goto not_found; 642 } else { 643 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); 644 if (ret < 0) 645 goto err; 646 } 647 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { 648 /* 649 * If btrfs_search_slot() makes path to point beyond nritems, 650 * we should not have an empty leaf, as this inode must at 651 * least have its INODE_ITEM. 652 */ 653 ASSERT(btrfs_header_nritems(path.nodes[0])); 654 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; 655 } 656 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 657 /* Perfect match, no need to go one slot back */ 658 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && 659 key.offset == start) 660 goto iterate; 661 662 /* We didn't find a perfect match, needs to go one slot back */ 663 if (path.slots[0] > 0) { 664 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 665 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 666 path.slots[0]--; 667 } 668 669 iterate: 670 /* Iterate through the path to find a file extent covering @start */ 671 while (true) { 672 u64 extent_end; 673 674 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) 675 goto next; 676 677 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 678 679 /* 680 * We may go one slot back to INODE_REF/XATTR item, then 681 * need to go forward until we reach an EXTENT_DATA. 682 * But we should still has the correct ino as key.objectid. 683 */ 684 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) 685 goto next; 686 687 /* It's beyond our target range, definitely not extent found */ 688 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) 689 goto not_found; 690 691 /* 692 * | |<- File extent ->| 693 * \- start 694 * 695 * This means there is a hole between start and key.offset. 696 */ 697 if (key.offset > start) { 698 em->start = start; 699 em->disk_bytenr = EXTENT_MAP_HOLE; 700 em->disk_num_bytes = 0; 701 em->ram_bytes = 0; 702 em->offset = 0; 703 em->len = key.offset - start; 704 break; 705 } 706 707 fi = btrfs_item_ptr(path.nodes[0], path.slots[0], 708 struct btrfs_file_extent_item); 709 extent_end = btrfs_file_extent_end(&path); 710 711 /* 712 * |<- file extent ->| | 713 * \- start 714 * 715 * We haven't reached start, search next slot. 716 */ 717 if (extent_end <= start) 718 goto next; 719 720 /* Now this extent covers @start, convert it to em */ 721 btrfs_extent_item_to_extent_map(inode, &path, fi, em); 722 break; 723 next: 724 ret = btrfs_next_item(root, &path); 725 if (ret < 0) 726 goto err; 727 if (ret > 0) 728 goto not_found; 729 } 730 btrfs_release_path(&path); 731 return em; 732 733 not_found: 734 btrfs_release_path(&path); 735 free_extent_map(em); 736 return NULL; 737 738 err: 739 btrfs_release_path(&path); 740 free_extent_map(em); 741 return ERR_PTR(ret); 742 } 743 744 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 745 u64 newer_than, bool locked) 746 { 747 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 748 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 749 struct extent_map *em; 750 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 751 752 /* 753 * Hopefully we have this extent in the tree already, try without the 754 * full extent lock. 755 */ 756 read_lock(&em_tree->lock); 757 em = lookup_extent_mapping(em_tree, start, sectorsize); 758 read_unlock(&em_tree->lock); 759 760 /* 761 * We can get a merged extent, in that case, we need to re-search 762 * tree to get the original em for defrag. 763 * 764 * If @newer_than is 0 or em::generation < newer_than, we can trust 765 * this em, as either we don't care about the generation, or the 766 * merged extent map will be rejected anyway. 767 */ 768 if (em && (em->flags & EXTENT_FLAG_MERGED) && 769 newer_than && em->generation >= newer_than) { 770 free_extent_map(em); 771 em = NULL; 772 } 773 774 if (!em) { 775 struct extent_state *cached = NULL; 776 u64 end = start + sectorsize - 1; 777 778 /* Get the big lock and read metadata off disk. */ 779 if (!locked) 780 lock_extent(io_tree, start, end, &cached); 781 em = defrag_get_extent(BTRFS_I(inode), start, newer_than); 782 if (!locked) 783 unlock_extent(io_tree, start, end, &cached); 784 785 if (IS_ERR(em)) 786 return NULL; 787 } 788 789 return em; 790 } 791 792 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, 793 const struct extent_map *em) 794 { 795 if (extent_map_is_compressed(em)) 796 return BTRFS_MAX_COMPRESSED; 797 return fs_info->max_extent_size; 798 } 799 800 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 801 u32 extent_thresh, u64 newer_than, bool locked) 802 { 803 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 804 struct extent_map *next; 805 bool ret = false; 806 807 /* This is the last extent */ 808 if (em->start + em->len >= i_size_read(inode)) 809 return false; 810 811 /* 812 * Here we need to pass @newer_then when checking the next extent, or 813 * we will hit a case we mark current extent for defrag, but the next 814 * one will not be a target. 815 * This will just cause extra IO without really reducing the fragments. 816 */ 817 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); 818 /* No more em or hole */ 819 if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE) 820 goto out; 821 if (next->flags & EXTENT_FLAG_PREALLOC) 822 goto out; 823 /* 824 * If the next extent is at its max capacity, defragging current extent 825 * makes no sense, as the total number of extents won't change. 826 */ 827 if (next->len >= get_extent_max_capacity(fs_info, em)) 828 goto out; 829 /* Skip older extent */ 830 if (next->generation < newer_than) 831 goto out; 832 /* Also check extent size */ 833 if (next->len >= extent_thresh) 834 goto out; 835 836 ret = true; 837 out: 838 free_extent_map(next); 839 return ret; 840 } 841 842 /* 843 * Prepare one page to be defragged. 844 * 845 * This will ensure: 846 * 847 * - Returned page is locked and has been set up properly. 848 * - No ordered extent exists in the page. 849 * - The page is uptodate. 850 * 851 * NOTE: Caller should also wait for page writeback after the cluster is 852 * prepared, here we don't do writeback wait for each page. 853 */ 854 static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index) 855 { 856 struct address_space *mapping = inode->vfs_inode.i_mapping; 857 gfp_t mask = btrfs_alloc_write_mask(mapping); 858 u64 page_start = (u64)index << PAGE_SHIFT; 859 u64 page_end = page_start + PAGE_SIZE - 1; 860 struct extent_state *cached_state = NULL; 861 struct folio *folio; 862 int ret; 863 864 again: 865 folio = __filemap_get_folio(mapping, index, 866 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 867 if (IS_ERR(folio)) 868 return folio; 869 870 /* 871 * Since we can defragment files opened read-only, we can encounter 872 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 873 * can't do I/O using huge pages yet, so return an error for now. 874 * Filesystem transparent huge pages are typically only used for 875 * executables that explicitly enable them, so this isn't very 876 * restrictive. 877 */ 878 if (folio_test_large(folio)) { 879 folio_unlock(folio); 880 folio_put(folio); 881 return ERR_PTR(-ETXTBSY); 882 } 883 884 ret = set_folio_extent_mapped(folio); 885 if (ret < 0) { 886 folio_unlock(folio); 887 folio_put(folio); 888 return ERR_PTR(ret); 889 } 890 891 /* Wait for any existing ordered extent in the range */ 892 while (1) { 893 struct btrfs_ordered_extent *ordered; 894 895 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 896 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 897 unlock_extent(&inode->io_tree, page_start, page_end, 898 &cached_state); 899 if (!ordered) 900 break; 901 902 folio_unlock(folio); 903 btrfs_start_ordered_extent(ordered); 904 btrfs_put_ordered_extent(ordered); 905 folio_lock(folio); 906 /* 907 * We unlocked the folio above, so we need check if it was 908 * released or not. 909 */ 910 if (folio->mapping != mapping || !folio->private) { 911 folio_unlock(folio); 912 folio_put(folio); 913 goto again; 914 } 915 } 916 917 /* 918 * Now the page range has no ordered extent any more. Read the page to 919 * make it uptodate. 920 */ 921 if (!folio_test_uptodate(folio)) { 922 btrfs_read_folio(NULL, folio); 923 folio_lock(folio); 924 if (folio->mapping != mapping || !folio->private) { 925 folio_unlock(folio); 926 folio_put(folio); 927 goto again; 928 } 929 if (!folio_test_uptodate(folio)) { 930 folio_unlock(folio); 931 folio_put(folio); 932 return ERR_PTR(-EIO); 933 } 934 } 935 return folio; 936 } 937 938 struct defrag_target_range { 939 struct list_head list; 940 u64 start; 941 u64 len; 942 }; 943 944 /* 945 * Collect all valid target extents. 946 * 947 * @start: file offset to lookup 948 * @len: length to lookup 949 * @extent_thresh: file extent size threshold, any extent size >= this value 950 * will be ignored 951 * @newer_than: only defrag extents newer than this value 952 * @do_compress: whether the defrag is doing compression 953 * if true, @extent_thresh will be ignored and all regular 954 * file extents meeting @newer_than will be targets. 955 * @locked: if the range has already held extent lock 956 * @target_list: list of targets file extents 957 */ 958 static int defrag_collect_targets(struct btrfs_inode *inode, 959 u64 start, u64 len, u32 extent_thresh, 960 u64 newer_than, bool do_compress, 961 bool locked, struct list_head *target_list, 962 u64 *last_scanned_ret) 963 { 964 struct btrfs_fs_info *fs_info = inode->root->fs_info; 965 bool last_is_target = false; 966 u64 cur = start; 967 int ret = 0; 968 969 while (cur < start + len) { 970 struct extent_map *em; 971 struct defrag_target_range *new; 972 bool next_mergeable = true; 973 u64 range_len; 974 975 last_is_target = false; 976 em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked); 977 if (!em) 978 break; 979 980 /* 981 * If the file extent is an inlined one, we may still want to 982 * defrag it (fallthrough) if it will cause a regular extent. 983 * This is for users who want to convert inline extents to 984 * regular ones through max_inline= mount option. 985 */ 986 if (em->disk_bytenr == EXTENT_MAP_INLINE && 987 em->len <= inode->root->fs_info->max_inline) 988 goto next; 989 990 /* Skip holes and preallocated extents. */ 991 if (em->disk_bytenr == EXTENT_MAP_HOLE || 992 (em->flags & EXTENT_FLAG_PREALLOC)) 993 goto next; 994 995 /* Skip older extent */ 996 if (em->generation < newer_than) 997 goto next; 998 999 /* This em is under writeback, no need to defrag */ 1000 if (em->generation == (u64)-1) 1001 goto next; 1002 1003 /* 1004 * Our start offset might be in the middle of an existing extent 1005 * map, so take that into account. 1006 */ 1007 range_len = em->len - (cur - em->start); 1008 /* 1009 * If this range of the extent map is already flagged for delalloc, 1010 * skip it, because: 1011 * 1012 * 1) We could deadlock later, when trying to reserve space for 1013 * delalloc, because in case we can't immediately reserve space 1014 * the flusher can start delalloc and wait for the respective 1015 * ordered extents to complete. The deadlock would happen 1016 * because we do the space reservation while holding the range 1017 * locked, and starting writeback, or finishing an ordered 1018 * extent, requires locking the range; 1019 * 1020 * 2) If there's delalloc there, it means there's dirty pages for 1021 * which writeback has not started yet (we clean the delalloc 1022 * flag when starting writeback and after creating an ordered 1023 * extent). If we mark pages in an adjacent range for defrag, 1024 * then we will have a larger contiguous range for delalloc, 1025 * very likely resulting in a larger extent after writeback is 1026 * triggered (except in a case of free space fragmentation). 1027 */ 1028 if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1, 1029 EXTENT_DELALLOC)) 1030 goto next; 1031 1032 /* 1033 * For do_compress case, we want to compress all valid file 1034 * extents, thus no @extent_thresh or mergeable check. 1035 */ 1036 if (do_compress) 1037 goto add; 1038 1039 /* Skip too large extent */ 1040 if (em->len >= extent_thresh) 1041 goto next; 1042 1043 /* 1044 * Skip extents already at its max capacity, this is mostly for 1045 * compressed extents, which max cap is only 128K. 1046 */ 1047 if (em->len >= get_extent_max_capacity(fs_info, em)) 1048 goto next; 1049 1050 /* 1051 * Normally there are no more extents after an inline one, thus 1052 * @next_mergeable will normally be false and not defragged. 1053 * So if an inline extent passed all above checks, just add it 1054 * for defrag, and be converted to regular extents. 1055 */ 1056 if (em->disk_bytenr == EXTENT_MAP_INLINE) 1057 goto add; 1058 1059 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1060 extent_thresh, newer_than, locked); 1061 if (!next_mergeable) { 1062 struct defrag_target_range *last; 1063 1064 /* Empty target list, no way to merge with last entry */ 1065 if (list_empty(target_list)) 1066 goto next; 1067 last = list_entry(target_list->prev, 1068 struct defrag_target_range, list); 1069 /* Not mergeable with last entry */ 1070 if (last->start + last->len != cur) 1071 goto next; 1072 1073 /* Mergeable, fall through to add it to @target_list. */ 1074 } 1075 1076 add: 1077 last_is_target = true; 1078 range_len = min(extent_map_end(em), start + len) - cur; 1079 /* 1080 * This one is a good target, check if it can be merged into 1081 * last range of the target list. 1082 */ 1083 if (!list_empty(target_list)) { 1084 struct defrag_target_range *last; 1085 1086 last = list_entry(target_list->prev, 1087 struct defrag_target_range, list); 1088 ASSERT(last->start + last->len <= cur); 1089 if (last->start + last->len == cur) { 1090 /* Mergeable, enlarge the last entry */ 1091 last->len += range_len; 1092 goto next; 1093 } 1094 /* Fall through to allocate a new entry */ 1095 } 1096 1097 /* Allocate new defrag_target_range */ 1098 new = kmalloc(sizeof(*new), GFP_NOFS); 1099 if (!new) { 1100 free_extent_map(em); 1101 ret = -ENOMEM; 1102 break; 1103 } 1104 new->start = cur; 1105 new->len = range_len; 1106 list_add_tail(&new->list, target_list); 1107 1108 next: 1109 cur = extent_map_end(em); 1110 free_extent_map(em); 1111 } 1112 if (ret < 0) { 1113 struct defrag_target_range *entry; 1114 struct defrag_target_range *tmp; 1115 1116 list_for_each_entry_safe(entry, tmp, target_list, list) { 1117 list_del_init(&entry->list); 1118 kfree(entry); 1119 } 1120 } 1121 if (!ret && last_scanned_ret) { 1122 /* 1123 * If the last extent is not a target, the caller can skip to 1124 * the end of that extent. 1125 * Otherwise, we can only go the end of the specified range. 1126 */ 1127 if (!last_is_target) 1128 *last_scanned_ret = max(cur, *last_scanned_ret); 1129 else 1130 *last_scanned_ret = max(start + len, *last_scanned_ret); 1131 } 1132 return ret; 1133 } 1134 1135 #define CLUSTER_SIZE (SZ_256K) 1136 static_assert(PAGE_ALIGNED(CLUSTER_SIZE)); 1137 1138 /* 1139 * Defrag one contiguous target range. 1140 * 1141 * @inode: target inode 1142 * @target: target range to defrag 1143 * @pages: locked pages covering the defrag range 1144 * @nr_pages: number of locked pages 1145 * 1146 * Caller should ensure: 1147 * 1148 * - Pages are prepared 1149 * Pages should be locked, no ordered extent in the pages range, 1150 * no writeback. 1151 * 1152 * - Extent bits are locked 1153 */ 1154 static int defrag_one_locked_target(struct btrfs_inode *inode, 1155 struct defrag_target_range *target, 1156 struct folio **folios, int nr_pages, 1157 struct extent_state **cached_state) 1158 { 1159 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1160 struct extent_changeset *data_reserved = NULL; 1161 const u64 start = target->start; 1162 const u64 len = target->len; 1163 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1164 unsigned long start_index = start >> PAGE_SHIFT; 1165 unsigned long first_index = folios[0]->index; 1166 int ret = 0; 1167 int i; 1168 1169 ASSERT(last_index - first_index + 1 <= nr_pages); 1170 1171 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1172 if (ret < 0) 1173 return ret; 1174 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1175 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1176 EXTENT_DEFRAG, cached_state); 1177 set_extent_bit(&inode->io_tree, start, start + len - 1, 1178 EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state); 1179 1180 /* Update the page status */ 1181 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1182 folio_clear_checked(folios[i]); 1183 btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len); 1184 } 1185 btrfs_delalloc_release_extents(inode, len); 1186 extent_changeset_free(data_reserved); 1187 1188 return ret; 1189 } 1190 1191 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1192 u32 extent_thresh, u64 newer_than, bool do_compress, 1193 u64 *last_scanned_ret) 1194 { 1195 struct extent_state *cached_state = NULL; 1196 struct defrag_target_range *entry; 1197 struct defrag_target_range *tmp; 1198 LIST_HEAD(target_list); 1199 struct folio **folios; 1200 const u32 sectorsize = inode->root->fs_info->sectorsize; 1201 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1202 u64 start_index = start >> PAGE_SHIFT; 1203 unsigned int nr_pages = last_index - start_index + 1; 1204 int ret = 0; 1205 int i; 1206 1207 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1208 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1209 1210 folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS); 1211 if (!folios) 1212 return -ENOMEM; 1213 1214 /* Prepare all pages */ 1215 for (i = 0; i < nr_pages; i++) { 1216 folios[i] = defrag_prepare_one_folio(inode, start_index + i); 1217 if (IS_ERR(folios[i])) { 1218 ret = PTR_ERR(folios[i]); 1219 nr_pages = i; 1220 goto free_folios; 1221 } 1222 } 1223 for (i = 0; i < nr_pages; i++) 1224 folio_wait_writeback(folios[i]); 1225 1226 /* Lock the pages range */ 1227 lock_extent(&inode->io_tree, start_index << PAGE_SHIFT, 1228 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1229 &cached_state); 1230 /* 1231 * Now we have a consistent view about the extent map, re-check 1232 * which range really needs to be defragged. 1233 * 1234 * And this time we have extent locked already, pass @locked = true 1235 * so that we won't relock the extent range and cause deadlock. 1236 */ 1237 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1238 newer_than, do_compress, true, 1239 &target_list, last_scanned_ret); 1240 if (ret < 0) 1241 goto unlock_extent; 1242 1243 list_for_each_entry(entry, &target_list, list) { 1244 ret = defrag_one_locked_target(inode, entry, folios, nr_pages, 1245 &cached_state); 1246 if (ret < 0) 1247 break; 1248 } 1249 1250 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1251 list_del_init(&entry->list); 1252 kfree(entry); 1253 } 1254 unlock_extent: 1255 unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT, 1256 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1257 &cached_state); 1258 free_folios: 1259 for (i = 0; i < nr_pages; i++) { 1260 folio_unlock(folios[i]); 1261 folio_put(folios[i]); 1262 } 1263 kfree(folios); 1264 return ret; 1265 } 1266 1267 static int defrag_one_cluster(struct btrfs_inode *inode, 1268 struct file_ra_state *ra, 1269 u64 start, u32 len, u32 extent_thresh, 1270 u64 newer_than, bool do_compress, 1271 unsigned long *sectors_defragged, 1272 unsigned long max_sectors, 1273 u64 *last_scanned_ret) 1274 { 1275 const u32 sectorsize = inode->root->fs_info->sectorsize; 1276 struct defrag_target_range *entry; 1277 struct defrag_target_range *tmp; 1278 LIST_HEAD(target_list); 1279 int ret; 1280 1281 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1282 newer_than, do_compress, false, 1283 &target_list, NULL); 1284 if (ret < 0) 1285 goto out; 1286 1287 list_for_each_entry(entry, &target_list, list) { 1288 u32 range_len = entry->len; 1289 1290 /* Reached or beyond the limit */ 1291 if (max_sectors && *sectors_defragged >= max_sectors) { 1292 ret = 1; 1293 break; 1294 } 1295 1296 if (max_sectors) 1297 range_len = min_t(u32, range_len, 1298 (max_sectors - *sectors_defragged) * sectorsize); 1299 1300 /* 1301 * If defrag_one_range() has updated last_scanned_ret, 1302 * our range may already be invalid (e.g. hole punched). 1303 * Skip if our range is before last_scanned_ret, as there is 1304 * no need to defrag the range anymore. 1305 */ 1306 if (entry->start + range_len <= *last_scanned_ret) 1307 continue; 1308 1309 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1310 ra, NULL, entry->start >> PAGE_SHIFT, 1311 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1312 (entry->start >> PAGE_SHIFT) + 1); 1313 /* 1314 * Here we may not defrag any range if holes are punched before 1315 * we locked the pages. 1316 * But that's fine, it only affects the @sectors_defragged 1317 * accounting. 1318 */ 1319 ret = defrag_one_range(inode, entry->start, range_len, 1320 extent_thresh, newer_than, do_compress, 1321 last_scanned_ret); 1322 if (ret < 0) 1323 break; 1324 *sectors_defragged += range_len >> 1325 inode->root->fs_info->sectorsize_bits; 1326 } 1327 out: 1328 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1329 list_del_init(&entry->list); 1330 kfree(entry); 1331 } 1332 if (ret >= 0) 1333 *last_scanned_ret = max(*last_scanned_ret, start + len); 1334 return ret; 1335 } 1336 1337 /* 1338 * Entry point to file defragmentation. 1339 * 1340 * @inode: inode to be defragged 1341 * @ra: readahead state 1342 * @range: defrag options including range and flags 1343 * @newer_than: minimum transid to defrag 1344 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1345 * will be defragged. 1346 * 1347 * Return <0 for error. 1348 * Return >=0 for the number of sectors defragged, and range->start will be updated 1349 * to indicate the file offset where next defrag should be started at. 1350 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1351 * defragging all the range). 1352 */ 1353 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1354 struct btrfs_ioctl_defrag_range_args *range, 1355 u64 newer_than, unsigned long max_to_defrag) 1356 { 1357 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1358 unsigned long sectors_defragged = 0; 1359 u64 isize = i_size_read(inode); 1360 u64 cur; 1361 u64 last_byte; 1362 bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS); 1363 int compress_type = BTRFS_COMPRESS_ZLIB; 1364 int ret = 0; 1365 u32 extent_thresh = range->extent_thresh; 1366 pgoff_t start_index; 1367 1368 ASSERT(ra); 1369 1370 if (isize == 0) 1371 return 0; 1372 1373 if (range->start >= isize) 1374 return -EINVAL; 1375 1376 if (do_compress) { 1377 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1378 return -EINVAL; 1379 if (range->compress_type) 1380 compress_type = range->compress_type; 1381 } 1382 1383 if (extent_thresh == 0) 1384 extent_thresh = SZ_256K; 1385 1386 if (range->start + range->len > range->start) { 1387 /* Got a specific range */ 1388 last_byte = min(isize, range->start + range->len); 1389 } else { 1390 /* Defrag until file end */ 1391 last_byte = isize; 1392 } 1393 1394 /* Align the range */ 1395 cur = round_down(range->start, fs_info->sectorsize); 1396 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1397 1398 /* 1399 * Make writeback start from the beginning of the range, so that the 1400 * defrag range can be written sequentially. 1401 */ 1402 start_index = cur >> PAGE_SHIFT; 1403 if (start_index < inode->i_mapping->writeback_index) 1404 inode->i_mapping->writeback_index = start_index; 1405 1406 while (cur < last_byte) { 1407 const unsigned long prev_sectors_defragged = sectors_defragged; 1408 u64 last_scanned = cur; 1409 u64 cluster_end; 1410 1411 if (btrfs_defrag_cancelled(fs_info)) { 1412 ret = -EAGAIN; 1413 break; 1414 } 1415 1416 /* We want the cluster end at page boundary when possible */ 1417 cluster_end = (((cur >> PAGE_SHIFT) + 1418 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1419 cluster_end = min(cluster_end, last_byte); 1420 1421 btrfs_inode_lock(BTRFS_I(inode), 0); 1422 if (IS_SWAPFILE(inode)) { 1423 ret = -ETXTBSY; 1424 btrfs_inode_unlock(BTRFS_I(inode), 0); 1425 break; 1426 } 1427 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1428 btrfs_inode_unlock(BTRFS_I(inode), 0); 1429 break; 1430 } 1431 if (do_compress) 1432 BTRFS_I(inode)->defrag_compress = compress_type; 1433 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1434 cluster_end + 1 - cur, extent_thresh, 1435 newer_than, do_compress, §ors_defragged, 1436 max_to_defrag, &last_scanned); 1437 1438 if (sectors_defragged > prev_sectors_defragged) 1439 balance_dirty_pages_ratelimited(inode->i_mapping); 1440 1441 btrfs_inode_unlock(BTRFS_I(inode), 0); 1442 if (ret < 0) 1443 break; 1444 cur = max(cluster_end + 1, last_scanned); 1445 if (ret > 0) { 1446 ret = 0; 1447 break; 1448 } 1449 cond_resched(); 1450 } 1451 1452 /* 1453 * Update range.start for autodefrag, this will indicate where to start 1454 * in next run. 1455 */ 1456 range->start = cur; 1457 if (sectors_defragged) { 1458 /* 1459 * We have defragged some sectors, for compression case they 1460 * need to be written back immediately. 1461 */ 1462 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1463 filemap_flush(inode->i_mapping); 1464 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1465 &BTRFS_I(inode)->runtime_flags)) 1466 filemap_flush(inode->i_mapping); 1467 } 1468 if (range->compress_type == BTRFS_COMPRESS_LZO) 1469 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1470 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1471 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1472 ret = sectors_defragged; 1473 } 1474 if (do_compress) { 1475 btrfs_inode_lock(BTRFS_I(inode), 0); 1476 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1477 btrfs_inode_unlock(BTRFS_I(inode), 0); 1478 } 1479 return ret; 1480 } 1481 1482 void __cold btrfs_auto_defrag_exit(void) 1483 { 1484 kmem_cache_destroy(btrfs_inode_defrag_cachep); 1485 } 1486 1487 int __init btrfs_auto_defrag_init(void) 1488 { 1489 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 1490 sizeof(struct inode_defrag), 0, 0, NULL); 1491 if (!btrfs_inode_defrag_cachep) 1492 return -ENOMEM; 1493 1494 return 0; 1495 } 1496