1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 53 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 54 55 /* 56 * Maximum number of mirrors that can be available for all profiles counting 57 * the target device of dev-replace as one. During an active device replace 58 * procedure, the target device of the copy operation is a mirror for the 59 * filesystem data as well that can be used to read data in order to repair 60 * read errors on other disks. 61 * 62 * Current value is derived from RAID1C4 with 4 copies. 63 */ 64 #define BTRFS_MAX_MIRRORS (4 + 1) 65 66 #define BTRFS_MAX_LEVEL 8 67 68 #define BTRFS_OLDEST_GENERATION 0ULL 69 70 /* 71 * we can actually store much bigger names, but lets not confuse the rest 72 * of linux 73 */ 74 #define BTRFS_NAME_LEN 255 75 76 /* 77 * Theoretical limit is larger, but we keep this down to a sane 78 * value. That should limit greatly the possibility of collisions on 79 * inode ref items. 80 */ 81 #define BTRFS_LINK_MAX 65535U 82 83 #define BTRFS_EMPTY_DIR_SIZE 0 84 85 /* ioprio of readahead is set to idle */ 86 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 87 88 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 89 90 /* 91 * Use large batch size to reduce overhead of metadata updates. On the reader 92 * side, we only read it when we are close to ENOSPC and the read overhead is 93 * mostly related to the number of CPUs, so it is OK to use arbitrary large 94 * value here. 95 */ 96 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 97 98 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 99 100 /* 101 * Deltas are an effective way to populate global statistics. Give macro names 102 * to make it clear what we're doing. An example is discard_extents in 103 * btrfs_free_space_ctl. 104 */ 105 #define BTRFS_STAT_NR_ENTRIES 2 106 #define BTRFS_STAT_CURR 0 107 #define BTRFS_STAT_PREV 1 108 109 /* 110 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 111 */ 112 static inline u32 count_max_extents(u64 size) 113 { 114 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 115 } 116 117 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 118 { 119 BUG_ON(num_stripes == 0); 120 return sizeof(struct btrfs_chunk) + 121 sizeof(struct btrfs_stripe) * (num_stripes - 1); 122 } 123 124 /* 125 * Runtime (in-memory) states of filesystem 126 */ 127 enum { 128 /* Global indicator of serious filesystem errors */ 129 BTRFS_FS_STATE_ERROR, 130 /* 131 * Filesystem is being remounted, allow to skip some operations, like 132 * defrag 133 */ 134 BTRFS_FS_STATE_REMOUNTING, 135 /* Filesystem in RO mode */ 136 BTRFS_FS_STATE_RO, 137 /* Track if a transaction abort has been reported on this filesystem */ 138 BTRFS_FS_STATE_TRANS_ABORTED, 139 /* 140 * Bio operations should be blocked on this filesystem because a source 141 * or target device is being destroyed as part of a device replace 142 */ 143 BTRFS_FS_STATE_DEV_REPLACING, 144 /* The btrfs_fs_info created for self-tests */ 145 BTRFS_FS_STATE_DUMMY_FS_INFO, 146 147 BTRFS_FS_STATE_NO_CSUMS, 148 149 /* Indicates there was an error cleaning up a log tree. */ 150 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 151 }; 152 153 #define BTRFS_BACKREF_REV_MAX 256 154 #define BTRFS_BACKREF_REV_SHIFT 56 155 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 156 BTRFS_BACKREF_REV_SHIFT) 157 158 #define BTRFS_OLD_BACKREF_REV 0 159 #define BTRFS_MIXED_BACKREF_REV 1 160 161 /* 162 * every tree block (leaf or node) starts with this header. 163 */ 164 struct btrfs_header { 165 /* these first four must match the super block */ 166 u8 csum[BTRFS_CSUM_SIZE]; 167 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 168 __le64 bytenr; /* which block this node is supposed to live in */ 169 __le64 flags; 170 171 /* allowed to be different from the super from here on down */ 172 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 173 __le64 generation; 174 __le64 owner; 175 __le32 nritems; 176 u8 level; 177 } __attribute__ ((__packed__)); 178 179 /* 180 * this is a very generous portion of the super block, giving us 181 * room to translate 14 chunks with 3 stripes each. 182 */ 183 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 184 185 /* 186 * just in case we somehow lose the roots and are not able to mount, 187 * we store an array of the roots from previous transactions 188 * in the super. 189 */ 190 #define BTRFS_NUM_BACKUP_ROOTS 4 191 struct btrfs_root_backup { 192 __le64 tree_root; 193 __le64 tree_root_gen; 194 195 __le64 chunk_root; 196 __le64 chunk_root_gen; 197 198 __le64 extent_root; 199 __le64 extent_root_gen; 200 201 __le64 fs_root; 202 __le64 fs_root_gen; 203 204 __le64 dev_root; 205 __le64 dev_root_gen; 206 207 __le64 csum_root; 208 __le64 csum_root_gen; 209 210 __le64 total_bytes; 211 __le64 bytes_used; 212 __le64 num_devices; 213 /* future */ 214 __le64 unused_64[4]; 215 216 u8 tree_root_level; 217 u8 chunk_root_level; 218 u8 extent_root_level; 219 u8 fs_root_level; 220 u8 dev_root_level; 221 u8 csum_root_level; 222 /* future and to align */ 223 u8 unused_8[10]; 224 } __attribute__ ((__packed__)); 225 226 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 227 #define BTRFS_SUPER_INFO_SIZE 4096 228 229 /* 230 * the super block basically lists the main trees of the FS 231 * it currently lacks any block count etc etc 232 */ 233 struct btrfs_super_block { 234 /* the first 4 fields must match struct btrfs_header */ 235 u8 csum[BTRFS_CSUM_SIZE]; 236 /* FS specific UUID, visible to user */ 237 u8 fsid[BTRFS_FSID_SIZE]; 238 __le64 bytenr; /* this block number */ 239 __le64 flags; 240 241 /* allowed to be different from the btrfs_header from here own down */ 242 __le64 magic; 243 __le64 generation; 244 __le64 root; 245 __le64 chunk_root; 246 __le64 log_root; 247 248 /* this will help find the new super based on the log root */ 249 __le64 log_root_transid; 250 __le64 total_bytes; 251 __le64 bytes_used; 252 __le64 root_dir_objectid; 253 __le64 num_devices; 254 __le32 sectorsize; 255 __le32 nodesize; 256 __le32 __unused_leafsize; 257 __le32 stripesize; 258 __le32 sys_chunk_array_size; 259 __le64 chunk_root_generation; 260 __le64 compat_flags; 261 __le64 compat_ro_flags; 262 __le64 incompat_flags; 263 __le16 csum_type; 264 u8 root_level; 265 u8 chunk_root_level; 266 u8 log_root_level; 267 struct btrfs_dev_item dev_item; 268 269 char label[BTRFS_LABEL_SIZE]; 270 271 __le64 cache_generation; 272 __le64 uuid_tree_generation; 273 274 /* the UUID written into btree blocks */ 275 u8 metadata_uuid[BTRFS_FSID_SIZE]; 276 277 /* future expansion */ 278 __le64 reserved[28]; 279 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 280 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 281 282 /* Padded to 4096 bytes */ 283 u8 padding[565]; 284 } __attribute__ ((__packed__)); 285 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 286 287 /* 288 * Compat flags that we support. If any incompat flags are set other than the 289 * ones specified below then we will fail to mount 290 */ 291 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 292 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 293 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 294 295 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 296 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 297 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 298 BTRFS_FEATURE_COMPAT_RO_VERITY) 299 300 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 301 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 302 303 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 304 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 305 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 306 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 307 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 308 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 309 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 310 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 311 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 312 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 313 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 314 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 315 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 316 BTRFS_FEATURE_INCOMPAT_ZONED) 317 318 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 319 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 320 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 321 322 /* 323 * A leaf is full of items. offset and size tell us where to find 324 * the item in the leaf (relative to the start of the data area) 325 */ 326 struct btrfs_item { 327 struct btrfs_disk_key key; 328 __le32 offset; 329 __le32 size; 330 } __attribute__ ((__packed__)); 331 332 /* 333 * leaves have an item area and a data area: 334 * [item0, item1....itemN] [free space] [dataN...data1, data0] 335 * 336 * The data is separate from the items to get the keys closer together 337 * during searches. 338 */ 339 struct btrfs_leaf { 340 struct btrfs_header header; 341 struct btrfs_item items[]; 342 } __attribute__ ((__packed__)); 343 344 /* 345 * all non-leaf blocks are nodes, they hold only keys and pointers to 346 * other blocks 347 */ 348 struct btrfs_key_ptr { 349 struct btrfs_disk_key key; 350 __le64 blockptr; 351 __le64 generation; 352 } __attribute__ ((__packed__)); 353 354 struct btrfs_node { 355 struct btrfs_header header; 356 struct btrfs_key_ptr ptrs[]; 357 } __attribute__ ((__packed__)); 358 359 /* Read ahead values for struct btrfs_path.reada */ 360 enum { 361 READA_NONE, 362 READA_BACK, 363 READA_FORWARD, 364 /* 365 * Similar to READA_FORWARD but unlike it: 366 * 367 * 1) It will trigger readahead even for leaves that are not close to 368 * each other on disk; 369 * 2) It also triggers readahead for nodes; 370 * 3) During a search, even when a node or leaf is already in memory, it 371 * will still trigger readahead for other nodes and leaves that follow 372 * it. 373 * 374 * This is meant to be used only when we know we are iterating over the 375 * entire tree or a very large part of it. 376 */ 377 READA_FORWARD_ALWAYS, 378 }; 379 380 /* 381 * btrfs_paths remember the path taken from the root down to the leaf. 382 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 383 * to any other levels that are present. 384 * 385 * The slots array records the index of the item or block pointer 386 * used while walking the tree. 387 */ 388 struct btrfs_path { 389 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 390 int slots[BTRFS_MAX_LEVEL]; 391 /* if there is real range locking, this locks field will change */ 392 u8 locks[BTRFS_MAX_LEVEL]; 393 u8 reada; 394 /* keep some upper locks as we walk down */ 395 u8 lowest_level; 396 397 /* 398 * set by btrfs_split_item, tells search_slot to keep all locks 399 * and to force calls to keep space in the nodes 400 */ 401 unsigned int search_for_split:1; 402 unsigned int keep_locks:1; 403 unsigned int skip_locking:1; 404 unsigned int search_commit_root:1; 405 unsigned int need_commit_sem:1; 406 unsigned int skip_release_on_error:1; 407 /* 408 * Indicate that new item (btrfs_search_slot) is extending already 409 * existing item and ins_len contains only the data size and not item 410 * header (ie. sizeof(struct btrfs_item) is not included). 411 */ 412 unsigned int search_for_extension:1; 413 }; 414 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 415 sizeof(struct btrfs_item)) 416 struct btrfs_dev_replace { 417 u64 replace_state; /* see #define above */ 418 time64_t time_started; /* seconds since 1-Jan-1970 */ 419 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 420 atomic64_t num_write_errors; 421 atomic64_t num_uncorrectable_read_errors; 422 423 u64 cursor_left; 424 u64 committed_cursor_left; 425 u64 cursor_left_last_write_of_item; 426 u64 cursor_right; 427 428 u64 cont_reading_from_srcdev_mode; /* see #define above */ 429 430 int is_valid; 431 int item_needs_writeback; 432 struct btrfs_device *srcdev; 433 struct btrfs_device *tgtdev; 434 435 struct mutex lock_finishing_cancel_unmount; 436 struct rw_semaphore rwsem; 437 438 struct btrfs_scrub_progress scrub_progress; 439 440 struct percpu_counter bio_counter; 441 wait_queue_head_t replace_wait; 442 }; 443 444 /* 445 * free clusters are used to claim free space in relatively large chunks, 446 * allowing us to do less seeky writes. They are used for all metadata 447 * allocations. In ssd_spread mode they are also used for data allocations. 448 */ 449 struct btrfs_free_cluster { 450 spinlock_t lock; 451 spinlock_t refill_lock; 452 struct rb_root root; 453 454 /* largest extent in this cluster */ 455 u64 max_size; 456 457 /* first extent starting offset */ 458 u64 window_start; 459 460 /* We did a full search and couldn't create a cluster */ 461 bool fragmented; 462 463 struct btrfs_block_group *block_group; 464 /* 465 * when a cluster is allocated from a block group, we put the 466 * cluster onto a list in the block group so that it can 467 * be freed before the block group is freed. 468 */ 469 struct list_head block_group_list; 470 }; 471 472 enum btrfs_caching_type { 473 BTRFS_CACHE_NO, 474 BTRFS_CACHE_STARTED, 475 BTRFS_CACHE_FAST, 476 BTRFS_CACHE_FINISHED, 477 BTRFS_CACHE_ERROR, 478 }; 479 480 /* 481 * Tree to record all locked full stripes of a RAID5/6 block group 482 */ 483 struct btrfs_full_stripe_locks_tree { 484 struct rb_root root; 485 struct mutex lock; 486 }; 487 488 /* Discard control. */ 489 /* 490 * Async discard uses multiple lists to differentiate the discard filter 491 * parameters. Index 0 is for completely free block groups where we need to 492 * ensure the entire block group is trimmed without being lossy. Indices 493 * afterwards represent monotonically decreasing discard filter sizes to 494 * prioritize what should be discarded next. 495 */ 496 #define BTRFS_NR_DISCARD_LISTS 3 497 #define BTRFS_DISCARD_INDEX_UNUSED 0 498 #define BTRFS_DISCARD_INDEX_START 1 499 500 struct btrfs_discard_ctl { 501 struct workqueue_struct *discard_workers; 502 struct delayed_work work; 503 spinlock_t lock; 504 struct btrfs_block_group *block_group; 505 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 506 u64 prev_discard; 507 u64 prev_discard_time; 508 atomic_t discardable_extents; 509 atomic64_t discardable_bytes; 510 u64 max_discard_size; 511 u64 delay_ms; 512 u32 iops_limit; 513 u32 kbps_limit; 514 u64 discard_extent_bytes; 515 u64 discard_bitmap_bytes; 516 atomic64_t discard_bytes_saved; 517 }; 518 519 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 520 521 /* fs_info */ 522 struct reloc_control; 523 struct btrfs_device; 524 struct btrfs_fs_devices; 525 struct btrfs_balance_control; 526 struct btrfs_delayed_root; 527 528 /* 529 * Block group or device which contains an active swapfile. Used for preventing 530 * unsafe operations while a swapfile is active. 531 * 532 * These are sorted on (ptr, inode) (note that a block group or device can 533 * contain more than one swapfile). We compare the pointer values because we 534 * don't actually care what the object is, we just need a quick check whether 535 * the object exists in the rbtree. 536 */ 537 struct btrfs_swapfile_pin { 538 struct rb_node node; 539 void *ptr; 540 struct inode *inode; 541 /* 542 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 543 * points to a struct btrfs_device. 544 */ 545 bool is_block_group; 546 /* 547 * Only used when 'is_block_group' is true and it is the number of 548 * extents used by a swapfile for this block group ('ptr' field). 549 */ 550 int bg_extent_count; 551 }; 552 553 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 554 555 enum { 556 BTRFS_FS_CLOSING_START, 557 BTRFS_FS_CLOSING_DONE, 558 BTRFS_FS_LOG_RECOVERING, 559 BTRFS_FS_OPEN, 560 BTRFS_FS_QUOTA_ENABLED, 561 BTRFS_FS_UPDATE_UUID_TREE_GEN, 562 BTRFS_FS_CREATING_FREE_SPACE_TREE, 563 BTRFS_FS_BTREE_ERR, 564 BTRFS_FS_LOG1_ERR, 565 BTRFS_FS_LOG2_ERR, 566 BTRFS_FS_QUOTA_OVERRIDE, 567 /* Used to record internally whether fs has been frozen */ 568 BTRFS_FS_FROZEN, 569 /* 570 * Indicate that balance has been set up from the ioctl and is in the 571 * main phase. The fs_info::balance_ctl is initialized. 572 */ 573 BTRFS_FS_BALANCE_RUNNING, 574 575 /* 576 * Indicate that relocation of a chunk has started, it's set per chunk 577 * and is toggled between chunks. 578 */ 579 BTRFS_FS_RELOC_RUNNING, 580 581 /* Indicate that the cleaner thread is awake and doing something. */ 582 BTRFS_FS_CLEANER_RUNNING, 583 584 /* 585 * The checksumming has an optimized version and is considered fast, 586 * so we don't need to offload checksums to workqueues. 587 */ 588 BTRFS_FS_CSUM_IMPL_FAST, 589 590 /* Indicate that the discard workqueue can service discards. */ 591 BTRFS_FS_DISCARD_RUNNING, 592 593 /* Indicate that we need to cleanup space cache v1 */ 594 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 595 596 /* Indicate that we can't trust the free space tree for caching yet */ 597 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 598 599 /* Indicate whether there are any tree modification log users */ 600 BTRFS_FS_TREE_MOD_LOG_USERS, 601 602 /* Indicate that we want the transaction kthread to commit right now. */ 603 BTRFS_FS_COMMIT_TRANS, 604 605 /* Indicate we have half completed snapshot deletions pending. */ 606 BTRFS_FS_UNFINISHED_DROPS, 607 608 #if BITS_PER_LONG == 32 609 /* Indicate if we have error/warn message printed on 32bit systems */ 610 BTRFS_FS_32BIT_ERROR, 611 BTRFS_FS_32BIT_WARN, 612 #endif 613 }; 614 615 /* 616 * Exclusive operations (device replace, resize, device add/remove, balance) 617 */ 618 enum btrfs_exclusive_operation { 619 BTRFS_EXCLOP_NONE, 620 BTRFS_EXCLOP_BALANCE_PAUSED, 621 BTRFS_EXCLOP_BALANCE, 622 BTRFS_EXCLOP_DEV_ADD, 623 BTRFS_EXCLOP_DEV_REMOVE, 624 BTRFS_EXCLOP_DEV_REPLACE, 625 BTRFS_EXCLOP_RESIZE, 626 BTRFS_EXCLOP_SWAP_ACTIVATE, 627 }; 628 629 struct btrfs_fs_info { 630 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 631 unsigned long flags; 632 struct btrfs_root *tree_root; 633 struct btrfs_root *chunk_root; 634 struct btrfs_root *dev_root; 635 struct btrfs_root *fs_root; 636 struct btrfs_root *quota_root; 637 struct btrfs_root *uuid_root; 638 struct btrfs_root *data_reloc_root; 639 640 /* the log root tree is a directory of all the other log roots */ 641 struct btrfs_root *log_root_tree; 642 643 /* The tree that holds the global roots (csum, extent, etc) */ 644 rwlock_t global_root_lock; 645 struct rb_root global_root_tree; 646 647 spinlock_t fs_roots_radix_lock; 648 struct radix_tree_root fs_roots_radix; 649 650 /* block group cache stuff */ 651 spinlock_t block_group_cache_lock; 652 u64 first_logical_byte; 653 struct rb_root block_group_cache_tree; 654 655 /* keep track of unallocated space */ 656 atomic64_t free_chunk_space; 657 658 /* Track ranges which are used by log trees blocks/logged data extents */ 659 struct extent_io_tree excluded_extents; 660 661 /* logical->physical extent mapping */ 662 struct extent_map_tree mapping_tree; 663 664 /* 665 * block reservation for extent, checksum, root tree and 666 * delayed dir index item 667 */ 668 struct btrfs_block_rsv global_block_rsv; 669 /* block reservation for metadata operations */ 670 struct btrfs_block_rsv trans_block_rsv; 671 /* block reservation for chunk tree */ 672 struct btrfs_block_rsv chunk_block_rsv; 673 /* block reservation for delayed operations */ 674 struct btrfs_block_rsv delayed_block_rsv; 675 /* block reservation for delayed refs */ 676 struct btrfs_block_rsv delayed_refs_rsv; 677 678 struct btrfs_block_rsv empty_block_rsv; 679 680 u64 generation; 681 u64 last_trans_committed; 682 /* 683 * Generation of the last transaction used for block group relocation 684 * since the filesystem was last mounted (or 0 if none happened yet). 685 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 686 */ 687 u64 last_reloc_trans; 688 u64 avg_delayed_ref_runtime; 689 690 /* 691 * this is updated to the current trans every time a full commit 692 * is required instead of the faster short fsync log commits 693 */ 694 u64 last_trans_log_full_commit; 695 unsigned long mount_opt; 696 /* 697 * Track requests for actions that need to be done during transaction 698 * commit (like for some mount options). 699 */ 700 unsigned long pending_changes; 701 unsigned long compress_type:4; 702 unsigned int compress_level; 703 u32 commit_interval; 704 /* 705 * It is a suggestive number, the read side is safe even it gets a 706 * wrong number because we will write out the data into a regular 707 * extent. The write side(mount/remount) is under ->s_umount lock, 708 * so it is also safe. 709 */ 710 u64 max_inline; 711 712 struct btrfs_transaction *running_transaction; 713 wait_queue_head_t transaction_throttle; 714 wait_queue_head_t transaction_wait; 715 wait_queue_head_t transaction_blocked_wait; 716 wait_queue_head_t async_submit_wait; 717 718 /* 719 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 720 * when they are updated. 721 * 722 * Because we do not clear the flags for ever, so we needn't use 723 * the lock on the read side. 724 * 725 * We also needn't use the lock when we mount the fs, because 726 * there is no other task which will update the flag. 727 */ 728 spinlock_t super_lock; 729 struct btrfs_super_block *super_copy; 730 struct btrfs_super_block *super_for_commit; 731 struct super_block *sb; 732 struct inode *btree_inode; 733 struct mutex tree_log_mutex; 734 struct mutex transaction_kthread_mutex; 735 struct mutex cleaner_mutex; 736 struct mutex chunk_mutex; 737 738 /* 739 * this is taken to make sure we don't set block groups ro after 740 * the free space cache has been allocated on them 741 */ 742 struct mutex ro_block_group_mutex; 743 744 /* this is used during read/modify/write to make sure 745 * no two ios are trying to mod the same stripe at the same 746 * time 747 */ 748 struct btrfs_stripe_hash_table *stripe_hash_table; 749 750 /* 751 * this protects the ordered operations list only while we are 752 * processing all of the entries on it. This way we make 753 * sure the commit code doesn't find the list temporarily empty 754 * because another function happens to be doing non-waiting preflush 755 * before jumping into the main commit. 756 */ 757 struct mutex ordered_operations_mutex; 758 759 struct rw_semaphore commit_root_sem; 760 761 struct rw_semaphore cleanup_work_sem; 762 763 struct rw_semaphore subvol_sem; 764 765 spinlock_t trans_lock; 766 /* 767 * the reloc mutex goes with the trans lock, it is taken 768 * during commit to protect us from the relocation code 769 */ 770 struct mutex reloc_mutex; 771 772 struct list_head trans_list; 773 struct list_head dead_roots; 774 struct list_head caching_block_groups; 775 776 spinlock_t delayed_iput_lock; 777 struct list_head delayed_iputs; 778 atomic_t nr_delayed_iputs; 779 wait_queue_head_t delayed_iputs_wait; 780 781 atomic64_t tree_mod_seq; 782 783 /* this protects tree_mod_log and tree_mod_seq_list */ 784 rwlock_t tree_mod_log_lock; 785 struct rb_root tree_mod_log; 786 struct list_head tree_mod_seq_list; 787 788 atomic_t async_delalloc_pages; 789 790 /* 791 * this is used to protect the following list -- ordered_roots. 792 */ 793 spinlock_t ordered_root_lock; 794 795 /* 796 * all fs/file tree roots in which there are data=ordered extents 797 * pending writeback are added into this list. 798 * 799 * these can span multiple transactions and basically include 800 * every dirty data page that isn't from nodatacow 801 */ 802 struct list_head ordered_roots; 803 804 struct mutex delalloc_root_mutex; 805 spinlock_t delalloc_root_lock; 806 /* all fs/file tree roots that have delalloc inodes. */ 807 struct list_head delalloc_roots; 808 809 /* 810 * there is a pool of worker threads for checksumming during writes 811 * and a pool for checksumming after reads. This is because readers 812 * can run with FS locks held, and the writers may be waiting for 813 * those locks. We don't want ordering in the pending list to cause 814 * deadlocks, and so the two are serviced separately. 815 * 816 * A third pool does submit_bio to avoid deadlocking with the other 817 * two 818 */ 819 struct btrfs_workqueue *workers; 820 struct btrfs_workqueue *delalloc_workers; 821 struct btrfs_workqueue *flush_workers; 822 struct btrfs_workqueue *endio_workers; 823 struct btrfs_workqueue *endio_meta_workers; 824 struct btrfs_workqueue *endio_raid56_workers; 825 struct btrfs_workqueue *rmw_workers; 826 struct btrfs_workqueue *endio_meta_write_workers; 827 struct btrfs_workqueue *endio_write_workers; 828 struct btrfs_workqueue *endio_freespace_worker; 829 struct btrfs_workqueue *caching_workers; 830 831 /* 832 * fixup workers take dirty pages that didn't properly go through 833 * the cow mechanism and make them safe to write. It happens 834 * for the sys_munmap function call path 835 */ 836 struct btrfs_workqueue *fixup_workers; 837 struct btrfs_workqueue *delayed_workers; 838 839 struct task_struct *transaction_kthread; 840 struct task_struct *cleaner_kthread; 841 u32 thread_pool_size; 842 843 struct kobject *space_info_kobj; 844 struct kobject *qgroups_kobj; 845 846 /* used to keep from writing metadata until there is a nice batch */ 847 struct percpu_counter dirty_metadata_bytes; 848 struct percpu_counter delalloc_bytes; 849 struct percpu_counter ordered_bytes; 850 s32 dirty_metadata_batch; 851 s32 delalloc_batch; 852 853 struct list_head dirty_cowonly_roots; 854 855 struct btrfs_fs_devices *fs_devices; 856 857 /* 858 * The space_info list is effectively read only after initial 859 * setup. It is populated at mount time and cleaned up after 860 * all block groups are removed. RCU is used to protect it. 861 */ 862 struct list_head space_info; 863 864 struct btrfs_space_info *data_sinfo; 865 866 struct reloc_control *reloc_ctl; 867 868 /* data_alloc_cluster is only used in ssd_spread mode */ 869 struct btrfs_free_cluster data_alloc_cluster; 870 871 /* all metadata allocations go through this cluster */ 872 struct btrfs_free_cluster meta_alloc_cluster; 873 874 /* auto defrag inodes go here */ 875 spinlock_t defrag_inodes_lock; 876 struct rb_root defrag_inodes; 877 atomic_t defrag_running; 878 879 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 880 seqlock_t profiles_lock; 881 /* 882 * these three are in extended format (availability of single 883 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 884 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 885 */ 886 u64 avail_data_alloc_bits; 887 u64 avail_metadata_alloc_bits; 888 u64 avail_system_alloc_bits; 889 890 /* restriper state */ 891 spinlock_t balance_lock; 892 struct mutex balance_mutex; 893 atomic_t balance_pause_req; 894 atomic_t balance_cancel_req; 895 struct btrfs_balance_control *balance_ctl; 896 wait_queue_head_t balance_wait_q; 897 898 /* Cancellation requests for chunk relocation */ 899 atomic_t reloc_cancel_req; 900 901 u32 data_chunk_allocations; 902 u32 metadata_ratio; 903 904 void *bdev_holder; 905 906 /* private scrub information */ 907 struct mutex scrub_lock; 908 atomic_t scrubs_running; 909 atomic_t scrub_pause_req; 910 atomic_t scrubs_paused; 911 atomic_t scrub_cancel_req; 912 wait_queue_head_t scrub_pause_wait; 913 /* 914 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 915 * running. 916 */ 917 refcount_t scrub_workers_refcnt; 918 struct btrfs_workqueue *scrub_workers; 919 struct btrfs_workqueue *scrub_wr_completion_workers; 920 struct btrfs_workqueue *scrub_parity_workers; 921 struct btrfs_subpage_info *subpage_info; 922 923 struct btrfs_discard_ctl discard_ctl; 924 925 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 926 u32 check_integrity_print_mask; 927 #endif 928 /* is qgroup tracking in a consistent state? */ 929 u64 qgroup_flags; 930 931 /* holds configuration and tracking. Protected by qgroup_lock */ 932 struct rb_root qgroup_tree; 933 spinlock_t qgroup_lock; 934 935 /* 936 * used to avoid frequently calling ulist_alloc()/ulist_free() 937 * when doing qgroup accounting, it must be protected by qgroup_lock. 938 */ 939 struct ulist *qgroup_ulist; 940 941 /* 942 * Protect user change for quota operations. If a transaction is needed, 943 * it must be started before locking this lock. 944 */ 945 struct mutex qgroup_ioctl_lock; 946 947 /* list of dirty qgroups to be written at next commit */ 948 struct list_head dirty_qgroups; 949 950 /* used by qgroup for an efficient tree traversal */ 951 u64 qgroup_seq; 952 953 /* qgroup rescan items */ 954 struct mutex qgroup_rescan_lock; /* protects the progress item */ 955 struct btrfs_key qgroup_rescan_progress; 956 struct btrfs_workqueue *qgroup_rescan_workers; 957 struct completion qgroup_rescan_completion; 958 struct btrfs_work qgroup_rescan_work; 959 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 960 961 /* filesystem state */ 962 unsigned long fs_state; 963 964 struct btrfs_delayed_root *delayed_root; 965 966 /* Extent buffer radix tree */ 967 spinlock_t buffer_lock; 968 /* Entries are eb->start / sectorsize */ 969 struct radix_tree_root buffer_radix; 970 971 /* next backup root to be overwritten */ 972 int backup_root_index; 973 974 /* device replace state */ 975 struct btrfs_dev_replace dev_replace; 976 977 struct semaphore uuid_tree_rescan_sem; 978 979 /* Used to reclaim the metadata space in the background. */ 980 struct work_struct async_reclaim_work; 981 struct work_struct async_data_reclaim_work; 982 struct work_struct preempt_reclaim_work; 983 984 /* Reclaim partially filled block groups in the background */ 985 struct work_struct reclaim_bgs_work; 986 struct list_head reclaim_bgs; 987 int bg_reclaim_threshold; 988 989 spinlock_t unused_bgs_lock; 990 struct list_head unused_bgs; 991 struct mutex unused_bg_unpin_mutex; 992 /* Protect block groups that are going to be deleted */ 993 struct mutex reclaim_bgs_lock; 994 995 /* Cached block sizes */ 996 u32 nodesize; 997 u32 sectorsize; 998 /* ilog2 of sectorsize, use to avoid 64bit division */ 999 u32 sectorsize_bits; 1000 u32 csum_size; 1001 u32 csums_per_leaf; 1002 u32 stripesize; 1003 1004 /* Block groups and devices containing active swapfiles. */ 1005 spinlock_t swapfile_pins_lock; 1006 struct rb_root swapfile_pins; 1007 1008 struct crypto_shash *csum_shash; 1009 1010 /* Type of exclusive operation running, protected by super_lock */ 1011 enum btrfs_exclusive_operation exclusive_operation; 1012 1013 /* 1014 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1015 * if the mode is enabled 1016 */ 1017 union { 1018 u64 zone_size; 1019 u64 zoned; 1020 }; 1021 1022 struct mutex zoned_meta_io_lock; 1023 spinlock_t treelog_bg_lock; 1024 u64 treelog_bg; 1025 1026 /* 1027 * Start of the dedicated data relocation block group, protected by 1028 * relocation_bg_lock. 1029 */ 1030 spinlock_t relocation_bg_lock; 1031 u64 data_reloc_bg; 1032 1033 spinlock_t zone_active_bgs_lock; 1034 struct list_head zone_active_bgs; 1035 1036 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1037 spinlock_t ref_verify_lock; 1038 struct rb_root block_tree; 1039 #endif 1040 1041 #ifdef CONFIG_BTRFS_DEBUG 1042 struct kobject *debug_kobj; 1043 struct kobject *discard_debug_kobj; 1044 struct list_head allocated_roots; 1045 1046 spinlock_t eb_leak_lock; 1047 struct list_head allocated_ebs; 1048 #endif 1049 }; 1050 1051 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1052 { 1053 return sb->s_fs_info; 1054 } 1055 1056 /* 1057 * The state of btrfs root 1058 */ 1059 enum { 1060 /* 1061 * btrfs_record_root_in_trans is a multi-step process, and it can race 1062 * with the balancing code. But the race is very small, and only the 1063 * first time the root is added to each transaction. So IN_TRANS_SETUP 1064 * is used to tell us when more checks are required 1065 */ 1066 BTRFS_ROOT_IN_TRANS_SETUP, 1067 1068 /* 1069 * Set if tree blocks of this root can be shared by other roots. 1070 * Only subvolume trees and their reloc trees have this bit set. 1071 * Conflicts with TRACK_DIRTY bit. 1072 * 1073 * This affects two things: 1074 * 1075 * - How balance works 1076 * For shareable roots, we need to use reloc tree and do path 1077 * replacement for balance, and need various pre/post hooks for 1078 * snapshot creation to handle them. 1079 * 1080 * While for non-shareable trees, we just simply do a tree search 1081 * with COW. 1082 * 1083 * - How dirty roots are tracked 1084 * For shareable roots, btrfs_record_root_in_trans() is needed to 1085 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1086 * don't need to set this manually. 1087 */ 1088 BTRFS_ROOT_SHAREABLE, 1089 BTRFS_ROOT_TRACK_DIRTY, 1090 BTRFS_ROOT_IN_RADIX, 1091 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1092 BTRFS_ROOT_DEFRAG_RUNNING, 1093 BTRFS_ROOT_FORCE_COW, 1094 BTRFS_ROOT_MULTI_LOG_TASKS, 1095 BTRFS_ROOT_DIRTY, 1096 BTRFS_ROOT_DELETING, 1097 1098 /* 1099 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1100 * 1101 * Set for the subvolume tree owning the reloc tree. 1102 */ 1103 BTRFS_ROOT_DEAD_RELOC_TREE, 1104 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1105 BTRFS_ROOT_DEAD_TREE, 1106 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1107 BTRFS_ROOT_HAS_LOG_TREE, 1108 /* Qgroup flushing is in progress */ 1109 BTRFS_ROOT_QGROUP_FLUSHING, 1110 /* We started the orphan cleanup for this root. */ 1111 BTRFS_ROOT_ORPHAN_CLEANUP, 1112 /* This root has a drop operation that was started previously. */ 1113 BTRFS_ROOT_UNFINISHED_DROP, 1114 }; 1115 1116 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1117 { 1118 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 1119 } 1120 1121 /* 1122 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1123 * code. For detail check comment in fs/btrfs/qgroup.c. 1124 */ 1125 struct btrfs_qgroup_swapped_blocks { 1126 spinlock_t lock; 1127 /* RM_EMPTY_ROOT() of above blocks[] */ 1128 bool swapped; 1129 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1130 }; 1131 1132 /* 1133 * in ram representation of the tree. extent_root is used for all allocations 1134 * and for the extent tree extent_root root. 1135 */ 1136 struct btrfs_root { 1137 struct rb_node rb_node; 1138 1139 struct extent_buffer *node; 1140 1141 struct extent_buffer *commit_root; 1142 struct btrfs_root *log_root; 1143 struct btrfs_root *reloc_root; 1144 1145 unsigned long state; 1146 struct btrfs_root_item root_item; 1147 struct btrfs_key root_key; 1148 struct btrfs_fs_info *fs_info; 1149 struct extent_io_tree dirty_log_pages; 1150 1151 struct mutex objectid_mutex; 1152 1153 spinlock_t accounting_lock; 1154 struct btrfs_block_rsv *block_rsv; 1155 1156 struct mutex log_mutex; 1157 wait_queue_head_t log_writer_wait; 1158 wait_queue_head_t log_commit_wait[2]; 1159 struct list_head log_ctxs[2]; 1160 /* Used only for log trees of subvolumes, not for the log root tree */ 1161 atomic_t log_writers; 1162 atomic_t log_commit[2]; 1163 /* Used only for log trees of subvolumes, not for the log root tree */ 1164 atomic_t log_batch; 1165 int log_transid; 1166 /* No matter the commit succeeds or not*/ 1167 int log_transid_committed; 1168 /* Just be updated when the commit succeeds. */ 1169 int last_log_commit; 1170 pid_t log_start_pid; 1171 1172 u64 last_trans; 1173 1174 u32 type; 1175 1176 u64 free_objectid; 1177 1178 struct btrfs_key defrag_progress; 1179 struct btrfs_key defrag_max; 1180 1181 /* The dirty list is only used by non-shareable roots */ 1182 struct list_head dirty_list; 1183 1184 struct list_head root_list; 1185 1186 spinlock_t log_extents_lock[2]; 1187 struct list_head logged_list[2]; 1188 1189 spinlock_t inode_lock; 1190 /* red-black tree that keeps track of in-memory inodes */ 1191 struct rb_root inode_tree; 1192 1193 /* 1194 * radix tree that keeps track of delayed nodes of every inode, 1195 * protected by inode_lock 1196 */ 1197 struct radix_tree_root delayed_nodes_tree; 1198 /* 1199 * right now this just gets used so that a root has its own devid 1200 * for stat. It may be used for more later 1201 */ 1202 dev_t anon_dev; 1203 1204 spinlock_t root_item_lock; 1205 refcount_t refs; 1206 1207 struct mutex delalloc_mutex; 1208 spinlock_t delalloc_lock; 1209 /* 1210 * all of the inodes that have delalloc bytes. It is possible for 1211 * this list to be empty even when there is still dirty data=ordered 1212 * extents waiting to finish IO. 1213 */ 1214 struct list_head delalloc_inodes; 1215 struct list_head delalloc_root; 1216 u64 nr_delalloc_inodes; 1217 1218 struct mutex ordered_extent_mutex; 1219 /* 1220 * this is used by the balancing code to wait for all the pending 1221 * ordered extents 1222 */ 1223 spinlock_t ordered_extent_lock; 1224 1225 /* 1226 * all of the data=ordered extents pending writeback 1227 * these can span multiple transactions and basically include 1228 * every dirty data page that isn't from nodatacow 1229 */ 1230 struct list_head ordered_extents; 1231 struct list_head ordered_root; 1232 u64 nr_ordered_extents; 1233 1234 /* 1235 * Not empty if this subvolume root has gone through tree block swap 1236 * (relocation) 1237 * 1238 * Will be used by reloc_control::dirty_subvol_roots. 1239 */ 1240 struct list_head reloc_dirty_list; 1241 1242 /* 1243 * Number of currently running SEND ioctls to prevent 1244 * manipulation with the read-only status via SUBVOL_SETFLAGS 1245 */ 1246 int send_in_progress; 1247 /* 1248 * Number of currently running deduplication operations that have a 1249 * destination inode belonging to this root. Protected by the lock 1250 * root_item_lock. 1251 */ 1252 int dedupe_in_progress; 1253 /* For exclusion of snapshot creation and nocow writes */ 1254 struct btrfs_drew_lock snapshot_lock; 1255 1256 atomic_t snapshot_force_cow; 1257 1258 /* For qgroup metadata reserved space */ 1259 spinlock_t qgroup_meta_rsv_lock; 1260 u64 qgroup_meta_rsv_pertrans; 1261 u64 qgroup_meta_rsv_prealloc; 1262 wait_queue_head_t qgroup_flush_wait; 1263 1264 /* Number of active swapfiles */ 1265 atomic_t nr_swapfiles; 1266 1267 /* Record pairs of swapped blocks for qgroup */ 1268 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1269 1270 /* Used only by log trees, when logging csum items */ 1271 struct extent_io_tree log_csum_range; 1272 1273 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1274 u64 alloc_bytenr; 1275 #endif 1276 1277 #ifdef CONFIG_BTRFS_DEBUG 1278 struct list_head leak_list; 1279 #endif 1280 }; 1281 1282 /* 1283 * Structure that conveys information about an extent that is going to replace 1284 * all the extents in a file range. 1285 */ 1286 struct btrfs_replace_extent_info { 1287 u64 disk_offset; 1288 u64 disk_len; 1289 u64 data_offset; 1290 u64 data_len; 1291 u64 file_offset; 1292 /* Pointer to a file extent item of type regular or prealloc. */ 1293 char *extent_buf; 1294 /* 1295 * Set to true when attempting to replace a file range with a new extent 1296 * described by this structure, set to false when attempting to clone an 1297 * existing extent into a file range. 1298 */ 1299 bool is_new_extent; 1300 /* Meaningful only if is_new_extent is true. */ 1301 int qgroup_reserved; 1302 /* 1303 * Meaningful only if is_new_extent is true. 1304 * Used to track how many extent items we have already inserted in a 1305 * subvolume tree that refer to the extent described by this structure, 1306 * so that we know when to create a new delayed ref or update an existing 1307 * one. 1308 */ 1309 int insertions; 1310 }; 1311 1312 /* Arguments for btrfs_drop_extents() */ 1313 struct btrfs_drop_extents_args { 1314 /* Input parameters */ 1315 1316 /* 1317 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1318 * If 'replace_extent' is true, this must not be NULL. Also the path 1319 * is always released except if 'replace_extent' is true and 1320 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1321 * the path is kept locked. 1322 */ 1323 struct btrfs_path *path; 1324 /* Start offset of the range to drop extents from */ 1325 u64 start; 1326 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1327 u64 end; 1328 /* If true drop all the extent maps in the range */ 1329 bool drop_cache; 1330 /* 1331 * If true it means we want to insert a new extent after dropping all 1332 * the extents in the range. If this is true, the 'extent_item_size' 1333 * parameter must be set as well and the 'extent_inserted' field will 1334 * be set to true by btrfs_drop_extents() if it could insert the new 1335 * extent. 1336 * Note: when this is set to true the path must not be NULL. 1337 */ 1338 bool replace_extent; 1339 /* 1340 * Used if 'replace_extent' is true. Size of the file extent item to 1341 * insert after dropping all existing extents in the range 1342 */ 1343 u32 extent_item_size; 1344 1345 /* Output parameters */ 1346 1347 /* 1348 * Set to the minimum between the input parameter 'end' and the end 1349 * (exclusive, last byte + 1) of the last dropped extent. This is always 1350 * set even if btrfs_drop_extents() returns an error. 1351 */ 1352 u64 drop_end; 1353 /* 1354 * The number of allocated bytes found in the range. This can be smaller 1355 * than the range's length when there are holes in the range. 1356 */ 1357 u64 bytes_found; 1358 /* 1359 * Only set if 'replace_extent' is true. Set to true if we were able 1360 * to insert a replacement extent after dropping all extents in the 1361 * range, otherwise set to false by btrfs_drop_extents(). 1362 * Also, if btrfs_drop_extents() has set this to true it means it 1363 * returned with the path locked, otherwise if it has set this to 1364 * false it has returned with the path released. 1365 */ 1366 bool extent_inserted; 1367 }; 1368 1369 struct btrfs_file_private { 1370 void *filldir_buf; 1371 }; 1372 1373 1374 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1375 { 1376 1377 return info->nodesize - sizeof(struct btrfs_header); 1378 } 1379 1380 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1381 1382 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1383 { 1384 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1385 } 1386 1387 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1388 { 1389 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1390 } 1391 1392 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1393 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1394 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1395 { 1396 return BTRFS_MAX_ITEM_SIZE(info) - 1397 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1398 } 1399 1400 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1401 { 1402 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1403 } 1404 1405 /* 1406 * Flags for mount options. 1407 * 1408 * Note: don't forget to add new options to btrfs_show_options() 1409 */ 1410 enum { 1411 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1412 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1413 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1414 BTRFS_MOUNT_SSD = (1UL << 3), 1415 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1416 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1417 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1418 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1419 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1420 BTRFS_MOUNT_NOSSD = (1UL << 9), 1421 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1422 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1423 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1424 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1425 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1426 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1427 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1428 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1429 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1430 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1431 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1432 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1433 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1434 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1435 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1436 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1437 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1438 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1439 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1440 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1441 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1442 }; 1443 1444 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1445 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1446 1447 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1448 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1449 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1450 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1451 BTRFS_MOUNT_##opt) 1452 1453 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1454 do { \ 1455 if (!btrfs_test_opt(fs_info, opt)) \ 1456 btrfs_info(fs_info, fmt, ##args); \ 1457 btrfs_set_opt(fs_info->mount_opt, opt); \ 1458 } while (0) 1459 1460 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1461 do { \ 1462 if (btrfs_test_opt(fs_info, opt)) \ 1463 btrfs_info(fs_info, fmt, ##args); \ 1464 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1465 } while (0) 1466 1467 /* 1468 * Requests for changes that need to be done during transaction commit. 1469 * 1470 * Internal mount options that are used for special handling of the real 1471 * mount options (eg. cannot be set during remount and have to be set during 1472 * transaction commit) 1473 */ 1474 1475 #define BTRFS_PENDING_COMMIT (0) 1476 1477 #define btrfs_test_pending(info, opt) \ 1478 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1479 #define btrfs_set_pending(info, opt) \ 1480 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1481 #define btrfs_clear_pending(info, opt) \ 1482 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1483 1484 /* 1485 * Helpers for setting pending mount option changes. 1486 * 1487 * Expects corresponding macros 1488 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1489 */ 1490 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1491 do { \ 1492 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1493 btrfs_info((info), fmt, ##args); \ 1494 btrfs_set_pending((info), SET_##opt); \ 1495 btrfs_clear_pending((info), CLEAR_##opt); \ 1496 } \ 1497 } while(0) 1498 1499 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1500 do { \ 1501 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1502 btrfs_info((info), fmt, ##args); \ 1503 btrfs_set_pending((info), CLEAR_##opt); \ 1504 btrfs_clear_pending((info), SET_##opt); \ 1505 } \ 1506 } while(0) 1507 1508 /* 1509 * Inode flags 1510 */ 1511 #define BTRFS_INODE_NODATASUM (1U << 0) 1512 #define BTRFS_INODE_NODATACOW (1U << 1) 1513 #define BTRFS_INODE_READONLY (1U << 2) 1514 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1515 #define BTRFS_INODE_PREALLOC (1U << 4) 1516 #define BTRFS_INODE_SYNC (1U << 5) 1517 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1518 #define BTRFS_INODE_APPEND (1U << 7) 1519 #define BTRFS_INODE_NODUMP (1U << 8) 1520 #define BTRFS_INODE_NOATIME (1U << 9) 1521 #define BTRFS_INODE_DIRSYNC (1U << 10) 1522 #define BTRFS_INODE_COMPRESS (1U << 11) 1523 1524 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1525 1526 #define BTRFS_INODE_FLAG_MASK \ 1527 (BTRFS_INODE_NODATASUM | \ 1528 BTRFS_INODE_NODATACOW | \ 1529 BTRFS_INODE_READONLY | \ 1530 BTRFS_INODE_NOCOMPRESS | \ 1531 BTRFS_INODE_PREALLOC | \ 1532 BTRFS_INODE_SYNC | \ 1533 BTRFS_INODE_IMMUTABLE | \ 1534 BTRFS_INODE_APPEND | \ 1535 BTRFS_INODE_NODUMP | \ 1536 BTRFS_INODE_NOATIME | \ 1537 BTRFS_INODE_DIRSYNC | \ 1538 BTRFS_INODE_COMPRESS | \ 1539 BTRFS_INODE_ROOT_ITEM_INIT) 1540 1541 #define BTRFS_INODE_RO_VERITY (1U << 0) 1542 1543 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1544 1545 struct btrfs_map_token { 1546 struct extent_buffer *eb; 1547 char *kaddr; 1548 unsigned long offset; 1549 }; 1550 1551 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1552 ((bytes) >> (fs_info)->sectorsize_bits) 1553 1554 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1555 struct extent_buffer *eb) 1556 { 1557 token->eb = eb; 1558 token->kaddr = page_address(eb->pages[0]); 1559 token->offset = 0; 1560 } 1561 1562 /* some macros to generate set/get functions for the struct fields. This 1563 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1564 * one for u8: 1565 */ 1566 #define le8_to_cpu(v) (v) 1567 #define cpu_to_le8(v) (v) 1568 #define __le8 u8 1569 1570 static inline u8 get_unaligned_le8(const void *p) 1571 { 1572 return *(u8 *)p; 1573 } 1574 1575 static inline void put_unaligned_le8(u8 val, void *p) 1576 { 1577 *(u8 *)p = val; 1578 } 1579 1580 #define read_eb_member(eb, ptr, type, member, result) (\ 1581 read_extent_buffer(eb, (char *)(result), \ 1582 ((unsigned long)(ptr)) + \ 1583 offsetof(type, member), \ 1584 sizeof(((type *)0)->member))) 1585 1586 #define write_eb_member(eb, ptr, type, member, result) (\ 1587 write_extent_buffer(eb, (char *)(result), \ 1588 ((unsigned long)(ptr)) + \ 1589 offsetof(type, member), \ 1590 sizeof(((type *)0)->member))) 1591 1592 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1593 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1594 const void *ptr, unsigned long off); \ 1595 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1596 const void *ptr, unsigned long off, \ 1597 u##bits val); \ 1598 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1599 const void *ptr, unsigned long off); \ 1600 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1601 unsigned long off, u##bits val); 1602 1603 DECLARE_BTRFS_SETGET_BITS(8) 1604 DECLARE_BTRFS_SETGET_BITS(16) 1605 DECLARE_BTRFS_SETGET_BITS(32) 1606 DECLARE_BTRFS_SETGET_BITS(64) 1607 1608 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1609 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1610 const type *s) \ 1611 { \ 1612 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1613 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1614 } \ 1615 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1616 u##bits val) \ 1617 { \ 1618 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1619 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1620 } \ 1621 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1622 const type *s) \ 1623 { \ 1624 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1625 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1626 } \ 1627 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1628 type *s, u##bits val) \ 1629 { \ 1630 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1631 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1632 } 1633 1634 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1635 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1636 { \ 1637 const type *p = page_address(eb->pages[0]) + \ 1638 offset_in_page(eb->start); \ 1639 return get_unaligned_le##bits(&p->member); \ 1640 } \ 1641 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1642 u##bits val) \ 1643 { \ 1644 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1645 put_unaligned_le##bits(val, &p->member); \ 1646 } 1647 1648 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1649 static inline u##bits btrfs_##name(const type *s) \ 1650 { \ 1651 return get_unaligned_le##bits(&s->member); \ 1652 } \ 1653 static inline void btrfs_set_##name(type *s, u##bits val) \ 1654 { \ 1655 put_unaligned_le##bits(val, &s->member); \ 1656 } 1657 1658 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1659 struct btrfs_dev_item *s) 1660 { 1661 BUILD_BUG_ON(sizeof(u64) != 1662 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1663 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1664 total_bytes)); 1665 } 1666 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1667 struct btrfs_dev_item *s, 1668 u64 val) 1669 { 1670 BUILD_BUG_ON(sizeof(u64) != 1671 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1672 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1673 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1674 } 1675 1676 1677 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1678 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1679 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1680 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1681 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1682 start_offset, 64); 1683 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1684 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1685 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1686 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1687 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1688 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1689 1690 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1691 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1692 total_bytes, 64); 1693 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1694 bytes_used, 64); 1695 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1696 io_align, 32); 1697 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1698 io_width, 32); 1699 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1700 sector_size, 32); 1701 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1702 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1703 dev_group, 32); 1704 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1705 seek_speed, 8); 1706 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1707 bandwidth, 8); 1708 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1709 generation, 64); 1710 1711 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1712 { 1713 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1714 } 1715 1716 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1717 { 1718 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1719 } 1720 1721 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1722 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1723 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1724 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1725 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1726 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1727 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1728 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1729 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1730 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1731 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1732 1733 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1734 { 1735 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1736 } 1737 1738 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1739 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1740 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1741 stripe_len, 64); 1742 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1743 io_align, 32); 1744 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1745 io_width, 32); 1746 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1747 sector_size, 32); 1748 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1749 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1750 num_stripes, 16); 1751 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1752 sub_stripes, 16); 1753 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1754 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1755 1756 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1757 int nr) 1758 { 1759 unsigned long offset = (unsigned long)c; 1760 offset += offsetof(struct btrfs_chunk, stripe); 1761 offset += nr * sizeof(struct btrfs_stripe); 1762 return (struct btrfs_stripe *)offset; 1763 } 1764 1765 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1766 { 1767 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1768 } 1769 1770 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1771 struct btrfs_chunk *c, int nr) 1772 { 1773 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1774 } 1775 1776 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1777 struct btrfs_chunk *c, int nr) 1778 { 1779 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1780 } 1781 1782 /* struct btrfs_block_group_item */ 1783 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1784 used, 64); 1785 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1786 used, 64); 1787 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1788 struct btrfs_block_group_item, chunk_objectid, 64); 1789 1790 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1791 struct btrfs_block_group_item, chunk_objectid, 64); 1792 BTRFS_SETGET_FUNCS(block_group_flags, 1793 struct btrfs_block_group_item, flags, 64); 1794 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1795 struct btrfs_block_group_item, flags, 64); 1796 1797 /* struct btrfs_free_space_info */ 1798 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1799 extent_count, 32); 1800 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1801 1802 /* struct btrfs_inode_ref */ 1803 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1804 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1805 1806 /* struct btrfs_inode_extref */ 1807 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1808 parent_objectid, 64); 1809 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1810 name_len, 16); 1811 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1812 1813 /* struct btrfs_inode_item */ 1814 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1815 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1816 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1817 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1818 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1819 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1820 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1821 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1822 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1823 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1824 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1825 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1826 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1827 generation, 64); 1828 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1829 sequence, 64); 1830 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1831 transid, 64); 1832 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1833 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1834 nbytes, 64); 1835 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1836 block_group, 64); 1837 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1838 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1839 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1840 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1841 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1842 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1843 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1844 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1845 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1846 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1847 1848 /* struct btrfs_dev_extent */ 1849 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1850 chunk_tree, 64); 1851 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1852 chunk_objectid, 64); 1853 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1854 chunk_offset, 64); 1855 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1856 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1857 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1858 generation, 64); 1859 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1860 1861 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1862 1863 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1864 struct btrfs_tree_block_info *item, 1865 struct btrfs_disk_key *key) 1866 { 1867 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1868 } 1869 1870 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1871 struct btrfs_tree_block_info *item, 1872 struct btrfs_disk_key *key) 1873 { 1874 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1875 } 1876 1877 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1878 root, 64); 1879 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1880 objectid, 64); 1881 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1882 offset, 64); 1883 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1884 count, 32); 1885 1886 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1887 count, 32); 1888 1889 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1890 type, 8); 1891 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1892 offset, 64); 1893 1894 static inline u32 btrfs_extent_inline_ref_size(int type) 1895 { 1896 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1897 type == BTRFS_SHARED_BLOCK_REF_KEY) 1898 return sizeof(struct btrfs_extent_inline_ref); 1899 if (type == BTRFS_SHARED_DATA_REF_KEY) 1900 return sizeof(struct btrfs_shared_data_ref) + 1901 sizeof(struct btrfs_extent_inline_ref); 1902 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1903 return sizeof(struct btrfs_extent_data_ref) + 1904 offsetof(struct btrfs_extent_inline_ref, offset); 1905 return 0; 1906 } 1907 1908 /* struct btrfs_node */ 1909 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1910 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1911 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1912 blockptr, 64); 1913 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1914 generation, 64); 1915 1916 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1917 { 1918 unsigned long ptr; 1919 ptr = offsetof(struct btrfs_node, ptrs) + 1920 sizeof(struct btrfs_key_ptr) * nr; 1921 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1922 } 1923 1924 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1925 int nr, u64 val) 1926 { 1927 unsigned long ptr; 1928 ptr = offsetof(struct btrfs_node, ptrs) + 1929 sizeof(struct btrfs_key_ptr) * nr; 1930 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1931 } 1932 1933 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1934 { 1935 unsigned long ptr; 1936 ptr = offsetof(struct btrfs_node, ptrs) + 1937 sizeof(struct btrfs_key_ptr) * nr; 1938 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1939 } 1940 1941 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1942 int nr, u64 val) 1943 { 1944 unsigned long ptr; 1945 ptr = offsetof(struct btrfs_node, ptrs) + 1946 sizeof(struct btrfs_key_ptr) * nr; 1947 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1948 } 1949 1950 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1951 { 1952 return offsetof(struct btrfs_node, ptrs) + 1953 sizeof(struct btrfs_key_ptr) * nr; 1954 } 1955 1956 void btrfs_node_key(const struct extent_buffer *eb, 1957 struct btrfs_disk_key *disk_key, int nr); 1958 1959 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1960 struct btrfs_disk_key *disk_key, int nr) 1961 { 1962 unsigned long ptr; 1963 ptr = btrfs_node_key_ptr_offset(nr); 1964 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1965 struct btrfs_key_ptr, key, disk_key); 1966 } 1967 1968 /* struct btrfs_item */ 1969 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 1970 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 1971 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 1972 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 1973 1974 static inline unsigned long btrfs_item_nr_offset(int nr) 1975 { 1976 return offsetof(struct btrfs_leaf, items) + 1977 sizeof(struct btrfs_item) * nr; 1978 } 1979 1980 static inline struct btrfs_item *btrfs_item_nr(int nr) 1981 { 1982 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 1983 } 1984 1985 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 1986 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 1987 int slot) \ 1988 { \ 1989 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 1990 } \ 1991 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 1992 int slot, u32 val) \ 1993 { \ 1994 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 1995 } \ 1996 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 1997 int slot) \ 1998 { \ 1999 struct btrfs_item *item = btrfs_item_nr(slot); \ 2000 return btrfs_token_raw_item_##member(token, item); \ 2001 } \ 2002 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 2003 int slot, u32 val) \ 2004 { \ 2005 struct btrfs_item *item = btrfs_item_nr(slot); \ 2006 btrfs_set_token_raw_item_##member(token, item, val); \ 2007 } 2008 2009 BTRFS_ITEM_SETGET_FUNCS(offset) 2010 BTRFS_ITEM_SETGET_FUNCS(size); 2011 2012 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2013 { 2014 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2015 } 2016 2017 static inline void btrfs_item_key(const struct extent_buffer *eb, 2018 struct btrfs_disk_key *disk_key, int nr) 2019 { 2020 struct btrfs_item *item = btrfs_item_nr(nr); 2021 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2022 } 2023 2024 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2025 struct btrfs_disk_key *disk_key, int nr) 2026 { 2027 struct btrfs_item *item = btrfs_item_nr(nr); 2028 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2029 } 2030 2031 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2032 2033 /* 2034 * struct btrfs_root_ref 2035 */ 2036 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2037 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2038 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2039 2040 /* struct btrfs_dir_item */ 2041 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2042 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2043 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2044 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2045 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2046 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2047 data_len, 16); 2048 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2049 name_len, 16); 2050 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2051 transid, 64); 2052 2053 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2054 const struct btrfs_dir_item *item, 2055 struct btrfs_disk_key *key) 2056 { 2057 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2058 } 2059 2060 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2061 struct btrfs_dir_item *item, 2062 const struct btrfs_disk_key *key) 2063 { 2064 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2065 } 2066 2067 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2068 num_entries, 64); 2069 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2070 num_bitmaps, 64); 2071 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2072 generation, 64); 2073 2074 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2075 const struct btrfs_free_space_header *h, 2076 struct btrfs_disk_key *key) 2077 { 2078 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2079 } 2080 2081 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2082 struct btrfs_free_space_header *h, 2083 const struct btrfs_disk_key *key) 2084 { 2085 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2086 } 2087 2088 /* struct btrfs_disk_key */ 2089 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2090 objectid, 64); 2091 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2092 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2093 2094 #ifdef __LITTLE_ENDIAN 2095 2096 /* 2097 * Optimized helpers for little-endian architectures where CPU and on-disk 2098 * structures have the same endianness and we can skip conversions. 2099 */ 2100 2101 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2102 const struct btrfs_disk_key *disk_key) 2103 { 2104 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2105 } 2106 2107 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2108 const struct btrfs_key *cpu_key) 2109 { 2110 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2111 } 2112 2113 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2114 struct btrfs_key *cpu_key, int nr) 2115 { 2116 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2117 2118 btrfs_node_key(eb, disk_key, nr); 2119 } 2120 2121 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2122 struct btrfs_key *cpu_key, int nr) 2123 { 2124 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2125 2126 btrfs_item_key(eb, disk_key, nr); 2127 } 2128 2129 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2130 const struct btrfs_dir_item *item, 2131 struct btrfs_key *cpu_key) 2132 { 2133 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2134 2135 btrfs_dir_item_key(eb, item, disk_key); 2136 } 2137 2138 #else 2139 2140 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2141 const struct btrfs_disk_key *disk) 2142 { 2143 cpu->offset = le64_to_cpu(disk->offset); 2144 cpu->type = disk->type; 2145 cpu->objectid = le64_to_cpu(disk->objectid); 2146 } 2147 2148 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2149 const struct btrfs_key *cpu) 2150 { 2151 disk->offset = cpu_to_le64(cpu->offset); 2152 disk->type = cpu->type; 2153 disk->objectid = cpu_to_le64(cpu->objectid); 2154 } 2155 2156 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2157 struct btrfs_key *key, int nr) 2158 { 2159 struct btrfs_disk_key disk_key; 2160 btrfs_node_key(eb, &disk_key, nr); 2161 btrfs_disk_key_to_cpu(key, &disk_key); 2162 } 2163 2164 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2165 struct btrfs_key *key, int nr) 2166 { 2167 struct btrfs_disk_key disk_key; 2168 btrfs_item_key(eb, &disk_key, nr); 2169 btrfs_disk_key_to_cpu(key, &disk_key); 2170 } 2171 2172 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2173 const struct btrfs_dir_item *item, 2174 struct btrfs_key *key) 2175 { 2176 struct btrfs_disk_key disk_key; 2177 btrfs_dir_item_key(eb, item, &disk_key); 2178 btrfs_disk_key_to_cpu(key, &disk_key); 2179 } 2180 2181 #endif 2182 2183 /* struct btrfs_header */ 2184 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2185 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2186 generation, 64); 2187 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2188 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2189 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2190 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2191 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2192 generation, 64); 2193 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2194 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2195 nritems, 32); 2196 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2197 2198 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2199 { 2200 return (btrfs_header_flags(eb) & flag) == flag; 2201 } 2202 2203 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2204 { 2205 u64 flags = btrfs_header_flags(eb); 2206 btrfs_set_header_flags(eb, flags | flag); 2207 } 2208 2209 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2210 { 2211 u64 flags = btrfs_header_flags(eb); 2212 btrfs_set_header_flags(eb, flags & ~flag); 2213 } 2214 2215 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2216 { 2217 u64 flags = btrfs_header_flags(eb); 2218 return flags >> BTRFS_BACKREF_REV_SHIFT; 2219 } 2220 2221 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2222 int rev) 2223 { 2224 u64 flags = btrfs_header_flags(eb); 2225 flags &= ~BTRFS_BACKREF_REV_MASK; 2226 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2227 btrfs_set_header_flags(eb, flags); 2228 } 2229 2230 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2231 { 2232 return btrfs_header_level(eb) == 0; 2233 } 2234 2235 /* struct btrfs_root_item */ 2236 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2237 generation, 64); 2238 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2239 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2240 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2241 2242 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2243 generation, 64); 2244 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2245 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2246 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2247 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2248 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2249 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2250 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2251 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2252 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2253 last_snapshot, 64); 2254 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2255 generation_v2, 64); 2256 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2257 ctransid, 64); 2258 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2259 otransid, 64); 2260 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2261 stransid, 64); 2262 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2263 rtransid, 64); 2264 2265 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2266 { 2267 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2268 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2269 } 2270 2271 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2272 { 2273 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2274 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2275 } 2276 2277 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2278 { 2279 return root->root_key.objectid; 2280 } 2281 2282 /* struct btrfs_root_backup */ 2283 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2284 tree_root, 64); 2285 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2286 tree_root_gen, 64); 2287 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2288 tree_root_level, 8); 2289 2290 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2291 chunk_root, 64); 2292 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2293 chunk_root_gen, 64); 2294 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2295 chunk_root_level, 8); 2296 2297 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2298 extent_root, 64); 2299 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2300 extent_root_gen, 64); 2301 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2302 extent_root_level, 8); 2303 2304 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2305 fs_root, 64); 2306 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2307 fs_root_gen, 64); 2308 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2309 fs_root_level, 8); 2310 2311 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2312 dev_root, 64); 2313 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2314 dev_root_gen, 64); 2315 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2316 dev_root_level, 8); 2317 2318 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2319 csum_root, 64); 2320 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2321 csum_root_gen, 64); 2322 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2323 csum_root_level, 8); 2324 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2325 total_bytes, 64); 2326 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2327 bytes_used, 64); 2328 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2329 num_devices, 64); 2330 2331 /* struct btrfs_balance_item */ 2332 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2333 2334 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2335 const struct btrfs_balance_item *bi, 2336 struct btrfs_disk_balance_args *ba) 2337 { 2338 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2339 } 2340 2341 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2342 struct btrfs_balance_item *bi, 2343 const struct btrfs_disk_balance_args *ba) 2344 { 2345 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2346 } 2347 2348 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2349 const struct btrfs_balance_item *bi, 2350 struct btrfs_disk_balance_args *ba) 2351 { 2352 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2353 } 2354 2355 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2356 struct btrfs_balance_item *bi, 2357 const struct btrfs_disk_balance_args *ba) 2358 { 2359 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2360 } 2361 2362 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2363 const struct btrfs_balance_item *bi, 2364 struct btrfs_disk_balance_args *ba) 2365 { 2366 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2367 } 2368 2369 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2370 struct btrfs_balance_item *bi, 2371 const struct btrfs_disk_balance_args *ba) 2372 { 2373 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2374 } 2375 2376 static inline void 2377 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2378 const struct btrfs_disk_balance_args *disk) 2379 { 2380 memset(cpu, 0, sizeof(*cpu)); 2381 2382 cpu->profiles = le64_to_cpu(disk->profiles); 2383 cpu->usage = le64_to_cpu(disk->usage); 2384 cpu->devid = le64_to_cpu(disk->devid); 2385 cpu->pstart = le64_to_cpu(disk->pstart); 2386 cpu->pend = le64_to_cpu(disk->pend); 2387 cpu->vstart = le64_to_cpu(disk->vstart); 2388 cpu->vend = le64_to_cpu(disk->vend); 2389 cpu->target = le64_to_cpu(disk->target); 2390 cpu->flags = le64_to_cpu(disk->flags); 2391 cpu->limit = le64_to_cpu(disk->limit); 2392 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2393 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2394 } 2395 2396 static inline void 2397 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2398 const struct btrfs_balance_args *cpu) 2399 { 2400 memset(disk, 0, sizeof(*disk)); 2401 2402 disk->profiles = cpu_to_le64(cpu->profiles); 2403 disk->usage = cpu_to_le64(cpu->usage); 2404 disk->devid = cpu_to_le64(cpu->devid); 2405 disk->pstart = cpu_to_le64(cpu->pstart); 2406 disk->pend = cpu_to_le64(cpu->pend); 2407 disk->vstart = cpu_to_le64(cpu->vstart); 2408 disk->vend = cpu_to_le64(cpu->vend); 2409 disk->target = cpu_to_le64(cpu->target); 2410 disk->flags = cpu_to_le64(cpu->flags); 2411 disk->limit = cpu_to_le64(cpu->limit); 2412 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2413 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2414 } 2415 2416 /* struct btrfs_super_block */ 2417 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2418 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2419 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2420 generation, 64); 2421 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2422 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2423 struct btrfs_super_block, sys_chunk_array_size, 32); 2424 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2425 struct btrfs_super_block, chunk_root_generation, 64); 2426 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2427 root_level, 8); 2428 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2429 chunk_root, 64); 2430 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2431 chunk_root_level, 8); 2432 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2433 log_root, 64); 2434 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2435 log_root_transid, 64); 2436 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2437 log_root_level, 8); 2438 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2439 total_bytes, 64); 2440 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2441 bytes_used, 64); 2442 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2443 sectorsize, 32); 2444 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2445 nodesize, 32); 2446 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2447 stripesize, 32); 2448 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2449 root_dir_objectid, 64); 2450 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2451 num_devices, 64); 2452 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2453 compat_flags, 64); 2454 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2455 compat_ro_flags, 64); 2456 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2457 incompat_flags, 64); 2458 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2459 csum_type, 16); 2460 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2461 cache_generation, 64); 2462 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2463 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2464 uuid_tree_generation, 64); 2465 2466 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2467 const char *btrfs_super_csum_name(u16 csum_type); 2468 const char *btrfs_super_csum_driver(u16 csum_type); 2469 size_t __attribute_const__ btrfs_get_num_csums(void); 2470 2471 2472 /* 2473 * The leaf data grows from end-to-front in the node. 2474 * this returns the address of the start of the last item, 2475 * which is the stop of the leaf data stack 2476 */ 2477 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2478 { 2479 u32 nr = btrfs_header_nritems(leaf); 2480 2481 if (nr == 0) 2482 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2483 return btrfs_item_offset(leaf, nr - 1); 2484 } 2485 2486 /* struct btrfs_file_extent_item */ 2487 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2488 type, 8); 2489 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2490 struct btrfs_file_extent_item, disk_bytenr, 64); 2491 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2492 struct btrfs_file_extent_item, offset, 64); 2493 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2494 struct btrfs_file_extent_item, generation, 64); 2495 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2496 struct btrfs_file_extent_item, num_bytes, 64); 2497 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2498 struct btrfs_file_extent_item, ram_bytes, 64); 2499 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2500 struct btrfs_file_extent_item, disk_num_bytes, 64); 2501 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2502 struct btrfs_file_extent_item, compression, 8); 2503 2504 static inline unsigned long 2505 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2506 { 2507 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2508 } 2509 2510 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2511 { 2512 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2513 } 2514 2515 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2516 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2517 disk_bytenr, 64); 2518 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2519 generation, 64); 2520 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2521 disk_num_bytes, 64); 2522 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2523 offset, 64); 2524 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2525 num_bytes, 64); 2526 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2527 ram_bytes, 64); 2528 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2529 compression, 8); 2530 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2531 encryption, 8); 2532 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2533 other_encoding, 16); 2534 2535 /* 2536 * this returns the number of bytes used by the item on disk, minus the 2537 * size of any extent headers. If a file is compressed on disk, this is 2538 * the compressed size 2539 */ 2540 static inline u32 btrfs_file_extent_inline_item_len( 2541 const struct extent_buffer *eb, 2542 int nr) 2543 { 2544 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2545 } 2546 2547 /* btrfs_qgroup_status_item */ 2548 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2549 generation, 64); 2550 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2551 version, 64); 2552 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2553 flags, 64); 2554 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2555 rescan, 64); 2556 2557 /* btrfs_qgroup_info_item */ 2558 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2559 generation, 64); 2560 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2561 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2562 rfer_cmpr, 64); 2563 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2564 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2565 excl_cmpr, 64); 2566 2567 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2568 struct btrfs_qgroup_info_item, generation, 64); 2569 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2570 rfer, 64); 2571 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2572 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2573 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2574 excl, 64); 2575 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2576 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2577 2578 /* btrfs_qgroup_limit_item */ 2579 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2580 flags, 64); 2581 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2582 max_rfer, 64); 2583 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2584 max_excl, 64); 2585 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2586 rsv_rfer, 64); 2587 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2588 rsv_excl, 64); 2589 2590 /* btrfs_dev_replace_item */ 2591 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2592 struct btrfs_dev_replace_item, src_devid, 64); 2593 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2594 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2595 64); 2596 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2597 replace_state, 64); 2598 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2599 time_started, 64); 2600 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2601 time_stopped, 64); 2602 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2603 num_write_errors, 64); 2604 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2605 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2606 64); 2607 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2608 cursor_left, 64); 2609 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2610 cursor_right, 64); 2611 2612 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2613 struct btrfs_dev_replace_item, src_devid, 64); 2614 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2615 struct btrfs_dev_replace_item, 2616 cont_reading_from_srcdev_mode, 64); 2617 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2618 struct btrfs_dev_replace_item, replace_state, 64); 2619 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2620 struct btrfs_dev_replace_item, time_started, 64); 2621 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2622 struct btrfs_dev_replace_item, time_stopped, 64); 2623 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2624 struct btrfs_dev_replace_item, num_write_errors, 64); 2625 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2626 struct btrfs_dev_replace_item, 2627 num_uncorrectable_read_errors, 64); 2628 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2629 struct btrfs_dev_replace_item, cursor_left, 64); 2630 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2631 struct btrfs_dev_replace_item, cursor_right, 64); 2632 2633 /* helper function to cast into the data area of the leaf. */ 2634 #define btrfs_item_ptr(leaf, slot, type) \ 2635 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2636 btrfs_item_offset(leaf, slot))) 2637 2638 #define btrfs_item_ptr_offset(leaf, slot) \ 2639 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2640 btrfs_item_offset(leaf, slot))) 2641 2642 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2643 { 2644 return crc32c(crc, address, length); 2645 } 2646 2647 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2648 { 2649 put_unaligned_le32(~crc, result); 2650 } 2651 2652 static inline u64 btrfs_name_hash(const char *name, int len) 2653 { 2654 return crc32c((u32)~1, name, len); 2655 } 2656 2657 /* 2658 * Figure the key offset of an extended inode ref 2659 */ 2660 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2661 int len) 2662 { 2663 return (u64) crc32c(parent_objectid, name, len); 2664 } 2665 2666 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2667 { 2668 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2669 } 2670 2671 /* extent-tree.c */ 2672 2673 enum btrfs_inline_ref_type { 2674 BTRFS_REF_TYPE_INVALID, 2675 BTRFS_REF_TYPE_BLOCK, 2676 BTRFS_REF_TYPE_DATA, 2677 BTRFS_REF_TYPE_ANY, 2678 }; 2679 2680 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2681 struct btrfs_extent_inline_ref *iref, 2682 enum btrfs_inline_ref_type is_data); 2683 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2684 2685 /* 2686 * Take the number of bytes to be checksummmed and figure out how many leaves 2687 * it would require to store the csums for that many bytes. 2688 */ 2689 static inline u64 btrfs_csum_bytes_to_leaves( 2690 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2691 { 2692 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2693 2694 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2695 } 2696 2697 /* 2698 * Use this if we would be adding new items, as we could split nodes as we cow 2699 * down the tree. 2700 */ 2701 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2702 unsigned num_items) 2703 { 2704 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2705 } 2706 2707 /* 2708 * Doing a truncate or a modification won't result in new nodes or leaves, just 2709 * what we need for COW. 2710 */ 2711 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2712 unsigned num_items) 2713 { 2714 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2715 } 2716 2717 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2718 u64 start, u64 num_bytes); 2719 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2720 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2721 unsigned long count); 2722 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2723 struct btrfs_delayed_ref_root *delayed_refs, 2724 struct btrfs_delayed_ref_head *head); 2725 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2726 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2727 struct btrfs_fs_info *fs_info, u64 bytenr, 2728 u64 offset, int metadata, u64 *refs, u64 *flags); 2729 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2730 int reserved); 2731 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2732 u64 bytenr, u64 num_bytes); 2733 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2734 int btrfs_cross_ref_exist(struct btrfs_root *root, 2735 u64 objectid, u64 offset, u64 bytenr, bool strict); 2736 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2737 struct btrfs_root *root, 2738 u64 parent, u64 root_objectid, 2739 const struct btrfs_disk_key *key, 2740 int level, u64 hint, 2741 u64 empty_size, 2742 enum btrfs_lock_nesting nest); 2743 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2744 u64 root_id, 2745 struct extent_buffer *buf, 2746 u64 parent, int last_ref); 2747 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2748 struct btrfs_root *root, u64 owner, 2749 u64 offset, u64 ram_bytes, 2750 struct btrfs_key *ins); 2751 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2752 u64 root_objectid, u64 owner, u64 offset, 2753 struct btrfs_key *ins); 2754 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2755 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2756 struct btrfs_key *ins, int is_data, int delalloc); 2757 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2758 struct extent_buffer *buf, int full_backref); 2759 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2760 struct extent_buffer *buf, int full_backref); 2761 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2762 struct extent_buffer *eb, u64 flags, 2763 int level, int is_data); 2764 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2765 2766 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2767 u64 start, u64 len, int delalloc); 2768 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2769 u64 len); 2770 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2771 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2772 struct btrfs_ref *generic_ref); 2773 2774 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2775 2776 /* 2777 * Different levels for to flush space when doing space reservations. 2778 * 2779 * The higher the level, the more methods we try to reclaim space. 2780 */ 2781 enum btrfs_reserve_flush_enum { 2782 /* If we are in the transaction, we can't flush anything.*/ 2783 BTRFS_RESERVE_NO_FLUSH, 2784 2785 /* 2786 * Flush space by: 2787 * - Running delayed inode items 2788 * - Allocating a new chunk 2789 */ 2790 BTRFS_RESERVE_FLUSH_LIMIT, 2791 2792 /* 2793 * Flush space by: 2794 * - Running delayed inode items 2795 * - Running delayed refs 2796 * - Running delalloc and waiting for ordered extents 2797 * - Allocating a new chunk 2798 */ 2799 BTRFS_RESERVE_FLUSH_EVICT, 2800 2801 /* 2802 * Flush space by above mentioned methods and by: 2803 * - Running delayed iputs 2804 * - Committing transaction 2805 * 2806 * Can be interrupted by a fatal signal. 2807 */ 2808 BTRFS_RESERVE_FLUSH_DATA, 2809 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2810 BTRFS_RESERVE_FLUSH_ALL, 2811 2812 /* 2813 * Pretty much the same as FLUSH_ALL, but can also steal space from 2814 * global rsv. 2815 * 2816 * Can be interrupted by a fatal signal. 2817 */ 2818 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2819 }; 2820 2821 enum btrfs_flush_state { 2822 FLUSH_DELAYED_ITEMS_NR = 1, 2823 FLUSH_DELAYED_ITEMS = 2, 2824 FLUSH_DELAYED_REFS_NR = 3, 2825 FLUSH_DELAYED_REFS = 4, 2826 FLUSH_DELALLOC = 5, 2827 FLUSH_DELALLOC_WAIT = 6, 2828 FLUSH_DELALLOC_FULL = 7, 2829 ALLOC_CHUNK = 8, 2830 ALLOC_CHUNK_FORCE = 9, 2831 RUN_DELAYED_IPUTS = 10, 2832 COMMIT_TRANS = 11, 2833 }; 2834 2835 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2836 struct btrfs_block_rsv *rsv, 2837 int nitems, bool use_global_rsv); 2838 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2839 struct btrfs_block_rsv *rsv); 2840 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2841 2842 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes); 2843 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2844 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2845 u64 start, u64 end); 2846 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2847 u64 num_bytes, u64 *actual_bytes); 2848 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2849 2850 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2851 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2852 struct btrfs_fs_info *fs_info); 2853 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2854 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2855 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2856 2857 /* ctree.c */ 2858 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2859 int *slot); 2860 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2861 int btrfs_previous_item(struct btrfs_root *root, 2862 struct btrfs_path *path, u64 min_objectid, 2863 int type); 2864 int btrfs_previous_extent_item(struct btrfs_root *root, 2865 struct btrfs_path *path, u64 min_objectid); 2866 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2867 struct btrfs_path *path, 2868 const struct btrfs_key *new_key); 2869 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2870 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2871 struct btrfs_key *key, int lowest_level, 2872 u64 min_trans); 2873 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2874 struct btrfs_path *path, 2875 u64 min_trans); 2876 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2877 int slot); 2878 2879 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2880 struct btrfs_root *root, struct extent_buffer *buf, 2881 struct extent_buffer *parent, int parent_slot, 2882 struct extent_buffer **cow_ret, 2883 enum btrfs_lock_nesting nest); 2884 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2885 struct btrfs_root *root, 2886 struct extent_buffer *buf, 2887 struct extent_buffer **cow_ret, u64 new_root_objectid); 2888 int btrfs_block_can_be_shared(struct btrfs_root *root, 2889 struct extent_buffer *buf); 2890 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2891 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2892 int btrfs_split_item(struct btrfs_trans_handle *trans, 2893 struct btrfs_root *root, 2894 struct btrfs_path *path, 2895 const struct btrfs_key *new_key, 2896 unsigned long split_offset); 2897 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2898 struct btrfs_root *root, 2899 struct btrfs_path *path, 2900 const struct btrfs_key *new_key); 2901 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2902 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2903 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2904 const struct btrfs_key *key, struct btrfs_path *p, 2905 int ins_len, int cow); 2906 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2907 struct btrfs_path *p, u64 time_seq); 2908 int btrfs_search_slot_for_read(struct btrfs_root *root, 2909 const struct btrfs_key *key, 2910 struct btrfs_path *p, int find_higher, 2911 int return_any); 2912 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2913 struct btrfs_root *root, struct extent_buffer *parent, 2914 int start_slot, u64 *last_ret, 2915 struct btrfs_key *progress); 2916 void btrfs_release_path(struct btrfs_path *p); 2917 struct btrfs_path *btrfs_alloc_path(void); 2918 void btrfs_free_path(struct btrfs_path *p); 2919 2920 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2921 struct btrfs_path *path, int slot, int nr); 2922 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2923 struct btrfs_root *root, 2924 struct btrfs_path *path) 2925 { 2926 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2927 } 2928 2929 /* 2930 * Describes a batch of items to insert in a btree. This is used by 2931 * btrfs_insert_empty_items(). 2932 */ 2933 struct btrfs_item_batch { 2934 /* 2935 * Pointer to an array containing the keys of the items to insert (in 2936 * sorted order). 2937 */ 2938 const struct btrfs_key *keys; 2939 /* Pointer to an array containing the data size for each item to insert. */ 2940 const u32 *data_sizes; 2941 /* 2942 * The sum of data sizes for all items. The caller can compute this while 2943 * setting up the data_sizes array, so it ends up being more efficient 2944 * than having btrfs_insert_empty_items() or setup_item_for_insert() 2945 * doing it, as it would avoid an extra loop over a potentially large 2946 * array, and in the case of setup_item_for_insert(), we would be doing 2947 * it while holding a write lock on a leaf and often on upper level nodes 2948 * too, unnecessarily increasing the size of a critical section. 2949 */ 2950 u32 total_data_size; 2951 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 2952 int nr; 2953 }; 2954 2955 void btrfs_setup_item_for_insert(struct btrfs_root *root, 2956 struct btrfs_path *path, 2957 const struct btrfs_key *key, 2958 u32 data_size); 2959 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2960 const struct btrfs_key *key, void *data, u32 data_size); 2961 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 2962 struct btrfs_root *root, 2963 struct btrfs_path *path, 2964 const struct btrfs_item_batch *batch); 2965 2966 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 2967 struct btrfs_root *root, 2968 struct btrfs_path *path, 2969 const struct btrfs_key *key, 2970 u32 data_size) 2971 { 2972 struct btrfs_item_batch batch; 2973 2974 batch.keys = key; 2975 batch.data_sizes = &data_size; 2976 batch.total_data_size = data_size; 2977 batch.nr = 1; 2978 2979 return btrfs_insert_empty_items(trans, root, path, &batch); 2980 } 2981 2982 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 2983 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 2984 u64 time_seq); 2985 2986 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2987 struct btrfs_path *path); 2988 2989 static inline int btrfs_next_old_item(struct btrfs_root *root, 2990 struct btrfs_path *p, u64 time_seq) 2991 { 2992 ++p->slots[0]; 2993 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 2994 return btrfs_next_old_leaf(root, p, time_seq); 2995 return 0; 2996 } 2997 2998 /* 2999 * Search the tree again to find a leaf with greater keys. 3000 * 3001 * Returns 0 if it found something or 1 if there are no greater leaves. 3002 * Returns < 0 on error. 3003 */ 3004 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 3005 { 3006 return btrfs_next_old_leaf(root, path, 0); 3007 } 3008 3009 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3010 { 3011 return btrfs_next_old_item(root, p, 0); 3012 } 3013 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3014 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3015 int for_reloc); 3016 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3017 struct btrfs_root *root, 3018 struct extent_buffer *node, 3019 struct extent_buffer *parent); 3020 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3021 { 3022 /* 3023 * Do it this way so we only ever do one test_bit in the normal case. 3024 */ 3025 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3026 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3027 return 2; 3028 return 1; 3029 } 3030 return 0; 3031 } 3032 3033 /* 3034 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3035 * anything except sleeping. This function is used to check the status of 3036 * the fs. 3037 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3038 * since setting and checking for SB_RDONLY in the superblock's flags is not 3039 * atomic. 3040 */ 3041 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3042 { 3043 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3044 btrfs_fs_closing(fs_info); 3045 } 3046 3047 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3048 { 3049 sb->s_flags |= SB_RDONLY; 3050 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3051 } 3052 3053 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3054 { 3055 sb->s_flags &= ~SB_RDONLY; 3056 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3057 } 3058 3059 /* root-item.c */ 3060 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3061 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3062 int name_len); 3063 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3064 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3065 int name_len); 3066 int btrfs_del_root(struct btrfs_trans_handle *trans, 3067 const struct btrfs_key *key); 3068 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3069 const struct btrfs_key *key, 3070 struct btrfs_root_item *item); 3071 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3072 struct btrfs_root *root, 3073 struct btrfs_key *key, 3074 struct btrfs_root_item *item); 3075 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3076 struct btrfs_path *path, struct btrfs_root_item *root_item, 3077 struct btrfs_key *root_key); 3078 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3079 void btrfs_set_root_node(struct btrfs_root_item *item, 3080 struct extent_buffer *node); 3081 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3082 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3083 struct btrfs_root *root); 3084 3085 /* uuid-tree.c */ 3086 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3087 u64 subid); 3088 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3089 u64 subid); 3090 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3091 3092 /* dir-item.c */ 3093 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3094 const char *name, int name_len); 3095 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3096 int name_len, struct btrfs_inode *dir, 3097 struct btrfs_key *location, u8 type, u64 index); 3098 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3099 struct btrfs_root *root, 3100 struct btrfs_path *path, u64 dir, 3101 const char *name, int name_len, 3102 int mod); 3103 struct btrfs_dir_item * 3104 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3105 struct btrfs_root *root, 3106 struct btrfs_path *path, u64 dir, 3107 u64 index, const char *name, int name_len, 3108 int mod); 3109 struct btrfs_dir_item * 3110 btrfs_search_dir_index_item(struct btrfs_root *root, 3111 struct btrfs_path *path, u64 dirid, 3112 const char *name, int name_len); 3113 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3114 struct btrfs_root *root, 3115 struct btrfs_path *path, 3116 struct btrfs_dir_item *di); 3117 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3118 struct btrfs_root *root, 3119 struct btrfs_path *path, u64 objectid, 3120 const char *name, u16 name_len, 3121 const void *data, u16 data_len); 3122 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3123 struct btrfs_root *root, 3124 struct btrfs_path *path, u64 dir, 3125 const char *name, u16 name_len, 3126 int mod); 3127 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3128 struct btrfs_path *path, 3129 const char *name, 3130 int name_len); 3131 3132 /* orphan.c */ 3133 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3134 struct btrfs_root *root, u64 offset); 3135 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3136 struct btrfs_root *root, u64 offset); 3137 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3138 3139 /* file-item.c */ 3140 struct btrfs_dio_private; 3141 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3142 struct btrfs_root *root, u64 bytenr, u64 len); 3143 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3144 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3145 struct btrfs_root *root, 3146 u64 objectid, u64 pos, 3147 u64 disk_offset, u64 disk_num_bytes, 3148 u64 num_bytes, u64 offset, u64 ram_bytes, 3149 u8 compression, u8 encryption, u16 other_encoding); 3150 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3151 struct btrfs_root *root, 3152 struct btrfs_path *path, u64 objectid, 3153 u64 bytenr, int mod); 3154 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3155 struct btrfs_root *root, 3156 struct btrfs_ordered_sum *sums); 3157 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3158 u64 file_start, int contig); 3159 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3160 struct list_head *list, int search_commit); 3161 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3162 const struct btrfs_path *path, 3163 struct btrfs_file_extent_item *fi, 3164 const bool new_inline, 3165 struct extent_map *em); 3166 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3167 u64 len); 3168 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3169 u64 len); 3170 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3171 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3172 3173 /* inode.c */ 3174 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3175 int mirror_num, unsigned long bio_flags); 3176 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3177 u32 bio_offset, struct page *page, 3178 u64 start, u64 end); 3179 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3180 u64 start, u64 len); 3181 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3182 u64 *orig_start, u64 *orig_block_len, 3183 u64 *ram_bytes, bool strict); 3184 3185 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3186 struct btrfs_inode *inode); 3187 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3188 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3189 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3190 struct btrfs_inode *dir, struct btrfs_inode *inode, 3191 const char *name, int name_len); 3192 int btrfs_add_link(struct btrfs_trans_handle *trans, 3193 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3194 const char *name, int name_len, int add_backref, u64 index); 3195 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3196 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3197 int front); 3198 3199 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3200 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3201 bool in_reclaim_context); 3202 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3203 unsigned int extra_bits, 3204 struct extent_state **cached_state); 3205 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3206 struct btrfs_root *new_root, 3207 struct btrfs_root *parent_root, 3208 struct user_namespace *mnt_userns); 3209 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3210 unsigned *bits); 3211 void btrfs_clear_delalloc_extent(struct inode *inode, 3212 struct extent_state *state, unsigned *bits); 3213 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3214 struct extent_state *other); 3215 void btrfs_split_delalloc_extent(struct inode *inode, 3216 struct extent_state *orig, u64 split); 3217 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3218 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3219 int btrfs_readpage(struct file *file, struct page *page); 3220 void btrfs_evict_inode(struct inode *inode); 3221 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3222 struct inode *btrfs_alloc_inode(struct super_block *sb); 3223 void btrfs_destroy_inode(struct inode *inode); 3224 void btrfs_free_inode(struct inode *inode); 3225 int btrfs_drop_inode(struct inode *inode); 3226 int __init btrfs_init_cachep(void); 3227 void __cold btrfs_destroy_cachep(void); 3228 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3229 struct btrfs_root *root, struct btrfs_path *path); 3230 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3231 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3232 struct page *page, size_t pg_offset, 3233 u64 start, u64 end); 3234 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3235 struct btrfs_root *root, struct btrfs_inode *inode); 3236 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3237 struct btrfs_root *root, struct btrfs_inode *inode); 3238 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3239 struct btrfs_inode *inode); 3240 int btrfs_orphan_cleanup(struct btrfs_root *root); 3241 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3242 void btrfs_add_delayed_iput(struct inode *inode); 3243 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3244 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3245 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3246 u64 start, u64 num_bytes, u64 min_size, 3247 loff_t actual_len, u64 *alloc_hint); 3248 int btrfs_prealloc_file_range_trans(struct inode *inode, 3249 struct btrfs_trans_handle *trans, int mode, 3250 u64 start, u64 num_bytes, u64 min_size, 3251 loff_t actual_len, u64 *alloc_hint); 3252 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3253 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3254 struct writeback_control *wbc); 3255 int btrfs_writepage_cow_fixup(struct page *page); 3256 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3257 struct page *page, u64 start, 3258 u64 end, bool uptodate); 3259 extern const struct dentry_operations btrfs_dentry_operations; 3260 extern const struct iomap_ops btrfs_dio_iomap_ops; 3261 extern const struct iomap_dio_ops btrfs_dio_ops; 3262 3263 /* Inode locking type flags, by default the exclusive lock is taken */ 3264 #define BTRFS_ILOCK_SHARED (1U << 0) 3265 #define BTRFS_ILOCK_TRY (1U << 1) 3266 #define BTRFS_ILOCK_MMAP (1U << 2) 3267 3268 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3269 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3270 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3271 const u64 add_bytes, 3272 const u64 del_bytes); 3273 3274 /* ioctl.c */ 3275 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3276 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3277 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3278 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3279 struct dentry *dentry, struct fileattr *fa); 3280 int btrfs_ioctl_get_supported_features(void __user *arg); 3281 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3282 int __pure btrfs_is_empty_uuid(u8 *uuid); 3283 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3284 struct btrfs_ioctl_defrag_range_args *range, 3285 u64 newer_than, unsigned long max_to_defrag); 3286 void btrfs_get_block_group_info(struct list_head *groups_list, 3287 struct btrfs_ioctl_space_info *space); 3288 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3289 struct btrfs_ioctl_balance_args *bargs); 3290 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3291 enum btrfs_exclusive_operation type); 3292 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3293 enum btrfs_exclusive_operation type); 3294 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3295 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3296 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3297 enum btrfs_exclusive_operation op); 3298 3299 3300 /* file.c */ 3301 int __init btrfs_auto_defrag_init(void); 3302 void __cold btrfs_auto_defrag_exit(void); 3303 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3304 struct btrfs_inode *inode, u32 extent_thresh); 3305 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3306 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3307 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3308 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3309 int skip_pinned); 3310 extern const struct file_operations btrfs_file_operations; 3311 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3312 struct btrfs_root *root, struct btrfs_inode *inode, 3313 struct btrfs_drop_extents_args *args); 3314 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3315 struct btrfs_path *path, const u64 start, 3316 const u64 end, 3317 struct btrfs_replace_extent_info *extent_info, 3318 struct btrfs_trans_handle **trans_out); 3319 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3320 struct btrfs_inode *inode, u64 start, u64 end); 3321 int btrfs_release_file(struct inode *inode, struct file *file); 3322 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3323 size_t num_pages, loff_t pos, size_t write_bytes, 3324 struct extent_state **cached, bool noreserve); 3325 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3326 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3327 size_t *write_bytes); 3328 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3329 3330 /* tree-defrag.c */ 3331 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3332 struct btrfs_root *root); 3333 3334 /* super.c */ 3335 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3336 unsigned long new_flags); 3337 int btrfs_sync_fs(struct super_block *sb, int wait); 3338 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3339 u64 subvol_objectid); 3340 3341 static inline __printf(2, 3) __cold 3342 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3343 { 3344 } 3345 3346 #ifdef CONFIG_PRINTK 3347 __printf(2, 3) 3348 __cold 3349 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3350 #else 3351 #define btrfs_printk(fs_info, fmt, args...) \ 3352 btrfs_no_printk(fs_info, fmt, ##args) 3353 #endif 3354 3355 #define btrfs_emerg(fs_info, fmt, args...) \ 3356 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3357 #define btrfs_alert(fs_info, fmt, args...) \ 3358 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3359 #define btrfs_crit(fs_info, fmt, args...) \ 3360 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3361 #define btrfs_err(fs_info, fmt, args...) \ 3362 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3363 #define btrfs_warn(fs_info, fmt, args...) \ 3364 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3365 #define btrfs_notice(fs_info, fmt, args...) \ 3366 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3367 #define btrfs_info(fs_info, fmt, args...) \ 3368 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3369 3370 /* 3371 * Wrappers that use printk_in_rcu 3372 */ 3373 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3374 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3375 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3376 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3377 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3378 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3379 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3380 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3381 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3382 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3383 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3384 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3385 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3386 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3387 3388 /* 3389 * Wrappers that use a ratelimited printk_in_rcu 3390 */ 3391 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3392 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3393 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3394 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3395 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3396 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3397 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3398 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3399 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3400 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3401 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3402 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3403 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3404 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3405 3406 /* 3407 * Wrappers that use a ratelimited printk 3408 */ 3409 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3410 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3411 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3412 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3413 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3414 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3415 #define btrfs_err_rl(fs_info, fmt, args...) \ 3416 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3417 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3418 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3419 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3420 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3421 #define btrfs_info_rl(fs_info, fmt, args...) \ 3422 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3423 3424 #if defined(CONFIG_DYNAMIC_DEBUG) 3425 #define btrfs_debug(fs_info, fmt, args...) \ 3426 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3427 fs_info, KERN_DEBUG fmt, ##args) 3428 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3429 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3430 fs_info, KERN_DEBUG fmt, ##args) 3431 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3432 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3433 fs_info, KERN_DEBUG fmt, ##args) 3434 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3435 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3436 fs_info, KERN_DEBUG fmt, ##args) 3437 #elif defined(DEBUG) 3438 #define btrfs_debug(fs_info, fmt, args...) \ 3439 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3440 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3441 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3442 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3443 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3444 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3445 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3446 #else 3447 #define btrfs_debug(fs_info, fmt, args...) \ 3448 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3449 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3450 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3451 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3452 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3453 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3454 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3455 #endif 3456 3457 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3458 do { \ 3459 rcu_read_lock(); \ 3460 btrfs_printk(fs_info, fmt, ##args); \ 3461 rcu_read_unlock(); \ 3462 } while (0) 3463 3464 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3465 do { \ 3466 rcu_read_lock(); \ 3467 btrfs_no_printk(fs_info, fmt, ##args); \ 3468 rcu_read_unlock(); \ 3469 } while (0) 3470 3471 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3472 do { \ 3473 static DEFINE_RATELIMIT_STATE(_rs, \ 3474 DEFAULT_RATELIMIT_INTERVAL, \ 3475 DEFAULT_RATELIMIT_BURST); \ 3476 if (__ratelimit(&_rs)) \ 3477 btrfs_printk(fs_info, fmt, ##args); \ 3478 } while (0) 3479 3480 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3481 do { \ 3482 rcu_read_lock(); \ 3483 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3484 rcu_read_unlock(); \ 3485 } while (0) 3486 3487 #ifdef CONFIG_BTRFS_ASSERT 3488 __cold __noreturn 3489 static inline void assertfail(const char *expr, const char *file, int line) 3490 { 3491 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3492 BUG(); 3493 } 3494 3495 #define ASSERT(expr) \ 3496 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3497 3498 #else 3499 static inline void assertfail(const char *expr, const char* file, int line) { } 3500 #define ASSERT(expr) (void)(expr) 3501 #endif 3502 3503 #if BITS_PER_LONG == 32 3504 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3505 /* 3506 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3507 * addresses of extents. 3508 * 3509 * For 4K page size it's about 10T, for 64K it's 160T. 3510 */ 3511 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3512 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3513 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3514 #endif 3515 3516 /* 3517 * Get the correct offset inside the page of extent buffer. 3518 * 3519 * @eb: target extent buffer 3520 * @start: offset inside the extent buffer 3521 * 3522 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3523 */ 3524 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3525 unsigned long offset) 3526 { 3527 /* 3528 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3529 * to PAGE_SIZE, thus adding it won't cause any difference. 3530 * 3531 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3532 * to the eb, thus we have to take the eb->start into consideration. 3533 */ 3534 return offset_in_page(offset + eb->start); 3535 } 3536 3537 static inline unsigned long get_eb_page_index(unsigned long offset) 3538 { 3539 /* 3540 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3541 * 3542 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3543 * and have ensured that all tree blocks are contained in one page, 3544 * thus we always get index == 0. 3545 */ 3546 return offset >> PAGE_SHIFT; 3547 } 3548 3549 /* 3550 * Use that for functions that are conditionally exported for sanity tests but 3551 * otherwise static 3552 */ 3553 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3554 #define EXPORT_FOR_TESTS static 3555 #else 3556 #define EXPORT_FOR_TESTS 3557 #endif 3558 3559 __cold 3560 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3561 { 3562 btrfs_err(fs_info, 3563 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3564 } 3565 3566 __printf(5, 6) 3567 __cold 3568 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3569 unsigned int line, int errno, const char *fmt, ...); 3570 3571 const char * __attribute_const__ btrfs_decode_error(int errno); 3572 3573 __cold 3574 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3575 const char *function, 3576 unsigned int line, int errno); 3577 3578 /* 3579 * Call btrfs_abort_transaction as early as possible when an error condition is 3580 * detected, that way the exact line number is reported. 3581 */ 3582 #define btrfs_abort_transaction(trans, errno) \ 3583 do { \ 3584 /* Report first abort since mount */ \ 3585 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3586 &((trans)->fs_info->fs_state))) { \ 3587 if ((errno) != -EIO && (errno) != -EROFS) { \ 3588 WARN(1, KERN_DEBUG \ 3589 "BTRFS: Transaction aborted (error %d)\n", \ 3590 (errno)); \ 3591 } else { \ 3592 btrfs_debug((trans)->fs_info, \ 3593 "Transaction aborted (error %d)", \ 3594 (errno)); \ 3595 } \ 3596 } \ 3597 __btrfs_abort_transaction((trans), __func__, \ 3598 __LINE__, (errno)); \ 3599 } while (0) 3600 3601 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3602 do { \ 3603 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3604 (errno), fmt, ##args); \ 3605 } while (0) 3606 3607 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3608 &(fs_info)->fs_state))) 3609 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3610 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3611 &(fs_info)->fs_state))) 3612 3613 __printf(5, 6) 3614 __cold 3615 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3616 unsigned int line, int errno, const char *fmt, ...); 3617 /* 3618 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3619 * will panic(). Otherwise we BUG() here. 3620 */ 3621 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3622 do { \ 3623 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3624 BUG(); \ 3625 } while (0) 3626 3627 3628 /* compatibility and incompatibility defines */ 3629 3630 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3631 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3632 #opt) 3633 3634 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3635 u64 flag, const char* name) 3636 { 3637 struct btrfs_super_block *disk_super; 3638 u64 features; 3639 3640 disk_super = fs_info->super_copy; 3641 features = btrfs_super_incompat_flags(disk_super); 3642 if (!(features & flag)) { 3643 spin_lock(&fs_info->super_lock); 3644 features = btrfs_super_incompat_flags(disk_super); 3645 if (!(features & flag)) { 3646 features |= flag; 3647 btrfs_set_super_incompat_flags(disk_super, features); 3648 btrfs_info(fs_info, 3649 "setting incompat feature flag for %s (0x%llx)", 3650 name, flag); 3651 } 3652 spin_unlock(&fs_info->super_lock); 3653 } 3654 } 3655 3656 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3657 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3658 #opt) 3659 3660 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3661 u64 flag, const char* name) 3662 { 3663 struct btrfs_super_block *disk_super; 3664 u64 features; 3665 3666 disk_super = fs_info->super_copy; 3667 features = btrfs_super_incompat_flags(disk_super); 3668 if (features & flag) { 3669 spin_lock(&fs_info->super_lock); 3670 features = btrfs_super_incompat_flags(disk_super); 3671 if (features & flag) { 3672 features &= ~flag; 3673 btrfs_set_super_incompat_flags(disk_super, features); 3674 btrfs_info(fs_info, 3675 "clearing incompat feature flag for %s (0x%llx)", 3676 name, flag); 3677 } 3678 spin_unlock(&fs_info->super_lock); 3679 } 3680 } 3681 3682 #define btrfs_fs_incompat(fs_info, opt) \ 3683 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3684 3685 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3686 { 3687 struct btrfs_super_block *disk_super; 3688 disk_super = fs_info->super_copy; 3689 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3690 } 3691 3692 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3693 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3694 #opt) 3695 3696 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3697 u64 flag, const char *name) 3698 { 3699 struct btrfs_super_block *disk_super; 3700 u64 features; 3701 3702 disk_super = fs_info->super_copy; 3703 features = btrfs_super_compat_ro_flags(disk_super); 3704 if (!(features & flag)) { 3705 spin_lock(&fs_info->super_lock); 3706 features = btrfs_super_compat_ro_flags(disk_super); 3707 if (!(features & flag)) { 3708 features |= flag; 3709 btrfs_set_super_compat_ro_flags(disk_super, features); 3710 btrfs_info(fs_info, 3711 "setting compat-ro feature flag for %s (0x%llx)", 3712 name, flag); 3713 } 3714 spin_unlock(&fs_info->super_lock); 3715 } 3716 } 3717 3718 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3719 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3720 #opt) 3721 3722 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3723 u64 flag, const char *name) 3724 { 3725 struct btrfs_super_block *disk_super; 3726 u64 features; 3727 3728 disk_super = fs_info->super_copy; 3729 features = btrfs_super_compat_ro_flags(disk_super); 3730 if (features & flag) { 3731 spin_lock(&fs_info->super_lock); 3732 features = btrfs_super_compat_ro_flags(disk_super); 3733 if (features & flag) { 3734 features &= ~flag; 3735 btrfs_set_super_compat_ro_flags(disk_super, features); 3736 btrfs_info(fs_info, 3737 "clearing compat-ro feature flag for %s (0x%llx)", 3738 name, flag); 3739 } 3740 spin_unlock(&fs_info->super_lock); 3741 } 3742 } 3743 3744 #define btrfs_fs_compat_ro(fs_info, opt) \ 3745 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3746 3747 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3748 { 3749 struct btrfs_super_block *disk_super; 3750 disk_super = fs_info->super_copy; 3751 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3752 } 3753 3754 /* acl.c */ 3755 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3756 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3757 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3758 struct posix_acl *acl, int type); 3759 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3760 struct inode *inode, struct inode *dir); 3761 #else 3762 #define btrfs_get_acl NULL 3763 #define btrfs_set_acl NULL 3764 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3765 struct inode *inode, struct inode *dir) 3766 { 3767 return 0; 3768 } 3769 #endif 3770 3771 /* relocation.c */ 3772 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3773 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3774 struct btrfs_root *root); 3775 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3776 struct btrfs_root *root); 3777 int btrfs_recover_relocation(struct btrfs_root *root); 3778 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3779 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3780 struct btrfs_root *root, struct extent_buffer *buf, 3781 struct extent_buffer *cow); 3782 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3783 u64 *bytes_to_reserve); 3784 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3785 struct btrfs_pending_snapshot *pending); 3786 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3787 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3788 u64 bytenr); 3789 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3790 3791 /* scrub.c */ 3792 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3793 u64 end, struct btrfs_scrub_progress *progress, 3794 int readonly, int is_dev_replace); 3795 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3796 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3797 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3798 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3799 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3800 struct btrfs_scrub_progress *progress); 3801 static inline void btrfs_init_full_stripe_locks_tree( 3802 struct btrfs_full_stripe_locks_tree *locks_root) 3803 { 3804 locks_root->root = RB_ROOT; 3805 mutex_init(&locks_root->lock); 3806 } 3807 3808 /* dev-replace.c */ 3809 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3810 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3811 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3812 3813 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3814 { 3815 btrfs_bio_counter_sub(fs_info, 1); 3816 } 3817 3818 static inline int is_fstree(u64 rootid) 3819 { 3820 if (rootid == BTRFS_FS_TREE_OBJECTID || 3821 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3822 !btrfs_qgroup_level(rootid))) 3823 return 1; 3824 return 0; 3825 } 3826 3827 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3828 { 3829 return signal_pending(current); 3830 } 3831 3832 /* verity.c */ 3833 #ifdef CONFIG_FS_VERITY 3834 3835 extern const struct fsverity_operations btrfs_verityops; 3836 int btrfs_drop_verity_items(struct btrfs_inode *inode); 3837 3838 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 3839 encryption, 8); 3840 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 3841 size, 64); 3842 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 3843 struct btrfs_verity_descriptor_item, encryption, 8); 3844 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 3845 struct btrfs_verity_descriptor_item, size, 64); 3846 3847 #else 3848 3849 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 3850 { 3851 return 0; 3852 } 3853 3854 #endif 3855 3856 /* Sanity test specific functions */ 3857 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3858 void btrfs_test_destroy_inode(struct inode *inode); 3859 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3860 { 3861 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3862 } 3863 #else 3864 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3865 { 3866 return 0; 3867 } 3868 #endif 3869 3870 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3871 { 3872 return fs_info->zoned != 0; 3873 } 3874 3875 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 3876 { 3877 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 3878 } 3879 3880 /* 3881 * We use page status Private2 to indicate there is an ordered extent with 3882 * unfinished IO. 3883 * 3884 * Rename the Private2 accessors to Ordered, to improve readability. 3885 */ 3886 #define PageOrdered(page) PagePrivate2(page) 3887 #define SetPageOrdered(page) SetPagePrivate2(page) 3888 #define ClearPageOrdered(page) ClearPagePrivate2(page) 3889 3890 #endif 3891