1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include "ctree.h" 8 #include "disk-io.h" 9 #include "transaction.h" 10 #include "locking.h" 11 #include "accessors.h" 12 #include "messages.h" 13 #include "delalloc-space.h" 14 #include "subpage.h" 15 #include "defrag.h" 16 #include "file-item.h" 17 #include "super.h" 18 19 static struct kmem_cache *btrfs_inode_defrag_cachep; 20 21 /* 22 * When auto defrag is enabled we queue up these defrag structs to remember 23 * which inodes need defragging passes. 24 */ 25 struct inode_defrag { 26 struct rb_node rb_node; 27 /* Inode number */ 28 u64 ino; 29 /* 30 * Transid where the defrag was added, we search for extents newer than 31 * this. 32 */ 33 u64 transid; 34 35 /* Root objectid */ 36 u64 root; 37 38 /* 39 * The extent size threshold for autodefrag. 40 * 41 * This value is different for compressed/non-compressed extents, thus 42 * needs to be passed from higher layer. 43 * (aka, inode_should_defrag()) 44 */ 45 u32 extent_thresh; 46 }; 47 48 static int __compare_inode_defrag(struct inode_defrag *defrag1, 49 struct inode_defrag *defrag2) 50 { 51 if (defrag1->root > defrag2->root) 52 return 1; 53 else if (defrag1->root < defrag2->root) 54 return -1; 55 else if (defrag1->ino > defrag2->ino) 56 return 1; 57 else if (defrag1->ino < defrag2->ino) 58 return -1; 59 else 60 return 0; 61 } 62 63 /* 64 * Pop a record for an inode into the defrag tree. The lock must be held 65 * already. 66 * 67 * If you're inserting a record for an older transid than an existing record, 68 * the transid already in the tree is lowered. 69 * 70 * If an existing record is found the defrag item you pass in is freed. 71 */ 72 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 73 struct inode_defrag *defrag) 74 { 75 struct btrfs_fs_info *fs_info = inode->root->fs_info; 76 struct inode_defrag *entry; 77 struct rb_node **p; 78 struct rb_node *parent = NULL; 79 int ret; 80 81 p = &fs_info->defrag_inodes.rb_node; 82 while (*p) { 83 parent = *p; 84 entry = rb_entry(parent, struct inode_defrag, rb_node); 85 86 ret = __compare_inode_defrag(defrag, entry); 87 if (ret < 0) 88 p = &parent->rb_left; 89 else if (ret > 0) 90 p = &parent->rb_right; 91 else { 92 /* 93 * If we're reinserting an entry for an old defrag run, 94 * make sure to lower the transid of our existing 95 * record. 96 */ 97 if (defrag->transid < entry->transid) 98 entry->transid = defrag->transid; 99 entry->extent_thresh = min(defrag->extent_thresh, 100 entry->extent_thresh); 101 return -EEXIST; 102 } 103 } 104 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 105 rb_link_node(&defrag->rb_node, parent, p); 106 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 107 return 0; 108 } 109 110 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 111 { 112 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 113 return 0; 114 115 if (btrfs_fs_closing(fs_info)) 116 return 0; 117 118 return 1; 119 } 120 121 /* 122 * Insert a defrag record for this inode if auto defrag is enabled. 123 */ 124 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 125 struct btrfs_inode *inode, u32 extent_thresh) 126 { 127 struct btrfs_root *root = inode->root; 128 struct btrfs_fs_info *fs_info = root->fs_info; 129 struct inode_defrag *defrag; 130 u64 transid; 131 int ret; 132 133 if (!__need_auto_defrag(fs_info)) 134 return 0; 135 136 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 137 return 0; 138 139 if (trans) 140 transid = trans->transid; 141 else 142 transid = btrfs_get_root_last_trans(root); 143 144 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 145 if (!defrag) 146 return -ENOMEM; 147 148 defrag->ino = btrfs_ino(inode); 149 defrag->transid = transid; 150 defrag->root = btrfs_root_id(root); 151 defrag->extent_thresh = extent_thresh; 152 153 spin_lock(&fs_info->defrag_inodes_lock); 154 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 155 /* 156 * If we set IN_DEFRAG flag and evict the inode from memory, 157 * and then re-read this inode, this new inode doesn't have 158 * IN_DEFRAG flag. At the case, we may find the existed defrag. 159 */ 160 ret = __btrfs_add_inode_defrag(inode, defrag); 161 if (ret) 162 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 163 } else { 164 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 165 } 166 spin_unlock(&fs_info->defrag_inodes_lock); 167 return 0; 168 } 169 170 /* 171 * Pick the defragable inode that we want, if it doesn't exist, we will get the 172 * next one. 173 */ 174 static struct inode_defrag *btrfs_pick_defrag_inode( 175 struct btrfs_fs_info *fs_info, u64 root, u64 ino) 176 { 177 struct inode_defrag *entry = NULL; 178 struct inode_defrag tmp; 179 struct rb_node *p; 180 struct rb_node *parent = NULL; 181 int ret; 182 183 tmp.ino = ino; 184 tmp.root = root; 185 186 spin_lock(&fs_info->defrag_inodes_lock); 187 p = fs_info->defrag_inodes.rb_node; 188 while (p) { 189 parent = p; 190 entry = rb_entry(parent, struct inode_defrag, rb_node); 191 192 ret = __compare_inode_defrag(&tmp, entry); 193 if (ret < 0) 194 p = parent->rb_left; 195 else if (ret > 0) 196 p = parent->rb_right; 197 else 198 goto out; 199 } 200 201 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 202 parent = rb_next(parent); 203 if (parent) 204 entry = rb_entry(parent, struct inode_defrag, rb_node); 205 else 206 entry = NULL; 207 } 208 out: 209 if (entry) 210 rb_erase(parent, &fs_info->defrag_inodes); 211 spin_unlock(&fs_info->defrag_inodes_lock); 212 return entry; 213 } 214 215 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 216 { 217 struct inode_defrag *defrag; 218 struct rb_node *node; 219 220 spin_lock(&fs_info->defrag_inodes_lock); 221 node = rb_first(&fs_info->defrag_inodes); 222 while (node) { 223 rb_erase(node, &fs_info->defrag_inodes); 224 defrag = rb_entry(node, struct inode_defrag, rb_node); 225 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 226 227 cond_resched_lock(&fs_info->defrag_inodes_lock); 228 229 node = rb_first(&fs_info->defrag_inodes); 230 } 231 spin_unlock(&fs_info->defrag_inodes_lock); 232 } 233 234 #define BTRFS_DEFRAG_BATCH 1024 235 236 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 237 struct inode_defrag *defrag) 238 { 239 struct btrfs_root *inode_root; 240 struct inode *inode; 241 struct btrfs_ioctl_defrag_range_args range; 242 int ret = 0; 243 u64 cur = 0; 244 245 again: 246 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 247 goto cleanup; 248 if (!__need_auto_defrag(fs_info)) 249 goto cleanup; 250 251 /* Get the inode */ 252 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 253 if (IS_ERR(inode_root)) { 254 ret = PTR_ERR(inode_root); 255 goto cleanup; 256 } 257 258 inode = btrfs_iget(defrag->ino, inode_root); 259 btrfs_put_root(inode_root); 260 if (IS_ERR(inode)) { 261 ret = PTR_ERR(inode); 262 goto cleanup; 263 } 264 265 if (cur >= i_size_read(inode)) { 266 iput(inode); 267 goto cleanup; 268 } 269 270 /* Do a chunk of defrag */ 271 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 272 memset(&range, 0, sizeof(range)); 273 range.len = (u64)-1; 274 range.start = cur; 275 range.extent_thresh = defrag->extent_thresh; 276 277 sb_start_write(fs_info->sb); 278 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 279 BTRFS_DEFRAG_BATCH); 280 sb_end_write(fs_info->sb); 281 iput(inode); 282 283 if (ret < 0) 284 goto cleanup; 285 286 cur = max(cur + fs_info->sectorsize, range.start); 287 goto again; 288 289 cleanup: 290 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 291 return ret; 292 } 293 294 /* 295 * Run through the list of inodes in the FS that need defragging. 296 */ 297 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 298 { 299 struct inode_defrag *defrag; 300 u64 first_ino = 0; 301 u64 root_objectid = 0; 302 303 atomic_inc(&fs_info->defrag_running); 304 while (1) { 305 /* Pause the auto defragger. */ 306 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 307 break; 308 309 if (!__need_auto_defrag(fs_info)) 310 break; 311 312 /* find an inode to defrag */ 313 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino); 314 if (!defrag) { 315 if (root_objectid || first_ino) { 316 root_objectid = 0; 317 first_ino = 0; 318 continue; 319 } else { 320 break; 321 } 322 } 323 324 first_ino = defrag->ino + 1; 325 root_objectid = defrag->root; 326 327 __btrfs_run_defrag_inode(fs_info, defrag); 328 } 329 atomic_dec(&fs_info->defrag_running); 330 331 /* 332 * During unmount, we use the transaction_wait queue to wait for the 333 * defragger to stop. 334 */ 335 wake_up(&fs_info->transaction_wait); 336 return 0; 337 } 338 339 /* 340 * Check if two blocks addresses are close, used by defrag. 341 */ 342 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize) 343 { 344 if (blocknr < other && other - (blocknr + blocksize) < SZ_32K) 345 return true; 346 if (blocknr > other && blocknr - (other + blocksize) < SZ_32K) 347 return true; 348 return false; 349 } 350 351 /* 352 * Go through all the leaves pointed to by a node and reallocate them so that 353 * disk order is close to key order. 354 */ 355 static int btrfs_realloc_node(struct btrfs_trans_handle *trans, 356 struct btrfs_root *root, 357 struct extent_buffer *parent, 358 int start_slot, u64 *last_ret, 359 struct btrfs_key *progress) 360 { 361 struct btrfs_fs_info *fs_info = root->fs_info; 362 const u32 blocksize = fs_info->nodesize; 363 const int end_slot = btrfs_header_nritems(parent) - 1; 364 u64 search_start = *last_ret; 365 u64 last_block = 0; 366 int ret = 0; 367 bool progress_passed = false; 368 369 /* 370 * COWing must happen through a running transaction, which always 371 * matches the current fs generation (it's a transaction with a state 372 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs 373 * into error state to prevent the commit of any transaction. 374 */ 375 if (unlikely(trans->transaction != fs_info->running_transaction || 376 trans->transid != fs_info->generation)) { 377 btrfs_abort_transaction(trans, -EUCLEAN); 378 btrfs_crit(fs_info, 379 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu", 380 parent->start, btrfs_root_id(root), trans->transid, 381 fs_info->running_transaction->transid, 382 fs_info->generation); 383 return -EUCLEAN; 384 } 385 386 if (btrfs_header_nritems(parent) <= 1) 387 return 0; 388 389 for (int i = start_slot; i <= end_slot; i++) { 390 struct extent_buffer *cur; 391 struct btrfs_disk_key disk_key; 392 u64 blocknr; 393 u64 other; 394 bool close = true; 395 396 btrfs_node_key(parent, &disk_key, i); 397 if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0) 398 continue; 399 400 progress_passed = true; 401 blocknr = btrfs_node_blockptr(parent, i); 402 if (last_block == 0) 403 last_block = blocknr; 404 405 if (i > 0) { 406 other = btrfs_node_blockptr(parent, i - 1); 407 close = close_blocks(blocknr, other, blocksize); 408 } 409 if (!close && i < end_slot) { 410 other = btrfs_node_blockptr(parent, i + 1); 411 close = close_blocks(blocknr, other, blocksize); 412 } 413 if (close) { 414 last_block = blocknr; 415 continue; 416 } 417 418 cur = btrfs_read_node_slot(parent, i); 419 if (IS_ERR(cur)) 420 return PTR_ERR(cur); 421 if (search_start == 0) 422 search_start = last_block; 423 424 btrfs_tree_lock(cur); 425 ret = btrfs_force_cow_block(trans, root, cur, parent, i, 426 &cur, search_start, 427 min(16 * blocksize, 428 (end_slot - i) * blocksize), 429 BTRFS_NESTING_COW); 430 if (ret) { 431 btrfs_tree_unlock(cur); 432 free_extent_buffer(cur); 433 break; 434 } 435 search_start = cur->start; 436 last_block = cur->start; 437 *last_ret = search_start; 438 btrfs_tree_unlock(cur); 439 free_extent_buffer(cur); 440 } 441 return ret; 442 } 443 444 /* 445 * Defrag all the leaves in a given btree. 446 * Read all the leaves and try to get key order to 447 * better reflect disk order 448 */ 449 450 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 451 struct btrfs_root *root) 452 { 453 struct btrfs_path *path = NULL; 454 struct btrfs_key key; 455 int ret = 0; 456 int wret; 457 int level; 458 int next_key_ret = 0; 459 u64 last_ret = 0; 460 461 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 462 goto out; 463 464 path = btrfs_alloc_path(); 465 if (!path) { 466 ret = -ENOMEM; 467 goto out; 468 } 469 470 level = btrfs_header_level(root->node); 471 472 if (level == 0) 473 goto out; 474 475 if (root->defrag_progress.objectid == 0) { 476 struct extent_buffer *root_node; 477 u32 nritems; 478 479 root_node = btrfs_lock_root_node(root); 480 nritems = btrfs_header_nritems(root_node); 481 root->defrag_max.objectid = 0; 482 /* from above we know this is not a leaf */ 483 btrfs_node_key_to_cpu(root_node, &root->defrag_max, 484 nritems - 1); 485 btrfs_tree_unlock(root_node); 486 free_extent_buffer(root_node); 487 memset(&key, 0, sizeof(key)); 488 } else { 489 memcpy(&key, &root->defrag_progress, sizeof(key)); 490 } 491 492 path->keep_locks = 1; 493 494 ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); 495 if (ret < 0) 496 goto out; 497 if (ret > 0) { 498 ret = 0; 499 goto out; 500 } 501 btrfs_release_path(path); 502 /* 503 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all 504 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later 505 * a deadlock (attempting to write lock an already write locked leaf). 506 */ 507 path->lowest_level = 1; 508 wret = btrfs_search_slot(trans, root, &key, path, 0, 1); 509 510 if (wret < 0) { 511 ret = wret; 512 goto out; 513 } 514 if (!path->nodes[1]) { 515 ret = 0; 516 goto out; 517 } 518 /* 519 * The node at level 1 must always be locked when our path has 520 * keep_locks set and lowest_level is 1, regardless of the value of 521 * path->slots[1]. 522 */ 523 ASSERT(path->locks[1] != 0); 524 ret = btrfs_realloc_node(trans, root, 525 path->nodes[1], 0, 526 &last_ret, 527 &root->defrag_progress); 528 if (ret) { 529 WARN_ON(ret == -EAGAIN); 530 goto out; 531 } 532 /* 533 * Now that we reallocated the node we can find the next key. Note that 534 * btrfs_find_next_key() can release our path and do another search 535 * without COWing, this is because even with path->keep_locks = 1, 536 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a 537 * node when path->slots[node_level - 1] does not point to the last 538 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore 539 * we search for the next key after reallocating our node. 540 */ 541 path->slots[1] = btrfs_header_nritems(path->nodes[1]); 542 next_key_ret = btrfs_find_next_key(root, path, &key, 1, 543 BTRFS_OLDEST_GENERATION); 544 if (next_key_ret == 0) { 545 memcpy(&root->defrag_progress, &key, sizeof(key)); 546 ret = -EAGAIN; 547 } 548 out: 549 btrfs_free_path(path); 550 if (ret == -EAGAIN) { 551 if (root->defrag_max.objectid > root->defrag_progress.objectid) 552 goto done; 553 if (root->defrag_max.type > root->defrag_progress.type) 554 goto done; 555 if (root->defrag_max.offset > root->defrag_progress.offset) 556 goto done; 557 ret = 0; 558 } 559 done: 560 if (ret != -EAGAIN) 561 memset(&root->defrag_progress, 0, 562 sizeof(root->defrag_progress)); 563 564 return ret; 565 } 566 567 /* 568 * Defrag a given btree. Every leaf in the btree is read and defragmented. 569 */ 570 int btrfs_defrag_root(struct btrfs_root *root) 571 { 572 struct btrfs_fs_info *fs_info = root->fs_info; 573 int ret; 574 575 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 576 return 0; 577 578 while (1) { 579 struct btrfs_trans_handle *trans; 580 581 trans = btrfs_start_transaction(root, 0); 582 if (IS_ERR(trans)) { 583 ret = PTR_ERR(trans); 584 break; 585 } 586 587 ret = btrfs_defrag_leaves(trans, root); 588 589 btrfs_end_transaction(trans); 590 btrfs_btree_balance_dirty(fs_info); 591 cond_resched(); 592 593 if (btrfs_fs_closing(fs_info) || ret != -EAGAIN) 594 break; 595 596 if (btrfs_defrag_cancelled(fs_info)) { 597 btrfs_debug(fs_info, "defrag_root cancelled"); 598 ret = -EAGAIN; 599 break; 600 } 601 } 602 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 603 return ret; 604 } 605 606 /* 607 * Defrag specific helper to get an extent map. 608 * 609 * Differences between this and btrfs_get_extent() are: 610 * 611 * - No extent_map will be added to inode->extent_tree 612 * To reduce memory usage in the long run. 613 * 614 * - Extra optimization to skip file extents older than @newer_than 615 * By using btrfs_search_forward() we can skip entire file ranges that 616 * have extents created in past transactions, because btrfs_search_forward() 617 * will not visit leaves and nodes with a generation smaller than given 618 * minimal generation threshold (@newer_than). 619 * 620 * Return valid em if we find a file extent matching the requirement. 621 * Return NULL if we can not find a file extent matching the requirement. 622 * 623 * Return ERR_PTR() for error. 624 */ 625 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, 626 u64 start, u64 newer_than) 627 { 628 struct btrfs_root *root = inode->root; 629 struct btrfs_file_extent_item *fi; 630 struct btrfs_path path = { 0 }; 631 struct extent_map *em; 632 struct btrfs_key key; 633 u64 ino = btrfs_ino(inode); 634 int ret; 635 636 em = alloc_extent_map(); 637 if (!em) { 638 ret = -ENOMEM; 639 goto err; 640 } 641 642 key.objectid = ino; 643 key.type = BTRFS_EXTENT_DATA_KEY; 644 key.offset = start; 645 646 if (newer_than) { 647 ret = btrfs_search_forward(root, &key, &path, newer_than); 648 if (ret < 0) 649 goto err; 650 /* Can't find anything newer */ 651 if (ret > 0) 652 goto not_found; 653 } else { 654 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); 655 if (ret < 0) 656 goto err; 657 } 658 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { 659 /* 660 * If btrfs_search_slot() makes path to point beyond nritems, 661 * we should not have an empty leaf, as this inode must at 662 * least have its INODE_ITEM. 663 */ 664 ASSERT(btrfs_header_nritems(path.nodes[0])); 665 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; 666 } 667 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 668 /* Perfect match, no need to go one slot back */ 669 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && 670 key.offset == start) 671 goto iterate; 672 673 /* We didn't find a perfect match, needs to go one slot back */ 674 if (path.slots[0] > 0) { 675 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 676 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 677 path.slots[0]--; 678 } 679 680 iterate: 681 /* Iterate through the path to find a file extent covering @start */ 682 while (true) { 683 u64 extent_end; 684 685 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) 686 goto next; 687 688 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 689 690 /* 691 * We may go one slot back to INODE_REF/XATTR item, then 692 * need to go forward until we reach an EXTENT_DATA. 693 * But we should still has the correct ino as key.objectid. 694 */ 695 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) 696 goto next; 697 698 /* It's beyond our target range, definitely not extent found */ 699 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) 700 goto not_found; 701 702 /* 703 * | |<- File extent ->| 704 * \- start 705 * 706 * This means there is a hole between start and key.offset. 707 */ 708 if (key.offset > start) { 709 em->start = start; 710 em->disk_bytenr = EXTENT_MAP_HOLE; 711 em->disk_num_bytes = 0; 712 em->ram_bytes = 0; 713 em->offset = 0; 714 em->len = key.offset - start; 715 break; 716 } 717 718 fi = btrfs_item_ptr(path.nodes[0], path.slots[0], 719 struct btrfs_file_extent_item); 720 extent_end = btrfs_file_extent_end(&path); 721 722 /* 723 * |<- file extent ->| | 724 * \- start 725 * 726 * We haven't reached start, search next slot. 727 */ 728 if (extent_end <= start) 729 goto next; 730 731 /* Now this extent covers @start, convert it to em */ 732 btrfs_extent_item_to_extent_map(inode, &path, fi, em); 733 break; 734 next: 735 ret = btrfs_next_item(root, &path); 736 if (ret < 0) 737 goto err; 738 if (ret > 0) 739 goto not_found; 740 } 741 btrfs_release_path(&path); 742 return em; 743 744 not_found: 745 btrfs_release_path(&path); 746 free_extent_map(em); 747 return NULL; 748 749 err: 750 btrfs_release_path(&path); 751 free_extent_map(em); 752 return ERR_PTR(ret); 753 } 754 755 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 756 u64 newer_than, bool locked) 757 { 758 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 759 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 760 struct extent_map *em; 761 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 762 763 /* 764 * Hopefully we have this extent in the tree already, try without the 765 * full extent lock. 766 */ 767 read_lock(&em_tree->lock); 768 em = lookup_extent_mapping(em_tree, start, sectorsize); 769 read_unlock(&em_tree->lock); 770 771 /* 772 * We can get a merged extent, in that case, we need to re-search 773 * tree to get the original em for defrag. 774 * 775 * If @newer_than is 0 or em::generation < newer_than, we can trust 776 * this em, as either we don't care about the generation, or the 777 * merged extent map will be rejected anyway. 778 */ 779 if (em && (em->flags & EXTENT_FLAG_MERGED) && 780 newer_than && em->generation >= newer_than) { 781 free_extent_map(em); 782 em = NULL; 783 } 784 785 if (!em) { 786 struct extent_state *cached = NULL; 787 u64 end = start + sectorsize - 1; 788 789 /* Get the big lock and read metadata off disk. */ 790 if (!locked) 791 lock_extent(io_tree, start, end, &cached); 792 em = defrag_get_extent(BTRFS_I(inode), start, newer_than); 793 if (!locked) 794 unlock_extent(io_tree, start, end, &cached); 795 796 if (IS_ERR(em)) 797 return NULL; 798 } 799 800 return em; 801 } 802 803 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, 804 const struct extent_map *em) 805 { 806 if (extent_map_is_compressed(em)) 807 return BTRFS_MAX_COMPRESSED; 808 return fs_info->max_extent_size; 809 } 810 811 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 812 u32 extent_thresh, u64 newer_than, bool locked) 813 { 814 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 815 struct extent_map *next; 816 bool ret = false; 817 818 /* This is the last extent */ 819 if (em->start + em->len >= i_size_read(inode)) 820 return false; 821 822 /* 823 * Here we need to pass @newer_then when checking the next extent, or 824 * we will hit a case we mark current extent for defrag, but the next 825 * one will not be a target. 826 * This will just cause extra IO without really reducing the fragments. 827 */ 828 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); 829 /* No more em or hole */ 830 if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE) 831 goto out; 832 if (next->flags & EXTENT_FLAG_PREALLOC) 833 goto out; 834 /* 835 * If the next extent is at its max capacity, defragging current extent 836 * makes no sense, as the total number of extents won't change. 837 */ 838 if (next->len >= get_extent_max_capacity(fs_info, em)) 839 goto out; 840 /* Skip older extent */ 841 if (next->generation < newer_than) 842 goto out; 843 /* Also check extent size */ 844 if (next->len >= extent_thresh) 845 goto out; 846 847 ret = true; 848 out: 849 free_extent_map(next); 850 return ret; 851 } 852 853 /* 854 * Prepare one page to be defragged. 855 * 856 * This will ensure: 857 * 858 * - Returned page is locked and has been set up properly. 859 * - No ordered extent exists in the page. 860 * - The page is uptodate. 861 * 862 * NOTE: Caller should also wait for page writeback after the cluster is 863 * prepared, here we don't do writeback wait for each page. 864 */ 865 static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index) 866 { 867 struct address_space *mapping = inode->vfs_inode.i_mapping; 868 gfp_t mask = btrfs_alloc_write_mask(mapping); 869 u64 page_start = (u64)index << PAGE_SHIFT; 870 u64 page_end = page_start + PAGE_SIZE - 1; 871 struct extent_state *cached_state = NULL; 872 struct folio *folio; 873 int ret; 874 875 again: 876 folio = __filemap_get_folio(mapping, index, 877 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 878 if (IS_ERR(folio)) 879 return folio; 880 881 /* 882 * Since we can defragment files opened read-only, we can encounter 883 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 884 * can't do I/O using huge pages yet, so return an error for now. 885 * Filesystem transparent huge pages are typically only used for 886 * executables that explicitly enable them, so this isn't very 887 * restrictive. 888 */ 889 if (folio_test_large(folio)) { 890 folio_unlock(folio); 891 folio_put(folio); 892 return ERR_PTR(-ETXTBSY); 893 } 894 895 ret = set_folio_extent_mapped(folio); 896 if (ret < 0) { 897 folio_unlock(folio); 898 folio_put(folio); 899 return ERR_PTR(ret); 900 } 901 902 /* Wait for any existing ordered extent in the range */ 903 while (1) { 904 struct btrfs_ordered_extent *ordered; 905 906 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 907 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 908 unlock_extent(&inode->io_tree, page_start, page_end, 909 &cached_state); 910 if (!ordered) 911 break; 912 913 folio_unlock(folio); 914 btrfs_start_ordered_extent(ordered); 915 btrfs_put_ordered_extent(ordered); 916 folio_lock(folio); 917 /* 918 * We unlocked the folio above, so we need check if it was 919 * released or not. 920 */ 921 if (folio->mapping != mapping || !folio->private) { 922 folio_unlock(folio); 923 folio_put(folio); 924 goto again; 925 } 926 } 927 928 /* 929 * Now the page range has no ordered extent any more. Read the page to 930 * make it uptodate. 931 */ 932 if (!folio_test_uptodate(folio)) { 933 btrfs_read_folio(NULL, folio); 934 folio_lock(folio); 935 if (folio->mapping != mapping || !folio->private) { 936 folio_unlock(folio); 937 folio_put(folio); 938 goto again; 939 } 940 if (!folio_test_uptodate(folio)) { 941 folio_unlock(folio); 942 folio_put(folio); 943 return ERR_PTR(-EIO); 944 } 945 } 946 return folio; 947 } 948 949 struct defrag_target_range { 950 struct list_head list; 951 u64 start; 952 u64 len; 953 }; 954 955 /* 956 * Collect all valid target extents. 957 * 958 * @start: file offset to lookup 959 * @len: length to lookup 960 * @extent_thresh: file extent size threshold, any extent size >= this value 961 * will be ignored 962 * @newer_than: only defrag extents newer than this value 963 * @do_compress: whether the defrag is doing compression 964 * if true, @extent_thresh will be ignored and all regular 965 * file extents meeting @newer_than will be targets. 966 * @locked: if the range has already held extent lock 967 * @target_list: list of targets file extents 968 */ 969 static int defrag_collect_targets(struct btrfs_inode *inode, 970 u64 start, u64 len, u32 extent_thresh, 971 u64 newer_than, bool do_compress, 972 bool locked, struct list_head *target_list, 973 u64 *last_scanned_ret) 974 { 975 struct btrfs_fs_info *fs_info = inode->root->fs_info; 976 bool last_is_target = false; 977 u64 cur = start; 978 int ret = 0; 979 980 while (cur < start + len) { 981 struct extent_map *em; 982 struct defrag_target_range *new; 983 bool next_mergeable = true; 984 u64 range_len; 985 986 last_is_target = false; 987 em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked); 988 if (!em) 989 break; 990 991 /* 992 * If the file extent is an inlined one, we may still want to 993 * defrag it (fallthrough) if it will cause a regular extent. 994 * This is for users who want to convert inline extents to 995 * regular ones through max_inline= mount option. 996 */ 997 if (em->disk_bytenr == EXTENT_MAP_INLINE && 998 em->len <= inode->root->fs_info->max_inline) 999 goto next; 1000 1001 /* Skip holes and preallocated extents. */ 1002 if (em->disk_bytenr == EXTENT_MAP_HOLE || 1003 (em->flags & EXTENT_FLAG_PREALLOC)) 1004 goto next; 1005 1006 /* Skip older extent */ 1007 if (em->generation < newer_than) 1008 goto next; 1009 1010 /* This em is under writeback, no need to defrag */ 1011 if (em->generation == (u64)-1) 1012 goto next; 1013 1014 /* 1015 * Our start offset might be in the middle of an existing extent 1016 * map, so take that into account. 1017 */ 1018 range_len = em->len - (cur - em->start); 1019 /* 1020 * If this range of the extent map is already flagged for delalloc, 1021 * skip it, because: 1022 * 1023 * 1) We could deadlock later, when trying to reserve space for 1024 * delalloc, because in case we can't immediately reserve space 1025 * the flusher can start delalloc and wait for the respective 1026 * ordered extents to complete. The deadlock would happen 1027 * because we do the space reservation while holding the range 1028 * locked, and starting writeback, or finishing an ordered 1029 * extent, requires locking the range; 1030 * 1031 * 2) If there's delalloc there, it means there's dirty pages for 1032 * which writeback has not started yet (we clean the delalloc 1033 * flag when starting writeback and after creating an ordered 1034 * extent). If we mark pages in an adjacent range for defrag, 1035 * then we will have a larger contiguous range for delalloc, 1036 * very likely resulting in a larger extent after writeback is 1037 * triggered (except in a case of free space fragmentation). 1038 */ 1039 if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1, 1040 EXTENT_DELALLOC)) 1041 goto next; 1042 1043 /* 1044 * For do_compress case, we want to compress all valid file 1045 * extents, thus no @extent_thresh or mergeable check. 1046 */ 1047 if (do_compress) 1048 goto add; 1049 1050 /* Skip too large extent */ 1051 if (em->len >= extent_thresh) 1052 goto next; 1053 1054 /* 1055 * Skip extents already at its max capacity, this is mostly for 1056 * compressed extents, which max cap is only 128K. 1057 */ 1058 if (em->len >= get_extent_max_capacity(fs_info, em)) 1059 goto next; 1060 1061 /* 1062 * Normally there are no more extents after an inline one, thus 1063 * @next_mergeable will normally be false and not defragged. 1064 * So if an inline extent passed all above checks, just add it 1065 * for defrag, and be converted to regular extents. 1066 */ 1067 if (em->disk_bytenr == EXTENT_MAP_INLINE) 1068 goto add; 1069 1070 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1071 extent_thresh, newer_than, locked); 1072 if (!next_mergeable) { 1073 struct defrag_target_range *last; 1074 1075 /* Empty target list, no way to merge with last entry */ 1076 if (list_empty(target_list)) 1077 goto next; 1078 last = list_entry(target_list->prev, 1079 struct defrag_target_range, list); 1080 /* Not mergeable with last entry */ 1081 if (last->start + last->len != cur) 1082 goto next; 1083 1084 /* Mergeable, fall through to add it to @target_list. */ 1085 } 1086 1087 add: 1088 last_is_target = true; 1089 range_len = min(extent_map_end(em), start + len) - cur; 1090 /* 1091 * This one is a good target, check if it can be merged into 1092 * last range of the target list. 1093 */ 1094 if (!list_empty(target_list)) { 1095 struct defrag_target_range *last; 1096 1097 last = list_entry(target_list->prev, 1098 struct defrag_target_range, list); 1099 ASSERT(last->start + last->len <= cur); 1100 if (last->start + last->len == cur) { 1101 /* Mergeable, enlarge the last entry */ 1102 last->len += range_len; 1103 goto next; 1104 } 1105 /* Fall through to allocate a new entry */ 1106 } 1107 1108 /* Allocate new defrag_target_range */ 1109 new = kmalloc(sizeof(*new), GFP_NOFS); 1110 if (!new) { 1111 free_extent_map(em); 1112 ret = -ENOMEM; 1113 break; 1114 } 1115 new->start = cur; 1116 new->len = range_len; 1117 list_add_tail(&new->list, target_list); 1118 1119 next: 1120 cur = extent_map_end(em); 1121 free_extent_map(em); 1122 } 1123 if (ret < 0) { 1124 struct defrag_target_range *entry; 1125 struct defrag_target_range *tmp; 1126 1127 list_for_each_entry_safe(entry, tmp, target_list, list) { 1128 list_del_init(&entry->list); 1129 kfree(entry); 1130 } 1131 } 1132 if (!ret && last_scanned_ret) { 1133 /* 1134 * If the last extent is not a target, the caller can skip to 1135 * the end of that extent. 1136 * Otherwise, we can only go the end of the specified range. 1137 */ 1138 if (!last_is_target) 1139 *last_scanned_ret = max(cur, *last_scanned_ret); 1140 else 1141 *last_scanned_ret = max(start + len, *last_scanned_ret); 1142 } 1143 return ret; 1144 } 1145 1146 #define CLUSTER_SIZE (SZ_256K) 1147 static_assert(PAGE_ALIGNED(CLUSTER_SIZE)); 1148 1149 /* 1150 * Defrag one contiguous target range. 1151 * 1152 * @inode: target inode 1153 * @target: target range to defrag 1154 * @pages: locked pages covering the defrag range 1155 * @nr_pages: number of locked pages 1156 * 1157 * Caller should ensure: 1158 * 1159 * - Pages are prepared 1160 * Pages should be locked, no ordered extent in the pages range, 1161 * no writeback. 1162 * 1163 * - Extent bits are locked 1164 */ 1165 static int defrag_one_locked_target(struct btrfs_inode *inode, 1166 struct defrag_target_range *target, 1167 struct folio **folios, int nr_pages, 1168 struct extent_state **cached_state) 1169 { 1170 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1171 struct extent_changeset *data_reserved = NULL; 1172 const u64 start = target->start; 1173 const u64 len = target->len; 1174 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1175 unsigned long start_index = start >> PAGE_SHIFT; 1176 unsigned long first_index = folios[0]->index; 1177 int ret = 0; 1178 int i; 1179 1180 ASSERT(last_index - first_index + 1 <= nr_pages); 1181 1182 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1183 if (ret < 0) 1184 return ret; 1185 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1186 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1187 EXTENT_DEFRAG, cached_state); 1188 set_extent_bit(&inode->io_tree, start, start + len - 1, 1189 EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state); 1190 1191 /* Update the page status */ 1192 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1193 folio_clear_checked(folios[i]); 1194 btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len); 1195 } 1196 btrfs_delalloc_release_extents(inode, len); 1197 extent_changeset_free(data_reserved); 1198 1199 return ret; 1200 } 1201 1202 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1203 u32 extent_thresh, u64 newer_than, bool do_compress, 1204 u64 *last_scanned_ret) 1205 { 1206 struct extent_state *cached_state = NULL; 1207 struct defrag_target_range *entry; 1208 struct defrag_target_range *tmp; 1209 LIST_HEAD(target_list); 1210 struct folio **folios; 1211 const u32 sectorsize = inode->root->fs_info->sectorsize; 1212 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1213 u64 start_index = start >> PAGE_SHIFT; 1214 unsigned int nr_pages = last_index - start_index + 1; 1215 int ret = 0; 1216 int i; 1217 1218 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1219 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1220 1221 folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS); 1222 if (!folios) 1223 return -ENOMEM; 1224 1225 /* Prepare all pages */ 1226 for (i = 0; i < nr_pages; i++) { 1227 folios[i] = defrag_prepare_one_folio(inode, start_index + i); 1228 if (IS_ERR(folios[i])) { 1229 ret = PTR_ERR(folios[i]); 1230 nr_pages = i; 1231 goto free_folios; 1232 } 1233 } 1234 for (i = 0; i < nr_pages; i++) 1235 folio_wait_writeback(folios[i]); 1236 1237 /* Lock the pages range */ 1238 lock_extent(&inode->io_tree, start_index << PAGE_SHIFT, 1239 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1240 &cached_state); 1241 /* 1242 * Now we have a consistent view about the extent map, re-check 1243 * which range really needs to be defragged. 1244 * 1245 * And this time we have extent locked already, pass @locked = true 1246 * so that we won't relock the extent range and cause deadlock. 1247 */ 1248 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1249 newer_than, do_compress, true, 1250 &target_list, last_scanned_ret); 1251 if (ret < 0) 1252 goto unlock_extent; 1253 1254 list_for_each_entry(entry, &target_list, list) { 1255 ret = defrag_one_locked_target(inode, entry, folios, nr_pages, 1256 &cached_state); 1257 if (ret < 0) 1258 break; 1259 } 1260 1261 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1262 list_del_init(&entry->list); 1263 kfree(entry); 1264 } 1265 unlock_extent: 1266 unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT, 1267 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1268 &cached_state); 1269 free_folios: 1270 for (i = 0; i < nr_pages; i++) { 1271 folio_unlock(folios[i]); 1272 folio_put(folios[i]); 1273 } 1274 kfree(folios); 1275 return ret; 1276 } 1277 1278 static int defrag_one_cluster(struct btrfs_inode *inode, 1279 struct file_ra_state *ra, 1280 u64 start, u32 len, u32 extent_thresh, 1281 u64 newer_than, bool do_compress, 1282 unsigned long *sectors_defragged, 1283 unsigned long max_sectors, 1284 u64 *last_scanned_ret) 1285 { 1286 const u32 sectorsize = inode->root->fs_info->sectorsize; 1287 struct defrag_target_range *entry; 1288 struct defrag_target_range *tmp; 1289 LIST_HEAD(target_list); 1290 int ret; 1291 1292 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1293 newer_than, do_compress, false, 1294 &target_list, NULL); 1295 if (ret < 0) 1296 goto out; 1297 1298 list_for_each_entry(entry, &target_list, list) { 1299 u32 range_len = entry->len; 1300 1301 /* Reached or beyond the limit */ 1302 if (max_sectors && *sectors_defragged >= max_sectors) { 1303 ret = 1; 1304 break; 1305 } 1306 1307 if (max_sectors) 1308 range_len = min_t(u32, range_len, 1309 (max_sectors - *sectors_defragged) * sectorsize); 1310 1311 /* 1312 * If defrag_one_range() has updated last_scanned_ret, 1313 * our range may already be invalid (e.g. hole punched). 1314 * Skip if our range is before last_scanned_ret, as there is 1315 * no need to defrag the range anymore. 1316 */ 1317 if (entry->start + range_len <= *last_scanned_ret) 1318 continue; 1319 1320 if (ra) 1321 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1322 ra, NULL, entry->start >> PAGE_SHIFT, 1323 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1324 (entry->start >> PAGE_SHIFT) + 1); 1325 /* 1326 * Here we may not defrag any range if holes are punched before 1327 * we locked the pages. 1328 * But that's fine, it only affects the @sectors_defragged 1329 * accounting. 1330 */ 1331 ret = defrag_one_range(inode, entry->start, range_len, 1332 extent_thresh, newer_than, do_compress, 1333 last_scanned_ret); 1334 if (ret < 0) 1335 break; 1336 *sectors_defragged += range_len >> 1337 inode->root->fs_info->sectorsize_bits; 1338 } 1339 out: 1340 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1341 list_del_init(&entry->list); 1342 kfree(entry); 1343 } 1344 if (ret >= 0) 1345 *last_scanned_ret = max(*last_scanned_ret, start + len); 1346 return ret; 1347 } 1348 1349 /* 1350 * Entry point to file defragmentation. 1351 * 1352 * @inode: inode to be defragged 1353 * @ra: readahead state (can be NUL) 1354 * @range: defrag options including range and flags 1355 * @newer_than: minimum transid to defrag 1356 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1357 * will be defragged. 1358 * 1359 * Return <0 for error. 1360 * Return >=0 for the number of sectors defragged, and range->start will be updated 1361 * to indicate the file offset where next defrag should be started at. 1362 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1363 * defragging all the range). 1364 */ 1365 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1366 struct btrfs_ioctl_defrag_range_args *range, 1367 u64 newer_than, unsigned long max_to_defrag) 1368 { 1369 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1370 unsigned long sectors_defragged = 0; 1371 u64 isize = i_size_read(inode); 1372 u64 cur; 1373 u64 last_byte; 1374 bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS); 1375 bool ra_allocated = false; 1376 int compress_type = BTRFS_COMPRESS_ZLIB; 1377 int ret = 0; 1378 u32 extent_thresh = range->extent_thresh; 1379 pgoff_t start_index; 1380 1381 if (isize == 0) 1382 return 0; 1383 1384 if (range->start >= isize) 1385 return -EINVAL; 1386 1387 if (do_compress) { 1388 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1389 return -EINVAL; 1390 if (range->compress_type) 1391 compress_type = range->compress_type; 1392 } 1393 1394 if (extent_thresh == 0) 1395 extent_thresh = SZ_256K; 1396 1397 if (range->start + range->len > range->start) { 1398 /* Got a specific range */ 1399 last_byte = min(isize, range->start + range->len); 1400 } else { 1401 /* Defrag until file end */ 1402 last_byte = isize; 1403 } 1404 1405 /* Align the range */ 1406 cur = round_down(range->start, fs_info->sectorsize); 1407 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1408 1409 /* 1410 * If we were not given a ra, allocate a readahead context. As 1411 * readahead is just an optimization, defrag will work without it so 1412 * we don't error out. 1413 */ 1414 if (!ra) { 1415 ra_allocated = true; 1416 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1417 if (ra) 1418 file_ra_state_init(ra, inode->i_mapping); 1419 } 1420 1421 /* 1422 * Make writeback start from the beginning of the range, so that the 1423 * defrag range can be written sequentially. 1424 */ 1425 start_index = cur >> PAGE_SHIFT; 1426 if (start_index < inode->i_mapping->writeback_index) 1427 inode->i_mapping->writeback_index = start_index; 1428 1429 while (cur < last_byte) { 1430 const unsigned long prev_sectors_defragged = sectors_defragged; 1431 u64 last_scanned = cur; 1432 u64 cluster_end; 1433 1434 if (btrfs_defrag_cancelled(fs_info)) { 1435 ret = -EAGAIN; 1436 break; 1437 } 1438 1439 /* We want the cluster end at page boundary when possible */ 1440 cluster_end = (((cur >> PAGE_SHIFT) + 1441 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1442 cluster_end = min(cluster_end, last_byte); 1443 1444 btrfs_inode_lock(BTRFS_I(inode), 0); 1445 if (IS_SWAPFILE(inode)) { 1446 ret = -ETXTBSY; 1447 btrfs_inode_unlock(BTRFS_I(inode), 0); 1448 break; 1449 } 1450 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1451 btrfs_inode_unlock(BTRFS_I(inode), 0); 1452 break; 1453 } 1454 if (do_compress) 1455 BTRFS_I(inode)->defrag_compress = compress_type; 1456 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1457 cluster_end + 1 - cur, extent_thresh, 1458 newer_than, do_compress, §ors_defragged, 1459 max_to_defrag, &last_scanned); 1460 1461 if (sectors_defragged > prev_sectors_defragged) 1462 balance_dirty_pages_ratelimited(inode->i_mapping); 1463 1464 btrfs_inode_unlock(BTRFS_I(inode), 0); 1465 if (ret < 0) 1466 break; 1467 cur = max(cluster_end + 1, last_scanned); 1468 if (ret > 0) { 1469 ret = 0; 1470 break; 1471 } 1472 cond_resched(); 1473 } 1474 1475 if (ra_allocated) 1476 kfree(ra); 1477 /* 1478 * Update range.start for autodefrag, this will indicate where to start 1479 * in next run. 1480 */ 1481 range->start = cur; 1482 if (sectors_defragged) { 1483 /* 1484 * We have defragged some sectors, for compression case they 1485 * need to be written back immediately. 1486 */ 1487 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1488 filemap_flush(inode->i_mapping); 1489 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1490 &BTRFS_I(inode)->runtime_flags)) 1491 filemap_flush(inode->i_mapping); 1492 } 1493 if (range->compress_type == BTRFS_COMPRESS_LZO) 1494 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1495 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1496 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1497 ret = sectors_defragged; 1498 } 1499 if (do_compress) { 1500 btrfs_inode_lock(BTRFS_I(inode), 0); 1501 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1502 btrfs_inode_unlock(BTRFS_I(inode), 0); 1503 } 1504 return ret; 1505 } 1506 1507 void __cold btrfs_auto_defrag_exit(void) 1508 { 1509 kmem_cache_destroy(btrfs_inode_defrag_cachep); 1510 } 1511 1512 int __init btrfs_auto_defrag_init(void) 1513 { 1514 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 1515 sizeof(struct inode_defrag), 0, 0, NULL); 1516 if (!btrfs_inode_defrag_cachep) 1517 return -ENOMEM; 1518 1519 return 0; 1520 } 1521