xref: /linux/fs/btrfs/defrag.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "transaction.h"
10 #include "locking.h"
11 #include "accessors.h"
12 #include "messages.h"
13 #include "delalloc-space.h"
14 #include "subpage.h"
15 #include "defrag.h"
16 #include "file-item.h"
17 #include "super.h"
18 
19 static struct kmem_cache *btrfs_inode_defrag_cachep;
20 
21 /*
22  * When auto defrag is enabled we queue up these defrag structs to remember
23  * which inodes need defragging passes.
24  */
25 struct inode_defrag {
26 	struct rb_node rb_node;
27 	/* Inode number */
28 	u64 ino;
29 	/*
30 	 * Transid where the defrag was added, we search for extents newer than
31 	 * this.
32 	 */
33 	u64 transid;
34 
35 	/* Root objectid */
36 	u64 root;
37 
38 	/*
39 	 * The extent size threshold for autodefrag.
40 	 *
41 	 * This value is different for compressed/non-compressed extents, thus
42 	 * needs to be passed from higher layer.
43 	 * (aka, inode_should_defrag())
44 	 */
45 	u32 extent_thresh;
46 };
47 
48 static int __compare_inode_defrag(struct inode_defrag *defrag1,
49 				  struct inode_defrag *defrag2)
50 {
51 	if (defrag1->root > defrag2->root)
52 		return 1;
53 	else if (defrag1->root < defrag2->root)
54 		return -1;
55 	else if (defrag1->ino > defrag2->ino)
56 		return 1;
57 	else if (defrag1->ino < defrag2->ino)
58 		return -1;
59 	else
60 		return 0;
61 }
62 
63 /*
64  * Pop a record for an inode into the defrag tree.  The lock must be held
65  * already.
66  *
67  * If you're inserting a record for an older transid than an existing record,
68  * the transid already in the tree is lowered.
69  *
70  * If an existing record is found the defrag item you pass in is freed.
71  */
72 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
73 				    struct inode_defrag *defrag)
74 {
75 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
76 	struct inode_defrag *entry;
77 	struct rb_node **p;
78 	struct rb_node *parent = NULL;
79 	int ret;
80 
81 	p = &fs_info->defrag_inodes.rb_node;
82 	while (*p) {
83 		parent = *p;
84 		entry = rb_entry(parent, struct inode_defrag, rb_node);
85 
86 		ret = __compare_inode_defrag(defrag, entry);
87 		if (ret < 0)
88 			p = &parent->rb_left;
89 		else if (ret > 0)
90 			p = &parent->rb_right;
91 		else {
92 			/*
93 			 * If we're reinserting an entry for an old defrag run,
94 			 * make sure to lower the transid of our existing
95 			 * record.
96 			 */
97 			if (defrag->transid < entry->transid)
98 				entry->transid = defrag->transid;
99 			entry->extent_thresh = min(defrag->extent_thresh,
100 						   entry->extent_thresh);
101 			return -EEXIST;
102 		}
103 	}
104 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
105 	rb_link_node(&defrag->rb_node, parent, p);
106 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
107 	return 0;
108 }
109 
110 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
111 {
112 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
113 		return 0;
114 
115 	if (btrfs_fs_closing(fs_info))
116 		return 0;
117 
118 	return 1;
119 }
120 
121 /*
122  * Insert a defrag record for this inode if auto defrag is enabled.
123  */
124 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
125 			   struct btrfs_inode *inode, u32 extent_thresh)
126 {
127 	struct btrfs_root *root = inode->root;
128 	struct btrfs_fs_info *fs_info = root->fs_info;
129 	struct inode_defrag *defrag;
130 	u64 transid;
131 	int ret;
132 
133 	if (!__need_auto_defrag(fs_info))
134 		return 0;
135 
136 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
137 		return 0;
138 
139 	if (trans)
140 		transid = trans->transid;
141 	else
142 		transid = inode->root->last_trans;
143 
144 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
145 	if (!defrag)
146 		return -ENOMEM;
147 
148 	defrag->ino = btrfs_ino(inode);
149 	defrag->transid = transid;
150 	defrag->root = root->root_key.objectid;
151 	defrag->extent_thresh = extent_thresh;
152 
153 	spin_lock(&fs_info->defrag_inodes_lock);
154 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
155 		/*
156 		 * If we set IN_DEFRAG flag and evict the inode from memory,
157 		 * and then re-read this inode, this new inode doesn't have
158 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
159 		 */
160 		ret = __btrfs_add_inode_defrag(inode, defrag);
161 		if (ret)
162 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
163 	} else {
164 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
165 	}
166 	spin_unlock(&fs_info->defrag_inodes_lock);
167 	return 0;
168 }
169 
170 /*
171  * Pick the defragable inode that we want, if it doesn't exist, we will get the
172  * next one.
173  */
174 static struct inode_defrag *btrfs_pick_defrag_inode(
175 			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
176 {
177 	struct inode_defrag *entry = NULL;
178 	struct inode_defrag tmp;
179 	struct rb_node *p;
180 	struct rb_node *parent = NULL;
181 	int ret;
182 
183 	tmp.ino = ino;
184 	tmp.root = root;
185 
186 	spin_lock(&fs_info->defrag_inodes_lock);
187 	p = fs_info->defrag_inodes.rb_node;
188 	while (p) {
189 		parent = p;
190 		entry = rb_entry(parent, struct inode_defrag, rb_node);
191 
192 		ret = __compare_inode_defrag(&tmp, entry);
193 		if (ret < 0)
194 			p = parent->rb_left;
195 		else if (ret > 0)
196 			p = parent->rb_right;
197 		else
198 			goto out;
199 	}
200 
201 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
202 		parent = rb_next(parent);
203 		if (parent)
204 			entry = rb_entry(parent, struct inode_defrag, rb_node);
205 		else
206 			entry = NULL;
207 	}
208 out:
209 	if (entry)
210 		rb_erase(parent, &fs_info->defrag_inodes);
211 	spin_unlock(&fs_info->defrag_inodes_lock);
212 	return entry;
213 }
214 
215 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
216 {
217 	struct inode_defrag *defrag;
218 	struct rb_node *node;
219 
220 	spin_lock(&fs_info->defrag_inodes_lock);
221 	node = rb_first(&fs_info->defrag_inodes);
222 	while (node) {
223 		rb_erase(node, &fs_info->defrag_inodes);
224 		defrag = rb_entry(node, struct inode_defrag, rb_node);
225 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
226 
227 		cond_resched_lock(&fs_info->defrag_inodes_lock);
228 
229 		node = rb_first(&fs_info->defrag_inodes);
230 	}
231 	spin_unlock(&fs_info->defrag_inodes_lock);
232 }
233 
234 #define BTRFS_DEFRAG_BATCH	1024
235 
236 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
237 				    struct inode_defrag *defrag)
238 {
239 	struct btrfs_root *inode_root;
240 	struct inode *inode;
241 	struct btrfs_ioctl_defrag_range_args range;
242 	int ret = 0;
243 	u64 cur = 0;
244 
245 again:
246 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
247 		goto cleanup;
248 	if (!__need_auto_defrag(fs_info))
249 		goto cleanup;
250 
251 	/* Get the inode */
252 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
253 	if (IS_ERR(inode_root)) {
254 		ret = PTR_ERR(inode_root);
255 		goto cleanup;
256 	}
257 
258 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
259 	btrfs_put_root(inode_root);
260 	if (IS_ERR(inode)) {
261 		ret = PTR_ERR(inode);
262 		goto cleanup;
263 	}
264 
265 	if (cur >= i_size_read(inode)) {
266 		iput(inode);
267 		goto cleanup;
268 	}
269 
270 	/* Do a chunk of defrag */
271 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
272 	memset(&range, 0, sizeof(range));
273 	range.len = (u64)-1;
274 	range.start = cur;
275 	range.extent_thresh = defrag->extent_thresh;
276 
277 	sb_start_write(fs_info->sb);
278 	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
279 				       BTRFS_DEFRAG_BATCH);
280 	sb_end_write(fs_info->sb);
281 	iput(inode);
282 
283 	if (ret < 0)
284 		goto cleanup;
285 
286 	cur = max(cur + fs_info->sectorsize, range.start);
287 	goto again;
288 
289 cleanup:
290 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
291 	return ret;
292 }
293 
294 /*
295  * Run through the list of inodes in the FS that need defragging.
296  */
297 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
298 {
299 	struct inode_defrag *defrag;
300 	u64 first_ino = 0;
301 	u64 root_objectid = 0;
302 
303 	atomic_inc(&fs_info->defrag_running);
304 	while (1) {
305 		/* Pause the auto defragger. */
306 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
307 			break;
308 
309 		if (!__need_auto_defrag(fs_info))
310 			break;
311 
312 		/* find an inode to defrag */
313 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
314 		if (!defrag) {
315 			if (root_objectid || first_ino) {
316 				root_objectid = 0;
317 				first_ino = 0;
318 				continue;
319 			} else {
320 				break;
321 			}
322 		}
323 
324 		first_ino = defrag->ino + 1;
325 		root_objectid = defrag->root;
326 
327 		__btrfs_run_defrag_inode(fs_info, defrag);
328 	}
329 	atomic_dec(&fs_info->defrag_running);
330 
331 	/*
332 	 * During unmount, we use the transaction_wait queue to wait for the
333 	 * defragger to stop.
334 	 */
335 	wake_up(&fs_info->transaction_wait);
336 	return 0;
337 }
338 
339 /*
340  * Check if two blocks addresses are close, used by defrag.
341  */
342 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
343 {
344 	if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
345 		return true;
346 	if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
347 		return true;
348 	return false;
349 }
350 
351 /*
352  * Go through all the leaves pointed to by a node and reallocate them so that
353  * disk order is close to key order.
354  */
355 static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
356 			      struct btrfs_root *root,
357 			      struct extent_buffer *parent,
358 			      int start_slot, u64 *last_ret,
359 			      struct btrfs_key *progress)
360 {
361 	struct btrfs_fs_info *fs_info = root->fs_info;
362 	const u32 blocksize = fs_info->nodesize;
363 	const int end_slot = btrfs_header_nritems(parent) - 1;
364 	u64 search_start = *last_ret;
365 	u64 last_block = 0;
366 	int ret = 0;
367 	bool progress_passed = false;
368 
369 	/*
370 	 * COWing must happen through a running transaction, which always
371 	 * matches the current fs generation (it's a transaction with a state
372 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
373 	 * into error state to prevent the commit of any transaction.
374 	 */
375 	if (unlikely(trans->transaction != fs_info->running_transaction ||
376 		     trans->transid != fs_info->generation)) {
377 		btrfs_abort_transaction(trans, -EUCLEAN);
378 		btrfs_crit(fs_info,
379 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
380 			   parent->start, btrfs_root_id(root), trans->transid,
381 			   fs_info->running_transaction->transid,
382 			   fs_info->generation);
383 		return -EUCLEAN;
384 	}
385 
386 	if (btrfs_header_nritems(parent) <= 1)
387 		return 0;
388 
389 	for (int i = start_slot; i <= end_slot; i++) {
390 		struct extent_buffer *cur;
391 		struct btrfs_disk_key disk_key;
392 		u64 blocknr;
393 		u64 other;
394 		bool close = true;
395 
396 		btrfs_node_key(parent, &disk_key, i);
397 		if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
398 			continue;
399 
400 		progress_passed = true;
401 		blocknr = btrfs_node_blockptr(parent, i);
402 		if (last_block == 0)
403 			last_block = blocknr;
404 
405 		if (i > 0) {
406 			other = btrfs_node_blockptr(parent, i - 1);
407 			close = close_blocks(blocknr, other, blocksize);
408 		}
409 		if (!close && i < end_slot) {
410 			other = btrfs_node_blockptr(parent, i + 1);
411 			close = close_blocks(blocknr, other, blocksize);
412 		}
413 		if (close) {
414 			last_block = blocknr;
415 			continue;
416 		}
417 
418 		cur = btrfs_read_node_slot(parent, i);
419 		if (IS_ERR(cur))
420 			return PTR_ERR(cur);
421 		if (search_start == 0)
422 			search_start = last_block;
423 
424 		btrfs_tree_lock(cur);
425 		ret = btrfs_force_cow_block(trans, root, cur, parent, i,
426 					    &cur, search_start,
427 					    min(16 * blocksize,
428 						(end_slot - i) * blocksize),
429 					    BTRFS_NESTING_COW);
430 		if (ret) {
431 			btrfs_tree_unlock(cur);
432 			free_extent_buffer(cur);
433 			break;
434 		}
435 		search_start = cur->start;
436 		last_block = cur->start;
437 		*last_ret = search_start;
438 		btrfs_tree_unlock(cur);
439 		free_extent_buffer(cur);
440 	}
441 	return ret;
442 }
443 
444 /*
445  * Defrag all the leaves in a given btree.
446  * Read all the leaves and try to get key order to
447  * better reflect disk order
448  */
449 
450 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
451 			       struct btrfs_root *root)
452 {
453 	struct btrfs_path *path = NULL;
454 	struct btrfs_key key;
455 	int ret = 0;
456 	int wret;
457 	int level;
458 	int next_key_ret = 0;
459 	u64 last_ret = 0;
460 
461 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
462 		goto out;
463 
464 	path = btrfs_alloc_path();
465 	if (!path) {
466 		ret = -ENOMEM;
467 		goto out;
468 	}
469 
470 	level = btrfs_header_level(root->node);
471 
472 	if (level == 0)
473 		goto out;
474 
475 	if (root->defrag_progress.objectid == 0) {
476 		struct extent_buffer *root_node;
477 		u32 nritems;
478 
479 		root_node = btrfs_lock_root_node(root);
480 		nritems = btrfs_header_nritems(root_node);
481 		root->defrag_max.objectid = 0;
482 		/* from above we know this is not a leaf */
483 		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
484 				      nritems - 1);
485 		btrfs_tree_unlock(root_node);
486 		free_extent_buffer(root_node);
487 		memset(&key, 0, sizeof(key));
488 	} else {
489 		memcpy(&key, &root->defrag_progress, sizeof(key));
490 	}
491 
492 	path->keep_locks = 1;
493 
494 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
495 	if (ret < 0)
496 		goto out;
497 	if (ret > 0) {
498 		ret = 0;
499 		goto out;
500 	}
501 	btrfs_release_path(path);
502 	/*
503 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
504 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
505 	 * a deadlock (attempting to write lock an already write locked leaf).
506 	 */
507 	path->lowest_level = 1;
508 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
509 
510 	if (wret < 0) {
511 		ret = wret;
512 		goto out;
513 	}
514 	if (!path->nodes[1]) {
515 		ret = 0;
516 		goto out;
517 	}
518 	/*
519 	 * The node at level 1 must always be locked when our path has
520 	 * keep_locks set and lowest_level is 1, regardless of the value of
521 	 * path->slots[1].
522 	 */
523 	ASSERT(path->locks[1] != 0);
524 	ret = btrfs_realloc_node(trans, root,
525 				 path->nodes[1], 0,
526 				 &last_ret,
527 				 &root->defrag_progress);
528 	if (ret) {
529 		WARN_ON(ret == -EAGAIN);
530 		goto out;
531 	}
532 	/*
533 	 * Now that we reallocated the node we can find the next key. Note that
534 	 * btrfs_find_next_key() can release our path and do another search
535 	 * without COWing, this is because even with path->keep_locks = 1,
536 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
537 	 * node when path->slots[node_level - 1] does not point to the last
538 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
539 	 * we search for the next key after reallocating our node.
540 	 */
541 	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
542 	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
543 					   BTRFS_OLDEST_GENERATION);
544 	if (next_key_ret == 0) {
545 		memcpy(&root->defrag_progress, &key, sizeof(key));
546 		ret = -EAGAIN;
547 	}
548 out:
549 	btrfs_free_path(path);
550 	if (ret == -EAGAIN) {
551 		if (root->defrag_max.objectid > root->defrag_progress.objectid)
552 			goto done;
553 		if (root->defrag_max.type > root->defrag_progress.type)
554 			goto done;
555 		if (root->defrag_max.offset > root->defrag_progress.offset)
556 			goto done;
557 		ret = 0;
558 	}
559 done:
560 	if (ret != -EAGAIN)
561 		memset(&root->defrag_progress, 0,
562 		       sizeof(root->defrag_progress));
563 
564 	return ret;
565 }
566 
567 /*
568  * Defrag a given btree.  Every leaf in the btree is read and defragmented.
569  */
570 int btrfs_defrag_root(struct btrfs_root *root)
571 {
572 	struct btrfs_fs_info *fs_info = root->fs_info;
573 	int ret;
574 
575 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
576 		return 0;
577 
578 	while (1) {
579 		struct btrfs_trans_handle *trans;
580 
581 		trans = btrfs_start_transaction(root, 0);
582 		if (IS_ERR(trans)) {
583 			ret = PTR_ERR(trans);
584 			break;
585 		}
586 
587 		ret = btrfs_defrag_leaves(trans, root);
588 
589 		btrfs_end_transaction(trans);
590 		btrfs_btree_balance_dirty(fs_info);
591 		cond_resched();
592 
593 		if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
594 			break;
595 
596 		if (btrfs_defrag_cancelled(fs_info)) {
597 			btrfs_debug(fs_info, "defrag_root cancelled");
598 			ret = -EAGAIN;
599 			break;
600 		}
601 	}
602 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
603 	return ret;
604 }
605 
606 /*
607  * Defrag specific helper to get an extent map.
608  *
609  * Differences between this and btrfs_get_extent() are:
610  *
611  * - No extent_map will be added to inode->extent_tree
612  *   To reduce memory usage in the long run.
613  *
614  * - Extra optimization to skip file extents older than @newer_than
615  *   By using btrfs_search_forward() we can skip entire file ranges that
616  *   have extents created in past transactions, because btrfs_search_forward()
617  *   will not visit leaves and nodes with a generation smaller than given
618  *   minimal generation threshold (@newer_than).
619  *
620  * Return valid em if we find a file extent matching the requirement.
621  * Return NULL if we can not find a file extent matching the requirement.
622  *
623  * Return ERR_PTR() for error.
624  */
625 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
626 					    u64 start, u64 newer_than)
627 {
628 	struct btrfs_root *root = inode->root;
629 	struct btrfs_file_extent_item *fi;
630 	struct btrfs_path path = { 0 };
631 	struct extent_map *em;
632 	struct btrfs_key key;
633 	u64 ino = btrfs_ino(inode);
634 	int ret;
635 
636 	em = alloc_extent_map();
637 	if (!em) {
638 		ret = -ENOMEM;
639 		goto err;
640 	}
641 
642 	key.objectid = ino;
643 	key.type = BTRFS_EXTENT_DATA_KEY;
644 	key.offset = start;
645 
646 	if (newer_than) {
647 		ret = btrfs_search_forward(root, &key, &path, newer_than);
648 		if (ret < 0)
649 			goto err;
650 		/* Can't find anything newer */
651 		if (ret > 0)
652 			goto not_found;
653 	} else {
654 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
655 		if (ret < 0)
656 			goto err;
657 	}
658 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
659 		/*
660 		 * If btrfs_search_slot() makes path to point beyond nritems,
661 		 * we should not have an empty leaf, as this inode must at
662 		 * least have its INODE_ITEM.
663 		 */
664 		ASSERT(btrfs_header_nritems(path.nodes[0]));
665 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
666 	}
667 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
668 	/* Perfect match, no need to go one slot back */
669 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
670 	    key.offset == start)
671 		goto iterate;
672 
673 	/* We didn't find a perfect match, needs to go one slot back */
674 	if (path.slots[0] > 0) {
675 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
676 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
677 			path.slots[0]--;
678 	}
679 
680 iterate:
681 	/* Iterate through the path to find a file extent covering @start */
682 	while (true) {
683 		u64 extent_end;
684 
685 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
686 			goto next;
687 
688 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
689 
690 		/*
691 		 * We may go one slot back to INODE_REF/XATTR item, then
692 		 * need to go forward until we reach an EXTENT_DATA.
693 		 * But we should still has the correct ino as key.objectid.
694 		 */
695 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
696 			goto next;
697 
698 		/* It's beyond our target range, definitely not extent found */
699 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
700 			goto not_found;
701 
702 		/*
703 		 *	|	|<- File extent ->|
704 		 *	\- start
705 		 *
706 		 * This means there is a hole between start and key.offset.
707 		 */
708 		if (key.offset > start) {
709 			em->start = start;
710 			em->orig_start = start;
711 			em->block_start = EXTENT_MAP_HOLE;
712 			em->len = key.offset - start;
713 			break;
714 		}
715 
716 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
717 				    struct btrfs_file_extent_item);
718 		extent_end = btrfs_file_extent_end(&path);
719 
720 		/*
721 		 *	|<- file extent ->|	|
722 		 *				\- start
723 		 *
724 		 * We haven't reached start, search next slot.
725 		 */
726 		if (extent_end <= start)
727 			goto next;
728 
729 		/* Now this extent covers @start, convert it to em */
730 		btrfs_extent_item_to_extent_map(inode, &path, fi, em);
731 		break;
732 next:
733 		ret = btrfs_next_item(root, &path);
734 		if (ret < 0)
735 			goto err;
736 		if (ret > 0)
737 			goto not_found;
738 	}
739 	btrfs_release_path(&path);
740 	return em;
741 
742 not_found:
743 	btrfs_release_path(&path);
744 	free_extent_map(em);
745 	return NULL;
746 
747 err:
748 	btrfs_release_path(&path);
749 	free_extent_map(em);
750 	return ERR_PTR(ret);
751 }
752 
753 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
754 					       u64 newer_than, bool locked)
755 {
756 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
757 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
758 	struct extent_map *em;
759 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
760 
761 	/*
762 	 * Hopefully we have this extent in the tree already, try without the
763 	 * full extent lock.
764 	 */
765 	read_lock(&em_tree->lock);
766 	em = lookup_extent_mapping(em_tree, start, sectorsize);
767 	read_unlock(&em_tree->lock);
768 
769 	/*
770 	 * We can get a merged extent, in that case, we need to re-search
771 	 * tree to get the original em for defrag.
772 	 *
773 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
774 	 * this em, as either we don't care about the generation, or the
775 	 * merged extent map will be rejected anyway.
776 	 */
777 	if (em && (em->flags & EXTENT_FLAG_MERGED) &&
778 	    newer_than && em->generation >= newer_than) {
779 		free_extent_map(em);
780 		em = NULL;
781 	}
782 
783 	if (!em) {
784 		struct extent_state *cached = NULL;
785 		u64 end = start + sectorsize - 1;
786 
787 		/* Get the big lock and read metadata off disk. */
788 		if (!locked)
789 			lock_extent(io_tree, start, end, &cached);
790 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
791 		if (!locked)
792 			unlock_extent(io_tree, start, end, &cached);
793 
794 		if (IS_ERR(em))
795 			return NULL;
796 	}
797 
798 	return em;
799 }
800 
801 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
802 				   const struct extent_map *em)
803 {
804 	if (extent_map_is_compressed(em))
805 		return BTRFS_MAX_COMPRESSED;
806 	return fs_info->max_extent_size;
807 }
808 
809 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
810 				     u32 extent_thresh, u64 newer_than, bool locked)
811 {
812 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
813 	struct extent_map *next;
814 	bool ret = false;
815 
816 	/* This is the last extent */
817 	if (em->start + em->len >= i_size_read(inode))
818 		return false;
819 
820 	/*
821 	 * Here we need to pass @newer_then when checking the next extent, or
822 	 * we will hit a case we mark current extent for defrag, but the next
823 	 * one will not be a target.
824 	 * This will just cause extra IO without really reducing the fragments.
825 	 */
826 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
827 	/* No more em or hole */
828 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
829 		goto out;
830 	if (next->flags & EXTENT_FLAG_PREALLOC)
831 		goto out;
832 	/*
833 	 * If the next extent is at its max capacity, defragging current extent
834 	 * makes no sense, as the total number of extents won't change.
835 	 */
836 	if (next->len >= get_extent_max_capacity(fs_info, em))
837 		goto out;
838 	/* Skip older extent */
839 	if (next->generation < newer_than)
840 		goto out;
841 	/* Also check extent size */
842 	if (next->len >= extent_thresh)
843 		goto out;
844 
845 	ret = true;
846 out:
847 	free_extent_map(next);
848 	return ret;
849 }
850 
851 /*
852  * Prepare one page to be defragged.
853  *
854  * This will ensure:
855  *
856  * - Returned page is locked and has been set up properly.
857  * - No ordered extent exists in the page.
858  * - The page is uptodate.
859  *
860  * NOTE: Caller should also wait for page writeback after the cluster is
861  * prepared, here we don't do writeback wait for each page.
862  */
863 static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
864 {
865 	struct address_space *mapping = inode->vfs_inode.i_mapping;
866 	gfp_t mask = btrfs_alloc_write_mask(mapping);
867 	u64 page_start = (u64)index << PAGE_SHIFT;
868 	u64 page_end = page_start + PAGE_SIZE - 1;
869 	struct extent_state *cached_state = NULL;
870 	struct folio *folio;
871 	int ret;
872 
873 again:
874 	folio = __filemap_get_folio(mapping, index,
875 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
876 	if (IS_ERR(folio))
877 		return folio;
878 
879 	/*
880 	 * Since we can defragment files opened read-only, we can encounter
881 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
882 	 * can't do I/O using huge pages yet, so return an error for now.
883 	 * Filesystem transparent huge pages are typically only used for
884 	 * executables that explicitly enable them, so this isn't very
885 	 * restrictive.
886 	 */
887 	if (folio_test_large(folio)) {
888 		folio_unlock(folio);
889 		folio_put(folio);
890 		return ERR_PTR(-ETXTBSY);
891 	}
892 
893 	ret = set_folio_extent_mapped(folio);
894 	if (ret < 0) {
895 		folio_unlock(folio);
896 		folio_put(folio);
897 		return ERR_PTR(ret);
898 	}
899 
900 	/* Wait for any existing ordered extent in the range */
901 	while (1) {
902 		struct btrfs_ordered_extent *ordered;
903 
904 		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
905 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
906 		unlock_extent(&inode->io_tree, page_start, page_end,
907 			      &cached_state);
908 		if (!ordered)
909 			break;
910 
911 		folio_unlock(folio);
912 		btrfs_start_ordered_extent(ordered);
913 		btrfs_put_ordered_extent(ordered);
914 		folio_lock(folio);
915 		/*
916 		 * We unlocked the folio above, so we need check if it was
917 		 * released or not.
918 		 */
919 		if (folio->mapping != mapping || !folio->private) {
920 			folio_unlock(folio);
921 			folio_put(folio);
922 			goto again;
923 		}
924 	}
925 
926 	/*
927 	 * Now the page range has no ordered extent any more.  Read the page to
928 	 * make it uptodate.
929 	 */
930 	if (!folio_test_uptodate(folio)) {
931 		btrfs_read_folio(NULL, folio);
932 		folio_lock(folio);
933 		if (folio->mapping != mapping || !folio->private) {
934 			folio_unlock(folio);
935 			folio_put(folio);
936 			goto again;
937 		}
938 		if (!folio_test_uptodate(folio)) {
939 			folio_unlock(folio);
940 			folio_put(folio);
941 			return ERR_PTR(-EIO);
942 		}
943 	}
944 	return folio;
945 }
946 
947 struct defrag_target_range {
948 	struct list_head list;
949 	u64 start;
950 	u64 len;
951 };
952 
953 /*
954  * Collect all valid target extents.
955  *
956  * @start:	   file offset to lookup
957  * @len:	   length to lookup
958  * @extent_thresh: file extent size threshold, any extent size >= this value
959  *		   will be ignored
960  * @newer_than:    only defrag extents newer than this value
961  * @do_compress:   whether the defrag is doing compression
962  *		   if true, @extent_thresh will be ignored and all regular
963  *		   file extents meeting @newer_than will be targets.
964  * @locked:	   if the range has already held extent lock
965  * @target_list:   list of targets file extents
966  */
967 static int defrag_collect_targets(struct btrfs_inode *inode,
968 				  u64 start, u64 len, u32 extent_thresh,
969 				  u64 newer_than, bool do_compress,
970 				  bool locked, struct list_head *target_list,
971 				  u64 *last_scanned_ret)
972 {
973 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
974 	bool last_is_target = false;
975 	u64 cur = start;
976 	int ret = 0;
977 
978 	while (cur < start + len) {
979 		struct extent_map *em;
980 		struct defrag_target_range *new;
981 		bool next_mergeable = true;
982 		u64 range_len;
983 
984 		last_is_target = false;
985 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
986 		if (!em)
987 			break;
988 
989 		/*
990 		 * If the file extent is an inlined one, we may still want to
991 		 * defrag it (fallthrough) if it will cause a regular extent.
992 		 * This is for users who want to convert inline extents to
993 		 * regular ones through max_inline= mount option.
994 		 */
995 		if (em->block_start == EXTENT_MAP_INLINE &&
996 		    em->len <= inode->root->fs_info->max_inline)
997 			goto next;
998 
999 		/* Skip holes and preallocated extents. */
1000 		if (em->block_start == EXTENT_MAP_HOLE ||
1001 		    (em->flags & EXTENT_FLAG_PREALLOC))
1002 			goto next;
1003 
1004 		/* Skip older extent */
1005 		if (em->generation < newer_than)
1006 			goto next;
1007 
1008 		/* This em is under writeback, no need to defrag */
1009 		if (em->generation == (u64)-1)
1010 			goto next;
1011 
1012 		/*
1013 		 * Our start offset might be in the middle of an existing extent
1014 		 * map, so take that into account.
1015 		 */
1016 		range_len = em->len - (cur - em->start);
1017 		/*
1018 		 * If this range of the extent map is already flagged for delalloc,
1019 		 * skip it, because:
1020 		 *
1021 		 * 1) We could deadlock later, when trying to reserve space for
1022 		 *    delalloc, because in case we can't immediately reserve space
1023 		 *    the flusher can start delalloc and wait for the respective
1024 		 *    ordered extents to complete. The deadlock would happen
1025 		 *    because we do the space reservation while holding the range
1026 		 *    locked, and starting writeback, or finishing an ordered
1027 		 *    extent, requires locking the range;
1028 		 *
1029 		 * 2) If there's delalloc there, it means there's dirty pages for
1030 		 *    which writeback has not started yet (we clean the delalloc
1031 		 *    flag when starting writeback and after creating an ordered
1032 		 *    extent). If we mark pages in an adjacent range for defrag,
1033 		 *    then we will have a larger contiguous range for delalloc,
1034 		 *    very likely resulting in a larger extent after writeback is
1035 		 *    triggered (except in a case of free space fragmentation).
1036 		 */
1037 		if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
1038 					  EXTENT_DELALLOC))
1039 			goto next;
1040 
1041 		/*
1042 		 * For do_compress case, we want to compress all valid file
1043 		 * extents, thus no @extent_thresh or mergeable check.
1044 		 */
1045 		if (do_compress)
1046 			goto add;
1047 
1048 		/* Skip too large extent */
1049 		if (em->len >= extent_thresh)
1050 			goto next;
1051 
1052 		/*
1053 		 * Skip extents already at its max capacity, this is mostly for
1054 		 * compressed extents, which max cap is only 128K.
1055 		 */
1056 		if (em->len >= get_extent_max_capacity(fs_info, em))
1057 			goto next;
1058 
1059 		/*
1060 		 * Normally there are no more extents after an inline one, thus
1061 		 * @next_mergeable will normally be false and not defragged.
1062 		 * So if an inline extent passed all above checks, just add it
1063 		 * for defrag, and be converted to regular extents.
1064 		 */
1065 		if (em->block_start == EXTENT_MAP_INLINE)
1066 			goto add;
1067 
1068 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1069 						extent_thresh, newer_than, locked);
1070 		if (!next_mergeable) {
1071 			struct defrag_target_range *last;
1072 
1073 			/* Empty target list, no way to merge with last entry */
1074 			if (list_empty(target_list))
1075 				goto next;
1076 			last = list_entry(target_list->prev,
1077 					  struct defrag_target_range, list);
1078 			/* Not mergeable with last entry */
1079 			if (last->start + last->len != cur)
1080 				goto next;
1081 
1082 			/* Mergeable, fall through to add it to @target_list. */
1083 		}
1084 
1085 add:
1086 		last_is_target = true;
1087 		range_len = min(extent_map_end(em), start + len) - cur;
1088 		/*
1089 		 * This one is a good target, check if it can be merged into
1090 		 * last range of the target list.
1091 		 */
1092 		if (!list_empty(target_list)) {
1093 			struct defrag_target_range *last;
1094 
1095 			last = list_entry(target_list->prev,
1096 					  struct defrag_target_range, list);
1097 			ASSERT(last->start + last->len <= cur);
1098 			if (last->start + last->len == cur) {
1099 				/* Mergeable, enlarge the last entry */
1100 				last->len += range_len;
1101 				goto next;
1102 			}
1103 			/* Fall through to allocate a new entry */
1104 		}
1105 
1106 		/* Allocate new defrag_target_range */
1107 		new = kmalloc(sizeof(*new), GFP_NOFS);
1108 		if (!new) {
1109 			free_extent_map(em);
1110 			ret = -ENOMEM;
1111 			break;
1112 		}
1113 		new->start = cur;
1114 		new->len = range_len;
1115 		list_add_tail(&new->list, target_list);
1116 
1117 next:
1118 		cur = extent_map_end(em);
1119 		free_extent_map(em);
1120 	}
1121 	if (ret < 0) {
1122 		struct defrag_target_range *entry;
1123 		struct defrag_target_range *tmp;
1124 
1125 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1126 			list_del_init(&entry->list);
1127 			kfree(entry);
1128 		}
1129 	}
1130 	if (!ret && last_scanned_ret) {
1131 		/*
1132 		 * If the last extent is not a target, the caller can skip to
1133 		 * the end of that extent.
1134 		 * Otherwise, we can only go the end of the specified range.
1135 		 */
1136 		if (!last_is_target)
1137 			*last_scanned_ret = max(cur, *last_scanned_ret);
1138 		else
1139 			*last_scanned_ret = max(start + len, *last_scanned_ret);
1140 	}
1141 	return ret;
1142 }
1143 
1144 #define CLUSTER_SIZE	(SZ_256K)
1145 static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1146 
1147 /*
1148  * Defrag one contiguous target range.
1149  *
1150  * @inode:	target inode
1151  * @target:	target range to defrag
1152  * @pages:	locked pages covering the defrag range
1153  * @nr_pages:	number of locked pages
1154  *
1155  * Caller should ensure:
1156  *
1157  * - Pages are prepared
1158  *   Pages should be locked, no ordered extent in the pages range,
1159  *   no writeback.
1160  *
1161  * - Extent bits are locked
1162  */
1163 static int defrag_one_locked_target(struct btrfs_inode *inode,
1164 				    struct defrag_target_range *target,
1165 				    struct folio **folios, int nr_pages,
1166 				    struct extent_state **cached_state)
1167 {
1168 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1169 	struct extent_changeset *data_reserved = NULL;
1170 	const u64 start = target->start;
1171 	const u64 len = target->len;
1172 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1173 	unsigned long start_index = start >> PAGE_SHIFT;
1174 	unsigned long first_index = folios[0]->index;
1175 	int ret = 0;
1176 	int i;
1177 
1178 	ASSERT(last_index - first_index + 1 <= nr_pages);
1179 
1180 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1181 	if (ret < 0)
1182 		return ret;
1183 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1184 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1185 			 EXTENT_DEFRAG, cached_state);
1186 	set_extent_bit(&inode->io_tree, start, start + len - 1,
1187 		       EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1188 
1189 	/* Update the page status */
1190 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1191 		folio_clear_checked(folios[i]);
1192 		btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len);
1193 	}
1194 	btrfs_delalloc_release_extents(inode, len);
1195 	extent_changeset_free(data_reserved);
1196 
1197 	return ret;
1198 }
1199 
1200 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1201 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1202 			    u64 *last_scanned_ret)
1203 {
1204 	struct extent_state *cached_state = NULL;
1205 	struct defrag_target_range *entry;
1206 	struct defrag_target_range *tmp;
1207 	LIST_HEAD(target_list);
1208 	struct folio **folios;
1209 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1210 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1211 	u64 start_index = start >> PAGE_SHIFT;
1212 	unsigned int nr_pages = last_index - start_index + 1;
1213 	int ret = 0;
1214 	int i;
1215 
1216 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1217 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1218 
1219 	folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
1220 	if (!folios)
1221 		return -ENOMEM;
1222 
1223 	/* Prepare all pages */
1224 	for (i = 0; i < nr_pages; i++) {
1225 		folios[i] = defrag_prepare_one_folio(inode, start_index + i);
1226 		if (IS_ERR(folios[i])) {
1227 			ret = PTR_ERR(folios[i]);
1228 			nr_pages = i;
1229 			goto free_folios;
1230 		}
1231 	}
1232 	for (i = 0; i < nr_pages; i++)
1233 		folio_wait_writeback(folios[i]);
1234 
1235 	/* Lock the pages range */
1236 	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1237 		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1238 		    &cached_state);
1239 	/*
1240 	 * Now we have a consistent view about the extent map, re-check
1241 	 * which range really needs to be defragged.
1242 	 *
1243 	 * And this time we have extent locked already, pass @locked = true
1244 	 * so that we won't relock the extent range and cause deadlock.
1245 	 */
1246 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1247 				     newer_than, do_compress, true,
1248 				     &target_list, last_scanned_ret);
1249 	if (ret < 0)
1250 		goto unlock_extent;
1251 
1252 	list_for_each_entry(entry, &target_list, list) {
1253 		ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
1254 					       &cached_state);
1255 		if (ret < 0)
1256 			break;
1257 	}
1258 
1259 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1260 		list_del_init(&entry->list);
1261 		kfree(entry);
1262 	}
1263 unlock_extent:
1264 	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1265 		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1266 		      &cached_state);
1267 free_folios:
1268 	for (i = 0; i < nr_pages; i++) {
1269 		folio_unlock(folios[i]);
1270 		folio_put(folios[i]);
1271 	}
1272 	kfree(folios);
1273 	return ret;
1274 }
1275 
1276 static int defrag_one_cluster(struct btrfs_inode *inode,
1277 			      struct file_ra_state *ra,
1278 			      u64 start, u32 len, u32 extent_thresh,
1279 			      u64 newer_than, bool do_compress,
1280 			      unsigned long *sectors_defragged,
1281 			      unsigned long max_sectors,
1282 			      u64 *last_scanned_ret)
1283 {
1284 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1285 	struct defrag_target_range *entry;
1286 	struct defrag_target_range *tmp;
1287 	LIST_HEAD(target_list);
1288 	int ret;
1289 
1290 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1291 				     newer_than, do_compress, false,
1292 				     &target_list, NULL);
1293 	if (ret < 0)
1294 		goto out;
1295 
1296 	list_for_each_entry(entry, &target_list, list) {
1297 		u32 range_len = entry->len;
1298 
1299 		/* Reached or beyond the limit */
1300 		if (max_sectors && *sectors_defragged >= max_sectors) {
1301 			ret = 1;
1302 			break;
1303 		}
1304 
1305 		if (max_sectors)
1306 			range_len = min_t(u32, range_len,
1307 				(max_sectors - *sectors_defragged) * sectorsize);
1308 
1309 		/*
1310 		 * If defrag_one_range() has updated last_scanned_ret,
1311 		 * our range may already be invalid (e.g. hole punched).
1312 		 * Skip if our range is before last_scanned_ret, as there is
1313 		 * no need to defrag the range anymore.
1314 		 */
1315 		if (entry->start + range_len <= *last_scanned_ret)
1316 			continue;
1317 
1318 		if (ra)
1319 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1320 				ra, NULL, entry->start >> PAGE_SHIFT,
1321 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1322 				(entry->start >> PAGE_SHIFT) + 1);
1323 		/*
1324 		 * Here we may not defrag any range if holes are punched before
1325 		 * we locked the pages.
1326 		 * But that's fine, it only affects the @sectors_defragged
1327 		 * accounting.
1328 		 */
1329 		ret = defrag_one_range(inode, entry->start, range_len,
1330 				       extent_thresh, newer_than, do_compress,
1331 				       last_scanned_ret);
1332 		if (ret < 0)
1333 			break;
1334 		*sectors_defragged += range_len >>
1335 				      inode->root->fs_info->sectorsize_bits;
1336 	}
1337 out:
1338 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1339 		list_del_init(&entry->list);
1340 		kfree(entry);
1341 	}
1342 	if (ret >= 0)
1343 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1344 	return ret;
1345 }
1346 
1347 /*
1348  * Entry point to file defragmentation.
1349  *
1350  * @inode:	   inode to be defragged
1351  * @ra:		   readahead state (can be NUL)
1352  * @range:	   defrag options including range and flags
1353  * @newer_than:	   minimum transid to defrag
1354  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1355  *		   will be defragged.
1356  *
1357  * Return <0 for error.
1358  * Return >=0 for the number of sectors defragged, and range->start will be updated
1359  * to indicate the file offset where next defrag should be started at.
1360  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1361  *  defragging all the range).
1362  */
1363 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1364 		      struct btrfs_ioctl_defrag_range_args *range,
1365 		      u64 newer_than, unsigned long max_to_defrag)
1366 {
1367 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1368 	unsigned long sectors_defragged = 0;
1369 	u64 isize = i_size_read(inode);
1370 	u64 cur;
1371 	u64 last_byte;
1372 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1373 	bool ra_allocated = false;
1374 	int compress_type = BTRFS_COMPRESS_ZLIB;
1375 	int ret = 0;
1376 	u32 extent_thresh = range->extent_thresh;
1377 	pgoff_t start_index;
1378 
1379 	if (isize == 0)
1380 		return 0;
1381 
1382 	if (range->start >= isize)
1383 		return -EINVAL;
1384 
1385 	if (do_compress) {
1386 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1387 			return -EINVAL;
1388 		if (range->compress_type)
1389 			compress_type = range->compress_type;
1390 	}
1391 
1392 	if (extent_thresh == 0)
1393 		extent_thresh = SZ_256K;
1394 
1395 	if (range->start + range->len > range->start) {
1396 		/* Got a specific range */
1397 		last_byte = min(isize, range->start + range->len);
1398 	} else {
1399 		/* Defrag until file end */
1400 		last_byte = isize;
1401 	}
1402 
1403 	/* Align the range */
1404 	cur = round_down(range->start, fs_info->sectorsize);
1405 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1406 
1407 	/*
1408 	 * If we were not given a ra, allocate a readahead context. As
1409 	 * readahead is just an optimization, defrag will work without it so
1410 	 * we don't error out.
1411 	 */
1412 	if (!ra) {
1413 		ra_allocated = true;
1414 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1415 		if (ra)
1416 			file_ra_state_init(ra, inode->i_mapping);
1417 	}
1418 
1419 	/*
1420 	 * Make writeback start from the beginning of the range, so that the
1421 	 * defrag range can be written sequentially.
1422 	 */
1423 	start_index = cur >> PAGE_SHIFT;
1424 	if (start_index < inode->i_mapping->writeback_index)
1425 		inode->i_mapping->writeback_index = start_index;
1426 
1427 	while (cur < last_byte) {
1428 		const unsigned long prev_sectors_defragged = sectors_defragged;
1429 		u64 last_scanned = cur;
1430 		u64 cluster_end;
1431 
1432 		if (btrfs_defrag_cancelled(fs_info)) {
1433 			ret = -EAGAIN;
1434 			break;
1435 		}
1436 
1437 		/* We want the cluster end at page boundary when possible */
1438 		cluster_end = (((cur >> PAGE_SHIFT) +
1439 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1440 		cluster_end = min(cluster_end, last_byte);
1441 
1442 		btrfs_inode_lock(BTRFS_I(inode), 0);
1443 		if (IS_SWAPFILE(inode)) {
1444 			ret = -ETXTBSY;
1445 			btrfs_inode_unlock(BTRFS_I(inode), 0);
1446 			break;
1447 		}
1448 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1449 			btrfs_inode_unlock(BTRFS_I(inode), 0);
1450 			break;
1451 		}
1452 		if (do_compress)
1453 			BTRFS_I(inode)->defrag_compress = compress_type;
1454 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1455 				cluster_end + 1 - cur, extent_thresh,
1456 				newer_than, do_compress, &sectors_defragged,
1457 				max_to_defrag, &last_scanned);
1458 
1459 		if (sectors_defragged > prev_sectors_defragged)
1460 			balance_dirty_pages_ratelimited(inode->i_mapping);
1461 
1462 		btrfs_inode_unlock(BTRFS_I(inode), 0);
1463 		if (ret < 0)
1464 			break;
1465 		cur = max(cluster_end + 1, last_scanned);
1466 		if (ret > 0) {
1467 			ret = 0;
1468 			break;
1469 		}
1470 		cond_resched();
1471 	}
1472 
1473 	if (ra_allocated)
1474 		kfree(ra);
1475 	/*
1476 	 * Update range.start for autodefrag, this will indicate where to start
1477 	 * in next run.
1478 	 */
1479 	range->start = cur;
1480 	if (sectors_defragged) {
1481 		/*
1482 		 * We have defragged some sectors, for compression case they
1483 		 * need to be written back immediately.
1484 		 */
1485 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1486 			filemap_flush(inode->i_mapping);
1487 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1488 				     &BTRFS_I(inode)->runtime_flags))
1489 				filemap_flush(inode->i_mapping);
1490 		}
1491 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1492 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1493 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1494 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1495 		ret = sectors_defragged;
1496 	}
1497 	if (do_compress) {
1498 		btrfs_inode_lock(BTRFS_I(inode), 0);
1499 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1500 		btrfs_inode_unlock(BTRFS_I(inode), 0);
1501 	}
1502 	return ret;
1503 }
1504 
1505 void __cold btrfs_auto_defrag_exit(void)
1506 {
1507 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1508 }
1509 
1510 int __init btrfs_auto_defrag_init(void)
1511 {
1512 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1513 					sizeof(struct inode_defrag), 0, 0, NULL);
1514 	if (!btrfs_inode_defrag_cachep)
1515 		return -ENOMEM;
1516 
1517 	return 0;
1518 }
1519