xref: /linux/fs/btrfs/ctree.h (revision e04e2b760ddbe3d7b283a05898c3a029085cd8cd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/pagemap.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/mutex.h>
13 #include <linux/wait.h>
14 #include <linux/list.h>
15 #include <linux/atomic.h>
16 #include <linux/xarray.h>
17 #include <linux/refcount.h>
18 #include <uapi/linux/btrfs_tree.h>
19 #include "locking.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "extent-io-tree.h"
23 
24 struct extent_buffer;
25 struct btrfs_block_rsv;
26 struct btrfs_trans_handle;
27 struct btrfs_block_group;
28 
29 /* Read ahead values for struct btrfs_path.reada */
30 enum {
31 	READA_NONE,
32 	READA_BACK,
33 	READA_FORWARD,
34 	/*
35 	 * Similar to READA_FORWARD but unlike it:
36 	 *
37 	 * 1) It will trigger readahead even for leaves that are not close to
38 	 *    each other on disk;
39 	 * 2) It also triggers readahead for nodes;
40 	 * 3) During a search, even when a node or leaf is already in memory, it
41 	 *    will still trigger readahead for other nodes and leaves that follow
42 	 *    it.
43 	 *
44 	 * This is meant to be used only when we know we are iterating over the
45 	 * entire tree or a very large part of it.
46 	 */
47 	READA_FORWARD_ALWAYS,
48 };
49 
50 /*
51  * btrfs_paths remember the path taken from the root down to the leaf.
52  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
53  * to any other levels that are present.
54  *
55  * The slots array records the index of the item or block pointer
56  * used while walking the tree.
57  */
58 struct btrfs_path {
59 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
60 	int slots[BTRFS_MAX_LEVEL];
61 	/* if there is real range locking, this locks field will change */
62 	u8 locks[BTRFS_MAX_LEVEL];
63 	u8 reada;
64 	/* keep some upper locks as we walk down */
65 	u8 lowest_level;
66 
67 	/*
68 	 * set by btrfs_split_item, tells search_slot to keep all locks
69 	 * and to force calls to keep space in the nodes
70 	 */
71 	unsigned int search_for_split:1;
72 	unsigned int keep_locks:1;
73 	unsigned int skip_locking:1;
74 	unsigned int search_commit_root:1;
75 	unsigned int need_commit_sem:1;
76 	unsigned int skip_release_on_error:1;
77 	/*
78 	 * Indicate that new item (btrfs_search_slot) is extending already
79 	 * existing item and ins_len contains only the data size and not item
80 	 * header (ie. sizeof(struct btrfs_item) is not included).
81 	 */
82 	unsigned int search_for_extension:1;
83 	/* Stop search if any locks need to be taken (for read) */
84 	unsigned int nowait:1;
85 };
86 
87 /*
88  * The state of btrfs root
89  */
90 enum {
91 	/*
92 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
93 	 * with the balancing code.   But the race is very small, and only the
94 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
95 	 * is used to tell us when more checks are required
96 	 */
97 	BTRFS_ROOT_IN_TRANS_SETUP,
98 
99 	/*
100 	 * Set if tree blocks of this root can be shared by other roots.
101 	 * Only subvolume trees and their reloc trees have this bit set.
102 	 * Conflicts with TRACK_DIRTY bit.
103 	 *
104 	 * This affects two things:
105 	 *
106 	 * - How balance works
107 	 *   For shareable roots, we need to use reloc tree and do path
108 	 *   replacement for balance, and need various pre/post hooks for
109 	 *   snapshot creation to handle them.
110 	 *
111 	 *   While for non-shareable trees, we just simply do a tree search
112 	 *   with COW.
113 	 *
114 	 * - How dirty roots are tracked
115 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
116 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
117 	 *   don't need to set this manually.
118 	 */
119 	BTRFS_ROOT_SHAREABLE,
120 	BTRFS_ROOT_TRACK_DIRTY,
121 	BTRFS_ROOT_IN_RADIX,
122 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
123 	BTRFS_ROOT_DEFRAG_RUNNING,
124 	BTRFS_ROOT_FORCE_COW,
125 	BTRFS_ROOT_MULTI_LOG_TASKS,
126 	BTRFS_ROOT_DIRTY,
127 	BTRFS_ROOT_DELETING,
128 
129 	/*
130 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
131 	 *
132 	 * Set for the subvolume tree owning the reloc tree.
133 	 */
134 	BTRFS_ROOT_DEAD_RELOC_TREE,
135 	/* Mark dead root stored on device whose cleanup needs to be resumed */
136 	BTRFS_ROOT_DEAD_TREE,
137 	/* The root has a log tree. Used for subvolume roots and the tree root. */
138 	BTRFS_ROOT_HAS_LOG_TREE,
139 	/* Qgroup flushing is in progress */
140 	BTRFS_ROOT_QGROUP_FLUSHING,
141 	/* We started the orphan cleanup for this root. */
142 	BTRFS_ROOT_ORPHAN_CLEANUP,
143 	/* This root has a drop operation that was started previously. */
144 	BTRFS_ROOT_UNFINISHED_DROP,
145 	/* This reloc root needs to have its buffers lockdep class reset. */
146 	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
147 };
148 
149 /*
150  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
151  * code. For detail check comment in fs/btrfs/qgroup.c.
152  */
153 struct btrfs_qgroup_swapped_blocks {
154 	spinlock_t lock;
155 	/* RM_EMPTY_ROOT() of above blocks[] */
156 	bool swapped;
157 	struct rb_root blocks[BTRFS_MAX_LEVEL];
158 };
159 
160 /*
161  * in ram representation of the tree.  extent_root is used for all allocations
162  * and for the extent tree extent_root root.
163  */
164 struct btrfs_root {
165 	struct rb_node rb_node;
166 
167 	struct extent_buffer *node;
168 
169 	struct extent_buffer *commit_root;
170 	struct btrfs_root *log_root;
171 	struct btrfs_root *reloc_root;
172 
173 	unsigned long state;
174 	struct btrfs_root_item root_item;
175 	struct btrfs_key root_key;
176 	struct btrfs_fs_info *fs_info;
177 	struct extent_io_tree dirty_log_pages;
178 
179 	struct mutex objectid_mutex;
180 
181 	spinlock_t accounting_lock;
182 	struct btrfs_block_rsv *block_rsv;
183 
184 	struct mutex log_mutex;
185 	wait_queue_head_t log_writer_wait;
186 	wait_queue_head_t log_commit_wait[2];
187 	struct list_head log_ctxs[2];
188 	/* Used only for log trees of subvolumes, not for the log root tree */
189 	atomic_t log_writers;
190 	atomic_t log_commit[2];
191 	/* Used only for log trees of subvolumes, not for the log root tree */
192 	atomic_t log_batch;
193 	/*
194 	 * Protected by the 'log_mutex' lock but can be read without holding
195 	 * that lock to avoid unnecessary lock contention, in which case it
196 	 * should be read using btrfs_get_root_log_transid() except if it's a
197 	 * log tree in which case it can be directly accessed. Updates to this
198 	 * field should always use btrfs_set_root_log_transid(), except for log
199 	 * trees where the field can be updated directly.
200 	 */
201 	int log_transid;
202 	/* No matter the commit succeeds or not*/
203 	int log_transid_committed;
204 	/*
205 	 * Just be updated when the commit succeeds. Use
206 	 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
207 	 * to access this field.
208 	 */
209 	int last_log_commit;
210 	pid_t log_start_pid;
211 
212 	u64 last_trans;
213 
214 	u64 free_objectid;
215 
216 	struct btrfs_key defrag_progress;
217 	struct btrfs_key defrag_max;
218 
219 	/* The dirty list is only used by non-shareable roots */
220 	struct list_head dirty_list;
221 
222 	struct list_head root_list;
223 
224 	/*
225 	 * Xarray that keeps track of in-memory inodes, protected by the lock
226 	 * @inode_lock.
227 	 */
228 	struct xarray inodes;
229 
230 	/*
231 	 * Xarray that keeps track of delayed nodes of every inode, protected
232 	 * by @inode_lock.
233 	 */
234 	struct xarray delayed_nodes;
235 	/*
236 	 * right now this just gets used so that a root has its own devid
237 	 * for stat.  It may be used for more later
238 	 */
239 	dev_t anon_dev;
240 
241 	spinlock_t root_item_lock;
242 	refcount_t refs;
243 
244 	struct mutex delalloc_mutex;
245 	spinlock_t delalloc_lock;
246 	/*
247 	 * all of the inodes that have delalloc bytes.  It is possible for
248 	 * this list to be empty even when there is still dirty data=ordered
249 	 * extents waiting to finish IO.
250 	 */
251 	struct list_head delalloc_inodes;
252 	struct list_head delalloc_root;
253 	u64 nr_delalloc_inodes;
254 
255 	struct mutex ordered_extent_mutex;
256 	/*
257 	 * this is used by the balancing code to wait for all the pending
258 	 * ordered extents
259 	 */
260 	spinlock_t ordered_extent_lock;
261 
262 	/*
263 	 * all of the data=ordered extents pending writeback
264 	 * these can span multiple transactions and basically include
265 	 * every dirty data page that isn't from nodatacow
266 	 */
267 	struct list_head ordered_extents;
268 	struct list_head ordered_root;
269 	u64 nr_ordered_extents;
270 
271 	/*
272 	 * Not empty if this subvolume root has gone through tree block swap
273 	 * (relocation)
274 	 *
275 	 * Will be used by reloc_control::dirty_subvol_roots.
276 	 */
277 	struct list_head reloc_dirty_list;
278 
279 	/*
280 	 * Number of currently running SEND ioctls to prevent
281 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
282 	 */
283 	int send_in_progress;
284 	/*
285 	 * Number of currently running deduplication operations that have a
286 	 * destination inode belonging to this root. Protected by the lock
287 	 * root_item_lock.
288 	 */
289 	int dedupe_in_progress;
290 	/* For exclusion of snapshot creation and nocow writes */
291 	struct btrfs_drew_lock snapshot_lock;
292 
293 	atomic_t snapshot_force_cow;
294 
295 	/* For qgroup metadata reserved space */
296 	spinlock_t qgroup_meta_rsv_lock;
297 	u64 qgroup_meta_rsv_pertrans;
298 	u64 qgroup_meta_rsv_prealloc;
299 	wait_queue_head_t qgroup_flush_wait;
300 
301 	/* Number of active swapfiles */
302 	atomic_t nr_swapfiles;
303 
304 	/* Record pairs of swapped blocks for qgroup */
305 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
306 
307 	/* Used only by log trees, when logging csum items */
308 	struct extent_io_tree log_csum_range;
309 
310 	/* Used in simple quotas, track root during relocation. */
311 	u64 relocation_src_root;
312 
313 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
314 	u64 alloc_bytenr;
315 #endif
316 
317 #ifdef CONFIG_BTRFS_DEBUG
318 	struct list_head leak_list;
319 #endif
320 };
321 
322 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
323 {
324 	/* Byte-swap the constant at compile time, root_item::flags is LE */
325 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
326 }
327 
328 static inline bool btrfs_root_dead(const struct btrfs_root *root)
329 {
330 	/* Byte-swap the constant at compile time, root_item::flags is LE */
331 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
332 }
333 
334 static inline u64 btrfs_root_id(const struct btrfs_root *root)
335 {
336 	return root->root_key.objectid;
337 }
338 
339 static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
340 {
341 	return READ_ONCE(root->log_transid);
342 }
343 
344 static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
345 {
346 	WRITE_ONCE(root->log_transid, log_transid);
347 }
348 
349 static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
350 {
351 	return READ_ONCE(root->last_log_commit);
352 }
353 
354 static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
355 {
356 	WRITE_ONCE(root->last_log_commit, commit_id);
357 }
358 
359 static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root)
360 {
361 	return READ_ONCE(root->last_trans);
362 }
363 
364 static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid)
365 {
366 	WRITE_ONCE(root->last_trans, transid);
367 }
368 
369 /*
370  * Structure that conveys information about an extent that is going to replace
371  * all the extents in a file range.
372  */
373 struct btrfs_replace_extent_info {
374 	u64 disk_offset;
375 	u64 disk_len;
376 	u64 data_offset;
377 	u64 data_len;
378 	u64 file_offset;
379 	/* Pointer to a file extent item of type regular or prealloc. */
380 	char *extent_buf;
381 	/*
382 	 * Set to true when attempting to replace a file range with a new extent
383 	 * described by this structure, set to false when attempting to clone an
384 	 * existing extent into a file range.
385 	 */
386 	bool is_new_extent;
387 	/* Indicate if we should update the inode's mtime and ctime. */
388 	bool update_times;
389 	/* Meaningful only if is_new_extent is true. */
390 	int qgroup_reserved;
391 	/*
392 	 * Meaningful only if is_new_extent is true.
393 	 * Used to track how many extent items we have already inserted in a
394 	 * subvolume tree that refer to the extent described by this structure,
395 	 * so that we know when to create a new delayed ref or update an existing
396 	 * one.
397 	 */
398 	int insertions;
399 };
400 
401 /* Arguments for btrfs_drop_extents() */
402 struct btrfs_drop_extents_args {
403 	/* Input parameters */
404 
405 	/*
406 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
407 	 * If 'replace_extent' is true, this must not be NULL. Also the path
408 	 * is always released except if 'replace_extent' is true and
409 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
410 	 * the path is kept locked.
411 	 */
412 	struct btrfs_path *path;
413 	/* Start offset of the range to drop extents from */
414 	u64 start;
415 	/* End (exclusive, last byte + 1) of the range to drop extents from */
416 	u64 end;
417 	/* If true drop all the extent maps in the range */
418 	bool drop_cache;
419 	/*
420 	 * If true it means we want to insert a new extent after dropping all
421 	 * the extents in the range. If this is true, the 'extent_item_size'
422 	 * parameter must be set as well and the 'extent_inserted' field will
423 	 * be set to true by btrfs_drop_extents() if it could insert the new
424 	 * extent.
425 	 * Note: when this is set to true the path must not be NULL.
426 	 */
427 	bool replace_extent;
428 	/*
429 	 * Used if 'replace_extent' is true. Size of the file extent item to
430 	 * insert after dropping all existing extents in the range
431 	 */
432 	u32 extent_item_size;
433 
434 	/* Output parameters */
435 
436 	/*
437 	 * Set to the minimum between the input parameter 'end' and the end
438 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
439 	 * set even if btrfs_drop_extents() returns an error.
440 	 */
441 	u64 drop_end;
442 	/*
443 	 * The number of allocated bytes found in the range. This can be smaller
444 	 * than the range's length when there are holes in the range.
445 	 */
446 	u64 bytes_found;
447 	/*
448 	 * Only set if 'replace_extent' is true. Set to true if we were able
449 	 * to insert a replacement extent after dropping all extents in the
450 	 * range, otherwise set to false by btrfs_drop_extents().
451 	 * Also, if btrfs_drop_extents() has set this to true it means it
452 	 * returned with the path locked, otherwise if it has set this to
453 	 * false it has returned with the path released.
454 	 */
455 	bool extent_inserted;
456 };
457 
458 struct btrfs_file_private {
459 	void *filldir_buf;
460 	u64 last_index;
461 	struct extent_state *llseek_cached_state;
462 	bool fsync_skip_inode_lock;
463 };
464 
465 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
466 {
467 	return info->nodesize - sizeof(struct btrfs_header);
468 }
469 
470 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
471 {
472 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
473 }
474 
475 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
476 {
477 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
478 }
479 
480 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
481 {
482 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
483 }
484 
485 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
486 				((bytes) >> (fs_info)->sectorsize_bits)
487 
488 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
489 {
490 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
491 }
492 
493 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end);
494 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
495 			 u64 num_bytes, u64 *actual_bytes);
496 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
497 
498 /* ctree.c */
499 int __init btrfs_ctree_init(void);
500 void __cold btrfs_ctree_exit(void);
501 
502 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
503 		     const struct btrfs_key *key, int *slot);
504 
505 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
506 
507 #ifdef __LITTLE_ENDIAN
508 
509 /*
510  * Compare two keys, on little-endian the disk order is same as CPU order and
511  * we can avoid the conversion.
512  */
513 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
514 				  const struct btrfs_key *k2)
515 {
516 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
517 
518 	return btrfs_comp_cpu_keys(k1, k2);
519 }
520 
521 #else
522 
523 /* Compare two keys in a memcmp fashion. */
524 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
525 				  const struct btrfs_key *k2)
526 {
527 	struct btrfs_key k1;
528 
529 	btrfs_disk_key_to_cpu(&k1, disk);
530 
531 	return btrfs_comp_cpu_keys(&k1, k2);
532 }
533 
534 #endif
535 
536 int btrfs_previous_item(struct btrfs_root *root,
537 			struct btrfs_path *path, u64 min_objectid,
538 			int type);
539 int btrfs_previous_extent_item(struct btrfs_root *root,
540 			struct btrfs_path *path, u64 min_objectid);
541 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
542 			     struct btrfs_path *path,
543 			     const struct btrfs_key *new_key);
544 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
545 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
546 			struct btrfs_key *key, int lowest_level,
547 			u64 min_trans);
548 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
549 			 struct btrfs_path *path,
550 			 u64 min_trans);
551 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
552 					   int slot);
553 
554 int btrfs_cow_block(struct btrfs_trans_handle *trans,
555 		    struct btrfs_root *root, struct extent_buffer *buf,
556 		    struct extent_buffer *parent, int parent_slot,
557 		    struct extent_buffer **cow_ret,
558 		    enum btrfs_lock_nesting nest);
559 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
560 			  struct btrfs_root *root,
561 			  struct extent_buffer *buf,
562 			  struct extent_buffer *parent, int parent_slot,
563 			  struct extent_buffer **cow_ret,
564 			  u64 search_start, u64 empty_size,
565 			  enum btrfs_lock_nesting nest);
566 int btrfs_copy_root(struct btrfs_trans_handle *trans,
567 		      struct btrfs_root *root,
568 		      struct extent_buffer *buf,
569 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
570 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
571 			       struct btrfs_root *root,
572 			       struct extent_buffer *buf);
573 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
574 		  struct btrfs_path *path, int level, int slot);
575 void btrfs_extend_item(struct btrfs_trans_handle *trans,
576 		       struct btrfs_path *path, u32 data_size);
577 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
578 			 struct btrfs_path *path, u32 new_size, int from_end);
579 int btrfs_split_item(struct btrfs_trans_handle *trans,
580 		     struct btrfs_root *root,
581 		     struct btrfs_path *path,
582 		     const struct btrfs_key *new_key,
583 		     unsigned long split_offset);
584 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
585 			 struct btrfs_root *root,
586 			 struct btrfs_path *path,
587 			 const struct btrfs_key *new_key);
588 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
589 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
590 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
591 		      const struct btrfs_key *key, struct btrfs_path *p,
592 		      int ins_len, int cow);
593 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
594 			  struct btrfs_path *p, u64 time_seq);
595 int btrfs_search_slot_for_read(struct btrfs_root *root,
596 			       const struct btrfs_key *key,
597 			       struct btrfs_path *p, int find_higher,
598 			       int return_any);
599 void btrfs_release_path(struct btrfs_path *p);
600 struct btrfs_path *btrfs_alloc_path(void);
601 void btrfs_free_path(struct btrfs_path *p);
602 
603 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
604 		   struct btrfs_path *path, int slot, int nr);
605 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
606 				 struct btrfs_root *root,
607 				 struct btrfs_path *path)
608 {
609 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
610 }
611 
612 /*
613  * Describes a batch of items to insert in a btree. This is used by
614  * btrfs_insert_empty_items().
615  */
616 struct btrfs_item_batch {
617 	/*
618 	 * Pointer to an array containing the keys of the items to insert (in
619 	 * sorted order).
620 	 */
621 	const struct btrfs_key *keys;
622 	/* Pointer to an array containing the data size for each item to insert. */
623 	const u32 *data_sizes;
624 	/*
625 	 * The sum of data sizes for all items. The caller can compute this while
626 	 * setting up the data_sizes array, so it ends up being more efficient
627 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
628 	 * doing it, as it would avoid an extra loop over a potentially large
629 	 * array, and in the case of setup_item_for_insert(), we would be doing
630 	 * it while holding a write lock on a leaf and often on upper level nodes
631 	 * too, unnecessarily increasing the size of a critical section.
632 	 */
633 	u32 total_data_size;
634 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
635 	int nr;
636 };
637 
638 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
639 				 struct btrfs_root *root,
640 				 struct btrfs_path *path,
641 				 const struct btrfs_key *key,
642 				 u32 data_size);
643 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
644 		      const struct btrfs_key *key, void *data, u32 data_size);
645 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
646 			     struct btrfs_root *root,
647 			     struct btrfs_path *path,
648 			     const struct btrfs_item_batch *batch);
649 
650 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
651 					  struct btrfs_root *root,
652 					  struct btrfs_path *path,
653 					  const struct btrfs_key *key,
654 					  u32 data_size)
655 {
656 	struct btrfs_item_batch batch;
657 
658 	batch.keys = key;
659 	batch.data_sizes = &data_size;
660 	batch.total_data_size = data_size;
661 	batch.nr = 1;
662 
663 	return btrfs_insert_empty_items(trans, root, path, &batch);
664 }
665 
666 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
667 			u64 time_seq);
668 
669 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
670 			   struct btrfs_path *path);
671 
672 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
673 			      struct btrfs_path *path);
674 
675 /*
676  * Search in @root for a given @key, and store the slot found in @found_key.
677  *
678  * @root:	The root node of the tree.
679  * @key:	The key we are looking for.
680  * @found_key:	Will hold the found item.
681  * @path:	Holds the current slot/leaf.
682  * @iter_ret:	Contains the value returned from btrfs_search_slot or
683  * 		btrfs_get_next_valid_item, whichever was executed last.
684  *
685  * The @iter_ret is an output variable that will contain the return value of
686  * btrfs_search_slot, if it encountered an error, or the value returned from
687  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
688  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
689  *
690  * It's recommended to use a separate variable for iter_ret and then use it to
691  * set the function return value so there's no confusion of the 0/1/errno
692  * values stemming from btrfs_search_slot.
693  */
694 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
695 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
696 		(iter_ret) >= 0 &&						\
697 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
698 		(path)->slots[0]++						\
699 	)
700 
701 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
702 
703 /*
704  * Search the tree again to find a leaf with greater keys.
705  *
706  * Returns 0 if it found something or 1 if there are no greater leaves.
707  * Returns < 0 on error.
708  */
709 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
710 {
711 	return btrfs_next_old_leaf(root, path, 0);
712 }
713 
714 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
715 {
716 	return btrfs_next_old_item(root, p, 0);
717 }
718 int btrfs_leaf_free_space(const struct extent_buffer *leaf);
719 
720 static inline int is_fstree(u64 rootid)
721 {
722 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
723 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
724 	      !btrfs_qgroup_level(rootid)))
725 		return 1;
726 	return 0;
727 }
728 
729 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
730 {
731 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
732 }
733 
734 u16 btrfs_csum_type_size(u16 type);
735 int btrfs_super_csum_size(const struct btrfs_super_block *s);
736 const char *btrfs_super_csum_name(u16 csum_type);
737 const char *btrfs_super_csum_driver(u16 csum_type);
738 size_t __attribute_const__ btrfs_get_num_csums(void);
739 
740 /*
741  * We use page status Private2 to indicate there is an ordered extent with
742  * unfinished IO.
743  *
744  * Rename the Private2 accessors to Ordered, to improve readability.
745  */
746 #define PageOrdered(page)		PagePrivate2(page)
747 #define SetPageOrdered(page)		SetPagePrivate2(page)
748 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
749 #define folio_test_ordered(folio)	folio_test_private_2(folio)
750 #define folio_set_ordered(folio)	folio_set_private_2(folio)
751 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
752 
753 #endif
754