1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 struct btrfs_ioctl_encoded_io_args; 53 54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 55 56 /* 57 * Maximum number of mirrors that can be available for all profiles counting 58 * the target device of dev-replace as one. During an active device replace 59 * procedure, the target device of the copy operation is a mirror for the 60 * filesystem data as well that can be used to read data in order to repair 61 * read errors on other disks. 62 * 63 * Current value is derived from RAID1C4 with 4 copies. 64 */ 65 #define BTRFS_MAX_MIRRORS (4 + 1) 66 67 #define BTRFS_MAX_LEVEL 8 68 69 #define BTRFS_OLDEST_GENERATION 0ULL 70 71 /* 72 * we can actually store much bigger names, but lets not confuse the rest 73 * of linux 74 */ 75 #define BTRFS_NAME_LEN 255 76 77 /* 78 * Theoretical limit is larger, but we keep this down to a sane 79 * value. That should limit greatly the possibility of collisions on 80 * inode ref items. 81 */ 82 #define BTRFS_LINK_MAX 65535U 83 84 #define BTRFS_EMPTY_DIR_SIZE 0 85 86 /* ioprio of readahead is set to idle */ 87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 88 89 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 90 91 /* 92 * Use large batch size to reduce overhead of metadata updates. On the reader 93 * side, we only read it when we are close to ENOSPC and the read overhead is 94 * mostly related to the number of CPUs, so it is OK to use arbitrary large 95 * value here. 96 */ 97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 98 99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 100 101 /* 102 * Deltas are an effective way to populate global statistics. Give macro names 103 * to make it clear what we're doing. An example is discard_extents in 104 * btrfs_free_space_ctl. 105 */ 106 #define BTRFS_STAT_NR_ENTRIES 2 107 #define BTRFS_STAT_CURR 0 108 #define BTRFS_STAT_PREV 1 109 110 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 111 { 112 BUG_ON(num_stripes == 0); 113 return sizeof(struct btrfs_chunk) + 114 sizeof(struct btrfs_stripe) * (num_stripes - 1); 115 } 116 117 /* 118 * Runtime (in-memory) states of filesystem 119 */ 120 enum { 121 /* Global indicator of serious filesystem errors */ 122 BTRFS_FS_STATE_ERROR, 123 /* 124 * Filesystem is being remounted, allow to skip some operations, like 125 * defrag 126 */ 127 BTRFS_FS_STATE_REMOUNTING, 128 /* Filesystem in RO mode */ 129 BTRFS_FS_STATE_RO, 130 /* Track if a transaction abort has been reported on this filesystem */ 131 BTRFS_FS_STATE_TRANS_ABORTED, 132 /* 133 * Bio operations should be blocked on this filesystem because a source 134 * or target device is being destroyed as part of a device replace 135 */ 136 BTRFS_FS_STATE_DEV_REPLACING, 137 /* The btrfs_fs_info created for self-tests */ 138 BTRFS_FS_STATE_DUMMY_FS_INFO, 139 140 BTRFS_FS_STATE_NO_CSUMS, 141 142 /* Indicates there was an error cleaning up a log tree. */ 143 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 144 145 BTRFS_FS_STATE_COUNT 146 }; 147 148 #define BTRFS_BACKREF_REV_MAX 256 149 #define BTRFS_BACKREF_REV_SHIFT 56 150 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 151 BTRFS_BACKREF_REV_SHIFT) 152 153 #define BTRFS_OLD_BACKREF_REV 0 154 #define BTRFS_MIXED_BACKREF_REV 1 155 156 /* 157 * every tree block (leaf or node) starts with this header. 158 */ 159 struct btrfs_header { 160 /* these first four must match the super block */ 161 u8 csum[BTRFS_CSUM_SIZE]; 162 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 163 __le64 bytenr; /* which block this node is supposed to live in */ 164 __le64 flags; 165 166 /* allowed to be different from the super from here on down */ 167 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 168 __le64 generation; 169 __le64 owner; 170 __le32 nritems; 171 u8 level; 172 } __attribute__ ((__packed__)); 173 174 /* 175 * this is a very generous portion of the super block, giving us 176 * room to translate 14 chunks with 3 stripes each. 177 */ 178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 179 180 /* 181 * just in case we somehow lose the roots and are not able to mount, 182 * we store an array of the roots from previous transactions 183 * in the super. 184 */ 185 #define BTRFS_NUM_BACKUP_ROOTS 4 186 struct btrfs_root_backup { 187 __le64 tree_root; 188 __le64 tree_root_gen; 189 190 __le64 chunk_root; 191 __le64 chunk_root_gen; 192 193 __le64 extent_root; 194 __le64 extent_root_gen; 195 196 __le64 fs_root; 197 __le64 fs_root_gen; 198 199 __le64 dev_root; 200 __le64 dev_root_gen; 201 202 __le64 csum_root; 203 __le64 csum_root_gen; 204 205 __le64 total_bytes; 206 __le64 bytes_used; 207 __le64 num_devices; 208 /* future */ 209 __le64 unused_64[4]; 210 211 u8 tree_root_level; 212 u8 chunk_root_level; 213 u8 extent_root_level; 214 u8 fs_root_level; 215 u8 dev_root_level; 216 u8 csum_root_level; 217 /* future and to align */ 218 u8 unused_8[10]; 219 } __attribute__ ((__packed__)); 220 221 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 222 #define BTRFS_SUPER_INFO_SIZE 4096 223 224 /* 225 * The reserved space at the beginning of each device. 226 * It covers the primary super block and leaves space for potential use by other 227 * tools like bootloaders or to lower potential damage of accidental overwrite. 228 */ 229 #define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M) 230 231 /* 232 * the super block basically lists the main trees of the FS 233 * it currently lacks any block count etc etc 234 */ 235 struct btrfs_super_block { 236 /* the first 4 fields must match struct btrfs_header */ 237 u8 csum[BTRFS_CSUM_SIZE]; 238 /* FS specific UUID, visible to user */ 239 u8 fsid[BTRFS_FSID_SIZE]; 240 __le64 bytenr; /* this block number */ 241 __le64 flags; 242 243 /* allowed to be different from the btrfs_header from here own down */ 244 __le64 magic; 245 __le64 generation; 246 __le64 root; 247 __le64 chunk_root; 248 __le64 log_root; 249 250 /* 251 * This member has never been utilized since the very beginning, thus 252 * it's always 0 regardless of kernel version. We always use 253 * generation + 1 to read log tree root. So here we mark it deprecated. 254 */ 255 __le64 __unused_log_root_transid; 256 __le64 total_bytes; 257 __le64 bytes_used; 258 __le64 root_dir_objectid; 259 __le64 num_devices; 260 __le32 sectorsize; 261 __le32 nodesize; 262 __le32 __unused_leafsize; 263 __le32 stripesize; 264 __le32 sys_chunk_array_size; 265 __le64 chunk_root_generation; 266 __le64 compat_flags; 267 __le64 compat_ro_flags; 268 __le64 incompat_flags; 269 __le16 csum_type; 270 u8 root_level; 271 u8 chunk_root_level; 272 u8 log_root_level; 273 struct btrfs_dev_item dev_item; 274 275 char label[BTRFS_LABEL_SIZE]; 276 277 __le64 cache_generation; 278 __le64 uuid_tree_generation; 279 280 /* the UUID written into btree blocks */ 281 u8 metadata_uuid[BTRFS_FSID_SIZE]; 282 283 /* Extent tree v2 */ 284 __le64 block_group_root; 285 __le64 block_group_root_generation; 286 u8 block_group_root_level; 287 288 /* future expansion */ 289 u8 reserved8[7]; 290 __le64 reserved[25]; 291 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 292 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 293 294 /* Padded to 4096 bytes */ 295 u8 padding[565]; 296 } __attribute__ ((__packed__)); 297 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 298 299 /* 300 * Compat flags that we support. If any incompat flags are set other than the 301 * ones specified below then we will fail to mount 302 */ 303 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 304 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 305 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 306 307 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 308 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 309 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 310 BTRFS_FEATURE_COMPAT_RO_VERITY) 311 312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 314 315 #ifdef CONFIG_BTRFS_DEBUG 316 /* 317 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG 318 */ 319 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 320 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 321 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 322 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 323 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 324 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 325 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 326 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 327 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 328 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 329 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 330 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 331 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 332 BTRFS_FEATURE_INCOMPAT_ZONED | \ 333 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) 334 #else 335 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 336 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 337 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 338 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 339 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 340 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 341 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 342 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 343 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 344 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 345 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 346 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 347 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 348 BTRFS_FEATURE_INCOMPAT_ZONED) 349 #endif 350 351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 352 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 354 355 /* 356 * A leaf is full of items. offset and size tell us where to find 357 * the item in the leaf (relative to the start of the data area) 358 */ 359 struct btrfs_item { 360 struct btrfs_disk_key key; 361 __le32 offset; 362 __le32 size; 363 } __attribute__ ((__packed__)); 364 365 /* 366 * leaves have an item area and a data area: 367 * [item0, item1....itemN] [free space] [dataN...data1, data0] 368 * 369 * The data is separate from the items to get the keys closer together 370 * during searches. 371 */ 372 struct btrfs_leaf { 373 struct btrfs_header header; 374 struct btrfs_item items[]; 375 } __attribute__ ((__packed__)); 376 377 /* 378 * all non-leaf blocks are nodes, they hold only keys and pointers to 379 * other blocks 380 */ 381 struct btrfs_key_ptr { 382 struct btrfs_disk_key key; 383 __le64 blockptr; 384 __le64 generation; 385 } __attribute__ ((__packed__)); 386 387 struct btrfs_node { 388 struct btrfs_header header; 389 struct btrfs_key_ptr ptrs[]; 390 } __attribute__ ((__packed__)); 391 392 /* Read ahead values for struct btrfs_path.reada */ 393 enum { 394 READA_NONE, 395 READA_BACK, 396 READA_FORWARD, 397 /* 398 * Similar to READA_FORWARD but unlike it: 399 * 400 * 1) It will trigger readahead even for leaves that are not close to 401 * each other on disk; 402 * 2) It also triggers readahead for nodes; 403 * 3) During a search, even when a node or leaf is already in memory, it 404 * will still trigger readahead for other nodes and leaves that follow 405 * it. 406 * 407 * This is meant to be used only when we know we are iterating over the 408 * entire tree or a very large part of it. 409 */ 410 READA_FORWARD_ALWAYS, 411 }; 412 413 /* 414 * btrfs_paths remember the path taken from the root down to the leaf. 415 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 416 * to any other levels that are present. 417 * 418 * The slots array records the index of the item or block pointer 419 * used while walking the tree. 420 */ 421 struct btrfs_path { 422 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 423 int slots[BTRFS_MAX_LEVEL]; 424 /* if there is real range locking, this locks field will change */ 425 u8 locks[BTRFS_MAX_LEVEL]; 426 u8 reada; 427 /* keep some upper locks as we walk down */ 428 u8 lowest_level; 429 430 /* 431 * set by btrfs_split_item, tells search_slot to keep all locks 432 * and to force calls to keep space in the nodes 433 */ 434 unsigned int search_for_split:1; 435 unsigned int keep_locks:1; 436 unsigned int skip_locking:1; 437 unsigned int search_commit_root:1; 438 unsigned int need_commit_sem:1; 439 unsigned int skip_release_on_error:1; 440 /* 441 * Indicate that new item (btrfs_search_slot) is extending already 442 * existing item and ins_len contains only the data size and not item 443 * header (ie. sizeof(struct btrfs_item) is not included). 444 */ 445 unsigned int search_for_extension:1; 446 }; 447 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 448 sizeof(struct btrfs_item)) 449 struct btrfs_dev_replace { 450 u64 replace_state; /* see #define above */ 451 time64_t time_started; /* seconds since 1-Jan-1970 */ 452 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 453 atomic64_t num_write_errors; 454 atomic64_t num_uncorrectable_read_errors; 455 456 u64 cursor_left; 457 u64 committed_cursor_left; 458 u64 cursor_left_last_write_of_item; 459 u64 cursor_right; 460 461 u64 cont_reading_from_srcdev_mode; /* see #define above */ 462 463 int is_valid; 464 int item_needs_writeback; 465 struct btrfs_device *srcdev; 466 struct btrfs_device *tgtdev; 467 468 struct mutex lock_finishing_cancel_unmount; 469 struct rw_semaphore rwsem; 470 471 struct btrfs_scrub_progress scrub_progress; 472 473 struct percpu_counter bio_counter; 474 wait_queue_head_t replace_wait; 475 }; 476 477 /* 478 * free clusters are used to claim free space in relatively large chunks, 479 * allowing us to do less seeky writes. They are used for all metadata 480 * allocations. In ssd_spread mode they are also used for data allocations. 481 */ 482 struct btrfs_free_cluster { 483 spinlock_t lock; 484 spinlock_t refill_lock; 485 struct rb_root root; 486 487 /* largest extent in this cluster */ 488 u64 max_size; 489 490 /* first extent starting offset */ 491 u64 window_start; 492 493 /* We did a full search and couldn't create a cluster */ 494 bool fragmented; 495 496 struct btrfs_block_group *block_group; 497 /* 498 * when a cluster is allocated from a block group, we put the 499 * cluster onto a list in the block group so that it can 500 * be freed before the block group is freed. 501 */ 502 struct list_head block_group_list; 503 }; 504 505 enum btrfs_caching_type { 506 BTRFS_CACHE_NO, 507 BTRFS_CACHE_STARTED, 508 BTRFS_CACHE_FAST, 509 BTRFS_CACHE_FINISHED, 510 BTRFS_CACHE_ERROR, 511 }; 512 513 /* 514 * Tree to record all locked full stripes of a RAID5/6 block group 515 */ 516 struct btrfs_full_stripe_locks_tree { 517 struct rb_root root; 518 struct mutex lock; 519 }; 520 521 /* Discard control. */ 522 /* 523 * Async discard uses multiple lists to differentiate the discard filter 524 * parameters. Index 0 is for completely free block groups where we need to 525 * ensure the entire block group is trimmed without being lossy. Indices 526 * afterwards represent monotonically decreasing discard filter sizes to 527 * prioritize what should be discarded next. 528 */ 529 #define BTRFS_NR_DISCARD_LISTS 3 530 #define BTRFS_DISCARD_INDEX_UNUSED 0 531 #define BTRFS_DISCARD_INDEX_START 1 532 533 struct btrfs_discard_ctl { 534 struct workqueue_struct *discard_workers; 535 struct delayed_work work; 536 spinlock_t lock; 537 struct btrfs_block_group *block_group; 538 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 539 u64 prev_discard; 540 u64 prev_discard_time; 541 atomic_t discardable_extents; 542 atomic64_t discardable_bytes; 543 u64 max_discard_size; 544 u64 delay_ms; 545 u32 iops_limit; 546 u32 kbps_limit; 547 u64 discard_extent_bytes; 548 u64 discard_bitmap_bytes; 549 atomic64_t discard_bytes_saved; 550 }; 551 552 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 553 554 /* fs_info */ 555 struct reloc_control; 556 struct btrfs_device; 557 struct btrfs_fs_devices; 558 struct btrfs_balance_control; 559 struct btrfs_delayed_root; 560 561 /* 562 * Block group or device which contains an active swapfile. Used for preventing 563 * unsafe operations while a swapfile is active. 564 * 565 * These are sorted on (ptr, inode) (note that a block group or device can 566 * contain more than one swapfile). We compare the pointer values because we 567 * don't actually care what the object is, we just need a quick check whether 568 * the object exists in the rbtree. 569 */ 570 struct btrfs_swapfile_pin { 571 struct rb_node node; 572 void *ptr; 573 struct inode *inode; 574 /* 575 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 576 * points to a struct btrfs_device. 577 */ 578 bool is_block_group; 579 /* 580 * Only used when 'is_block_group' is true and it is the number of 581 * extents used by a swapfile for this block group ('ptr' field). 582 */ 583 int bg_extent_count; 584 }; 585 586 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 587 588 enum { 589 BTRFS_FS_CLOSING_START, 590 BTRFS_FS_CLOSING_DONE, 591 BTRFS_FS_LOG_RECOVERING, 592 BTRFS_FS_OPEN, 593 BTRFS_FS_QUOTA_ENABLED, 594 BTRFS_FS_UPDATE_UUID_TREE_GEN, 595 BTRFS_FS_CREATING_FREE_SPACE_TREE, 596 BTRFS_FS_BTREE_ERR, 597 BTRFS_FS_LOG1_ERR, 598 BTRFS_FS_LOG2_ERR, 599 BTRFS_FS_QUOTA_OVERRIDE, 600 /* Used to record internally whether fs has been frozen */ 601 BTRFS_FS_FROZEN, 602 /* 603 * Indicate that balance has been set up from the ioctl and is in the 604 * main phase. The fs_info::balance_ctl is initialized. 605 */ 606 BTRFS_FS_BALANCE_RUNNING, 607 608 /* 609 * Indicate that relocation of a chunk has started, it's set per chunk 610 * and is toggled between chunks. 611 */ 612 BTRFS_FS_RELOC_RUNNING, 613 614 /* Indicate that the cleaner thread is awake and doing something. */ 615 BTRFS_FS_CLEANER_RUNNING, 616 617 /* 618 * The checksumming has an optimized version and is considered fast, 619 * so we don't need to offload checksums to workqueues. 620 */ 621 BTRFS_FS_CSUM_IMPL_FAST, 622 623 /* Indicate that the discard workqueue can service discards. */ 624 BTRFS_FS_DISCARD_RUNNING, 625 626 /* Indicate that we need to cleanup space cache v1 */ 627 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 628 629 /* Indicate that we can't trust the free space tree for caching yet */ 630 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 631 632 /* Indicate whether there are any tree modification log users */ 633 BTRFS_FS_TREE_MOD_LOG_USERS, 634 635 /* Indicate that we want the transaction kthread to commit right now. */ 636 BTRFS_FS_COMMIT_TRANS, 637 638 /* Indicate we have half completed snapshot deletions pending. */ 639 BTRFS_FS_UNFINISHED_DROPS, 640 641 /* Indicate we have to finish a zone to do next allocation. */ 642 BTRFS_FS_NEED_ZONE_FINISH, 643 644 #if BITS_PER_LONG == 32 645 /* Indicate if we have error/warn message printed on 32bit systems */ 646 BTRFS_FS_32BIT_ERROR, 647 BTRFS_FS_32BIT_WARN, 648 #endif 649 }; 650 651 /* 652 * Exclusive operations (device replace, resize, device add/remove, balance) 653 */ 654 enum btrfs_exclusive_operation { 655 BTRFS_EXCLOP_NONE, 656 BTRFS_EXCLOP_BALANCE_PAUSED, 657 BTRFS_EXCLOP_BALANCE, 658 BTRFS_EXCLOP_DEV_ADD, 659 BTRFS_EXCLOP_DEV_REMOVE, 660 BTRFS_EXCLOP_DEV_REPLACE, 661 BTRFS_EXCLOP_RESIZE, 662 BTRFS_EXCLOP_SWAP_ACTIVATE, 663 }; 664 665 /* Store data about transaction commits, exported via sysfs. */ 666 struct btrfs_commit_stats { 667 /* Total number of commits */ 668 u64 commit_count; 669 /* The maximum commit duration so far in ns */ 670 u64 max_commit_dur; 671 /* The last commit duration in ns */ 672 u64 last_commit_dur; 673 /* The total commit duration in ns */ 674 u64 total_commit_dur; 675 }; 676 677 struct btrfs_fs_info { 678 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 679 unsigned long flags; 680 struct btrfs_root *tree_root; 681 struct btrfs_root *chunk_root; 682 struct btrfs_root *dev_root; 683 struct btrfs_root *fs_root; 684 struct btrfs_root *quota_root; 685 struct btrfs_root *uuid_root; 686 struct btrfs_root *data_reloc_root; 687 struct btrfs_root *block_group_root; 688 689 /* the log root tree is a directory of all the other log roots */ 690 struct btrfs_root *log_root_tree; 691 692 /* The tree that holds the global roots (csum, extent, etc) */ 693 rwlock_t global_root_lock; 694 struct rb_root global_root_tree; 695 696 spinlock_t fs_roots_radix_lock; 697 struct radix_tree_root fs_roots_radix; 698 699 /* block group cache stuff */ 700 rwlock_t block_group_cache_lock; 701 struct rb_root_cached block_group_cache_tree; 702 703 /* keep track of unallocated space */ 704 atomic64_t free_chunk_space; 705 706 /* Track ranges which are used by log trees blocks/logged data extents */ 707 struct extent_io_tree excluded_extents; 708 709 /* logical->physical extent mapping */ 710 struct extent_map_tree mapping_tree; 711 712 /* 713 * block reservation for extent, checksum, root tree and 714 * delayed dir index item 715 */ 716 struct btrfs_block_rsv global_block_rsv; 717 /* block reservation for metadata operations */ 718 struct btrfs_block_rsv trans_block_rsv; 719 /* block reservation for chunk tree */ 720 struct btrfs_block_rsv chunk_block_rsv; 721 /* block reservation for delayed operations */ 722 struct btrfs_block_rsv delayed_block_rsv; 723 /* block reservation for delayed refs */ 724 struct btrfs_block_rsv delayed_refs_rsv; 725 726 struct btrfs_block_rsv empty_block_rsv; 727 728 u64 generation; 729 u64 last_trans_committed; 730 /* 731 * Generation of the last transaction used for block group relocation 732 * since the filesystem was last mounted (or 0 if none happened yet). 733 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 734 */ 735 u64 last_reloc_trans; 736 u64 avg_delayed_ref_runtime; 737 738 /* 739 * this is updated to the current trans every time a full commit 740 * is required instead of the faster short fsync log commits 741 */ 742 u64 last_trans_log_full_commit; 743 unsigned long mount_opt; 744 /* 745 * Track requests for actions that need to be done during transaction 746 * commit (like for some mount options). 747 */ 748 unsigned long pending_changes; 749 unsigned long compress_type:4; 750 unsigned int compress_level; 751 u32 commit_interval; 752 /* 753 * It is a suggestive number, the read side is safe even it gets a 754 * wrong number because we will write out the data into a regular 755 * extent. The write side(mount/remount) is under ->s_umount lock, 756 * so it is also safe. 757 */ 758 u64 max_inline; 759 760 struct btrfs_transaction *running_transaction; 761 wait_queue_head_t transaction_throttle; 762 wait_queue_head_t transaction_wait; 763 wait_queue_head_t transaction_blocked_wait; 764 wait_queue_head_t async_submit_wait; 765 766 /* 767 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 768 * when they are updated. 769 * 770 * Because we do not clear the flags for ever, so we needn't use 771 * the lock on the read side. 772 * 773 * We also needn't use the lock when we mount the fs, because 774 * there is no other task which will update the flag. 775 */ 776 spinlock_t super_lock; 777 struct btrfs_super_block *super_copy; 778 struct btrfs_super_block *super_for_commit; 779 struct super_block *sb; 780 struct inode *btree_inode; 781 struct mutex tree_log_mutex; 782 struct mutex transaction_kthread_mutex; 783 struct mutex cleaner_mutex; 784 struct mutex chunk_mutex; 785 786 /* 787 * this is taken to make sure we don't set block groups ro after 788 * the free space cache has been allocated on them 789 */ 790 struct mutex ro_block_group_mutex; 791 792 /* this is used during read/modify/write to make sure 793 * no two ios are trying to mod the same stripe at the same 794 * time 795 */ 796 struct btrfs_stripe_hash_table *stripe_hash_table; 797 798 /* 799 * this protects the ordered operations list only while we are 800 * processing all of the entries on it. This way we make 801 * sure the commit code doesn't find the list temporarily empty 802 * because another function happens to be doing non-waiting preflush 803 * before jumping into the main commit. 804 */ 805 struct mutex ordered_operations_mutex; 806 807 struct rw_semaphore commit_root_sem; 808 809 struct rw_semaphore cleanup_work_sem; 810 811 struct rw_semaphore subvol_sem; 812 813 spinlock_t trans_lock; 814 /* 815 * the reloc mutex goes with the trans lock, it is taken 816 * during commit to protect us from the relocation code 817 */ 818 struct mutex reloc_mutex; 819 820 struct list_head trans_list; 821 struct list_head dead_roots; 822 struct list_head caching_block_groups; 823 824 spinlock_t delayed_iput_lock; 825 struct list_head delayed_iputs; 826 atomic_t nr_delayed_iputs; 827 wait_queue_head_t delayed_iputs_wait; 828 829 atomic64_t tree_mod_seq; 830 831 /* this protects tree_mod_log and tree_mod_seq_list */ 832 rwlock_t tree_mod_log_lock; 833 struct rb_root tree_mod_log; 834 struct list_head tree_mod_seq_list; 835 836 atomic_t async_delalloc_pages; 837 838 /* 839 * this is used to protect the following list -- ordered_roots. 840 */ 841 spinlock_t ordered_root_lock; 842 843 /* 844 * all fs/file tree roots in which there are data=ordered extents 845 * pending writeback are added into this list. 846 * 847 * these can span multiple transactions and basically include 848 * every dirty data page that isn't from nodatacow 849 */ 850 struct list_head ordered_roots; 851 852 struct mutex delalloc_root_mutex; 853 spinlock_t delalloc_root_lock; 854 /* all fs/file tree roots that have delalloc inodes. */ 855 struct list_head delalloc_roots; 856 857 /* 858 * there is a pool of worker threads for checksumming during writes 859 * and a pool for checksumming after reads. This is because readers 860 * can run with FS locks held, and the writers may be waiting for 861 * those locks. We don't want ordering in the pending list to cause 862 * deadlocks, and so the two are serviced separately. 863 * 864 * A third pool does submit_bio to avoid deadlocking with the other 865 * two 866 */ 867 struct btrfs_workqueue *workers; 868 struct btrfs_workqueue *hipri_workers; 869 struct btrfs_workqueue *delalloc_workers; 870 struct btrfs_workqueue *flush_workers; 871 struct workqueue_struct *endio_workers; 872 struct workqueue_struct *endio_meta_workers; 873 struct workqueue_struct *endio_raid56_workers; 874 struct workqueue_struct *rmw_workers; 875 struct workqueue_struct *compressed_write_workers; 876 struct btrfs_workqueue *endio_write_workers; 877 struct btrfs_workqueue *endio_freespace_worker; 878 struct btrfs_workqueue *caching_workers; 879 880 /* 881 * fixup workers take dirty pages that didn't properly go through 882 * the cow mechanism and make them safe to write. It happens 883 * for the sys_munmap function call path 884 */ 885 struct btrfs_workqueue *fixup_workers; 886 struct btrfs_workqueue *delayed_workers; 887 888 struct task_struct *transaction_kthread; 889 struct task_struct *cleaner_kthread; 890 u32 thread_pool_size; 891 892 struct kobject *space_info_kobj; 893 struct kobject *qgroups_kobj; 894 895 /* used to keep from writing metadata until there is a nice batch */ 896 struct percpu_counter dirty_metadata_bytes; 897 struct percpu_counter delalloc_bytes; 898 struct percpu_counter ordered_bytes; 899 s32 dirty_metadata_batch; 900 s32 delalloc_batch; 901 902 struct list_head dirty_cowonly_roots; 903 904 struct btrfs_fs_devices *fs_devices; 905 906 /* 907 * The space_info list is effectively read only after initial 908 * setup. It is populated at mount time and cleaned up after 909 * all block groups are removed. RCU is used to protect it. 910 */ 911 struct list_head space_info; 912 913 struct btrfs_space_info *data_sinfo; 914 915 struct reloc_control *reloc_ctl; 916 917 /* data_alloc_cluster is only used in ssd_spread mode */ 918 struct btrfs_free_cluster data_alloc_cluster; 919 920 /* all metadata allocations go through this cluster */ 921 struct btrfs_free_cluster meta_alloc_cluster; 922 923 /* auto defrag inodes go here */ 924 spinlock_t defrag_inodes_lock; 925 struct rb_root defrag_inodes; 926 atomic_t defrag_running; 927 928 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 929 seqlock_t profiles_lock; 930 /* 931 * these three are in extended format (availability of single 932 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 933 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 934 */ 935 u64 avail_data_alloc_bits; 936 u64 avail_metadata_alloc_bits; 937 u64 avail_system_alloc_bits; 938 939 /* restriper state */ 940 spinlock_t balance_lock; 941 struct mutex balance_mutex; 942 atomic_t balance_pause_req; 943 atomic_t balance_cancel_req; 944 struct btrfs_balance_control *balance_ctl; 945 wait_queue_head_t balance_wait_q; 946 947 /* Cancellation requests for chunk relocation */ 948 atomic_t reloc_cancel_req; 949 950 u32 data_chunk_allocations; 951 u32 metadata_ratio; 952 953 void *bdev_holder; 954 955 /* private scrub information */ 956 struct mutex scrub_lock; 957 atomic_t scrubs_running; 958 atomic_t scrub_pause_req; 959 atomic_t scrubs_paused; 960 atomic_t scrub_cancel_req; 961 wait_queue_head_t scrub_pause_wait; 962 /* 963 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 964 * running. 965 */ 966 refcount_t scrub_workers_refcnt; 967 struct workqueue_struct *scrub_workers; 968 struct workqueue_struct *scrub_wr_completion_workers; 969 struct workqueue_struct *scrub_parity_workers; 970 struct btrfs_subpage_info *subpage_info; 971 972 struct btrfs_discard_ctl discard_ctl; 973 974 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 975 u32 check_integrity_print_mask; 976 #endif 977 /* is qgroup tracking in a consistent state? */ 978 u64 qgroup_flags; 979 980 /* holds configuration and tracking. Protected by qgroup_lock */ 981 struct rb_root qgroup_tree; 982 spinlock_t qgroup_lock; 983 984 /* 985 * used to avoid frequently calling ulist_alloc()/ulist_free() 986 * when doing qgroup accounting, it must be protected by qgroup_lock. 987 */ 988 struct ulist *qgroup_ulist; 989 990 /* 991 * Protect user change for quota operations. If a transaction is needed, 992 * it must be started before locking this lock. 993 */ 994 struct mutex qgroup_ioctl_lock; 995 996 /* list of dirty qgroups to be written at next commit */ 997 struct list_head dirty_qgroups; 998 999 /* used by qgroup for an efficient tree traversal */ 1000 u64 qgroup_seq; 1001 1002 /* qgroup rescan items */ 1003 struct mutex qgroup_rescan_lock; /* protects the progress item */ 1004 struct btrfs_key qgroup_rescan_progress; 1005 struct btrfs_workqueue *qgroup_rescan_workers; 1006 struct completion qgroup_rescan_completion; 1007 struct btrfs_work qgroup_rescan_work; 1008 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 1009 1010 /* filesystem state */ 1011 unsigned long fs_state; 1012 1013 struct btrfs_delayed_root *delayed_root; 1014 1015 /* Extent buffer radix tree */ 1016 spinlock_t buffer_lock; 1017 /* Entries are eb->start / sectorsize */ 1018 struct radix_tree_root buffer_radix; 1019 1020 /* next backup root to be overwritten */ 1021 int backup_root_index; 1022 1023 /* device replace state */ 1024 struct btrfs_dev_replace dev_replace; 1025 1026 struct semaphore uuid_tree_rescan_sem; 1027 1028 /* Used to reclaim the metadata space in the background. */ 1029 struct work_struct async_reclaim_work; 1030 struct work_struct async_data_reclaim_work; 1031 struct work_struct preempt_reclaim_work; 1032 1033 /* Reclaim partially filled block groups in the background */ 1034 struct work_struct reclaim_bgs_work; 1035 struct list_head reclaim_bgs; 1036 int bg_reclaim_threshold; 1037 1038 spinlock_t unused_bgs_lock; 1039 struct list_head unused_bgs; 1040 struct mutex unused_bg_unpin_mutex; 1041 /* Protect block groups that are going to be deleted */ 1042 struct mutex reclaim_bgs_lock; 1043 1044 /* Cached block sizes */ 1045 u32 nodesize; 1046 u32 sectorsize; 1047 /* ilog2 of sectorsize, use to avoid 64bit division */ 1048 u32 sectorsize_bits; 1049 u32 csum_size; 1050 u32 csums_per_leaf; 1051 u32 stripesize; 1052 1053 /* 1054 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular 1055 * filesystem, on zoned it depends on the device constraints. 1056 */ 1057 u64 max_extent_size; 1058 1059 /* Block groups and devices containing active swapfiles. */ 1060 spinlock_t swapfile_pins_lock; 1061 struct rb_root swapfile_pins; 1062 1063 struct crypto_shash *csum_shash; 1064 1065 /* Type of exclusive operation running, protected by super_lock */ 1066 enum btrfs_exclusive_operation exclusive_operation; 1067 1068 /* 1069 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1070 * if the mode is enabled 1071 */ 1072 u64 zone_size; 1073 1074 /* Max size to emit ZONE_APPEND write command */ 1075 u64 max_zone_append_size; 1076 struct mutex zoned_meta_io_lock; 1077 spinlock_t treelog_bg_lock; 1078 u64 treelog_bg; 1079 1080 /* 1081 * Start of the dedicated data relocation block group, protected by 1082 * relocation_bg_lock. 1083 */ 1084 spinlock_t relocation_bg_lock; 1085 u64 data_reloc_bg; 1086 struct mutex zoned_data_reloc_io_lock; 1087 1088 u64 nr_global_roots; 1089 1090 spinlock_t zone_active_bgs_lock; 1091 struct list_head zone_active_bgs; 1092 /* Waiters when BTRFS_FS_NEED_ZONE_FINISH is set */ 1093 wait_queue_head_t zone_finish_wait; 1094 1095 /* Updates are not protected by any lock */ 1096 struct btrfs_commit_stats commit_stats; 1097 1098 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1099 spinlock_t ref_verify_lock; 1100 struct rb_root block_tree; 1101 #endif 1102 1103 #ifdef CONFIG_BTRFS_DEBUG 1104 struct kobject *debug_kobj; 1105 struct kobject *discard_debug_kobj; 1106 struct list_head allocated_roots; 1107 1108 spinlock_t eb_leak_lock; 1109 struct list_head allocated_ebs; 1110 #endif 1111 }; 1112 1113 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1114 { 1115 return sb->s_fs_info; 1116 } 1117 1118 /* 1119 * The state of btrfs root 1120 */ 1121 enum { 1122 /* 1123 * btrfs_record_root_in_trans is a multi-step process, and it can race 1124 * with the balancing code. But the race is very small, and only the 1125 * first time the root is added to each transaction. So IN_TRANS_SETUP 1126 * is used to tell us when more checks are required 1127 */ 1128 BTRFS_ROOT_IN_TRANS_SETUP, 1129 1130 /* 1131 * Set if tree blocks of this root can be shared by other roots. 1132 * Only subvolume trees and their reloc trees have this bit set. 1133 * Conflicts with TRACK_DIRTY bit. 1134 * 1135 * This affects two things: 1136 * 1137 * - How balance works 1138 * For shareable roots, we need to use reloc tree and do path 1139 * replacement for balance, and need various pre/post hooks for 1140 * snapshot creation to handle them. 1141 * 1142 * While for non-shareable trees, we just simply do a tree search 1143 * with COW. 1144 * 1145 * - How dirty roots are tracked 1146 * For shareable roots, btrfs_record_root_in_trans() is needed to 1147 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1148 * don't need to set this manually. 1149 */ 1150 BTRFS_ROOT_SHAREABLE, 1151 BTRFS_ROOT_TRACK_DIRTY, 1152 BTRFS_ROOT_IN_RADIX, 1153 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1154 BTRFS_ROOT_DEFRAG_RUNNING, 1155 BTRFS_ROOT_FORCE_COW, 1156 BTRFS_ROOT_MULTI_LOG_TASKS, 1157 BTRFS_ROOT_DIRTY, 1158 BTRFS_ROOT_DELETING, 1159 1160 /* 1161 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1162 * 1163 * Set for the subvolume tree owning the reloc tree. 1164 */ 1165 BTRFS_ROOT_DEAD_RELOC_TREE, 1166 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1167 BTRFS_ROOT_DEAD_TREE, 1168 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1169 BTRFS_ROOT_HAS_LOG_TREE, 1170 /* Qgroup flushing is in progress */ 1171 BTRFS_ROOT_QGROUP_FLUSHING, 1172 /* We started the orphan cleanup for this root. */ 1173 BTRFS_ROOT_ORPHAN_CLEANUP, 1174 /* This root has a drop operation that was started previously. */ 1175 BTRFS_ROOT_UNFINISHED_DROP, 1176 }; 1177 1178 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1179 { 1180 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 1181 } 1182 1183 /* 1184 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1185 * code. For detail check comment in fs/btrfs/qgroup.c. 1186 */ 1187 struct btrfs_qgroup_swapped_blocks { 1188 spinlock_t lock; 1189 /* RM_EMPTY_ROOT() of above blocks[] */ 1190 bool swapped; 1191 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1192 }; 1193 1194 /* 1195 * in ram representation of the tree. extent_root is used for all allocations 1196 * and for the extent tree extent_root root. 1197 */ 1198 struct btrfs_root { 1199 struct rb_node rb_node; 1200 1201 struct extent_buffer *node; 1202 1203 struct extent_buffer *commit_root; 1204 struct btrfs_root *log_root; 1205 struct btrfs_root *reloc_root; 1206 1207 unsigned long state; 1208 struct btrfs_root_item root_item; 1209 struct btrfs_key root_key; 1210 struct btrfs_fs_info *fs_info; 1211 struct extent_io_tree dirty_log_pages; 1212 1213 struct mutex objectid_mutex; 1214 1215 spinlock_t accounting_lock; 1216 struct btrfs_block_rsv *block_rsv; 1217 1218 struct mutex log_mutex; 1219 wait_queue_head_t log_writer_wait; 1220 wait_queue_head_t log_commit_wait[2]; 1221 struct list_head log_ctxs[2]; 1222 /* Used only for log trees of subvolumes, not for the log root tree */ 1223 atomic_t log_writers; 1224 atomic_t log_commit[2]; 1225 /* Used only for log trees of subvolumes, not for the log root tree */ 1226 atomic_t log_batch; 1227 int log_transid; 1228 /* No matter the commit succeeds or not*/ 1229 int log_transid_committed; 1230 /* Just be updated when the commit succeeds. */ 1231 int last_log_commit; 1232 pid_t log_start_pid; 1233 1234 u64 last_trans; 1235 1236 u32 type; 1237 1238 u64 free_objectid; 1239 1240 struct btrfs_key defrag_progress; 1241 struct btrfs_key defrag_max; 1242 1243 /* The dirty list is only used by non-shareable roots */ 1244 struct list_head dirty_list; 1245 1246 struct list_head root_list; 1247 1248 spinlock_t log_extents_lock[2]; 1249 struct list_head logged_list[2]; 1250 1251 spinlock_t inode_lock; 1252 /* red-black tree that keeps track of in-memory inodes */ 1253 struct rb_root inode_tree; 1254 1255 /* 1256 * radix tree that keeps track of delayed nodes of every inode, 1257 * protected by inode_lock 1258 */ 1259 struct radix_tree_root delayed_nodes_tree; 1260 /* 1261 * right now this just gets used so that a root has its own devid 1262 * for stat. It may be used for more later 1263 */ 1264 dev_t anon_dev; 1265 1266 spinlock_t root_item_lock; 1267 refcount_t refs; 1268 1269 struct mutex delalloc_mutex; 1270 spinlock_t delalloc_lock; 1271 /* 1272 * all of the inodes that have delalloc bytes. It is possible for 1273 * this list to be empty even when there is still dirty data=ordered 1274 * extents waiting to finish IO. 1275 */ 1276 struct list_head delalloc_inodes; 1277 struct list_head delalloc_root; 1278 u64 nr_delalloc_inodes; 1279 1280 struct mutex ordered_extent_mutex; 1281 /* 1282 * this is used by the balancing code to wait for all the pending 1283 * ordered extents 1284 */ 1285 spinlock_t ordered_extent_lock; 1286 1287 /* 1288 * all of the data=ordered extents pending writeback 1289 * these can span multiple transactions and basically include 1290 * every dirty data page that isn't from nodatacow 1291 */ 1292 struct list_head ordered_extents; 1293 struct list_head ordered_root; 1294 u64 nr_ordered_extents; 1295 1296 /* 1297 * Not empty if this subvolume root has gone through tree block swap 1298 * (relocation) 1299 * 1300 * Will be used by reloc_control::dirty_subvol_roots. 1301 */ 1302 struct list_head reloc_dirty_list; 1303 1304 /* 1305 * Number of currently running SEND ioctls to prevent 1306 * manipulation with the read-only status via SUBVOL_SETFLAGS 1307 */ 1308 int send_in_progress; 1309 /* 1310 * Number of currently running deduplication operations that have a 1311 * destination inode belonging to this root. Protected by the lock 1312 * root_item_lock. 1313 */ 1314 int dedupe_in_progress; 1315 /* For exclusion of snapshot creation and nocow writes */ 1316 struct btrfs_drew_lock snapshot_lock; 1317 1318 atomic_t snapshot_force_cow; 1319 1320 /* For qgroup metadata reserved space */ 1321 spinlock_t qgroup_meta_rsv_lock; 1322 u64 qgroup_meta_rsv_pertrans; 1323 u64 qgroup_meta_rsv_prealloc; 1324 wait_queue_head_t qgroup_flush_wait; 1325 1326 /* Number of active swapfiles */ 1327 atomic_t nr_swapfiles; 1328 1329 /* Record pairs of swapped blocks for qgroup */ 1330 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1331 1332 /* Used only by log trees, when logging csum items */ 1333 struct extent_io_tree log_csum_range; 1334 1335 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1336 u64 alloc_bytenr; 1337 #endif 1338 1339 #ifdef CONFIG_BTRFS_DEBUG 1340 struct list_head leak_list; 1341 #endif 1342 }; 1343 1344 /* 1345 * Structure that conveys information about an extent that is going to replace 1346 * all the extents in a file range. 1347 */ 1348 struct btrfs_replace_extent_info { 1349 u64 disk_offset; 1350 u64 disk_len; 1351 u64 data_offset; 1352 u64 data_len; 1353 u64 file_offset; 1354 /* Pointer to a file extent item of type regular or prealloc. */ 1355 char *extent_buf; 1356 /* 1357 * Set to true when attempting to replace a file range with a new extent 1358 * described by this structure, set to false when attempting to clone an 1359 * existing extent into a file range. 1360 */ 1361 bool is_new_extent; 1362 /* Indicate if we should update the inode's mtime and ctime. */ 1363 bool update_times; 1364 /* Meaningful only if is_new_extent is true. */ 1365 int qgroup_reserved; 1366 /* 1367 * Meaningful only if is_new_extent is true. 1368 * Used to track how many extent items we have already inserted in a 1369 * subvolume tree that refer to the extent described by this structure, 1370 * so that we know when to create a new delayed ref or update an existing 1371 * one. 1372 */ 1373 int insertions; 1374 }; 1375 1376 /* Arguments for btrfs_drop_extents() */ 1377 struct btrfs_drop_extents_args { 1378 /* Input parameters */ 1379 1380 /* 1381 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1382 * If 'replace_extent' is true, this must not be NULL. Also the path 1383 * is always released except if 'replace_extent' is true and 1384 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1385 * the path is kept locked. 1386 */ 1387 struct btrfs_path *path; 1388 /* Start offset of the range to drop extents from */ 1389 u64 start; 1390 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1391 u64 end; 1392 /* If true drop all the extent maps in the range */ 1393 bool drop_cache; 1394 /* 1395 * If true it means we want to insert a new extent after dropping all 1396 * the extents in the range. If this is true, the 'extent_item_size' 1397 * parameter must be set as well and the 'extent_inserted' field will 1398 * be set to true by btrfs_drop_extents() if it could insert the new 1399 * extent. 1400 * Note: when this is set to true the path must not be NULL. 1401 */ 1402 bool replace_extent; 1403 /* 1404 * Used if 'replace_extent' is true. Size of the file extent item to 1405 * insert after dropping all existing extents in the range 1406 */ 1407 u32 extent_item_size; 1408 1409 /* Output parameters */ 1410 1411 /* 1412 * Set to the minimum between the input parameter 'end' and the end 1413 * (exclusive, last byte + 1) of the last dropped extent. This is always 1414 * set even if btrfs_drop_extents() returns an error. 1415 */ 1416 u64 drop_end; 1417 /* 1418 * The number of allocated bytes found in the range. This can be smaller 1419 * than the range's length when there are holes in the range. 1420 */ 1421 u64 bytes_found; 1422 /* 1423 * Only set if 'replace_extent' is true. Set to true if we were able 1424 * to insert a replacement extent after dropping all extents in the 1425 * range, otherwise set to false by btrfs_drop_extents(). 1426 * Also, if btrfs_drop_extents() has set this to true it means it 1427 * returned with the path locked, otherwise if it has set this to 1428 * false it has returned with the path released. 1429 */ 1430 bool extent_inserted; 1431 }; 1432 1433 struct btrfs_file_private { 1434 void *filldir_buf; 1435 }; 1436 1437 1438 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1439 { 1440 1441 return info->nodesize - sizeof(struct btrfs_header); 1442 } 1443 1444 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1445 1446 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1447 { 1448 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1449 } 1450 1451 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1452 { 1453 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1454 } 1455 1456 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1457 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1458 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1459 { 1460 return BTRFS_MAX_ITEM_SIZE(info) - 1461 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1462 } 1463 1464 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1465 { 1466 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1467 } 1468 1469 /* 1470 * Flags for mount options. 1471 * 1472 * Note: don't forget to add new options to btrfs_show_options() 1473 */ 1474 enum { 1475 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1476 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1477 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1478 BTRFS_MOUNT_SSD = (1UL << 3), 1479 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1480 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1481 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1482 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1483 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1484 BTRFS_MOUNT_NOSSD = (1UL << 9), 1485 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1486 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1487 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1488 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1489 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1490 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1491 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1492 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1493 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1494 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1495 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1496 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1497 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1498 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1499 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1500 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1501 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1502 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1503 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1504 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1505 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1506 }; 1507 1508 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1509 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1510 1511 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1512 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1513 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1514 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1515 BTRFS_MOUNT_##opt) 1516 1517 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1518 do { \ 1519 if (!btrfs_test_opt(fs_info, opt)) \ 1520 btrfs_info(fs_info, fmt, ##args); \ 1521 btrfs_set_opt(fs_info->mount_opt, opt); \ 1522 } while (0) 1523 1524 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1525 do { \ 1526 if (btrfs_test_opt(fs_info, opt)) \ 1527 btrfs_info(fs_info, fmt, ##args); \ 1528 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1529 } while (0) 1530 1531 /* 1532 * Requests for changes that need to be done during transaction commit. 1533 * 1534 * Internal mount options that are used for special handling of the real 1535 * mount options (eg. cannot be set during remount and have to be set during 1536 * transaction commit) 1537 */ 1538 1539 #define BTRFS_PENDING_COMMIT (0) 1540 1541 #define btrfs_test_pending(info, opt) \ 1542 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1543 #define btrfs_set_pending(info, opt) \ 1544 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1545 #define btrfs_clear_pending(info, opt) \ 1546 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1547 1548 /* 1549 * Helpers for setting pending mount option changes. 1550 * 1551 * Expects corresponding macros 1552 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1553 */ 1554 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1555 do { \ 1556 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1557 btrfs_info((info), fmt, ##args); \ 1558 btrfs_set_pending((info), SET_##opt); \ 1559 btrfs_clear_pending((info), CLEAR_##opt); \ 1560 } \ 1561 } while(0) 1562 1563 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1564 do { \ 1565 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1566 btrfs_info((info), fmt, ##args); \ 1567 btrfs_set_pending((info), CLEAR_##opt); \ 1568 btrfs_clear_pending((info), SET_##opt); \ 1569 } \ 1570 } while(0) 1571 1572 /* 1573 * Inode flags 1574 */ 1575 #define BTRFS_INODE_NODATASUM (1U << 0) 1576 #define BTRFS_INODE_NODATACOW (1U << 1) 1577 #define BTRFS_INODE_READONLY (1U << 2) 1578 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1579 #define BTRFS_INODE_PREALLOC (1U << 4) 1580 #define BTRFS_INODE_SYNC (1U << 5) 1581 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1582 #define BTRFS_INODE_APPEND (1U << 7) 1583 #define BTRFS_INODE_NODUMP (1U << 8) 1584 #define BTRFS_INODE_NOATIME (1U << 9) 1585 #define BTRFS_INODE_DIRSYNC (1U << 10) 1586 #define BTRFS_INODE_COMPRESS (1U << 11) 1587 1588 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1589 1590 #define BTRFS_INODE_FLAG_MASK \ 1591 (BTRFS_INODE_NODATASUM | \ 1592 BTRFS_INODE_NODATACOW | \ 1593 BTRFS_INODE_READONLY | \ 1594 BTRFS_INODE_NOCOMPRESS | \ 1595 BTRFS_INODE_PREALLOC | \ 1596 BTRFS_INODE_SYNC | \ 1597 BTRFS_INODE_IMMUTABLE | \ 1598 BTRFS_INODE_APPEND | \ 1599 BTRFS_INODE_NODUMP | \ 1600 BTRFS_INODE_NOATIME | \ 1601 BTRFS_INODE_DIRSYNC | \ 1602 BTRFS_INODE_COMPRESS | \ 1603 BTRFS_INODE_ROOT_ITEM_INIT) 1604 1605 #define BTRFS_INODE_RO_VERITY (1U << 0) 1606 1607 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1608 1609 struct btrfs_map_token { 1610 struct extent_buffer *eb; 1611 char *kaddr; 1612 unsigned long offset; 1613 }; 1614 1615 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1616 ((bytes) >> (fs_info)->sectorsize_bits) 1617 1618 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1619 struct extent_buffer *eb) 1620 { 1621 token->eb = eb; 1622 token->kaddr = page_address(eb->pages[0]); 1623 token->offset = 0; 1624 } 1625 1626 /* some macros to generate set/get functions for the struct fields. This 1627 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1628 * one for u8: 1629 */ 1630 #define le8_to_cpu(v) (v) 1631 #define cpu_to_le8(v) (v) 1632 #define __le8 u8 1633 1634 static inline u8 get_unaligned_le8(const void *p) 1635 { 1636 return *(u8 *)p; 1637 } 1638 1639 static inline void put_unaligned_le8(u8 val, void *p) 1640 { 1641 *(u8 *)p = val; 1642 } 1643 1644 #define read_eb_member(eb, ptr, type, member, result) (\ 1645 read_extent_buffer(eb, (char *)(result), \ 1646 ((unsigned long)(ptr)) + \ 1647 offsetof(type, member), \ 1648 sizeof(((type *)0)->member))) 1649 1650 #define write_eb_member(eb, ptr, type, member, result) (\ 1651 write_extent_buffer(eb, (char *)(result), \ 1652 ((unsigned long)(ptr)) + \ 1653 offsetof(type, member), \ 1654 sizeof(((type *)0)->member))) 1655 1656 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1657 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1658 const void *ptr, unsigned long off); \ 1659 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1660 const void *ptr, unsigned long off, \ 1661 u##bits val); \ 1662 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1663 const void *ptr, unsigned long off); \ 1664 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1665 unsigned long off, u##bits val); 1666 1667 DECLARE_BTRFS_SETGET_BITS(8) 1668 DECLARE_BTRFS_SETGET_BITS(16) 1669 DECLARE_BTRFS_SETGET_BITS(32) 1670 DECLARE_BTRFS_SETGET_BITS(64) 1671 1672 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1673 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1674 const type *s) \ 1675 { \ 1676 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1677 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1678 } \ 1679 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1680 u##bits val) \ 1681 { \ 1682 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1683 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1684 } \ 1685 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1686 const type *s) \ 1687 { \ 1688 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1689 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1690 } \ 1691 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1692 type *s, u##bits val) \ 1693 { \ 1694 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1695 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1696 } 1697 1698 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1699 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1700 { \ 1701 const type *p = page_address(eb->pages[0]) + \ 1702 offset_in_page(eb->start); \ 1703 return get_unaligned_le##bits(&p->member); \ 1704 } \ 1705 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1706 u##bits val) \ 1707 { \ 1708 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1709 put_unaligned_le##bits(val, &p->member); \ 1710 } 1711 1712 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1713 static inline u##bits btrfs_##name(const type *s) \ 1714 { \ 1715 return get_unaligned_le##bits(&s->member); \ 1716 } \ 1717 static inline void btrfs_set_##name(type *s, u##bits val) \ 1718 { \ 1719 put_unaligned_le##bits(val, &s->member); \ 1720 } 1721 1722 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1723 struct btrfs_dev_item *s) 1724 { 1725 static_assert(sizeof(u64) == 1726 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1727 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1728 total_bytes)); 1729 } 1730 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1731 struct btrfs_dev_item *s, 1732 u64 val) 1733 { 1734 static_assert(sizeof(u64) == 1735 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1736 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1737 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1738 } 1739 1740 1741 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1742 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1743 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1744 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1745 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1746 start_offset, 64); 1747 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1748 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1749 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1750 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1751 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1752 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1753 1754 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1755 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1756 total_bytes, 64); 1757 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1758 bytes_used, 64); 1759 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1760 io_align, 32); 1761 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1762 io_width, 32); 1763 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1764 sector_size, 32); 1765 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1766 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1767 dev_group, 32); 1768 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1769 seek_speed, 8); 1770 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1771 bandwidth, 8); 1772 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1773 generation, 64); 1774 1775 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1776 { 1777 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1778 } 1779 1780 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1781 { 1782 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1783 } 1784 1785 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1786 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1787 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1788 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1789 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1790 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1791 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1792 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1793 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1794 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1795 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1796 1797 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1798 { 1799 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1800 } 1801 1802 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1803 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1804 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1805 stripe_len, 64); 1806 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1807 io_align, 32); 1808 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1809 io_width, 32); 1810 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1811 sector_size, 32); 1812 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1813 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1814 num_stripes, 16); 1815 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1816 sub_stripes, 16); 1817 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1818 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1819 1820 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1821 int nr) 1822 { 1823 unsigned long offset = (unsigned long)c; 1824 offset += offsetof(struct btrfs_chunk, stripe); 1825 offset += nr * sizeof(struct btrfs_stripe); 1826 return (struct btrfs_stripe *)offset; 1827 } 1828 1829 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1830 { 1831 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1832 } 1833 1834 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1835 struct btrfs_chunk *c, int nr) 1836 { 1837 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1838 } 1839 1840 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1841 struct btrfs_chunk *c, int nr) 1842 { 1843 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1844 } 1845 1846 /* struct btrfs_block_group_item */ 1847 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1848 used, 64); 1849 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1850 used, 64); 1851 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1852 struct btrfs_block_group_item, chunk_objectid, 64); 1853 1854 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1855 struct btrfs_block_group_item, chunk_objectid, 64); 1856 BTRFS_SETGET_FUNCS(block_group_flags, 1857 struct btrfs_block_group_item, flags, 64); 1858 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1859 struct btrfs_block_group_item, flags, 64); 1860 1861 /* struct btrfs_free_space_info */ 1862 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1863 extent_count, 32); 1864 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1865 1866 /* struct btrfs_inode_ref */ 1867 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1868 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1869 1870 /* struct btrfs_inode_extref */ 1871 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1872 parent_objectid, 64); 1873 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1874 name_len, 16); 1875 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1876 1877 /* struct btrfs_inode_item */ 1878 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1879 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1880 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1881 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1882 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1883 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1884 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1885 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1886 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1887 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1888 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1889 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1890 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1891 generation, 64); 1892 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1893 sequence, 64); 1894 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1895 transid, 64); 1896 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1897 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1898 nbytes, 64); 1899 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1900 block_group, 64); 1901 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1902 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1903 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1904 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1905 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1906 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1907 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1908 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1909 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1910 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1911 1912 /* struct btrfs_dev_extent */ 1913 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1914 chunk_tree, 64); 1915 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1916 chunk_objectid, 64); 1917 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1918 chunk_offset, 64); 1919 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1920 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1921 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1922 generation, 64); 1923 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1924 1925 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1926 1927 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1928 struct btrfs_tree_block_info *item, 1929 struct btrfs_disk_key *key) 1930 { 1931 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1932 } 1933 1934 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1935 struct btrfs_tree_block_info *item, 1936 struct btrfs_disk_key *key) 1937 { 1938 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1939 } 1940 1941 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1942 root, 64); 1943 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1944 objectid, 64); 1945 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1946 offset, 64); 1947 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1948 count, 32); 1949 1950 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1951 count, 32); 1952 1953 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1954 type, 8); 1955 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1956 offset, 64); 1957 1958 static inline u32 btrfs_extent_inline_ref_size(int type) 1959 { 1960 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1961 type == BTRFS_SHARED_BLOCK_REF_KEY) 1962 return sizeof(struct btrfs_extent_inline_ref); 1963 if (type == BTRFS_SHARED_DATA_REF_KEY) 1964 return sizeof(struct btrfs_shared_data_ref) + 1965 sizeof(struct btrfs_extent_inline_ref); 1966 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1967 return sizeof(struct btrfs_extent_data_ref) + 1968 offsetof(struct btrfs_extent_inline_ref, offset); 1969 return 0; 1970 } 1971 1972 /* struct btrfs_node */ 1973 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1974 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1975 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1976 blockptr, 64); 1977 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1978 generation, 64); 1979 1980 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1981 { 1982 unsigned long ptr; 1983 ptr = offsetof(struct btrfs_node, ptrs) + 1984 sizeof(struct btrfs_key_ptr) * nr; 1985 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1986 } 1987 1988 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1989 int nr, u64 val) 1990 { 1991 unsigned long ptr; 1992 ptr = offsetof(struct btrfs_node, ptrs) + 1993 sizeof(struct btrfs_key_ptr) * nr; 1994 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1995 } 1996 1997 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1998 { 1999 unsigned long ptr; 2000 ptr = offsetof(struct btrfs_node, ptrs) + 2001 sizeof(struct btrfs_key_ptr) * nr; 2002 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 2003 } 2004 2005 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 2006 int nr, u64 val) 2007 { 2008 unsigned long ptr; 2009 ptr = offsetof(struct btrfs_node, ptrs) + 2010 sizeof(struct btrfs_key_ptr) * nr; 2011 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 2012 } 2013 2014 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 2015 { 2016 return offsetof(struct btrfs_node, ptrs) + 2017 sizeof(struct btrfs_key_ptr) * nr; 2018 } 2019 2020 void btrfs_node_key(const struct extent_buffer *eb, 2021 struct btrfs_disk_key *disk_key, int nr); 2022 2023 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 2024 struct btrfs_disk_key *disk_key, int nr) 2025 { 2026 unsigned long ptr; 2027 ptr = btrfs_node_key_ptr_offset(nr); 2028 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 2029 struct btrfs_key_ptr, key, disk_key); 2030 } 2031 2032 /* struct btrfs_item */ 2033 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 2034 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 2035 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2036 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2037 2038 static inline unsigned long btrfs_item_nr_offset(int nr) 2039 { 2040 return offsetof(struct btrfs_leaf, items) + 2041 sizeof(struct btrfs_item) * nr; 2042 } 2043 2044 static inline struct btrfs_item *btrfs_item_nr(int nr) 2045 { 2046 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2047 } 2048 2049 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 2050 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 2051 int slot) \ 2052 { \ 2053 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 2054 } \ 2055 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 2056 int slot, u32 val) \ 2057 { \ 2058 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 2059 } \ 2060 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 2061 int slot) \ 2062 { \ 2063 struct btrfs_item *item = btrfs_item_nr(slot); \ 2064 return btrfs_token_raw_item_##member(token, item); \ 2065 } \ 2066 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 2067 int slot, u32 val) \ 2068 { \ 2069 struct btrfs_item *item = btrfs_item_nr(slot); \ 2070 btrfs_set_token_raw_item_##member(token, item, val); \ 2071 } 2072 2073 BTRFS_ITEM_SETGET_FUNCS(offset) 2074 BTRFS_ITEM_SETGET_FUNCS(size); 2075 2076 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2077 { 2078 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2079 } 2080 2081 static inline void btrfs_item_key(const struct extent_buffer *eb, 2082 struct btrfs_disk_key *disk_key, int nr) 2083 { 2084 struct btrfs_item *item = btrfs_item_nr(nr); 2085 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2086 } 2087 2088 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2089 struct btrfs_disk_key *disk_key, int nr) 2090 { 2091 struct btrfs_item *item = btrfs_item_nr(nr); 2092 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2093 } 2094 2095 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2096 2097 /* 2098 * struct btrfs_root_ref 2099 */ 2100 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2101 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2102 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2103 2104 /* struct btrfs_dir_item */ 2105 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2106 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2107 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2108 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2109 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2110 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2111 data_len, 16); 2112 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2113 name_len, 16); 2114 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2115 transid, 64); 2116 2117 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2118 const struct btrfs_dir_item *item, 2119 struct btrfs_disk_key *key) 2120 { 2121 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2122 } 2123 2124 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2125 struct btrfs_dir_item *item, 2126 const struct btrfs_disk_key *key) 2127 { 2128 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2129 } 2130 2131 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2132 num_entries, 64); 2133 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2134 num_bitmaps, 64); 2135 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2136 generation, 64); 2137 2138 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2139 const struct btrfs_free_space_header *h, 2140 struct btrfs_disk_key *key) 2141 { 2142 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2143 } 2144 2145 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2146 struct btrfs_free_space_header *h, 2147 const struct btrfs_disk_key *key) 2148 { 2149 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2150 } 2151 2152 /* struct btrfs_disk_key */ 2153 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2154 objectid, 64); 2155 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2156 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2157 2158 #ifdef __LITTLE_ENDIAN 2159 2160 /* 2161 * Optimized helpers for little-endian architectures where CPU and on-disk 2162 * structures have the same endianness and we can skip conversions. 2163 */ 2164 2165 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2166 const struct btrfs_disk_key *disk_key) 2167 { 2168 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2169 } 2170 2171 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2172 const struct btrfs_key *cpu_key) 2173 { 2174 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2175 } 2176 2177 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2178 struct btrfs_key *cpu_key, int nr) 2179 { 2180 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2181 2182 btrfs_node_key(eb, disk_key, nr); 2183 } 2184 2185 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2186 struct btrfs_key *cpu_key, int nr) 2187 { 2188 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2189 2190 btrfs_item_key(eb, disk_key, nr); 2191 } 2192 2193 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2194 const struct btrfs_dir_item *item, 2195 struct btrfs_key *cpu_key) 2196 { 2197 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2198 2199 btrfs_dir_item_key(eb, item, disk_key); 2200 } 2201 2202 #else 2203 2204 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2205 const struct btrfs_disk_key *disk) 2206 { 2207 cpu->offset = le64_to_cpu(disk->offset); 2208 cpu->type = disk->type; 2209 cpu->objectid = le64_to_cpu(disk->objectid); 2210 } 2211 2212 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2213 const struct btrfs_key *cpu) 2214 { 2215 disk->offset = cpu_to_le64(cpu->offset); 2216 disk->type = cpu->type; 2217 disk->objectid = cpu_to_le64(cpu->objectid); 2218 } 2219 2220 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2221 struct btrfs_key *key, int nr) 2222 { 2223 struct btrfs_disk_key disk_key; 2224 btrfs_node_key(eb, &disk_key, nr); 2225 btrfs_disk_key_to_cpu(key, &disk_key); 2226 } 2227 2228 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2229 struct btrfs_key *key, int nr) 2230 { 2231 struct btrfs_disk_key disk_key; 2232 btrfs_item_key(eb, &disk_key, nr); 2233 btrfs_disk_key_to_cpu(key, &disk_key); 2234 } 2235 2236 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2237 const struct btrfs_dir_item *item, 2238 struct btrfs_key *key) 2239 { 2240 struct btrfs_disk_key disk_key; 2241 btrfs_dir_item_key(eb, item, &disk_key); 2242 btrfs_disk_key_to_cpu(key, &disk_key); 2243 } 2244 2245 #endif 2246 2247 /* struct btrfs_header */ 2248 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2249 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2250 generation, 64); 2251 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2252 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2253 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2254 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2255 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2256 generation, 64); 2257 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2258 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2259 nritems, 32); 2260 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2261 2262 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2263 { 2264 return (btrfs_header_flags(eb) & flag) == flag; 2265 } 2266 2267 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2268 { 2269 u64 flags = btrfs_header_flags(eb); 2270 btrfs_set_header_flags(eb, flags | flag); 2271 } 2272 2273 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2274 { 2275 u64 flags = btrfs_header_flags(eb); 2276 btrfs_set_header_flags(eb, flags & ~flag); 2277 } 2278 2279 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2280 { 2281 u64 flags = btrfs_header_flags(eb); 2282 return flags >> BTRFS_BACKREF_REV_SHIFT; 2283 } 2284 2285 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2286 int rev) 2287 { 2288 u64 flags = btrfs_header_flags(eb); 2289 flags &= ~BTRFS_BACKREF_REV_MASK; 2290 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2291 btrfs_set_header_flags(eb, flags); 2292 } 2293 2294 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2295 { 2296 return btrfs_header_level(eb) == 0; 2297 } 2298 2299 /* struct btrfs_root_item */ 2300 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2301 generation, 64); 2302 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2303 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2304 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2305 2306 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2307 generation, 64); 2308 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2309 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2310 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2311 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2312 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2313 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2314 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2315 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2316 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2317 last_snapshot, 64); 2318 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2319 generation_v2, 64); 2320 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2321 ctransid, 64); 2322 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2323 otransid, 64); 2324 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2325 stransid, 64); 2326 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2327 rtransid, 64); 2328 2329 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2330 { 2331 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2332 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2333 } 2334 2335 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2336 { 2337 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2338 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2339 } 2340 2341 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2342 { 2343 return root->root_key.objectid; 2344 } 2345 2346 /* struct btrfs_root_backup */ 2347 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2348 tree_root, 64); 2349 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2350 tree_root_gen, 64); 2351 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2352 tree_root_level, 8); 2353 2354 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2355 chunk_root, 64); 2356 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2357 chunk_root_gen, 64); 2358 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2359 chunk_root_level, 8); 2360 2361 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2362 extent_root, 64); 2363 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2364 extent_root_gen, 64); 2365 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2366 extent_root_level, 8); 2367 2368 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2369 fs_root, 64); 2370 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2371 fs_root_gen, 64); 2372 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2373 fs_root_level, 8); 2374 2375 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2376 dev_root, 64); 2377 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2378 dev_root_gen, 64); 2379 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2380 dev_root_level, 8); 2381 2382 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2383 csum_root, 64); 2384 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2385 csum_root_gen, 64); 2386 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2387 csum_root_level, 8); 2388 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2389 total_bytes, 64); 2390 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2391 bytes_used, 64); 2392 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2393 num_devices, 64); 2394 2395 /* 2396 * For extent tree v2 we overload the extent root with the block group root, as 2397 * we will have multiple extent roots. 2398 */ 2399 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup, 2400 extent_root, 64); 2401 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup, 2402 extent_root_gen, 64); 2403 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level, 2404 struct btrfs_root_backup, extent_root_level, 8); 2405 2406 /* struct btrfs_balance_item */ 2407 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2408 2409 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2410 const struct btrfs_balance_item *bi, 2411 struct btrfs_disk_balance_args *ba) 2412 { 2413 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2414 } 2415 2416 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2417 struct btrfs_balance_item *bi, 2418 const struct btrfs_disk_balance_args *ba) 2419 { 2420 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2421 } 2422 2423 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2424 const struct btrfs_balance_item *bi, 2425 struct btrfs_disk_balance_args *ba) 2426 { 2427 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2428 } 2429 2430 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2431 struct btrfs_balance_item *bi, 2432 const struct btrfs_disk_balance_args *ba) 2433 { 2434 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2435 } 2436 2437 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2438 const struct btrfs_balance_item *bi, 2439 struct btrfs_disk_balance_args *ba) 2440 { 2441 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2442 } 2443 2444 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2445 struct btrfs_balance_item *bi, 2446 const struct btrfs_disk_balance_args *ba) 2447 { 2448 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2449 } 2450 2451 static inline void 2452 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2453 const struct btrfs_disk_balance_args *disk) 2454 { 2455 memset(cpu, 0, sizeof(*cpu)); 2456 2457 cpu->profiles = le64_to_cpu(disk->profiles); 2458 cpu->usage = le64_to_cpu(disk->usage); 2459 cpu->devid = le64_to_cpu(disk->devid); 2460 cpu->pstart = le64_to_cpu(disk->pstart); 2461 cpu->pend = le64_to_cpu(disk->pend); 2462 cpu->vstart = le64_to_cpu(disk->vstart); 2463 cpu->vend = le64_to_cpu(disk->vend); 2464 cpu->target = le64_to_cpu(disk->target); 2465 cpu->flags = le64_to_cpu(disk->flags); 2466 cpu->limit = le64_to_cpu(disk->limit); 2467 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2468 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2469 } 2470 2471 static inline void 2472 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2473 const struct btrfs_balance_args *cpu) 2474 { 2475 memset(disk, 0, sizeof(*disk)); 2476 2477 disk->profiles = cpu_to_le64(cpu->profiles); 2478 disk->usage = cpu_to_le64(cpu->usage); 2479 disk->devid = cpu_to_le64(cpu->devid); 2480 disk->pstart = cpu_to_le64(cpu->pstart); 2481 disk->pend = cpu_to_le64(cpu->pend); 2482 disk->vstart = cpu_to_le64(cpu->vstart); 2483 disk->vend = cpu_to_le64(cpu->vend); 2484 disk->target = cpu_to_le64(cpu->target); 2485 disk->flags = cpu_to_le64(cpu->flags); 2486 disk->limit = cpu_to_le64(cpu->limit); 2487 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2488 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2489 } 2490 2491 /* struct btrfs_super_block */ 2492 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2493 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2494 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2495 generation, 64); 2496 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2497 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2498 struct btrfs_super_block, sys_chunk_array_size, 32); 2499 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2500 struct btrfs_super_block, chunk_root_generation, 64); 2501 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2502 root_level, 8); 2503 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2504 chunk_root, 64); 2505 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2506 chunk_root_level, 8); 2507 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2508 log_root, 64); 2509 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2510 log_root_level, 8); 2511 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2512 total_bytes, 64); 2513 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2514 bytes_used, 64); 2515 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2516 sectorsize, 32); 2517 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2518 nodesize, 32); 2519 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2520 stripesize, 32); 2521 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2522 root_dir_objectid, 64); 2523 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2524 num_devices, 64); 2525 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2526 compat_flags, 64); 2527 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2528 compat_ro_flags, 64); 2529 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2530 incompat_flags, 64); 2531 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2532 csum_type, 16); 2533 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2534 cache_generation, 64); 2535 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2536 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2537 uuid_tree_generation, 64); 2538 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block, 2539 block_group_root, 64); 2540 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation, 2541 struct btrfs_super_block, 2542 block_group_root_generation, 64); 2543 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block, 2544 block_group_root_level, 8); 2545 2546 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2547 const char *btrfs_super_csum_name(u16 csum_type); 2548 const char *btrfs_super_csum_driver(u16 csum_type); 2549 size_t __attribute_const__ btrfs_get_num_csums(void); 2550 2551 2552 /* 2553 * The leaf data grows from end-to-front in the node. 2554 * this returns the address of the start of the last item, 2555 * which is the stop of the leaf data stack 2556 */ 2557 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2558 { 2559 u32 nr = btrfs_header_nritems(leaf); 2560 2561 if (nr == 0) 2562 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2563 return btrfs_item_offset(leaf, nr - 1); 2564 } 2565 2566 /* struct btrfs_file_extent_item */ 2567 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2568 type, 8); 2569 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2570 struct btrfs_file_extent_item, disk_bytenr, 64); 2571 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2572 struct btrfs_file_extent_item, offset, 64); 2573 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2574 struct btrfs_file_extent_item, generation, 64); 2575 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2576 struct btrfs_file_extent_item, num_bytes, 64); 2577 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2578 struct btrfs_file_extent_item, ram_bytes, 64); 2579 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2580 struct btrfs_file_extent_item, disk_num_bytes, 64); 2581 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2582 struct btrfs_file_extent_item, compression, 8); 2583 2584 static inline unsigned long 2585 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2586 { 2587 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2588 } 2589 2590 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2591 { 2592 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2593 } 2594 2595 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2596 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2597 disk_bytenr, 64); 2598 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2599 generation, 64); 2600 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2601 disk_num_bytes, 64); 2602 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2603 offset, 64); 2604 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2605 num_bytes, 64); 2606 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2607 ram_bytes, 64); 2608 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2609 compression, 8); 2610 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2611 encryption, 8); 2612 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2613 other_encoding, 16); 2614 2615 /* 2616 * this returns the number of bytes used by the item on disk, minus the 2617 * size of any extent headers. If a file is compressed on disk, this is 2618 * the compressed size 2619 */ 2620 static inline u32 btrfs_file_extent_inline_item_len( 2621 const struct extent_buffer *eb, 2622 int nr) 2623 { 2624 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2625 } 2626 2627 /* btrfs_qgroup_status_item */ 2628 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2629 generation, 64); 2630 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2631 version, 64); 2632 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2633 flags, 64); 2634 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2635 rescan, 64); 2636 2637 /* btrfs_qgroup_info_item */ 2638 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2639 generation, 64); 2640 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2641 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2642 rfer_cmpr, 64); 2643 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2644 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2645 excl_cmpr, 64); 2646 2647 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2648 struct btrfs_qgroup_info_item, generation, 64); 2649 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2650 rfer, 64); 2651 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2652 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2653 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2654 excl, 64); 2655 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2656 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2657 2658 /* btrfs_qgroup_limit_item */ 2659 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2660 flags, 64); 2661 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2662 max_rfer, 64); 2663 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2664 max_excl, 64); 2665 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2666 rsv_rfer, 64); 2667 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2668 rsv_excl, 64); 2669 2670 /* btrfs_dev_replace_item */ 2671 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2672 struct btrfs_dev_replace_item, src_devid, 64); 2673 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2674 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2675 64); 2676 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2677 replace_state, 64); 2678 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2679 time_started, 64); 2680 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2681 time_stopped, 64); 2682 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2683 num_write_errors, 64); 2684 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2685 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2686 64); 2687 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2688 cursor_left, 64); 2689 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2690 cursor_right, 64); 2691 2692 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2693 struct btrfs_dev_replace_item, src_devid, 64); 2694 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2695 struct btrfs_dev_replace_item, 2696 cont_reading_from_srcdev_mode, 64); 2697 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2698 struct btrfs_dev_replace_item, replace_state, 64); 2699 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2700 struct btrfs_dev_replace_item, time_started, 64); 2701 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2702 struct btrfs_dev_replace_item, time_stopped, 64); 2703 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2704 struct btrfs_dev_replace_item, num_write_errors, 64); 2705 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2706 struct btrfs_dev_replace_item, 2707 num_uncorrectable_read_errors, 64); 2708 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2709 struct btrfs_dev_replace_item, cursor_left, 64); 2710 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2711 struct btrfs_dev_replace_item, cursor_right, 64); 2712 2713 /* helper function to cast into the data area of the leaf. */ 2714 #define btrfs_item_ptr(leaf, slot, type) \ 2715 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2716 btrfs_item_offset(leaf, slot))) 2717 2718 #define btrfs_item_ptr_offset(leaf, slot) \ 2719 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2720 btrfs_item_offset(leaf, slot))) 2721 2722 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2723 { 2724 return crc32c(crc, address, length); 2725 } 2726 2727 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2728 { 2729 put_unaligned_le32(~crc, result); 2730 } 2731 2732 static inline u64 btrfs_name_hash(const char *name, int len) 2733 { 2734 return crc32c((u32)~1, name, len); 2735 } 2736 2737 /* 2738 * Figure the key offset of an extended inode ref 2739 */ 2740 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2741 int len) 2742 { 2743 return (u64) crc32c(parent_objectid, name, len); 2744 } 2745 2746 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2747 { 2748 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2749 } 2750 2751 /* extent-tree.c */ 2752 2753 enum btrfs_inline_ref_type { 2754 BTRFS_REF_TYPE_INVALID, 2755 BTRFS_REF_TYPE_BLOCK, 2756 BTRFS_REF_TYPE_DATA, 2757 BTRFS_REF_TYPE_ANY, 2758 }; 2759 2760 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2761 struct btrfs_extent_inline_ref *iref, 2762 enum btrfs_inline_ref_type is_data); 2763 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2764 2765 static inline u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, 2766 u64 offset) 2767 { 2768 u64 offset_in_sectors = offset >> fs_info->sectorsize_bits; 2769 2770 return csums + offset_in_sectors * fs_info->csum_size; 2771 } 2772 2773 /* 2774 * Take the number of bytes to be checksummed and figure out how many leaves 2775 * it would require to store the csums for that many bytes. 2776 */ 2777 static inline u64 btrfs_csum_bytes_to_leaves( 2778 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2779 { 2780 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2781 2782 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2783 } 2784 2785 /* 2786 * Use this if we would be adding new items, as we could split nodes as we cow 2787 * down the tree. 2788 */ 2789 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2790 unsigned num_items) 2791 { 2792 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2793 } 2794 2795 /* 2796 * Doing a truncate or a modification won't result in new nodes or leaves, just 2797 * what we need for COW. 2798 */ 2799 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2800 unsigned num_items) 2801 { 2802 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2803 } 2804 2805 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2806 u64 start, u64 num_bytes); 2807 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2808 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2809 unsigned long count); 2810 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2811 struct btrfs_delayed_ref_root *delayed_refs, 2812 struct btrfs_delayed_ref_head *head); 2813 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2814 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2815 struct btrfs_fs_info *fs_info, u64 bytenr, 2816 u64 offset, int metadata, u64 *refs, u64 *flags); 2817 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2818 int reserved); 2819 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2820 u64 bytenr, u64 num_bytes); 2821 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2822 int btrfs_cross_ref_exist(struct btrfs_root *root, 2823 u64 objectid, u64 offset, u64 bytenr, bool strict, 2824 struct btrfs_path *path); 2825 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2826 struct btrfs_root *root, 2827 u64 parent, u64 root_objectid, 2828 const struct btrfs_disk_key *key, 2829 int level, u64 hint, 2830 u64 empty_size, 2831 enum btrfs_lock_nesting nest); 2832 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2833 u64 root_id, 2834 struct extent_buffer *buf, 2835 u64 parent, int last_ref); 2836 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2837 struct btrfs_root *root, u64 owner, 2838 u64 offset, u64 ram_bytes, 2839 struct btrfs_key *ins); 2840 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2841 u64 root_objectid, u64 owner, u64 offset, 2842 struct btrfs_key *ins); 2843 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2844 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2845 struct btrfs_key *ins, int is_data, int delalloc); 2846 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2847 struct extent_buffer *buf, int full_backref); 2848 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2849 struct extent_buffer *buf, int full_backref); 2850 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2851 struct extent_buffer *eb, u64 flags, int level); 2852 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2853 2854 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2855 u64 start, u64 len, int delalloc); 2856 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2857 u64 len); 2858 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2859 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2860 struct btrfs_ref *generic_ref); 2861 2862 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2863 2864 /* 2865 * Different levels for to flush space when doing space reservations. 2866 * 2867 * The higher the level, the more methods we try to reclaim space. 2868 */ 2869 enum btrfs_reserve_flush_enum { 2870 /* If we are in the transaction, we can't flush anything.*/ 2871 BTRFS_RESERVE_NO_FLUSH, 2872 2873 /* 2874 * Flush space by: 2875 * - Running delayed inode items 2876 * - Allocating a new chunk 2877 */ 2878 BTRFS_RESERVE_FLUSH_LIMIT, 2879 2880 /* 2881 * Flush space by: 2882 * - Running delayed inode items 2883 * - Running delayed refs 2884 * - Running delalloc and waiting for ordered extents 2885 * - Allocating a new chunk 2886 */ 2887 BTRFS_RESERVE_FLUSH_EVICT, 2888 2889 /* 2890 * Flush space by above mentioned methods and by: 2891 * - Running delayed iputs 2892 * - Committing transaction 2893 * 2894 * Can be interrupted by a fatal signal. 2895 */ 2896 BTRFS_RESERVE_FLUSH_DATA, 2897 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2898 BTRFS_RESERVE_FLUSH_ALL, 2899 2900 /* 2901 * Pretty much the same as FLUSH_ALL, but can also steal space from 2902 * global rsv. 2903 * 2904 * Can be interrupted by a fatal signal. 2905 */ 2906 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2907 }; 2908 2909 enum btrfs_flush_state { 2910 FLUSH_DELAYED_ITEMS_NR = 1, 2911 FLUSH_DELAYED_ITEMS = 2, 2912 FLUSH_DELAYED_REFS_NR = 3, 2913 FLUSH_DELAYED_REFS = 4, 2914 FLUSH_DELALLOC = 5, 2915 FLUSH_DELALLOC_WAIT = 6, 2916 FLUSH_DELALLOC_FULL = 7, 2917 ALLOC_CHUNK = 8, 2918 ALLOC_CHUNK_FORCE = 9, 2919 RUN_DELAYED_IPUTS = 10, 2920 COMMIT_TRANS = 11, 2921 }; 2922 2923 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2924 struct btrfs_block_rsv *rsv, 2925 int nitems, bool use_global_rsv); 2926 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2927 struct btrfs_block_rsv *rsv); 2928 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2929 2930 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 2931 u64 disk_num_bytes, bool noflush); 2932 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2933 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2934 u64 start, u64 end); 2935 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2936 u64 num_bytes, u64 *actual_bytes); 2937 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2938 2939 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2940 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2941 struct btrfs_fs_info *fs_info); 2942 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2943 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2944 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2945 2946 /* ctree.c */ 2947 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2948 int *slot); 2949 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2950 int btrfs_previous_item(struct btrfs_root *root, 2951 struct btrfs_path *path, u64 min_objectid, 2952 int type); 2953 int btrfs_previous_extent_item(struct btrfs_root *root, 2954 struct btrfs_path *path, u64 min_objectid); 2955 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2956 struct btrfs_path *path, 2957 const struct btrfs_key *new_key); 2958 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2959 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2960 struct btrfs_key *key, int lowest_level, 2961 u64 min_trans); 2962 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2963 struct btrfs_path *path, 2964 u64 min_trans); 2965 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2966 int slot); 2967 2968 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2969 struct btrfs_root *root, struct extent_buffer *buf, 2970 struct extent_buffer *parent, int parent_slot, 2971 struct extent_buffer **cow_ret, 2972 enum btrfs_lock_nesting nest); 2973 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2974 struct btrfs_root *root, 2975 struct extent_buffer *buf, 2976 struct extent_buffer **cow_ret, u64 new_root_objectid); 2977 int btrfs_block_can_be_shared(struct btrfs_root *root, 2978 struct extent_buffer *buf); 2979 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2980 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2981 int btrfs_split_item(struct btrfs_trans_handle *trans, 2982 struct btrfs_root *root, 2983 struct btrfs_path *path, 2984 const struct btrfs_key *new_key, 2985 unsigned long split_offset); 2986 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2987 struct btrfs_root *root, 2988 struct btrfs_path *path, 2989 const struct btrfs_key *new_key); 2990 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2991 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2992 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2993 const struct btrfs_key *key, struct btrfs_path *p, 2994 int ins_len, int cow); 2995 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2996 struct btrfs_path *p, u64 time_seq); 2997 int btrfs_search_slot_for_read(struct btrfs_root *root, 2998 const struct btrfs_key *key, 2999 struct btrfs_path *p, int find_higher, 3000 int return_any); 3001 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 3002 struct btrfs_root *root, struct extent_buffer *parent, 3003 int start_slot, u64 *last_ret, 3004 struct btrfs_key *progress); 3005 void btrfs_release_path(struct btrfs_path *p); 3006 struct btrfs_path *btrfs_alloc_path(void); 3007 void btrfs_free_path(struct btrfs_path *p); 3008 3009 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3010 struct btrfs_path *path, int slot, int nr); 3011 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 3012 struct btrfs_root *root, 3013 struct btrfs_path *path) 3014 { 3015 return btrfs_del_items(trans, root, path, path->slots[0], 1); 3016 } 3017 3018 /* 3019 * Describes a batch of items to insert in a btree. This is used by 3020 * btrfs_insert_empty_items(). 3021 */ 3022 struct btrfs_item_batch { 3023 /* 3024 * Pointer to an array containing the keys of the items to insert (in 3025 * sorted order). 3026 */ 3027 const struct btrfs_key *keys; 3028 /* Pointer to an array containing the data size for each item to insert. */ 3029 const u32 *data_sizes; 3030 /* 3031 * The sum of data sizes for all items. The caller can compute this while 3032 * setting up the data_sizes array, so it ends up being more efficient 3033 * than having btrfs_insert_empty_items() or setup_item_for_insert() 3034 * doing it, as it would avoid an extra loop over a potentially large 3035 * array, and in the case of setup_item_for_insert(), we would be doing 3036 * it while holding a write lock on a leaf and often on upper level nodes 3037 * too, unnecessarily increasing the size of a critical section. 3038 */ 3039 u32 total_data_size; 3040 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 3041 int nr; 3042 }; 3043 3044 void btrfs_setup_item_for_insert(struct btrfs_root *root, 3045 struct btrfs_path *path, 3046 const struct btrfs_key *key, 3047 u32 data_size); 3048 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3049 const struct btrfs_key *key, void *data, u32 data_size); 3050 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3051 struct btrfs_root *root, 3052 struct btrfs_path *path, 3053 const struct btrfs_item_batch *batch); 3054 3055 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3056 struct btrfs_root *root, 3057 struct btrfs_path *path, 3058 const struct btrfs_key *key, 3059 u32 data_size) 3060 { 3061 struct btrfs_item_batch batch; 3062 3063 batch.keys = key; 3064 batch.data_sizes = &data_size; 3065 batch.total_data_size = data_size; 3066 batch.nr = 1; 3067 3068 return btrfs_insert_empty_items(trans, root, path, &batch); 3069 } 3070 3071 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3072 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3073 u64 time_seq); 3074 3075 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 3076 struct btrfs_path *path); 3077 3078 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 3079 struct btrfs_path *path); 3080 3081 /* 3082 * Search in @root for a given @key, and store the slot found in @found_key. 3083 * 3084 * @root: The root node of the tree. 3085 * @key: The key we are looking for. 3086 * @found_key: Will hold the found item. 3087 * @path: Holds the current slot/leaf. 3088 * @iter_ret: Contains the value returned from btrfs_search_slot or 3089 * btrfs_get_next_valid_item, whichever was executed last. 3090 * 3091 * The @iter_ret is an output variable that will contain the return value of 3092 * btrfs_search_slot, if it encountered an error, or the value returned from 3093 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 3094 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 3095 * 3096 * It's recommended to use a separate variable for iter_ret and then use it to 3097 * set the function return value so there's no confusion of the 0/1/errno 3098 * values stemming from btrfs_search_slot. 3099 */ 3100 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 3101 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 3102 (iter_ret) >= 0 && \ 3103 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 3104 (path)->slots[0]++ \ 3105 ) 3106 3107 static inline int btrfs_next_old_item(struct btrfs_root *root, 3108 struct btrfs_path *p, u64 time_seq) 3109 { 3110 ++p->slots[0]; 3111 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3112 return btrfs_next_old_leaf(root, p, time_seq); 3113 return 0; 3114 } 3115 3116 /* 3117 * Search the tree again to find a leaf with greater keys. 3118 * 3119 * Returns 0 if it found something or 1 if there are no greater leaves. 3120 * Returns < 0 on error. 3121 */ 3122 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 3123 { 3124 return btrfs_next_old_leaf(root, path, 0); 3125 } 3126 3127 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3128 { 3129 return btrfs_next_old_item(root, p, 0); 3130 } 3131 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3132 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3133 int for_reloc); 3134 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3135 struct btrfs_root *root, 3136 struct extent_buffer *node, 3137 struct extent_buffer *parent); 3138 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3139 { 3140 /* 3141 * Do it this way so we only ever do one test_bit in the normal case. 3142 */ 3143 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3144 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3145 return 2; 3146 return 1; 3147 } 3148 return 0; 3149 } 3150 3151 /* 3152 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3153 * anything except sleeping. This function is used to check the status of 3154 * the fs. 3155 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3156 * since setting and checking for SB_RDONLY in the superblock's flags is not 3157 * atomic. 3158 */ 3159 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3160 { 3161 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3162 btrfs_fs_closing(fs_info); 3163 } 3164 3165 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3166 { 3167 sb->s_flags |= SB_RDONLY; 3168 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3169 } 3170 3171 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3172 { 3173 sb->s_flags &= ~SB_RDONLY; 3174 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3175 } 3176 3177 /* root-item.c */ 3178 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3179 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3180 int name_len); 3181 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3182 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3183 int name_len); 3184 int btrfs_del_root(struct btrfs_trans_handle *trans, 3185 const struct btrfs_key *key); 3186 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3187 const struct btrfs_key *key, 3188 struct btrfs_root_item *item); 3189 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3190 struct btrfs_root *root, 3191 struct btrfs_key *key, 3192 struct btrfs_root_item *item); 3193 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3194 struct btrfs_path *path, struct btrfs_root_item *root_item, 3195 struct btrfs_key *root_key); 3196 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3197 void btrfs_set_root_node(struct btrfs_root_item *item, 3198 struct extent_buffer *node); 3199 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3200 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3201 struct btrfs_root *root); 3202 3203 /* uuid-tree.c */ 3204 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3205 u64 subid); 3206 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3207 u64 subid); 3208 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3209 3210 /* dir-item.c */ 3211 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3212 const char *name, int name_len); 3213 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3214 int name_len, struct btrfs_inode *dir, 3215 struct btrfs_key *location, u8 type, u64 index); 3216 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3217 struct btrfs_root *root, 3218 struct btrfs_path *path, u64 dir, 3219 const char *name, int name_len, 3220 int mod); 3221 struct btrfs_dir_item * 3222 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3223 struct btrfs_root *root, 3224 struct btrfs_path *path, u64 dir, 3225 u64 index, const char *name, int name_len, 3226 int mod); 3227 struct btrfs_dir_item * 3228 btrfs_search_dir_index_item(struct btrfs_root *root, 3229 struct btrfs_path *path, u64 dirid, 3230 const char *name, int name_len); 3231 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3232 struct btrfs_root *root, 3233 struct btrfs_path *path, 3234 struct btrfs_dir_item *di); 3235 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3236 struct btrfs_root *root, 3237 struct btrfs_path *path, u64 objectid, 3238 const char *name, u16 name_len, 3239 const void *data, u16 data_len); 3240 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3241 struct btrfs_root *root, 3242 struct btrfs_path *path, u64 dir, 3243 const char *name, u16 name_len, 3244 int mod); 3245 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3246 struct btrfs_path *path, 3247 const char *name, 3248 int name_len); 3249 3250 /* orphan.c */ 3251 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3252 struct btrfs_root *root, u64 offset); 3253 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3254 struct btrfs_root *root, u64 offset); 3255 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3256 3257 /* file-item.c */ 3258 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3259 struct btrfs_root *root, u64 bytenr, u64 len); 3260 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3261 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3262 struct btrfs_root *root, 3263 u64 objectid, u64 pos, 3264 u64 disk_offset, u64 disk_num_bytes, 3265 u64 num_bytes, u64 offset, u64 ram_bytes, 3266 u8 compression, u8 encryption, u16 other_encoding); 3267 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3268 struct btrfs_root *root, 3269 struct btrfs_path *path, u64 objectid, 3270 u64 bytenr, int mod); 3271 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3272 struct btrfs_root *root, 3273 struct btrfs_ordered_sum *sums); 3274 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3275 u64 offset, bool one_ordered); 3276 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3277 struct list_head *list, int search_commit); 3278 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3279 const struct btrfs_path *path, 3280 struct btrfs_file_extent_item *fi, 3281 const bool new_inline, 3282 struct extent_map *em); 3283 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3284 u64 len); 3285 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3286 u64 len); 3287 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3288 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3289 3290 /* inode.c */ 3291 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num); 3292 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio, 3293 int mirror_num, enum btrfs_compression_type compress_type); 3294 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3295 u32 pgoff, u8 *csum, const u8 * const csum_expected); 3296 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3297 u32 bio_offset, struct page *page, u32 pgoff); 3298 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3299 u32 bio_offset, struct page *page, 3300 u64 start, u64 end); 3301 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3302 u32 bio_offset, struct page *page, u32 pgoff); 3303 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3304 u64 start, u64 len); 3305 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3306 u64 *orig_start, u64 *orig_block_len, 3307 u64 *ram_bytes, bool strict); 3308 3309 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3310 struct btrfs_inode *inode); 3311 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3312 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3313 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3314 struct btrfs_inode *dir, struct btrfs_inode *inode, 3315 const char *name, int name_len); 3316 int btrfs_add_link(struct btrfs_trans_handle *trans, 3317 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3318 const char *name, int name_len, int add_backref, u64 index); 3319 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3320 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3321 int front); 3322 3323 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3324 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3325 bool in_reclaim_context); 3326 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3327 unsigned int extra_bits, 3328 struct extent_state **cached_state); 3329 struct btrfs_new_inode_args { 3330 /* Input */ 3331 struct inode *dir; 3332 struct dentry *dentry; 3333 struct inode *inode; 3334 bool orphan; 3335 bool subvol; 3336 3337 /* 3338 * Output from btrfs_new_inode_prepare(), input to 3339 * btrfs_create_new_inode(). 3340 */ 3341 struct posix_acl *default_acl; 3342 struct posix_acl *acl; 3343 }; 3344 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 3345 unsigned int *trans_num_items); 3346 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 3347 struct btrfs_new_inode_args *args); 3348 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 3349 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 3350 struct inode *dir); 3351 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3352 u32 bits); 3353 void btrfs_clear_delalloc_extent(struct inode *inode, 3354 struct extent_state *state, u32 bits); 3355 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3356 struct extent_state *other); 3357 void btrfs_split_delalloc_extent(struct inode *inode, 3358 struct extent_state *orig, u64 split); 3359 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3360 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3361 void btrfs_evict_inode(struct inode *inode); 3362 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3363 struct inode *btrfs_alloc_inode(struct super_block *sb); 3364 void btrfs_destroy_inode(struct inode *inode); 3365 void btrfs_free_inode(struct inode *inode); 3366 int btrfs_drop_inode(struct inode *inode); 3367 int __init btrfs_init_cachep(void); 3368 void __cold btrfs_destroy_cachep(void); 3369 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3370 struct btrfs_root *root, struct btrfs_path *path); 3371 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3372 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3373 struct page *page, size_t pg_offset, 3374 u64 start, u64 end); 3375 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3376 struct btrfs_root *root, struct btrfs_inode *inode); 3377 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3378 struct btrfs_root *root, struct btrfs_inode *inode); 3379 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3380 struct btrfs_inode *inode); 3381 int btrfs_orphan_cleanup(struct btrfs_root *root); 3382 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3383 void btrfs_add_delayed_iput(struct inode *inode); 3384 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3385 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3386 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3387 u64 start, u64 num_bytes, u64 min_size, 3388 loff_t actual_len, u64 *alloc_hint); 3389 int btrfs_prealloc_file_range_trans(struct inode *inode, 3390 struct btrfs_trans_handle *trans, int mode, 3391 u64 start, u64 num_bytes, u64 min_size, 3392 loff_t actual_len, u64 *alloc_hint); 3393 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3394 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3395 struct writeback_control *wbc); 3396 int btrfs_writepage_cow_fixup(struct page *page); 3397 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3398 struct page *page, u64 start, 3399 u64 end, bool uptodate); 3400 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 3401 int compress_type); 3402 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 3403 u64 file_offset, u64 disk_bytenr, 3404 u64 disk_io_size, 3405 struct page **pages); 3406 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 3407 struct btrfs_ioctl_encoded_io_args *encoded); 3408 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 3409 const struct btrfs_ioctl_encoded_io_args *encoded); 3410 3411 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); 3412 3413 extern const struct dentry_operations btrfs_dentry_operations; 3414 3415 /* Inode locking type flags, by default the exclusive lock is taken */ 3416 #define BTRFS_ILOCK_SHARED (1U << 0) 3417 #define BTRFS_ILOCK_TRY (1U << 1) 3418 #define BTRFS_ILOCK_MMAP (1U << 2) 3419 3420 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3421 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3422 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3423 const u64 add_bytes, 3424 const u64 del_bytes); 3425 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 3426 3427 /* ioctl.c */ 3428 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3429 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3430 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3431 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3432 struct dentry *dentry, struct fileattr *fa); 3433 int btrfs_ioctl_get_supported_features(void __user *arg); 3434 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3435 int __pure btrfs_is_empty_uuid(u8 *uuid); 3436 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3437 struct btrfs_ioctl_defrag_range_args *range, 3438 u64 newer_than, unsigned long max_to_defrag); 3439 void btrfs_get_block_group_info(struct list_head *groups_list, 3440 struct btrfs_ioctl_space_info *space); 3441 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3442 struct btrfs_ioctl_balance_args *bargs); 3443 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3444 enum btrfs_exclusive_operation type); 3445 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3446 enum btrfs_exclusive_operation type); 3447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3448 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3449 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3450 enum btrfs_exclusive_operation op); 3451 3452 3453 /* file.c */ 3454 int __init btrfs_auto_defrag_init(void); 3455 void __cold btrfs_auto_defrag_exit(void); 3456 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3457 struct btrfs_inode *inode, u32 extent_thresh); 3458 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3459 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3460 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3461 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3462 int skip_pinned); 3463 extern const struct file_operations btrfs_file_operations; 3464 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3465 struct btrfs_root *root, struct btrfs_inode *inode, 3466 struct btrfs_drop_extents_args *args); 3467 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3468 struct btrfs_path *path, const u64 start, 3469 const u64 end, 3470 struct btrfs_replace_extent_info *extent_info, 3471 struct btrfs_trans_handle **trans_out); 3472 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3473 struct btrfs_inode *inode, u64 start, u64 end); 3474 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 3475 const struct btrfs_ioctl_encoded_io_args *encoded); 3476 int btrfs_release_file(struct inode *inode, struct file *file); 3477 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3478 size_t num_pages, loff_t pos, size_t write_bytes, 3479 struct extent_state **cached, bool noreserve); 3480 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3481 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3482 size_t *write_bytes); 3483 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3484 3485 /* tree-defrag.c */ 3486 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3487 struct btrfs_root *root); 3488 3489 /* super.c */ 3490 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3491 unsigned long new_flags); 3492 int btrfs_sync_fs(struct super_block *sb, int wait); 3493 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3494 u64 subvol_objectid); 3495 3496 static inline __printf(2, 3) __cold 3497 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3498 { 3499 } 3500 3501 #ifdef CONFIG_PRINTK_INDEX 3502 3503 #define btrfs_printk(fs_info, fmt, args...) \ 3504 do { \ 3505 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \ 3506 _btrfs_printk(fs_info, fmt, ##args); \ 3507 } while (0) 3508 3509 __printf(2, 3) 3510 __cold 3511 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3512 3513 #elif defined(CONFIG_PRINTK) 3514 3515 #define btrfs_printk(fs_info, fmt, args...) \ 3516 _btrfs_printk(fs_info, fmt, ##args) 3517 3518 __printf(2, 3) 3519 __cold 3520 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3521 3522 #else 3523 3524 #define btrfs_printk(fs_info, fmt, args...) \ 3525 btrfs_no_printk(fs_info, fmt, ##args) 3526 #endif 3527 3528 #define btrfs_emerg(fs_info, fmt, args...) \ 3529 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3530 #define btrfs_alert(fs_info, fmt, args...) \ 3531 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3532 #define btrfs_crit(fs_info, fmt, args...) \ 3533 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3534 #define btrfs_err(fs_info, fmt, args...) \ 3535 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3536 #define btrfs_warn(fs_info, fmt, args...) \ 3537 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3538 #define btrfs_notice(fs_info, fmt, args...) \ 3539 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3540 #define btrfs_info(fs_info, fmt, args...) \ 3541 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3542 3543 /* 3544 * Wrappers that use printk_in_rcu 3545 */ 3546 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3547 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3548 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3549 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3550 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3551 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3552 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3553 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3554 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3555 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3556 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3557 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3558 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3559 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3560 3561 /* 3562 * Wrappers that use a ratelimited printk_in_rcu 3563 */ 3564 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3565 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3566 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3567 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3568 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3569 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3570 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3571 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3572 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3573 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3574 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3575 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3576 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3577 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3578 3579 /* 3580 * Wrappers that use a ratelimited printk 3581 */ 3582 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3583 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3584 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3585 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3586 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3587 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3588 #define btrfs_err_rl(fs_info, fmt, args...) \ 3589 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3590 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3591 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3592 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3593 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3594 #define btrfs_info_rl(fs_info, fmt, args...) \ 3595 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3596 3597 #if defined(CONFIG_DYNAMIC_DEBUG) 3598 #define btrfs_debug(fs_info, fmt, args...) \ 3599 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3600 fs_info, KERN_DEBUG fmt, ##args) 3601 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3602 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3603 fs_info, KERN_DEBUG fmt, ##args) 3604 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3605 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3606 fs_info, KERN_DEBUG fmt, ##args) 3607 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3608 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3609 fs_info, KERN_DEBUG fmt, ##args) 3610 #elif defined(DEBUG) 3611 #define btrfs_debug(fs_info, fmt, args...) \ 3612 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3613 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3614 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3615 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3616 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3617 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3618 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3619 #else 3620 #define btrfs_debug(fs_info, fmt, args...) \ 3621 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3622 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3623 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3624 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3625 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3626 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3627 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3628 #endif 3629 3630 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3631 do { \ 3632 rcu_read_lock(); \ 3633 btrfs_printk(fs_info, fmt, ##args); \ 3634 rcu_read_unlock(); \ 3635 } while (0) 3636 3637 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3638 do { \ 3639 rcu_read_lock(); \ 3640 btrfs_no_printk(fs_info, fmt, ##args); \ 3641 rcu_read_unlock(); \ 3642 } while (0) 3643 3644 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3645 do { \ 3646 static DEFINE_RATELIMIT_STATE(_rs, \ 3647 DEFAULT_RATELIMIT_INTERVAL, \ 3648 DEFAULT_RATELIMIT_BURST); \ 3649 if (__ratelimit(&_rs)) \ 3650 btrfs_printk(fs_info, fmt, ##args); \ 3651 } while (0) 3652 3653 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3654 do { \ 3655 rcu_read_lock(); \ 3656 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3657 rcu_read_unlock(); \ 3658 } while (0) 3659 3660 #ifdef CONFIG_BTRFS_ASSERT 3661 __cold __noreturn 3662 static inline void assertfail(const char *expr, const char *file, int line) 3663 { 3664 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3665 BUG(); 3666 } 3667 3668 #define ASSERT(expr) \ 3669 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3670 3671 #else 3672 static inline void assertfail(const char *expr, const char* file, int line) { } 3673 #define ASSERT(expr) (void)(expr) 3674 #endif 3675 3676 #if BITS_PER_LONG == 32 3677 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3678 /* 3679 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3680 * addresses of extents. 3681 * 3682 * For 4K page size it's about 10T, for 64K it's 160T. 3683 */ 3684 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3685 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3686 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3687 #endif 3688 3689 /* 3690 * Get the correct offset inside the page of extent buffer. 3691 * 3692 * @eb: target extent buffer 3693 * @start: offset inside the extent buffer 3694 * 3695 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3696 */ 3697 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3698 unsigned long offset) 3699 { 3700 /* 3701 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3702 * to PAGE_SIZE, thus adding it won't cause any difference. 3703 * 3704 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3705 * to the eb, thus we have to take the eb->start into consideration. 3706 */ 3707 return offset_in_page(offset + eb->start); 3708 } 3709 3710 static inline unsigned long get_eb_page_index(unsigned long offset) 3711 { 3712 /* 3713 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3714 * 3715 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3716 * and have ensured that all tree blocks are contained in one page, 3717 * thus we always get index == 0. 3718 */ 3719 return offset >> PAGE_SHIFT; 3720 } 3721 3722 /* 3723 * Use that for functions that are conditionally exported for sanity tests but 3724 * otherwise static 3725 */ 3726 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3727 #define EXPORT_FOR_TESTS static 3728 #else 3729 #define EXPORT_FOR_TESTS 3730 #endif 3731 3732 __cold 3733 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3734 { 3735 btrfs_err(fs_info, 3736 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3737 } 3738 3739 __printf(5, 6) 3740 __cold 3741 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3742 unsigned int line, int errno, const char *fmt, ...); 3743 3744 const char * __attribute_const__ btrfs_decode_error(int errno); 3745 3746 __cold 3747 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3748 const char *function, 3749 unsigned int line, int errno); 3750 3751 /* 3752 * Call btrfs_abort_transaction as early as possible when an error condition is 3753 * detected, that way the exact line number is reported. 3754 */ 3755 #define btrfs_abort_transaction(trans, errno) \ 3756 do { \ 3757 /* Report first abort since mount */ \ 3758 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3759 &((trans)->fs_info->fs_state))) { \ 3760 if ((errno) != -EIO && (errno) != -EROFS) { \ 3761 WARN(1, KERN_DEBUG \ 3762 "BTRFS: Transaction aborted (error %d)\n", \ 3763 (errno)); \ 3764 } else { \ 3765 btrfs_debug((trans)->fs_info, \ 3766 "Transaction aborted (error %d)", \ 3767 (errno)); \ 3768 } \ 3769 } \ 3770 __btrfs_abort_transaction((trans), __func__, \ 3771 __LINE__, (errno)); \ 3772 } while (0) 3773 3774 #ifdef CONFIG_PRINTK_INDEX 3775 3776 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3777 do { \ 3778 printk_index_subsys_emit( \ 3779 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \ 3780 KERN_CRIT, fmt); \ 3781 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3782 (errno), fmt, ##args); \ 3783 } while (0) 3784 3785 #else 3786 3787 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3788 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3789 (errno), fmt, ##args) 3790 3791 #endif 3792 3793 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3794 &(fs_info)->fs_state))) 3795 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3796 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3797 &(fs_info)->fs_state))) 3798 3799 __printf(5, 6) 3800 __cold 3801 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3802 unsigned int line, int errno, const char *fmt, ...); 3803 /* 3804 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3805 * will panic(). Otherwise we BUG() here. 3806 */ 3807 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3808 do { \ 3809 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3810 BUG(); \ 3811 } while (0) 3812 3813 3814 /* compatibility and incompatibility defines */ 3815 3816 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3817 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3818 #opt) 3819 3820 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3821 u64 flag, const char* name) 3822 { 3823 struct btrfs_super_block *disk_super; 3824 u64 features; 3825 3826 disk_super = fs_info->super_copy; 3827 features = btrfs_super_incompat_flags(disk_super); 3828 if (!(features & flag)) { 3829 spin_lock(&fs_info->super_lock); 3830 features = btrfs_super_incompat_flags(disk_super); 3831 if (!(features & flag)) { 3832 features |= flag; 3833 btrfs_set_super_incompat_flags(disk_super, features); 3834 btrfs_info(fs_info, 3835 "setting incompat feature flag for %s (0x%llx)", 3836 name, flag); 3837 } 3838 spin_unlock(&fs_info->super_lock); 3839 } 3840 } 3841 3842 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3843 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3844 #opt) 3845 3846 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3847 u64 flag, const char* name) 3848 { 3849 struct btrfs_super_block *disk_super; 3850 u64 features; 3851 3852 disk_super = fs_info->super_copy; 3853 features = btrfs_super_incompat_flags(disk_super); 3854 if (features & flag) { 3855 spin_lock(&fs_info->super_lock); 3856 features = btrfs_super_incompat_flags(disk_super); 3857 if (features & flag) { 3858 features &= ~flag; 3859 btrfs_set_super_incompat_flags(disk_super, features); 3860 btrfs_info(fs_info, 3861 "clearing incompat feature flag for %s (0x%llx)", 3862 name, flag); 3863 } 3864 spin_unlock(&fs_info->super_lock); 3865 } 3866 } 3867 3868 #define btrfs_fs_incompat(fs_info, opt) \ 3869 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3870 3871 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3872 { 3873 struct btrfs_super_block *disk_super; 3874 disk_super = fs_info->super_copy; 3875 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3876 } 3877 3878 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3879 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3880 #opt) 3881 3882 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3883 u64 flag, const char *name) 3884 { 3885 struct btrfs_super_block *disk_super; 3886 u64 features; 3887 3888 disk_super = fs_info->super_copy; 3889 features = btrfs_super_compat_ro_flags(disk_super); 3890 if (!(features & flag)) { 3891 spin_lock(&fs_info->super_lock); 3892 features = btrfs_super_compat_ro_flags(disk_super); 3893 if (!(features & flag)) { 3894 features |= flag; 3895 btrfs_set_super_compat_ro_flags(disk_super, features); 3896 btrfs_info(fs_info, 3897 "setting compat-ro feature flag for %s (0x%llx)", 3898 name, flag); 3899 } 3900 spin_unlock(&fs_info->super_lock); 3901 } 3902 } 3903 3904 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3905 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3906 #opt) 3907 3908 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3909 u64 flag, const char *name) 3910 { 3911 struct btrfs_super_block *disk_super; 3912 u64 features; 3913 3914 disk_super = fs_info->super_copy; 3915 features = btrfs_super_compat_ro_flags(disk_super); 3916 if (features & flag) { 3917 spin_lock(&fs_info->super_lock); 3918 features = btrfs_super_compat_ro_flags(disk_super); 3919 if (features & flag) { 3920 features &= ~flag; 3921 btrfs_set_super_compat_ro_flags(disk_super, features); 3922 btrfs_info(fs_info, 3923 "clearing compat-ro feature flag for %s (0x%llx)", 3924 name, flag); 3925 } 3926 spin_unlock(&fs_info->super_lock); 3927 } 3928 } 3929 3930 #define btrfs_fs_compat_ro(fs_info, opt) \ 3931 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3932 3933 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3934 { 3935 struct btrfs_super_block *disk_super; 3936 disk_super = fs_info->super_copy; 3937 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3938 } 3939 3940 /* acl.c */ 3941 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3942 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3943 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3944 struct posix_acl *acl, int type); 3945 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode, 3946 struct posix_acl *acl, int type); 3947 #else 3948 #define btrfs_get_acl NULL 3949 #define btrfs_set_acl NULL 3950 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans, 3951 struct inode *inode, struct posix_acl *acl, 3952 int type) 3953 { 3954 return -EOPNOTSUPP; 3955 } 3956 #endif 3957 3958 /* relocation.c */ 3959 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3960 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3961 struct btrfs_root *root); 3962 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3963 struct btrfs_root *root); 3964 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info); 3965 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3966 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3967 struct btrfs_root *root, struct extent_buffer *buf, 3968 struct extent_buffer *cow); 3969 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3970 u64 *bytes_to_reserve); 3971 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3972 struct btrfs_pending_snapshot *pending); 3973 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3974 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3975 u64 bytenr); 3976 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3977 3978 /* scrub.c */ 3979 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3980 u64 end, struct btrfs_scrub_progress *progress, 3981 int readonly, int is_dev_replace); 3982 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3983 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3984 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3985 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3986 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3987 struct btrfs_scrub_progress *progress); 3988 static inline void btrfs_init_full_stripe_locks_tree( 3989 struct btrfs_full_stripe_locks_tree *locks_root) 3990 { 3991 locks_root->root = RB_ROOT; 3992 mutex_init(&locks_root->lock); 3993 } 3994 3995 /* dev-replace.c */ 3996 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3997 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3998 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3999 4000 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 4001 { 4002 btrfs_bio_counter_sub(fs_info, 1); 4003 } 4004 4005 static inline int is_fstree(u64 rootid) 4006 { 4007 if (rootid == BTRFS_FS_TREE_OBJECTID || 4008 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 4009 !btrfs_qgroup_level(rootid))) 4010 return 1; 4011 return 0; 4012 } 4013 4014 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 4015 { 4016 return signal_pending(current); 4017 } 4018 4019 /* verity.c */ 4020 #ifdef CONFIG_FS_VERITY 4021 4022 extern const struct fsverity_operations btrfs_verityops; 4023 int btrfs_drop_verity_items(struct btrfs_inode *inode); 4024 4025 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 4026 encryption, 8); 4027 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 4028 size, 64); 4029 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 4030 struct btrfs_verity_descriptor_item, encryption, 8); 4031 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 4032 struct btrfs_verity_descriptor_item, size, 64); 4033 4034 #else 4035 4036 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 4037 { 4038 return 0; 4039 } 4040 4041 #endif 4042 4043 /* Sanity test specific functions */ 4044 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4045 void btrfs_test_destroy_inode(struct inode *inode); 4046 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4047 { 4048 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 4049 } 4050 #else 4051 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4052 { 4053 return 0; 4054 } 4055 #endif 4056 4057 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 4058 { 4059 return fs_info->zone_size > 0; 4060 } 4061 4062 /* 4063 * Count how many fs_info->max_extent_size cover the @size 4064 */ 4065 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size) 4066 { 4067 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4068 if (!fs_info) 4069 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 4070 #endif 4071 4072 return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size); 4073 } 4074 4075 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 4076 { 4077 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 4078 } 4079 4080 /* 4081 * We use page status Private2 to indicate there is an ordered extent with 4082 * unfinished IO. 4083 * 4084 * Rename the Private2 accessors to Ordered, to improve readability. 4085 */ 4086 #define PageOrdered(page) PagePrivate2(page) 4087 #define SetPageOrdered(page) SetPagePrivate2(page) 4088 #define ClearPageOrdered(page) ClearPagePrivate2(page) 4089 #define folio_test_ordered(folio) folio_test_private_2(folio) 4090 #define folio_set_ordered(folio) folio_set_private_2(folio) 4091 #define folio_clear_ordered(folio) folio_clear_private_2(folio) 4092 4093 #endif 4094