1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 52 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 53 54 /* 55 * Maximum number of mirrors that can be available for all profiles counting 56 * the target device of dev-replace as one. During an active device replace 57 * procedure, the target device of the copy operation is a mirror for the 58 * filesystem data as well that can be used to read data in order to repair 59 * read errors on other disks. 60 * 61 * Current value is derived from RAID1C4 with 4 copies. 62 */ 63 #define BTRFS_MAX_MIRRORS (4 + 1) 64 65 #define BTRFS_MAX_LEVEL 8 66 67 #define BTRFS_OLDEST_GENERATION 0ULL 68 69 /* 70 * we can actually store much bigger names, but lets not confuse the rest 71 * of linux 72 */ 73 #define BTRFS_NAME_LEN 255 74 75 /* 76 * Theoretical limit is larger, but we keep this down to a sane 77 * value. That should limit greatly the possibility of collisions on 78 * inode ref items. 79 */ 80 #define BTRFS_LINK_MAX 65535U 81 82 #define BTRFS_EMPTY_DIR_SIZE 0 83 84 /* ioprio of readahead is set to idle */ 85 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 86 87 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 88 89 /* 90 * Use large batch size to reduce overhead of metadata updates. On the reader 91 * side, we only read it when we are close to ENOSPC and the read overhead is 92 * mostly related to the number of CPUs, so it is OK to use arbitrary large 93 * value here. 94 */ 95 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 96 97 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 98 99 /* 100 * Deltas are an effective way to populate global statistics. Give macro names 101 * to make it clear what we're doing. An example is discard_extents in 102 * btrfs_free_space_ctl. 103 */ 104 #define BTRFS_STAT_NR_ENTRIES 2 105 #define BTRFS_STAT_CURR 0 106 #define BTRFS_STAT_PREV 1 107 108 /* 109 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 110 */ 111 static inline u32 count_max_extents(u64 size) 112 { 113 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 114 } 115 116 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 117 { 118 BUG_ON(num_stripes == 0); 119 return sizeof(struct btrfs_chunk) + 120 sizeof(struct btrfs_stripe) * (num_stripes - 1); 121 } 122 123 /* 124 * Runtime (in-memory) states of filesystem 125 */ 126 enum { 127 /* Global indicator of serious filesystem errors */ 128 BTRFS_FS_STATE_ERROR, 129 /* 130 * Filesystem is being remounted, allow to skip some operations, like 131 * defrag 132 */ 133 BTRFS_FS_STATE_REMOUNTING, 134 /* Filesystem in RO mode */ 135 BTRFS_FS_STATE_RO, 136 /* Track if a transaction abort has been reported on this filesystem */ 137 BTRFS_FS_STATE_TRANS_ABORTED, 138 /* 139 * Bio operations should be blocked on this filesystem because a source 140 * or target device is being destroyed as part of a device replace 141 */ 142 BTRFS_FS_STATE_DEV_REPLACING, 143 /* The btrfs_fs_info created for self-tests */ 144 BTRFS_FS_STATE_DUMMY_FS_INFO, 145 }; 146 147 #define BTRFS_BACKREF_REV_MAX 256 148 #define BTRFS_BACKREF_REV_SHIFT 56 149 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 150 BTRFS_BACKREF_REV_SHIFT) 151 152 #define BTRFS_OLD_BACKREF_REV 0 153 #define BTRFS_MIXED_BACKREF_REV 1 154 155 /* 156 * every tree block (leaf or node) starts with this header. 157 */ 158 struct btrfs_header { 159 /* these first four must match the super block */ 160 u8 csum[BTRFS_CSUM_SIZE]; 161 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 162 __le64 bytenr; /* which block this node is supposed to live in */ 163 __le64 flags; 164 165 /* allowed to be different from the super from here on down */ 166 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 167 __le64 generation; 168 __le64 owner; 169 __le32 nritems; 170 u8 level; 171 } __attribute__ ((__packed__)); 172 173 /* 174 * this is a very generous portion of the super block, giving us 175 * room to translate 14 chunks with 3 stripes each. 176 */ 177 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 178 179 /* 180 * just in case we somehow lose the roots and are not able to mount, 181 * we store an array of the roots from previous transactions 182 * in the super. 183 */ 184 #define BTRFS_NUM_BACKUP_ROOTS 4 185 struct btrfs_root_backup { 186 __le64 tree_root; 187 __le64 tree_root_gen; 188 189 __le64 chunk_root; 190 __le64 chunk_root_gen; 191 192 __le64 extent_root; 193 __le64 extent_root_gen; 194 195 __le64 fs_root; 196 __le64 fs_root_gen; 197 198 __le64 dev_root; 199 __le64 dev_root_gen; 200 201 __le64 csum_root; 202 __le64 csum_root_gen; 203 204 __le64 total_bytes; 205 __le64 bytes_used; 206 __le64 num_devices; 207 /* future */ 208 __le64 unused_64[4]; 209 210 u8 tree_root_level; 211 u8 chunk_root_level; 212 u8 extent_root_level; 213 u8 fs_root_level; 214 u8 dev_root_level; 215 u8 csum_root_level; 216 /* future and to align */ 217 u8 unused_8[10]; 218 } __attribute__ ((__packed__)); 219 220 /* 221 * the super block basically lists the main trees of the FS 222 * it currently lacks any block count etc etc 223 */ 224 struct btrfs_super_block { 225 /* the first 4 fields must match struct btrfs_header */ 226 u8 csum[BTRFS_CSUM_SIZE]; 227 /* FS specific UUID, visible to user */ 228 u8 fsid[BTRFS_FSID_SIZE]; 229 __le64 bytenr; /* this block number */ 230 __le64 flags; 231 232 /* allowed to be different from the btrfs_header from here own down */ 233 __le64 magic; 234 __le64 generation; 235 __le64 root; 236 __le64 chunk_root; 237 __le64 log_root; 238 239 /* this will help find the new super based on the log root */ 240 __le64 log_root_transid; 241 __le64 total_bytes; 242 __le64 bytes_used; 243 __le64 root_dir_objectid; 244 __le64 num_devices; 245 __le32 sectorsize; 246 __le32 nodesize; 247 __le32 __unused_leafsize; 248 __le32 stripesize; 249 __le32 sys_chunk_array_size; 250 __le64 chunk_root_generation; 251 __le64 compat_flags; 252 __le64 compat_ro_flags; 253 __le64 incompat_flags; 254 __le16 csum_type; 255 u8 root_level; 256 u8 chunk_root_level; 257 u8 log_root_level; 258 struct btrfs_dev_item dev_item; 259 260 char label[BTRFS_LABEL_SIZE]; 261 262 __le64 cache_generation; 263 __le64 uuid_tree_generation; 264 265 /* the UUID written into btree blocks */ 266 u8 metadata_uuid[BTRFS_FSID_SIZE]; 267 268 /* future expansion */ 269 __le64 reserved[28]; 270 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 271 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 272 } __attribute__ ((__packed__)); 273 274 /* 275 * Compat flags that we support. If any incompat flags are set other than the 276 * ones specified below then we will fail to mount 277 */ 278 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 279 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 280 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 281 282 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 283 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 284 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID) 285 286 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 287 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 288 289 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 290 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 291 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 292 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 293 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 294 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 295 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 296 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 297 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 298 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 299 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 300 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 301 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 302 BTRFS_FEATURE_INCOMPAT_ZONED) 303 304 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 305 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 306 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 307 308 /* 309 * A leaf is full of items. offset and size tell us where to find 310 * the item in the leaf (relative to the start of the data area) 311 */ 312 struct btrfs_item { 313 struct btrfs_disk_key key; 314 __le32 offset; 315 __le32 size; 316 } __attribute__ ((__packed__)); 317 318 /* 319 * leaves have an item area and a data area: 320 * [item0, item1....itemN] [free space] [dataN...data1, data0] 321 * 322 * The data is separate from the items to get the keys closer together 323 * during searches. 324 */ 325 struct btrfs_leaf { 326 struct btrfs_header header; 327 struct btrfs_item items[]; 328 } __attribute__ ((__packed__)); 329 330 /* 331 * all non-leaf blocks are nodes, they hold only keys and pointers to 332 * other blocks 333 */ 334 struct btrfs_key_ptr { 335 struct btrfs_disk_key key; 336 __le64 blockptr; 337 __le64 generation; 338 } __attribute__ ((__packed__)); 339 340 struct btrfs_node { 341 struct btrfs_header header; 342 struct btrfs_key_ptr ptrs[]; 343 } __attribute__ ((__packed__)); 344 345 /* Read ahead values for struct btrfs_path.reada */ 346 enum { 347 READA_NONE, 348 READA_BACK, 349 READA_FORWARD, 350 /* 351 * Similar to READA_FORWARD but unlike it: 352 * 353 * 1) It will trigger readahead even for leaves that are not close to 354 * each other on disk; 355 * 2) It also triggers readahead for nodes; 356 * 3) During a search, even when a node or leaf is already in memory, it 357 * will still trigger readahead for other nodes and leaves that follow 358 * it. 359 * 360 * This is meant to be used only when we know we are iterating over the 361 * entire tree or a very large part of it. 362 */ 363 READA_FORWARD_ALWAYS, 364 }; 365 366 /* 367 * btrfs_paths remember the path taken from the root down to the leaf. 368 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 369 * to any other levels that are present. 370 * 371 * The slots array records the index of the item or block pointer 372 * used while walking the tree. 373 */ 374 struct btrfs_path { 375 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 376 int slots[BTRFS_MAX_LEVEL]; 377 /* if there is real range locking, this locks field will change */ 378 u8 locks[BTRFS_MAX_LEVEL]; 379 u8 reada; 380 /* keep some upper locks as we walk down */ 381 u8 lowest_level; 382 383 /* 384 * set by btrfs_split_item, tells search_slot to keep all locks 385 * and to force calls to keep space in the nodes 386 */ 387 unsigned int search_for_split:1; 388 unsigned int keep_locks:1; 389 unsigned int skip_locking:1; 390 unsigned int search_commit_root:1; 391 unsigned int need_commit_sem:1; 392 unsigned int skip_release_on_error:1; 393 /* 394 * Indicate that new item (btrfs_search_slot) is extending already 395 * existing item and ins_len contains only the data size and not item 396 * header (ie. sizeof(struct btrfs_item) is not included). 397 */ 398 unsigned int search_for_extension:1; 399 }; 400 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 401 sizeof(struct btrfs_item)) 402 struct btrfs_dev_replace { 403 u64 replace_state; /* see #define above */ 404 time64_t time_started; /* seconds since 1-Jan-1970 */ 405 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 406 atomic64_t num_write_errors; 407 atomic64_t num_uncorrectable_read_errors; 408 409 u64 cursor_left; 410 u64 committed_cursor_left; 411 u64 cursor_left_last_write_of_item; 412 u64 cursor_right; 413 414 u64 cont_reading_from_srcdev_mode; /* see #define above */ 415 416 int is_valid; 417 int item_needs_writeback; 418 struct btrfs_device *srcdev; 419 struct btrfs_device *tgtdev; 420 421 struct mutex lock_finishing_cancel_unmount; 422 struct rw_semaphore rwsem; 423 424 struct btrfs_scrub_progress scrub_progress; 425 426 struct percpu_counter bio_counter; 427 wait_queue_head_t replace_wait; 428 }; 429 430 /* 431 * free clusters are used to claim free space in relatively large chunks, 432 * allowing us to do less seeky writes. They are used for all metadata 433 * allocations. In ssd_spread mode they are also used for data allocations. 434 */ 435 struct btrfs_free_cluster { 436 spinlock_t lock; 437 spinlock_t refill_lock; 438 struct rb_root root; 439 440 /* largest extent in this cluster */ 441 u64 max_size; 442 443 /* first extent starting offset */ 444 u64 window_start; 445 446 /* We did a full search and couldn't create a cluster */ 447 bool fragmented; 448 449 struct btrfs_block_group *block_group; 450 /* 451 * when a cluster is allocated from a block group, we put the 452 * cluster onto a list in the block group so that it can 453 * be freed before the block group is freed. 454 */ 455 struct list_head block_group_list; 456 }; 457 458 enum btrfs_caching_type { 459 BTRFS_CACHE_NO, 460 BTRFS_CACHE_STARTED, 461 BTRFS_CACHE_FAST, 462 BTRFS_CACHE_FINISHED, 463 BTRFS_CACHE_ERROR, 464 }; 465 466 /* 467 * Tree to record all locked full stripes of a RAID5/6 block group 468 */ 469 struct btrfs_full_stripe_locks_tree { 470 struct rb_root root; 471 struct mutex lock; 472 }; 473 474 /* Discard control. */ 475 /* 476 * Async discard uses multiple lists to differentiate the discard filter 477 * parameters. Index 0 is for completely free block groups where we need to 478 * ensure the entire block group is trimmed without being lossy. Indices 479 * afterwards represent monotonically decreasing discard filter sizes to 480 * prioritize what should be discarded next. 481 */ 482 #define BTRFS_NR_DISCARD_LISTS 3 483 #define BTRFS_DISCARD_INDEX_UNUSED 0 484 #define BTRFS_DISCARD_INDEX_START 1 485 486 struct btrfs_discard_ctl { 487 struct workqueue_struct *discard_workers; 488 struct delayed_work work; 489 spinlock_t lock; 490 struct btrfs_block_group *block_group; 491 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 492 u64 prev_discard; 493 u64 prev_discard_time; 494 atomic_t discardable_extents; 495 atomic64_t discardable_bytes; 496 u64 max_discard_size; 497 u64 delay_ms; 498 u32 iops_limit; 499 u32 kbps_limit; 500 u64 discard_extent_bytes; 501 u64 discard_bitmap_bytes; 502 atomic64_t discard_bytes_saved; 503 }; 504 505 enum btrfs_orphan_cleanup_state { 506 ORPHAN_CLEANUP_STARTED = 1, 507 ORPHAN_CLEANUP_DONE = 2, 508 }; 509 510 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 511 512 /* fs_info */ 513 struct reloc_control; 514 struct btrfs_device; 515 struct btrfs_fs_devices; 516 struct btrfs_balance_control; 517 struct btrfs_delayed_root; 518 519 /* 520 * Block group or device which contains an active swapfile. Used for preventing 521 * unsafe operations while a swapfile is active. 522 * 523 * These are sorted on (ptr, inode) (note that a block group or device can 524 * contain more than one swapfile). We compare the pointer values because we 525 * don't actually care what the object is, we just need a quick check whether 526 * the object exists in the rbtree. 527 */ 528 struct btrfs_swapfile_pin { 529 struct rb_node node; 530 void *ptr; 531 struct inode *inode; 532 /* 533 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 534 * points to a struct btrfs_device. 535 */ 536 bool is_block_group; 537 /* 538 * Only used when 'is_block_group' is true and it is the number of 539 * extents used by a swapfile for this block group ('ptr' field). 540 */ 541 int bg_extent_count; 542 }; 543 544 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 545 546 enum { 547 BTRFS_FS_BARRIER, 548 BTRFS_FS_CLOSING_START, 549 BTRFS_FS_CLOSING_DONE, 550 BTRFS_FS_LOG_RECOVERING, 551 BTRFS_FS_OPEN, 552 BTRFS_FS_QUOTA_ENABLED, 553 BTRFS_FS_UPDATE_UUID_TREE_GEN, 554 BTRFS_FS_CREATING_FREE_SPACE_TREE, 555 BTRFS_FS_BTREE_ERR, 556 BTRFS_FS_LOG1_ERR, 557 BTRFS_FS_LOG2_ERR, 558 BTRFS_FS_QUOTA_OVERRIDE, 559 /* Used to record internally whether fs has been frozen */ 560 BTRFS_FS_FROZEN, 561 /* 562 * Indicate that balance has been set up from the ioctl and is in the 563 * main phase. The fs_info::balance_ctl is initialized. 564 */ 565 BTRFS_FS_BALANCE_RUNNING, 566 567 /* 568 * Indicate that relocation of a chunk has started, it's set per chunk 569 * and is toggled between chunks. 570 * Set, tested and cleared while holding fs_info::send_reloc_lock. 571 */ 572 BTRFS_FS_RELOC_RUNNING, 573 574 /* Indicate that the cleaner thread is awake and doing something. */ 575 BTRFS_FS_CLEANER_RUNNING, 576 577 /* 578 * The checksumming has an optimized version and is considered fast, 579 * so we don't need to offload checksums to workqueues. 580 */ 581 BTRFS_FS_CSUM_IMPL_FAST, 582 583 /* Indicate that the discard workqueue can service discards. */ 584 BTRFS_FS_DISCARD_RUNNING, 585 586 /* Indicate that we need to cleanup space cache v1 */ 587 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 588 589 /* Indicate that we can't trust the free space tree for caching yet */ 590 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 591 592 /* Indicate whether there are any tree modification log users */ 593 BTRFS_FS_TREE_MOD_LOG_USERS, 594 595 #if BITS_PER_LONG == 32 596 /* Indicate if we have error/warn message printed on 32bit systems */ 597 BTRFS_FS_32BIT_ERROR, 598 BTRFS_FS_32BIT_WARN, 599 #endif 600 }; 601 602 /* 603 * Exclusive operations (device replace, resize, device add/remove, balance) 604 */ 605 enum btrfs_exclusive_operation { 606 BTRFS_EXCLOP_NONE, 607 BTRFS_EXCLOP_BALANCE, 608 BTRFS_EXCLOP_DEV_ADD, 609 BTRFS_EXCLOP_DEV_REMOVE, 610 BTRFS_EXCLOP_DEV_REPLACE, 611 BTRFS_EXCLOP_RESIZE, 612 BTRFS_EXCLOP_SWAP_ACTIVATE, 613 }; 614 615 struct btrfs_fs_info { 616 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 617 unsigned long flags; 618 struct btrfs_root *extent_root; 619 struct btrfs_root *tree_root; 620 struct btrfs_root *chunk_root; 621 struct btrfs_root *dev_root; 622 struct btrfs_root *fs_root; 623 struct btrfs_root *csum_root; 624 struct btrfs_root *quota_root; 625 struct btrfs_root *uuid_root; 626 struct btrfs_root *free_space_root; 627 struct btrfs_root *data_reloc_root; 628 629 /* the log root tree is a directory of all the other log roots */ 630 struct btrfs_root *log_root_tree; 631 632 spinlock_t fs_roots_radix_lock; 633 struct radix_tree_root fs_roots_radix; 634 635 /* block group cache stuff */ 636 spinlock_t block_group_cache_lock; 637 u64 first_logical_byte; 638 struct rb_root block_group_cache_tree; 639 640 /* keep track of unallocated space */ 641 atomic64_t free_chunk_space; 642 643 /* Track ranges which are used by log trees blocks/logged data extents */ 644 struct extent_io_tree excluded_extents; 645 646 /* logical->physical extent mapping */ 647 struct extent_map_tree mapping_tree; 648 649 /* 650 * block reservation for extent, checksum, root tree and 651 * delayed dir index item 652 */ 653 struct btrfs_block_rsv global_block_rsv; 654 /* block reservation for metadata operations */ 655 struct btrfs_block_rsv trans_block_rsv; 656 /* block reservation for chunk tree */ 657 struct btrfs_block_rsv chunk_block_rsv; 658 /* block reservation for delayed operations */ 659 struct btrfs_block_rsv delayed_block_rsv; 660 /* block reservation for delayed refs */ 661 struct btrfs_block_rsv delayed_refs_rsv; 662 663 struct btrfs_block_rsv empty_block_rsv; 664 665 u64 generation; 666 u64 last_trans_committed; 667 u64 avg_delayed_ref_runtime; 668 669 /* 670 * this is updated to the current trans every time a full commit 671 * is required instead of the faster short fsync log commits 672 */ 673 u64 last_trans_log_full_commit; 674 unsigned long mount_opt; 675 /* 676 * Track requests for actions that need to be done during transaction 677 * commit (like for some mount options). 678 */ 679 unsigned long pending_changes; 680 unsigned long compress_type:4; 681 unsigned int compress_level; 682 u32 commit_interval; 683 /* 684 * It is a suggestive number, the read side is safe even it gets a 685 * wrong number because we will write out the data into a regular 686 * extent. The write side(mount/remount) is under ->s_umount lock, 687 * so it is also safe. 688 */ 689 u64 max_inline; 690 691 struct btrfs_transaction *running_transaction; 692 wait_queue_head_t transaction_throttle; 693 wait_queue_head_t transaction_wait; 694 wait_queue_head_t transaction_blocked_wait; 695 wait_queue_head_t async_submit_wait; 696 697 /* 698 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 699 * when they are updated. 700 * 701 * Because we do not clear the flags for ever, so we needn't use 702 * the lock on the read side. 703 * 704 * We also needn't use the lock when we mount the fs, because 705 * there is no other task which will update the flag. 706 */ 707 spinlock_t super_lock; 708 struct btrfs_super_block *super_copy; 709 struct btrfs_super_block *super_for_commit; 710 struct super_block *sb; 711 struct inode *btree_inode; 712 struct mutex tree_log_mutex; 713 struct mutex transaction_kthread_mutex; 714 struct mutex cleaner_mutex; 715 struct mutex chunk_mutex; 716 717 /* 718 * this is taken to make sure we don't set block groups ro after 719 * the free space cache has been allocated on them 720 */ 721 struct mutex ro_block_group_mutex; 722 723 /* this is used during read/modify/write to make sure 724 * no two ios are trying to mod the same stripe at the same 725 * time 726 */ 727 struct btrfs_stripe_hash_table *stripe_hash_table; 728 729 /* 730 * this protects the ordered operations list only while we are 731 * processing all of the entries on it. This way we make 732 * sure the commit code doesn't find the list temporarily empty 733 * because another function happens to be doing non-waiting preflush 734 * before jumping into the main commit. 735 */ 736 struct mutex ordered_operations_mutex; 737 738 struct rw_semaphore commit_root_sem; 739 740 struct rw_semaphore cleanup_work_sem; 741 742 struct rw_semaphore subvol_sem; 743 744 spinlock_t trans_lock; 745 /* 746 * the reloc mutex goes with the trans lock, it is taken 747 * during commit to protect us from the relocation code 748 */ 749 struct mutex reloc_mutex; 750 751 struct list_head trans_list; 752 struct list_head dead_roots; 753 struct list_head caching_block_groups; 754 755 spinlock_t delayed_iput_lock; 756 struct list_head delayed_iputs; 757 atomic_t nr_delayed_iputs; 758 wait_queue_head_t delayed_iputs_wait; 759 760 atomic64_t tree_mod_seq; 761 762 /* this protects tree_mod_log and tree_mod_seq_list */ 763 rwlock_t tree_mod_log_lock; 764 struct rb_root tree_mod_log; 765 struct list_head tree_mod_seq_list; 766 767 atomic_t async_delalloc_pages; 768 769 /* 770 * this is used to protect the following list -- ordered_roots. 771 */ 772 spinlock_t ordered_root_lock; 773 774 /* 775 * all fs/file tree roots in which there are data=ordered extents 776 * pending writeback are added into this list. 777 * 778 * these can span multiple transactions and basically include 779 * every dirty data page that isn't from nodatacow 780 */ 781 struct list_head ordered_roots; 782 783 struct mutex delalloc_root_mutex; 784 spinlock_t delalloc_root_lock; 785 /* all fs/file tree roots that have delalloc inodes. */ 786 struct list_head delalloc_roots; 787 788 /* 789 * there is a pool of worker threads for checksumming during writes 790 * and a pool for checksumming after reads. This is because readers 791 * can run with FS locks held, and the writers may be waiting for 792 * those locks. We don't want ordering in the pending list to cause 793 * deadlocks, and so the two are serviced separately. 794 * 795 * A third pool does submit_bio to avoid deadlocking with the other 796 * two 797 */ 798 struct btrfs_workqueue *workers; 799 struct btrfs_workqueue *delalloc_workers; 800 struct btrfs_workqueue *flush_workers; 801 struct btrfs_workqueue *endio_workers; 802 struct btrfs_workqueue *endio_meta_workers; 803 struct btrfs_workqueue *endio_raid56_workers; 804 struct btrfs_workqueue *rmw_workers; 805 struct btrfs_workqueue *endio_meta_write_workers; 806 struct btrfs_workqueue *endio_write_workers; 807 struct btrfs_workqueue *endio_freespace_worker; 808 struct btrfs_workqueue *caching_workers; 809 struct btrfs_workqueue *readahead_workers; 810 811 /* 812 * fixup workers take dirty pages that didn't properly go through 813 * the cow mechanism and make them safe to write. It happens 814 * for the sys_munmap function call path 815 */ 816 struct btrfs_workqueue *fixup_workers; 817 struct btrfs_workqueue *delayed_workers; 818 819 struct task_struct *transaction_kthread; 820 struct task_struct *cleaner_kthread; 821 u32 thread_pool_size; 822 823 struct kobject *space_info_kobj; 824 struct kobject *qgroups_kobj; 825 826 /* used to keep from writing metadata until there is a nice batch */ 827 struct percpu_counter dirty_metadata_bytes; 828 struct percpu_counter delalloc_bytes; 829 struct percpu_counter ordered_bytes; 830 s32 dirty_metadata_batch; 831 s32 delalloc_batch; 832 833 struct list_head dirty_cowonly_roots; 834 835 struct btrfs_fs_devices *fs_devices; 836 837 /* 838 * The space_info list is effectively read only after initial 839 * setup. It is populated at mount time and cleaned up after 840 * all block groups are removed. RCU is used to protect it. 841 */ 842 struct list_head space_info; 843 844 struct btrfs_space_info *data_sinfo; 845 846 struct reloc_control *reloc_ctl; 847 848 /* data_alloc_cluster is only used in ssd_spread mode */ 849 struct btrfs_free_cluster data_alloc_cluster; 850 851 /* all metadata allocations go through this cluster */ 852 struct btrfs_free_cluster meta_alloc_cluster; 853 854 /* auto defrag inodes go here */ 855 spinlock_t defrag_inodes_lock; 856 struct rb_root defrag_inodes; 857 atomic_t defrag_running; 858 859 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 860 seqlock_t profiles_lock; 861 /* 862 * these three are in extended format (availability of single 863 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 864 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 865 */ 866 u64 avail_data_alloc_bits; 867 u64 avail_metadata_alloc_bits; 868 u64 avail_system_alloc_bits; 869 870 /* restriper state */ 871 spinlock_t balance_lock; 872 struct mutex balance_mutex; 873 atomic_t balance_pause_req; 874 atomic_t balance_cancel_req; 875 struct btrfs_balance_control *balance_ctl; 876 wait_queue_head_t balance_wait_q; 877 878 /* Cancellation requests for chunk relocation */ 879 atomic_t reloc_cancel_req; 880 881 u32 data_chunk_allocations; 882 u32 metadata_ratio; 883 884 void *bdev_holder; 885 886 /* private scrub information */ 887 struct mutex scrub_lock; 888 atomic_t scrubs_running; 889 atomic_t scrub_pause_req; 890 atomic_t scrubs_paused; 891 atomic_t scrub_cancel_req; 892 wait_queue_head_t scrub_pause_wait; 893 /* 894 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 895 * running. 896 */ 897 refcount_t scrub_workers_refcnt; 898 struct btrfs_workqueue *scrub_workers; 899 struct btrfs_workqueue *scrub_wr_completion_workers; 900 struct btrfs_workqueue *scrub_parity_workers; 901 902 struct btrfs_discard_ctl discard_ctl; 903 904 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 905 u32 check_integrity_print_mask; 906 #endif 907 /* is qgroup tracking in a consistent state? */ 908 u64 qgroup_flags; 909 910 /* holds configuration and tracking. Protected by qgroup_lock */ 911 struct rb_root qgroup_tree; 912 spinlock_t qgroup_lock; 913 914 /* 915 * used to avoid frequently calling ulist_alloc()/ulist_free() 916 * when doing qgroup accounting, it must be protected by qgroup_lock. 917 */ 918 struct ulist *qgroup_ulist; 919 920 /* 921 * Protect user change for quota operations. If a transaction is needed, 922 * it must be started before locking this lock. 923 */ 924 struct mutex qgroup_ioctl_lock; 925 926 /* list of dirty qgroups to be written at next commit */ 927 struct list_head dirty_qgroups; 928 929 /* used by qgroup for an efficient tree traversal */ 930 u64 qgroup_seq; 931 932 /* qgroup rescan items */ 933 struct mutex qgroup_rescan_lock; /* protects the progress item */ 934 struct btrfs_key qgroup_rescan_progress; 935 struct btrfs_workqueue *qgroup_rescan_workers; 936 struct completion qgroup_rescan_completion; 937 struct btrfs_work qgroup_rescan_work; 938 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 939 940 /* filesystem state */ 941 unsigned long fs_state; 942 943 struct btrfs_delayed_root *delayed_root; 944 945 /* readahead tree */ 946 spinlock_t reada_lock; 947 struct radix_tree_root reada_tree; 948 949 /* readahead works cnt */ 950 atomic_t reada_works_cnt; 951 952 /* Extent buffer radix tree */ 953 spinlock_t buffer_lock; 954 /* Entries are eb->start / sectorsize */ 955 struct radix_tree_root buffer_radix; 956 957 /* next backup root to be overwritten */ 958 int backup_root_index; 959 960 /* device replace state */ 961 struct btrfs_dev_replace dev_replace; 962 963 struct semaphore uuid_tree_rescan_sem; 964 965 /* Used to reclaim the metadata space in the background. */ 966 struct work_struct async_reclaim_work; 967 struct work_struct async_data_reclaim_work; 968 struct work_struct preempt_reclaim_work; 969 970 /* Reclaim partially filled block groups in the background */ 971 struct work_struct reclaim_bgs_work; 972 struct list_head reclaim_bgs; 973 int bg_reclaim_threshold; 974 975 spinlock_t unused_bgs_lock; 976 struct list_head unused_bgs; 977 struct mutex unused_bg_unpin_mutex; 978 /* Protect block groups that are going to be deleted */ 979 struct mutex reclaim_bgs_lock; 980 981 /* Cached block sizes */ 982 u32 nodesize; 983 u32 sectorsize; 984 /* ilog2 of sectorsize, use to avoid 64bit division */ 985 u32 sectorsize_bits; 986 u32 csum_size; 987 u32 csums_per_leaf; 988 u32 stripesize; 989 990 /* Block groups and devices containing active swapfiles. */ 991 spinlock_t swapfile_pins_lock; 992 struct rb_root swapfile_pins; 993 994 struct crypto_shash *csum_shash; 995 996 spinlock_t send_reloc_lock; 997 /* 998 * Number of send operations in progress. 999 * Updated while holding fs_info::send_reloc_lock. 1000 */ 1001 int send_in_progress; 1002 1003 /* Type of exclusive operation running, protected by super_lock */ 1004 enum btrfs_exclusive_operation exclusive_operation; 1005 1006 /* 1007 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1008 * if the mode is enabled 1009 */ 1010 union { 1011 u64 zone_size; 1012 u64 zoned; 1013 }; 1014 1015 /* Max size to emit ZONE_APPEND write command */ 1016 u64 max_zone_append_size; 1017 struct mutex zoned_meta_io_lock; 1018 spinlock_t treelog_bg_lock; 1019 u64 treelog_bg; 1020 1021 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1022 spinlock_t ref_verify_lock; 1023 struct rb_root block_tree; 1024 #endif 1025 1026 #ifdef CONFIG_BTRFS_DEBUG 1027 struct kobject *debug_kobj; 1028 struct kobject *discard_debug_kobj; 1029 struct list_head allocated_roots; 1030 1031 spinlock_t eb_leak_lock; 1032 struct list_head allocated_ebs; 1033 #endif 1034 }; 1035 1036 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1037 { 1038 return sb->s_fs_info; 1039 } 1040 1041 /* 1042 * The state of btrfs root 1043 */ 1044 enum { 1045 /* 1046 * btrfs_record_root_in_trans is a multi-step process, and it can race 1047 * with the balancing code. But the race is very small, and only the 1048 * first time the root is added to each transaction. So IN_TRANS_SETUP 1049 * is used to tell us when more checks are required 1050 */ 1051 BTRFS_ROOT_IN_TRANS_SETUP, 1052 1053 /* 1054 * Set if tree blocks of this root can be shared by other roots. 1055 * Only subvolume trees and their reloc trees have this bit set. 1056 * Conflicts with TRACK_DIRTY bit. 1057 * 1058 * This affects two things: 1059 * 1060 * - How balance works 1061 * For shareable roots, we need to use reloc tree and do path 1062 * replacement for balance, and need various pre/post hooks for 1063 * snapshot creation to handle them. 1064 * 1065 * While for non-shareable trees, we just simply do a tree search 1066 * with COW. 1067 * 1068 * - How dirty roots are tracked 1069 * For shareable roots, btrfs_record_root_in_trans() is needed to 1070 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1071 * don't need to set this manually. 1072 */ 1073 BTRFS_ROOT_SHAREABLE, 1074 BTRFS_ROOT_TRACK_DIRTY, 1075 BTRFS_ROOT_IN_RADIX, 1076 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1077 BTRFS_ROOT_DEFRAG_RUNNING, 1078 BTRFS_ROOT_FORCE_COW, 1079 BTRFS_ROOT_MULTI_LOG_TASKS, 1080 BTRFS_ROOT_DIRTY, 1081 BTRFS_ROOT_DELETING, 1082 1083 /* 1084 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1085 * 1086 * Set for the subvolume tree owning the reloc tree. 1087 */ 1088 BTRFS_ROOT_DEAD_RELOC_TREE, 1089 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1090 BTRFS_ROOT_DEAD_TREE, 1091 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1092 BTRFS_ROOT_HAS_LOG_TREE, 1093 /* Qgroup flushing is in progress */ 1094 BTRFS_ROOT_QGROUP_FLUSHING, 1095 }; 1096 1097 /* 1098 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1099 * code. For detail check comment in fs/btrfs/qgroup.c. 1100 */ 1101 struct btrfs_qgroup_swapped_blocks { 1102 spinlock_t lock; 1103 /* RM_EMPTY_ROOT() of above blocks[] */ 1104 bool swapped; 1105 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1106 }; 1107 1108 /* 1109 * in ram representation of the tree. extent_root is used for all allocations 1110 * and for the extent tree extent_root root. 1111 */ 1112 struct btrfs_root { 1113 struct extent_buffer *node; 1114 1115 struct extent_buffer *commit_root; 1116 struct btrfs_root *log_root; 1117 struct btrfs_root *reloc_root; 1118 1119 unsigned long state; 1120 struct btrfs_root_item root_item; 1121 struct btrfs_key root_key; 1122 struct btrfs_fs_info *fs_info; 1123 struct extent_io_tree dirty_log_pages; 1124 1125 struct mutex objectid_mutex; 1126 1127 spinlock_t accounting_lock; 1128 struct btrfs_block_rsv *block_rsv; 1129 1130 struct mutex log_mutex; 1131 wait_queue_head_t log_writer_wait; 1132 wait_queue_head_t log_commit_wait[2]; 1133 struct list_head log_ctxs[2]; 1134 /* Used only for log trees of subvolumes, not for the log root tree */ 1135 atomic_t log_writers; 1136 atomic_t log_commit[2]; 1137 /* Used only for log trees of subvolumes, not for the log root tree */ 1138 atomic_t log_batch; 1139 int log_transid; 1140 /* No matter the commit succeeds or not*/ 1141 int log_transid_committed; 1142 /* Just be updated when the commit succeeds. */ 1143 int last_log_commit; 1144 pid_t log_start_pid; 1145 1146 u64 last_trans; 1147 1148 u32 type; 1149 1150 u64 free_objectid; 1151 1152 struct btrfs_key defrag_progress; 1153 struct btrfs_key defrag_max; 1154 1155 /* The dirty list is only used by non-shareable roots */ 1156 struct list_head dirty_list; 1157 1158 struct list_head root_list; 1159 1160 spinlock_t log_extents_lock[2]; 1161 struct list_head logged_list[2]; 1162 1163 int orphan_cleanup_state; 1164 1165 spinlock_t inode_lock; 1166 /* red-black tree that keeps track of in-memory inodes */ 1167 struct rb_root inode_tree; 1168 1169 /* 1170 * radix tree that keeps track of delayed nodes of every inode, 1171 * protected by inode_lock 1172 */ 1173 struct radix_tree_root delayed_nodes_tree; 1174 /* 1175 * right now this just gets used so that a root has its own devid 1176 * for stat. It may be used for more later 1177 */ 1178 dev_t anon_dev; 1179 1180 spinlock_t root_item_lock; 1181 refcount_t refs; 1182 1183 struct mutex delalloc_mutex; 1184 spinlock_t delalloc_lock; 1185 /* 1186 * all of the inodes that have delalloc bytes. It is possible for 1187 * this list to be empty even when there is still dirty data=ordered 1188 * extents waiting to finish IO. 1189 */ 1190 struct list_head delalloc_inodes; 1191 struct list_head delalloc_root; 1192 u64 nr_delalloc_inodes; 1193 1194 struct mutex ordered_extent_mutex; 1195 /* 1196 * this is used by the balancing code to wait for all the pending 1197 * ordered extents 1198 */ 1199 spinlock_t ordered_extent_lock; 1200 1201 /* 1202 * all of the data=ordered extents pending writeback 1203 * these can span multiple transactions and basically include 1204 * every dirty data page that isn't from nodatacow 1205 */ 1206 struct list_head ordered_extents; 1207 struct list_head ordered_root; 1208 u64 nr_ordered_extents; 1209 1210 /* 1211 * Not empty if this subvolume root has gone through tree block swap 1212 * (relocation) 1213 * 1214 * Will be used by reloc_control::dirty_subvol_roots. 1215 */ 1216 struct list_head reloc_dirty_list; 1217 1218 /* 1219 * Number of currently running SEND ioctls to prevent 1220 * manipulation with the read-only status via SUBVOL_SETFLAGS 1221 */ 1222 int send_in_progress; 1223 /* 1224 * Number of currently running deduplication operations that have a 1225 * destination inode belonging to this root. Protected by the lock 1226 * root_item_lock. 1227 */ 1228 int dedupe_in_progress; 1229 /* For exclusion of snapshot creation and nocow writes */ 1230 struct btrfs_drew_lock snapshot_lock; 1231 1232 atomic_t snapshot_force_cow; 1233 1234 /* For qgroup metadata reserved space */ 1235 spinlock_t qgroup_meta_rsv_lock; 1236 u64 qgroup_meta_rsv_pertrans; 1237 u64 qgroup_meta_rsv_prealloc; 1238 wait_queue_head_t qgroup_flush_wait; 1239 1240 /* Number of active swapfiles */ 1241 atomic_t nr_swapfiles; 1242 1243 /* Record pairs of swapped blocks for qgroup */ 1244 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1245 1246 /* Used only by log trees, when logging csum items */ 1247 struct extent_io_tree log_csum_range; 1248 1249 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1250 u64 alloc_bytenr; 1251 #endif 1252 1253 #ifdef CONFIG_BTRFS_DEBUG 1254 struct list_head leak_list; 1255 #endif 1256 }; 1257 1258 /* 1259 * Structure that conveys information about an extent that is going to replace 1260 * all the extents in a file range. 1261 */ 1262 struct btrfs_replace_extent_info { 1263 u64 disk_offset; 1264 u64 disk_len; 1265 u64 data_offset; 1266 u64 data_len; 1267 u64 file_offset; 1268 /* Pointer to a file extent item of type regular or prealloc. */ 1269 char *extent_buf; 1270 /* 1271 * Set to true when attempting to replace a file range with a new extent 1272 * described by this structure, set to false when attempting to clone an 1273 * existing extent into a file range. 1274 */ 1275 bool is_new_extent; 1276 /* Meaningful only if is_new_extent is true. */ 1277 int qgroup_reserved; 1278 /* 1279 * Meaningful only if is_new_extent is true. 1280 * Used to track how many extent items we have already inserted in a 1281 * subvolume tree that refer to the extent described by this structure, 1282 * so that we know when to create a new delayed ref or update an existing 1283 * one. 1284 */ 1285 int insertions; 1286 }; 1287 1288 /* Arguments for btrfs_drop_extents() */ 1289 struct btrfs_drop_extents_args { 1290 /* Input parameters */ 1291 1292 /* 1293 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1294 * If 'replace_extent' is true, this must not be NULL. Also the path 1295 * is always released except if 'replace_extent' is true and 1296 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1297 * the path is kept locked. 1298 */ 1299 struct btrfs_path *path; 1300 /* Start offset of the range to drop extents from */ 1301 u64 start; 1302 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1303 u64 end; 1304 /* If true drop all the extent maps in the range */ 1305 bool drop_cache; 1306 /* 1307 * If true it means we want to insert a new extent after dropping all 1308 * the extents in the range. If this is true, the 'extent_item_size' 1309 * parameter must be set as well and the 'extent_inserted' field will 1310 * be set to true by btrfs_drop_extents() if it could insert the new 1311 * extent. 1312 * Note: when this is set to true the path must not be NULL. 1313 */ 1314 bool replace_extent; 1315 /* 1316 * Used if 'replace_extent' is true. Size of the file extent item to 1317 * insert after dropping all existing extents in the range 1318 */ 1319 u32 extent_item_size; 1320 1321 /* Output parameters */ 1322 1323 /* 1324 * Set to the minimum between the input parameter 'end' and the end 1325 * (exclusive, last byte + 1) of the last dropped extent. This is always 1326 * set even if btrfs_drop_extents() returns an error. 1327 */ 1328 u64 drop_end; 1329 /* 1330 * The number of allocated bytes found in the range. This can be smaller 1331 * than the range's length when there are holes in the range. 1332 */ 1333 u64 bytes_found; 1334 /* 1335 * Only set if 'replace_extent' is true. Set to true if we were able 1336 * to insert a replacement extent after dropping all extents in the 1337 * range, otherwise set to false by btrfs_drop_extents(). 1338 * Also, if btrfs_drop_extents() has set this to true it means it 1339 * returned with the path locked, otherwise if it has set this to 1340 * false it has returned with the path released. 1341 */ 1342 bool extent_inserted; 1343 }; 1344 1345 struct btrfs_file_private { 1346 void *filldir_buf; 1347 }; 1348 1349 1350 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1351 { 1352 1353 return info->nodesize - sizeof(struct btrfs_header); 1354 } 1355 1356 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1357 1358 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1359 { 1360 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1361 } 1362 1363 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1364 { 1365 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1366 } 1367 1368 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1369 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1370 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1371 { 1372 return BTRFS_MAX_ITEM_SIZE(info) - 1373 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1374 } 1375 1376 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1377 { 1378 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1379 } 1380 1381 /* 1382 * Flags for mount options. 1383 * 1384 * Note: don't forget to add new options to btrfs_show_options() 1385 */ 1386 enum { 1387 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1388 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1389 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1390 BTRFS_MOUNT_SSD = (1UL << 3), 1391 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1392 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1393 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1394 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1395 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1396 BTRFS_MOUNT_NOSSD = (1UL << 9), 1397 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1398 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1399 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1400 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1401 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1402 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1403 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1404 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1405 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1406 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1407 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1408 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1409 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1410 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1411 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1412 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1413 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1414 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1415 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1416 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1417 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1418 }; 1419 1420 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1421 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1422 1423 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1424 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1425 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1426 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1427 BTRFS_MOUNT_##opt) 1428 1429 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1430 do { \ 1431 if (!btrfs_test_opt(fs_info, opt)) \ 1432 btrfs_info(fs_info, fmt, ##args); \ 1433 btrfs_set_opt(fs_info->mount_opt, opt); \ 1434 } while (0) 1435 1436 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1437 do { \ 1438 if (btrfs_test_opt(fs_info, opt)) \ 1439 btrfs_info(fs_info, fmt, ##args); \ 1440 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1441 } while (0) 1442 1443 /* 1444 * Requests for changes that need to be done during transaction commit. 1445 * 1446 * Internal mount options that are used for special handling of the real 1447 * mount options (eg. cannot be set during remount and have to be set during 1448 * transaction commit) 1449 */ 1450 1451 #define BTRFS_PENDING_COMMIT (0) 1452 1453 #define btrfs_test_pending(info, opt) \ 1454 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1455 #define btrfs_set_pending(info, opt) \ 1456 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1457 #define btrfs_clear_pending(info, opt) \ 1458 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1459 1460 /* 1461 * Helpers for setting pending mount option changes. 1462 * 1463 * Expects corresponding macros 1464 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1465 */ 1466 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1467 do { \ 1468 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1469 btrfs_info((info), fmt, ##args); \ 1470 btrfs_set_pending((info), SET_##opt); \ 1471 btrfs_clear_pending((info), CLEAR_##opt); \ 1472 } \ 1473 } while(0) 1474 1475 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1476 do { \ 1477 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1478 btrfs_info((info), fmt, ##args); \ 1479 btrfs_set_pending((info), CLEAR_##opt); \ 1480 btrfs_clear_pending((info), SET_##opt); \ 1481 } \ 1482 } while(0) 1483 1484 /* 1485 * Inode flags 1486 */ 1487 #define BTRFS_INODE_NODATASUM (1 << 0) 1488 #define BTRFS_INODE_NODATACOW (1 << 1) 1489 #define BTRFS_INODE_READONLY (1 << 2) 1490 #define BTRFS_INODE_NOCOMPRESS (1 << 3) 1491 #define BTRFS_INODE_PREALLOC (1 << 4) 1492 #define BTRFS_INODE_SYNC (1 << 5) 1493 #define BTRFS_INODE_IMMUTABLE (1 << 6) 1494 #define BTRFS_INODE_APPEND (1 << 7) 1495 #define BTRFS_INODE_NODUMP (1 << 8) 1496 #define BTRFS_INODE_NOATIME (1 << 9) 1497 #define BTRFS_INODE_DIRSYNC (1 << 10) 1498 #define BTRFS_INODE_COMPRESS (1 << 11) 1499 1500 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31) 1501 1502 #define BTRFS_INODE_FLAG_MASK \ 1503 (BTRFS_INODE_NODATASUM | \ 1504 BTRFS_INODE_NODATACOW | \ 1505 BTRFS_INODE_READONLY | \ 1506 BTRFS_INODE_NOCOMPRESS | \ 1507 BTRFS_INODE_PREALLOC | \ 1508 BTRFS_INODE_SYNC | \ 1509 BTRFS_INODE_IMMUTABLE | \ 1510 BTRFS_INODE_APPEND | \ 1511 BTRFS_INODE_NODUMP | \ 1512 BTRFS_INODE_NOATIME | \ 1513 BTRFS_INODE_DIRSYNC | \ 1514 BTRFS_INODE_COMPRESS | \ 1515 BTRFS_INODE_ROOT_ITEM_INIT) 1516 1517 struct btrfs_map_token { 1518 struct extent_buffer *eb; 1519 char *kaddr; 1520 unsigned long offset; 1521 }; 1522 1523 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1524 ((bytes) >> (fs_info)->sectorsize_bits) 1525 1526 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1527 struct extent_buffer *eb) 1528 { 1529 token->eb = eb; 1530 token->kaddr = page_address(eb->pages[0]); 1531 token->offset = 0; 1532 } 1533 1534 /* some macros to generate set/get functions for the struct fields. This 1535 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1536 * one for u8: 1537 */ 1538 #define le8_to_cpu(v) (v) 1539 #define cpu_to_le8(v) (v) 1540 #define __le8 u8 1541 1542 static inline u8 get_unaligned_le8(const void *p) 1543 { 1544 return *(u8 *)p; 1545 } 1546 1547 static inline void put_unaligned_le8(u8 val, void *p) 1548 { 1549 *(u8 *)p = val; 1550 } 1551 1552 #define read_eb_member(eb, ptr, type, member, result) (\ 1553 read_extent_buffer(eb, (char *)(result), \ 1554 ((unsigned long)(ptr)) + \ 1555 offsetof(type, member), \ 1556 sizeof(((type *)0)->member))) 1557 1558 #define write_eb_member(eb, ptr, type, member, result) (\ 1559 write_extent_buffer(eb, (char *)(result), \ 1560 ((unsigned long)(ptr)) + \ 1561 offsetof(type, member), \ 1562 sizeof(((type *)0)->member))) 1563 1564 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1565 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1566 const void *ptr, unsigned long off); \ 1567 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1568 const void *ptr, unsigned long off, \ 1569 u##bits val); \ 1570 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1571 const void *ptr, unsigned long off); \ 1572 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1573 unsigned long off, u##bits val); 1574 1575 DECLARE_BTRFS_SETGET_BITS(8) 1576 DECLARE_BTRFS_SETGET_BITS(16) 1577 DECLARE_BTRFS_SETGET_BITS(32) 1578 DECLARE_BTRFS_SETGET_BITS(64) 1579 1580 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1581 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1582 const type *s) \ 1583 { \ 1584 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1585 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1586 } \ 1587 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1588 u##bits val) \ 1589 { \ 1590 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1591 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1592 } \ 1593 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1594 const type *s) \ 1595 { \ 1596 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1597 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1598 } \ 1599 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1600 type *s, u##bits val) \ 1601 { \ 1602 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1603 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1604 } 1605 1606 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1607 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1608 { \ 1609 const type *p = page_address(eb->pages[0]) + \ 1610 offset_in_page(eb->start); \ 1611 return get_unaligned_le##bits(&p->member); \ 1612 } \ 1613 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1614 u##bits val) \ 1615 { \ 1616 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1617 put_unaligned_le##bits(val, &p->member); \ 1618 } 1619 1620 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1621 static inline u##bits btrfs_##name(const type *s) \ 1622 { \ 1623 return get_unaligned_le##bits(&s->member); \ 1624 } \ 1625 static inline void btrfs_set_##name(type *s, u##bits val) \ 1626 { \ 1627 put_unaligned_le##bits(val, &s->member); \ 1628 } 1629 1630 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1631 struct btrfs_dev_item *s) 1632 { 1633 BUILD_BUG_ON(sizeof(u64) != 1634 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1635 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1636 total_bytes)); 1637 } 1638 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1639 struct btrfs_dev_item *s, 1640 u64 val) 1641 { 1642 BUILD_BUG_ON(sizeof(u64) != 1643 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1644 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1645 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1646 } 1647 1648 1649 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1650 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1651 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1652 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1653 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1654 start_offset, 64); 1655 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1656 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1657 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1658 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1659 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1660 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1661 1662 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1663 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1664 total_bytes, 64); 1665 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1666 bytes_used, 64); 1667 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1668 io_align, 32); 1669 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1670 io_width, 32); 1671 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1672 sector_size, 32); 1673 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1674 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1675 dev_group, 32); 1676 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1677 seek_speed, 8); 1678 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1679 bandwidth, 8); 1680 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1681 generation, 64); 1682 1683 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1684 { 1685 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1686 } 1687 1688 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1689 { 1690 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1691 } 1692 1693 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1694 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1695 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1696 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1697 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1698 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1699 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1700 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1701 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1702 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1703 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1704 1705 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1706 { 1707 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1708 } 1709 1710 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1711 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1712 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1713 stripe_len, 64); 1714 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1715 io_align, 32); 1716 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1717 io_width, 32); 1718 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1719 sector_size, 32); 1720 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1721 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1722 num_stripes, 16); 1723 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1724 sub_stripes, 16); 1725 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1726 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1727 1728 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1729 int nr) 1730 { 1731 unsigned long offset = (unsigned long)c; 1732 offset += offsetof(struct btrfs_chunk, stripe); 1733 offset += nr * sizeof(struct btrfs_stripe); 1734 return (struct btrfs_stripe *)offset; 1735 } 1736 1737 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1738 { 1739 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1740 } 1741 1742 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1743 struct btrfs_chunk *c, int nr) 1744 { 1745 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1746 } 1747 1748 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1749 struct btrfs_chunk *c, int nr) 1750 { 1751 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1752 } 1753 1754 /* struct btrfs_block_group_item */ 1755 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1756 used, 64); 1757 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1758 used, 64); 1759 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1760 struct btrfs_block_group_item, chunk_objectid, 64); 1761 1762 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1763 struct btrfs_block_group_item, chunk_objectid, 64); 1764 BTRFS_SETGET_FUNCS(block_group_flags, 1765 struct btrfs_block_group_item, flags, 64); 1766 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1767 struct btrfs_block_group_item, flags, 64); 1768 1769 /* struct btrfs_free_space_info */ 1770 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1771 extent_count, 32); 1772 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1773 1774 /* struct btrfs_inode_ref */ 1775 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1776 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1777 1778 /* struct btrfs_inode_extref */ 1779 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1780 parent_objectid, 64); 1781 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1782 name_len, 16); 1783 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1784 1785 /* struct btrfs_inode_item */ 1786 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1787 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1788 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1789 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1790 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1791 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1792 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1793 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1794 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1795 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1796 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1797 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1798 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1799 generation, 64); 1800 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1801 sequence, 64); 1802 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1803 transid, 64); 1804 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1805 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1806 nbytes, 64); 1807 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1808 block_group, 64); 1809 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1810 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1811 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1812 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1813 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1814 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1815 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1816 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1817 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1818 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1819 1820 /* struct btrfs_dev_extent */ 1821 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1822 chunk_tree, 64); 1823 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1824 chunk_objectid, 64); 1825 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1826 chunk_offset, 64); 1827 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1828 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1829 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1830 generation, 64); 1831 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1832 1833 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1834 1835 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1836 struct btrfs_tree_block_info *item, 1837 struct btrfs_disk_key *key) 1838 { 1839 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1840 } 1841 1842 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1843 struct btrfs_tree_block_info *item, 1844 struct btrfs_disk_key *key) 1845 { 1846 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1847 } 1848 1849 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1850 root, 64); 1851 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1852 objectid, 64); 1853 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1854 offset, 64); 1855 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1856 count, 32); 1857 1858 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1859 count, 32); 1860 1861 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1862 type, 8); 1863 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1864 offset, 64); 1865 1866 static inline u32 btrfs_extent_inline_ref_size(int type) 1867 { 1868 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1869 type == BTRFS_SHARED_BLOCK_REF_KEY) 1870 return sizeof(struct btrfs_extent_inline_ref); 1871 if (type == BTRFS_SHARED_DATA_REF_KEY) 1872 return sizeof(struct btrfs_shared_data_ref) + 1873 sizeof(struct btrfs_extent_inline_ref); 1874 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1875 return sizeof(struct btrfs_extent_data_ref) + 1876 offsetof(struct btrfs_extent_inline_ref, offset); 1877 return 0; 1878 } 1879 1880 /* struct btrfs_node */ 1881 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1882 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1883 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1884 blockptr, 64); 1885 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1886 generation, 64); 1887 1888 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1889 { 1890 unsigned long ptr; 1891 ptr = offsetof(struct btrfs_node, ptrs) + 1892 sizeof(struct btrfs_key_ptr) * nr; 1893 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1894 } 1895 1896 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1897 int nr, u64 val) 1898 { 1899 unsigned long ptr; 1900 ptr = offsetof(struct btrfs_node, ptrs) + 1901 sizeof(struct btrfs_key_ptr) * nr; 1902 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1903 } 1904 1905 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1906 { 1907 unsigned long ptr; 1908 ptr = offsetof(struct btrfs_node, ptrs) + 1909 sizeof(struct btrfs_key_ptr) * nr; 1910 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1911 } 1912 1913 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1914 int nr, u64 val) 1915 { 1916 unsigned long ptr; 1917 ptr = offsetof(struct btrfs_node, ptrs) + 1918 sizeof(struct btrfs_key_ptr) * nr; 1919 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1920 } 1921 1922 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1923 { 1924 return offsetof(struct btrfs_node, ptrs) + 1925 sizeof(struct btrfs_key_ptr) * nr; 1926 } 1927 1928 void btrfs_node_key(const struct extent_buffer *eb, 1929 struct btrfs_disk_key *disk_key, int nr); 1930 1931 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1932 struct btrfs_disk_key *disk_key, int nr) 1933 { 1934 unsigned long ptr; 1935 ptr = btrfs_node_key_ptr_offset(nr); 1936 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1937 struct btrfs_key_ptr, key, disk_key); 1938 } 1939 1940 /* struct btrfs_item */ 1941 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); 1942 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); 1943 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 1944 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 1945 1946 static inline unsigned long btrfs_item_nr_offset(int nr) 1947 { 1948 return offsetof(struct btrfs_leaf, items) + 1949 sizeof(struct btrfs_item) * nr; 1950 } 1951 1952 static inline struct btrfs_item *btrfs_item_nr(int nr) 1953 { 1954 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 1955 } 1956 1957 static inline u32 btrfs_item_end(const struct extent_buffer *eb, 1958 struct btrfs_item *item) 1959 { 1960 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); 1961 } 1962 1963 static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr) 1964 { 1965 return btrfs_item_end(eb, btrfs_item_nr(nr)); 1966 } 1967 1968 static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr) 1969 { 1970 return btrfs_item_offset(eb, btrfs_item_nr(nr)); 1971 } 1972 1973 static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr) 1974 { 1975 return btrfs_item_size(eb, btrfs_item_nr(nr)); 1976 } 1977 1978 static inline void btrfs_item_key(const struct extent_buffer *eb, 1979 struct btrfs_disk_key *disk_key, int nr) 1980 { 1981 struct btrfs_item *item = btrfs_item_nr(nr); 1982 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 1983 } 1984 1985 static inline void btrfs_set_item_key(struct extent_buffer *eb, 1986 struct btrfs_disk_key *disk_key, int nr) 1987 { 1988 struct btrfs_item *item = btrfs_item_nr(nr); 1989 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 1990 } 1991 1992 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 1993 1994 /* 1995 * struct btrfs_root_ref 1996 */ 1997 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 1998 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 1999 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2000 2001 /* struct btrfs_dir_item */ 2002 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2003 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2004 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2005 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2006 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2007 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2008 data_len, 16); 2009 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2010 name_len, 16); 2011 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2012 transid, 64); 2013 2014 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2015 const struct btrfs_dir_item *item, 2016 struct btrfs_disk_key *key) 2017 { 2018 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2019 } 2020 2021 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2022 struct btrfs_dir_item *item, 2023 const struct btrfs_disk_key *key) 2024 { 2025 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2026 } 2027 2028 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2029 num_entries, 64); 2030 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2031 num_bitmaps, 64); 2032 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2033 generation, 64); 2034 2035 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2036 const struct btrfs_free_space_header *h, 2037 struct btrfs_disk_key *key) 2038 { 2039 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2040 } 2041 2042 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2043 struct btrfs_free_space_header *h, 2044 const struct btrfs_disk_key *key) 2045 { 2046 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2047 } 2048 2049 /* struct btrfs_disk_key */ 2050 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2051 objectid, 64); 2052 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2053 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2054 2055 #ifdef __LITTLE_ENDIAN 2056 2057 /* 2058 * Optimized helpers for little-endian architectures where CPU and on-disk 2059 * structures have the same endianness and we can skip conversions. 2060 */ 2061 2062 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2063 const struct btrfs_disk_key *disk_key) 2064 { 2065 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2066 } 2067 2068 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2069 const struct btrfs_key *cpu_key) 2070 { 2071 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2072 } 2073 2074 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2075 struct btrfs_key *cpu_key, int nr) 2076 { 2077 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2078 2079 btrfs_node_key(eb, disk_key, nr); 2080 } 2081 2082 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2083 struct btrfs_key *cpu_key, int nr) 2084 { 2085 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2086 2087 btrfs_item_key(eb, disk_key, nr); 2088 } 2089 2090 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2091 const struct btrfs_dir_item *item, 2092 struct btrfs_key *cpu_key) 2093 { 2094 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2095 2096 btrfs_dir_item_key(eb, item, disk_key); 2097 } 2098 2099 #else 2100 2101 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2102 const struct btrfs_disk_key *disk) 2103 { 2104 cpu->offset = le64_to_cpu(disk->offset); 2105 cpu->type = disk->type; 2106 cpu->objectid = le64_to_cpu(disk->objectid); 2107 } 2108 2109 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2110 const struct btrfs_key *cpu) 2111 { 2112 disk->offset = cpu_to_le64(cpu->offset); 2113 disk->type = cpu->type; 2114 disk->objectid = cpu_to_le64(cpu->objectid); 2115 } 2116 2117 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2118 struct btrfs_key *key, int nr) 2119 { 2120 struct btrfs_disk_key disk_key; 2121 btrfs_node_key(eb, &disk_key, nr); 2122 btrfs_disk_key_to_cpu(key, &disk_key); 2123 } 2124 2125 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2126 struct btrfs_key *key, int nr) 2127 { 2128 struct btrfs_disk_key disk_key; 2129 btrfs_item_key(eb, &disk_key, nr); 2130 btrfs_disk_key_to_cpu(key, &disk_key); 2131 } 2132 2133 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2134 const struct btrfs_dir_item *item, 2135 struct btrfs_key *key) 2136 { 2137 struct btrfs_disk_key disk_key; 2138 btrfs_dir_item_key(eb, item, &disk_key); 2139 btrfs_disk_key_to_cpu(key, &disk_key); 2140 } 2141 2142 #endif 2143 2144 /* struct btrfs_header */ 2145 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2146 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2147 generation, 64); 2148 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2149 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2150 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2151 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2152 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2153 generation, 64); 2154 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2155 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2156 nritems, 32); 2157 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2158 2159 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2160 { 2161 return (btrfs_header_flags(eb) & flag) == flag; 2162 } 2163 2164 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2165 { 2166 u64 flags = btrfs_header_flags(eb); 2167 btrfs_set_header_flags(eb, flags | flag); 2168 } 2169 2170 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2171 { 2172 u64 flags = btrfs_header_flags(eb); 2173 btrfs_set_header_flags(eb, flags & ~flag); 2174 } 2175 2176 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2177 { 2178 u64 flags = btrfs_header_flags(eb); 2179 return flags >> BTRFS_BACKREF_REV_SHIFT; 2180 } 2181 2182 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2183 int rev) 2184 { 2185 u64 flags = btrfs_header_flags(eb); 2186 flags &= ~BTRFS_BACKREF_REV_MASK; 2187 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2188 btrfs_set_header_flags(eb, flags); 2189 } 2190 2191 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2192 { 2193 return btrfs_header_level(eb) == 0; 2194 } 2195 2196 /* struct btrfs_root_item */ 2197 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2198 generation, 64); 2199 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2200 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2201 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2202 2203 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2204 generation, 64); 2205 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2206 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2207 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2208 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2209 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2210 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2211 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2212 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2213 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2214 last_snapshot, 64); 2215 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2216 generation_v2, 64); 2217 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2218 ctransid, 64); 2219 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2220 otransid, 64); 2221 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2222 stransid, 64); 2223 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2224 rtransid, 64); 2225 2226 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2227 { 2228 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2229 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2230 } 2231 2232 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2233 { 2234 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2235 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2236 } 2237 2238 /* struct btrfs_root_backup */ 2239 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2240 tree_root, 64); 2241 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2242 tree_root_gen, 64); 2243 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2244 tree_root_level, 8); 2245 2246 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2247 chunk_root, 64); 2248 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2249 chunk_root_gen, 64); 2250 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2251 chunk_root_level, 8); 2252 2253 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2254 extent_root, 64); 2255 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2256 extent_root_gen, 64); 2257 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2258 extent_root_level, 8); 2259 2260 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2261 fs_root, 64); 2262 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2263 fs_root_gen, 64); 2264 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2265 fs_root_level, 8); 2266 2267 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2268 dev_root, 64); 2269 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2270 dev_root_gen, 64); 2271 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2272 dev_root_level, 8); 2273 2274 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2275 csum_root, 64); 2276 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2277 csum_root_gen, 64); 2278 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2279 csum_root_level, 8); 2280 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2281 total_bytes, 64); 2282 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2283 bytes_used, 64); 2284 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2285 num_devices, 64); 2286 2287 /* struct btrfs_balance_item */ 2288 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2289 2290 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2291 const struct btrfs_balance_item *bi, 2292 struct btrfs_disk_balance_args *ba) 2293 { 2294 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2295 } 2296 2297 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2298 struct btrfs_balance_item *bi, 2299 const struct btrfs_disk_balance_args *ba) 2300 { 2301 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2302 } 2303 2304 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2305 const struct btrfs_balance_item *bi, 2306 struct btrfs_disk_balance_args *ba) 2307 { 2308 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2309 } 2310 2311 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2312 struct btrfs_balance_item *bi, 2313 const struct btrfs_disk_balance_args *ba) 2314 { 2315 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2316 } 2317 2318 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2319 const struct btrfs_balance_item *bi, 2320 struct btrfs_disk_balance_args *ba) 2321 { 2322 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2323 } 2324 2325 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2326 struct btrfs_balance_item *bi, 2327 const struct btrfs_disk_balance_args *ba) 2328 { 2329 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2330 } 2331 2332 static inline void 2333 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2334 const struct btrfs_disk_balance_args *disk) 2335 { 2336 memset(cpu, 0, sizeof(*cpu)); 2337 2338 cpu->profiles = le64_to_cpu(disk->profiles); 2339 cpu->usage = le64_to_cpu(disk->usage); 2340 cpu->devid = le64_to_cpu(disk->devid); 2341 cpu->pstart = le64_to_cpu(disk->pstart); 2342 cpu->pend = le64_to_cpu(disk->pend); 2343 cpu->vstart = le64_to_cpu(disk->vstart); 2344 cpu->vend = le64_to_cpu(disk->vend); 2345 cpu->target = le64_to_cpu(disk->target); 2346 cpu->flags = le64_to_cpu(disk->flags); 2347 cpu->limit = le64_to_cpu(disk->limit); 2348 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2349 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2350 } 2351 2352 static inline void 2353 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2354 const struct btrfs_balance_args *cpu) 2355 { 2356 memset(disk, 0, sizeof(*disk)); 2357 2358 disk->profiles = cpu_to_le64(cpu->profiles); 2359 disk->usage = cpu_to_le64(cpu->usage); 2360 disk->devid = cpu_to_le64(cpu->devid); 2361 disk->pstart = cpu_to_le64(cpu->pstart); 2362 disk->pend = cpu_to_le64(cpu->pend); 2363 disk->vstart = cpu_to_le64(cpu->vstart); 2364 disk->vend = cpu_to_le64(cpu->vend); 2365 disk->target = cpu_to_le64(cpu->target); 2366 disk->flags = cpu_to_le64(cpu->flags); 2367 disk->limit = cpu_to_le64(cpu->limit); 2368 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2369 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2370 } 2371 2372 /* struct btrfs_super_block */ 2373 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2374 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2375 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2376 generation, 64); 2377 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2378 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2379 struct btrfs_super_block, sys_chunk_array_size, 32); 2380 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2381 struct btrfs_super_block, chunk_root_generation, 64); 2382 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2383 root_level, 8); 2384 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2385 chunk_root, 64); 2386 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2387 chunk_root_level, 8); 2388 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2389 log_root, 64); 2390 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2391 log_root_transid, 64); 2392 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2393 log_root_level, 8); 2394 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2395 total_bytes, 64); 2396 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2397 bytes_used, 64); 2398 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2399 sectorsize, 32); 2400 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2401 nodesize, 32); 2402 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2403 stripesize, 32); 2404 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2405 root_dir_objectid, 64); 2406 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2407 num_devices, 64); 2408 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2409 compat_flags, 64); 2410 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2411 compat_ro_flags, 64); 2412 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2413 incompat_flags, 64); 2414 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2415 csum_type, 16); 2416 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2417 cache_generation, 64); 2418 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2419 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2420 uuid_tree_generation, 64); 2421 2422 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2423 const char *btrfs_super_csum_name(u16 csum_type); 2424 const char *btrfs_super_csum_driver(u16 csum_type); 2425 size_t __attribute_const__ btrfs_get_num_csums(void); 2426 2427 2428 /* 2429 * The leaf data grows from end-to-front in the node. 2430 * this returns the address of the start of the last item, 2431 * which is the stop of the leaf data stack 2432 */ 2433 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2434 { 2435 u32 nr = btrfs_header_nritems(leaf); 2436 2437 if (nr == 0) 2438 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2439 return btrfs_item_offset_nr(leaf, nr - 1); 2440 } 2441 2442 /* struct btrfs_file_extent_item */ 2443 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2444 type, 8); 2445 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2446 struct btrfs_file_extent_item, disk_bytenr, 64); 2447 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2448 struct btrfs_file_extent_item, offset, 64); 2449 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2450 struct btrfs_file_extent_item, generation, 64); 2451 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2452 struct btrfs_file_extent_item, num_bytes, 64); 2453 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2454 struct btrfs_file_extent_item, ram_bytes, 64); 2455 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2456 struct btrfs_file_extent_item, disk_num_bytes, 64); 2457 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2458 struct btrfs_file_extent_item, compression, 8); 2459 2460 static inline unsigned long 2461 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2462 { 2463 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2464 } 2465 2466 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2467 { 2468 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2469 } 2470 2471 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2472 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2473 disk_bytenr, 64); 2474 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2475 generation, 64); 2476 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2477 disk_num_bytes, 64); 2478 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2479 offset, 64); 2480 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2481 num_bytes, 64); 2482 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2483 ram_bytes, 64); 2484 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2485 compression, 8); 2486 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2487 encryption, 8); 2488 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2489 other_encoding, 16); 2490 2491 /* 2492 * this returns the number of bytes used by the item on disk, minus the 2493 * size of any extent headers. If a file is compressed on disk, this is 2494 * the compressed size 2495 */ 2496 static inline u32 btrfs_file_extent_inline_item_len( 2497 const struct extent_buffer *eb, 2498 struct btrfs_item *e) 2499 { 2500 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2501 } 2502 2503 /* btrfs_qgroup_status_item */ 2504 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2505 generation, 64); 2506 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2507 version, 64); 2508 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2509 flags, 64); 2510 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2511 rescan, 64); 2512 2513 /* btrfs_qgroup_info_item */ 2514 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2515 generation, 64); 2516 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2517 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2518 rfer_cmpr, 64); 2519 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2520 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2521 excl_cmpr, 64); 2522 2523 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2524 struct btrfs_qgroup_info_item, generation, 64); 2525 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2526 rfer, 64); 2527 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2528 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2529 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2530 excl, 64); 2531 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2532 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2533 2534 /* btrfs_qgroup_limit_item */ 2535 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2536 flags, 64); 2537 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2538 max_rfer, 64); 2539 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2540 max_excl, 64); 2541 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2542 rsv_rfer, 64); 2543 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2544 rsv_excl, 64); 2545 2546 /* btrfs_dev_replace_item */ 2547 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2548 struct btrfs_dev_replace_item, src_devid, 64); 2549 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2550 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2551 64); 2552 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2553 replace_state, 64); 2554 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2555 time_started, 64); 2556 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2557 time_stopped, 64); 2558 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2559 num_write_errors, 64); 2560 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2561 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2562 64); 2563 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2564 cursor_left, 64); 2565 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2566 cursor_right, 64); 2567 2568 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2569 struct btrfs_dev_replace_item, src_devid, 64); 2570 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2571 struct btrfs_dev_replace_item, 2572 cont_reading_from_srcdev_mode, 64); 2573 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2574 struct btrfs_dev_replace_item, replace_state, 64); 2575 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2576 struct btrfs_dev_replace_item, time_started, 64); 2577 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2578 struct btrfs_dev_replace_item, time_stopped, 64); 2579 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2580 struct btrfs_dev_replace_item, num_write_errors, 64); 2581 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2582 struct btrfs_dev_replace_item, 2583 num_uncorrectable_read_errors, 64); 2584 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2585 struct btrfs_dev_replace_item, cursor_left, 64); 2586 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2587 struct btrfs_dev_replace_item, cursor_right, 64); 2588 2589 /* helper function to cast into the data area of the leaf. */ 2590 #define btrfs_item_ptr(leaf, slot, type) \ 2591 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2592 btrfs_item_offset_nr(leaf, slot))) 2593 2594 #define btrfs_item_ptr_offset(leaf, slot) \ 2595 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2596 btrfs_item_offset_nr(leaf, slot))) 2597 2598 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2599 { 2600 return crc32c(crc, address, length); 2601 } 2602 2603 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2604 { 2605 put_unaligned_le32(~crc, result); 2606 } 2607 2608 static inline u64 btrfs_name_hash(const char *name, int len) 2609 { 2610 return crc32c((u32)~1, name, len); 2611 } 2612 2613 /* 2614 * Figure the key offset of an extended inode ref 2615 */ 2616 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2617 int len) 2618 { 2619 return (u64) crc32c(parent_objectid, name, len); 2620 } 2621 2622 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2623 { 2624 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2625 } 2626 2627 /* extent-tree.c */ 2628 2629 enum btrfs_inline_ref_type { 2630 BTRFS_REF_TYPE_INVALID, 2631 BTRFS_REF_TYPE_BLOCK, 2632 BTRFS_REF_TYPE_DATA, 2633 BTRFS_REF_TYPE_ANY, 2634 }; 2635 2636 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2637 struct btrfs_extent_inline_ref *iref, 2638 enum btrfs_inline_ref_type is_data); 2639 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2640 2641 /* 2642 * Take the number of bytes to be checksummmed and figure out how many leaves 2643 * it would require to store the csums for that many bytes. 2644 */ 2645 static inline u64 btrfs_csum_bytes_to_leaves( 2646 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2647 { 2648 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2649 2650 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2651 } 2652 2653 /* 2654 * Use this if we would be adding new items, as we could split nodes as we cow 2655 * down the tree. 2656 */ 2657 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2658 unsigned num_items) 2659 { 2660 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2661 } 2662 2663 /* 2664 * Doing a truncate or a modification won't result in new nodes or leaves, just 2665 * what we need for COW. 2666 */ 2667 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2668 unsigned num_items) 2669 { 2670 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2671 } 2672 2673 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2674 u64 start, u64 num_bytes); 2675 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2676 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2677 unsigned long count); 2678 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2679 struct btrfs_delayed_ref_root *delayed_refs, 2680 struct btrfs_delayed_ref_head *head); 2681 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2682 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2683 struct btrfs_fs_info *fs_info, u64 bytenr, 2684 u64 offset, int metadata, u64 *refs, u64 *flags); 2685 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2686 int reserved); 2687 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2688 u64 bytenr, u64 num_bytes); 2689 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2690 int btrfs_cross_ref_exist(struct btrfs_root *root, 2691 u64 objectid, u64 offset, u64 bytenr, bool strict); 2692 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2693 struct btrfs_root *root, 2694 u64 parent, u64 root_objectid, 2695 const struct btrfs_disk_key *key, 2696 int level, u64 hint, 2697 u64 empty_size, 2698 enum btrfs_lock_nesting nest); 2699 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2700 struct btrfs_root *root, 2701 struct extent_buffer *buf, 2702 u64 parent, int last_ref); 2703 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2704 struct btrfs_root *root, u64 owner, 2705 u64 offset, u64 ram_bytes, 2706 struct btrfs_key *ins); 2707 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2708 u64 root_objectid, u64 owner, u64 offset, 2709 struct btrfs_key *ins); 2710 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2711 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2712 struct btrfs_key *ins, int is_data, int delalloc); 2713 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2714 struct extent_buffer *buf, int full_backref); 2715 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2716 struct extent_buffer *buf, int full_backref); 2717 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2718 struct extent_buffer *eb, u64 flags, 2719 int level, int is_data); 2720 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2721 2722 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2723 u64 start, u64 len, int delalloc); 2724 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2725 u64 len); 2726 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2727 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2728 struct btrfs_ref *generic_ref); 2729 2730 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2731 2732 /* 2733 * Different levels for to flush space when doing space reservations. 2734 * 2735 * The higher the level, the more methods we try to reclaim space. 2736 */ 2737 enum btrfs_reserve_flush_enum { 2738 /* If we are in the transaction, we can't flush anything.*/ 2739 BTRFS_RESERVE_NO_FLUSH, 2740 2741 /* 2742 * Flush space by: 2743 * - Running delayed inode items 2744 * - Allocating a new chunk 2745 */ 2746 BTRFS_RESERVE_FLUSH_LIMIT, 2747 2748 /* 2749 * Flush space by: 2750 * - Running delayed inode items 2751 * - Running delayed refs 2752 * - Running delalloc and waiting for ordered extents 2753 * - Allocating a new chunk 2754 */ 2755 BTRFS_RESERVE_FLUSH_EVICT, 2756 2757 /* 2758 * Flush space by above mentioned methods and by: 2759 * - Running delayed iputs 2760 * - Committing transaction 2761 * 2762 * Can be interrupted by a fatal signal. 2763 */ 2764 BTRFS_RESERVE_FLUSH_DATA, 2765 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2766 BTRFS_RESERVE_FLUSH_ALL, 2767 2768 /* 2769 * Pretty much the same as FLUSH_ALL, but can also steal space from 2770 * global rsv. 2771 * 2772 * Can be interrupted by a fatal signal. 2773 */ 2774 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2775 }; 2776 2777 enum btrfs_flush_state { 2778 FLUSH_DELAYED_ITEMS_NR = 1, 2779 FLUSH_DELAYED_ITEMS = 2, 2780 FLUSH_DELAYED_REFS_NR = 3, 2781 FLUSH_DELAYED_REFS = 4, 2782 FLUSH_DELALLOC = 5, 2783 FLUSH_DELALLOC_WAIT = 6, 2784 ALLOC_CHUNK = 7, 2785 ALLOC_CHUNK_FORCE = 8, 2786 RUN_DELAYED_IPUTS = 9, 2787 COMMIT_TRANS = 10, 2788 }; 2789 2790 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2791 struct btrfs_block_rsv *rsv, 2792 int nitems, bool use_global_rsv); 2793 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2794 struct btrfs_block_rsv *rsv); 2795 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2796 2797 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes); 2798 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2799 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2800 u64 start, u64 end); 2801 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2802 u64 num_bytes, u64 *actual_bytes); 2803 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2804 2805 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2806 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2807 struct btrfs_fs_info *fs_info); 2808 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2809 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2810 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2811 2812 /* ctree.c */ 2813 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2814 int *slot); 2815 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2816 int btrfs_previous_item(struct btrfs_root *root, 2817 struct btrfs_path *path, u64 min_objectid, 2818 int type); 2819 int btrfs_previous_extent_item(struct btrfs_root *root, 2820 struct btrfs_path *path, u64 min_objectid); 2821 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2822 struct btrfs_path *path, 2823 const struct btrfs_key *new_key); 2824 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2825 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2826 struct btrfs_key *key, int lowest_level, 2827 u64 min_trans); 2828 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2829 struct btrfs_path *path, 2830 u64 min_trans); 2831 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2832 int slot); 2833 2834 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2835 struct btrfs_root *root, struct extent_buffer *buf, 2836 struct extent_buffer *parent, int parent_slot, 2837 struct extent_buffer **cow_ret, 2838 enum btrfs_lock_nesting nest); 2839 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2840 struct btrfs_root *root, 2841 struct extent_buffer *buf, 2842 struct extent_buffer **cow_ret, u64 new_root_objectid); 2843 int btrfs_block_can_be_shared(struct btrfs_root *root, 2844 struct extent_buffer *buf); 2845 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2846 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2847 int btrfs_split_item(struct btrfs_trans_handle *trans, 2848 struct btrfs_root *root, 2849 struct btrfs_path *path, 2850 const struct btrfs_key *new_key, 2851 unsigned long split_offset); 2852 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2853 struct btrfs_root *root, 2854 struct btrfs_path *path, 2855 const struct btrfs_key *new_key); 2856 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2857 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2858 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2859 const struct btrfs_key *key, struct btrfs_path *p, 2860 int ins_len, int cow); 2861 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2862 struct btrfs_path *p, u64 time_seq); 2863 int btrfs_search_slot_for_read(struct btrfs_root *root, 2864 const struct btrfs_key *key, 2865 struct btrfs_path *p, int find_higher, 2866 int return_any); 2867 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2868 struct btrfs_root *root, struct extent_buffer *parent, 2869 int start_slot, u64 *last_ret, 2870 struct btrfs_key *progress); 2871 void btrfs_release_path(struct btrfs_path *p); 2872 struct btrfs_path *btrfs_alloc_path(void); 2873 void btrfs_free_path(struct btrfs_path *p); 2874 2875 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2876 struct btrfs_path *path, int slot, int nr); 2877 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2878 struct btrfs_root *root, 2879 struct btrfs_path *path) 2880 { 2881 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2882 } 2883 2884 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 2885 const struct btrfs_key *cpu_key, u32 *data_size, 2886 int nr); 2887 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2888 const struct btrfs_key *key, void *data, u32 data_size); 2889 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 2890 struct btrfs_root *root, 2891 struct btrfs_path *path, 2892 const struct btrfs_key *cpu_key, u32 *data_size, 2893 int nr); 2894 2895 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 2896 struct btrfs_root *root, 2897 struct btrfs_path *path, 2898 const struct btrfs_key *key, 2899 u32 data_size) 2900 { 2901 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); 2902 } 2903 2904 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); 2905 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 2906 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 2907 u64 time_seq); 2908 static inline int btrfs_next_old_item(struct btrfs_root *root, 2909 struct btrfs_path *p, u64 time_seq) 2910 { 2911 ++p->slots[0]; 2912 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 2913 return btrfs_next_old_leaf(root, p, time_seq); 2914 return 0; 2915 } 2916 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 2917 { 2918 return btrfs_next_old_item(root, p, 0); 2919 } 2920 int btrfs_leaf_free_space(struct extent_buffer *leaf); 2921 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 2922 int for_reloc); 2923 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 2924 struct btrfs_root *root, 2925 struct extent_buffer *node, 2926 struct extent_buffer *parent); 2927 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 2928 { 2929 /* 2930 * Do it this way so we only ever do one test_bit in the normal case. 2931 */ 2932 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 2933 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 2934 return 2; 2935 return 1; 2936 } 2937 return 0; 2938 } 2939 2940 /* 2941 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 2942 * anything except sleeping. This function is used to check the status of 2943 * the fs. 2944 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 2945 * since setting and checking for SB_RDONLY in the superblock's flags is not 2946 * atomic. 2947 */ 2948 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 2949 { 2950 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 2951 btrfs_fs_closing(fs_info); 2952 } 2953 2954 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 2955 { 2956 sb->s_flags |= SB_RDONLY; 2957 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 2958 } 2959 2960 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 2961 { 2962 sb->s_flags &= ~SB_RDONLY; 2963 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 2964 } 2965 2966 /* root-item.c */ 2967 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 2968 u64 ref_id, u64 dirid, u64 sequence, const char *name, 2969 int name_len); 2970 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 2971 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 2972 int name_len); 2973 int btrfs_del_root(struct btrfs_trans_handle *trans, 2974 const struct btrfs_key *key); 2975 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2976 const struct btrfs_key *key, 2977 struct btrfs_root_item *item); 2978 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 2979 struct btrfs_root *root, 2980 struct btrfs_key *key, 2981 struct btrfs_root_item *item); 2982 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 2983 struct btrfs_path *path, struct btrfs_root_item *root_item, 2984 struct btrfs_key *root_key); 2985 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 2986 void btrfs_set_root_node(struct btrfs_root_item *item, 2987 struct extent_buffer *node); 2988 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 2989 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 2990 struct btrfs_root *root); 2991 2992 /* uuid-tree.c */ 2993 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 2994 u64 subid); 2995 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 2996 u64 subid); 2997 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 2998 2999 /* dir-item.c */ 3000 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3001 const char *name, int name_len); 3002 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3003 int name_len, struct btrfs_inode *dir, 3004 struct btrfs_key *location, u8 type, u64 index); 3005 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3006 struct btrfs_root *root, 3007 struct btrfs_path *path, u64 dir, 3008 const char *name, int name_len, 3009 int mod); 3010 struct btrfs_dir_item * 3011 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3012 struct btrfs_root *root, 3013 struct btrfs_path *path, u64 dir, 3014 u64 objectid, const char *name, int name_len, 3015 int mod); 3016 struct btrfs_dir_item * 3017 btrfs_search_dir_index_item(struct btrfs_root *root, 3018 struct btrfs_path *path, u64 dirid, 3019 const char *name, int name_len); 3020 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3021 struct btrfs_root *root, 3022 struct btrfs_path *path, 3023 struct btrfs_dir_item *di); 3024 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3025 struct btrfs_root *root, 3026 struct btrfs_path *path, u64 objectid, 3027 const char *name, u16 name_len, 3028 const void *data, u16 data_len); 3029 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3030 struct btrfs_root *root, 3031 struct btrfs_path *path, u64 dir, 3032 const char *name, u16 name_len, 3033 int mod); 3034 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3035 struct btrfs_path *path, 3036 const char *name, 3037 int name_len); 3038 3039 /* orphan.c */ 3040 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3041 struct btrfs_root *root, u64 offset); 3042 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3043 struct btrfs_root *root, u64 offset); 3044 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3045 3046 /* inode-item.c */ 3047 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, 3048 struct btrfs_root *root, 3049 const char *name, int name_len, 3050 u64 inode_objectid, u64 ref_objectid, u64 index); 3051 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, 3052 struct btrfs_root *root, 3053 const char *name, int name_len, 3054 u64 inode_objectid, u64 ref_objectid, u64 *index); 3055 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, 3056 struct btrfs_root *root, 3057 struct btrfs_path *path, u64 objectid); 3058 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root 3059 *root, struct btrfs_path *path, 3060 struct btrfs_key *location, int mod); 3061 3062 struct btrfs_inode_extref * 3063 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, 3064 struct btrfs_root *root, 3065 struct btrfs_path *path, 3066 const char *name, int name_len, 3067 u64 inode_objectid, u64 ref_objectid, int ins_len, 3068 int cow); 3069 3070 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf, 3071 int slot, const char *name, 3072 int name_len); 3073 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref( 3074 struct extent_buffer *leaf, int slot, u64 ref_objectid, 3075 const char *name, int name_len); 3076 /* file-item.c */ 3077 struct btrfs_dio_private; 3078 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3079 struct btrfs_root *root, u64 bytenr, u64 len); 3080 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3081 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3082 struct btrfs_root *root, 3083 u64 objectid, u64 pos, 3084 u64 disk_offset, u64 disk_num_bytes, 3085 u64 num_bytes, u64 offset, u64 ram_bytes, 3086 u8 compression, u8 encryption, u16 other_encoding); 3087 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3088 struct btrfs_root *root, 3089 struct btrfs_path *path, u64 objectid, 3090 u64 bytenr, int mod); 3091 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3092 struct btrfs_root *root, 3093 struct btrfs_ordered_sum *sums); 3094 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3095 u64 file_start, int contig); 3096 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3097 struct list_head *list, int search_commit); 3098 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3099 const struct btrfs_path *path, 3100 struct btrfs_file_extent_item *fi, 3101 const bool new_inline, 3102 struct extent_map *em); 3103 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3104 u64 len); 3105 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3106 u64 len); 3107 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3108 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3109 3110 /* inode.c */ 3111 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3112 int mirror_num, unsigned long bio_flags); 3113 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3114 struct page *page, u64 start, u64 end); 3115 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3116 u64 start, u64 len); 3117 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3118 u64 *orig_start, u64 *orig_block_len, 3119 u64 *ram_bytes, bool strict); 3120 3121 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3122 struct btrfs_inode *inode); 3123 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3124 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3125 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3126 struct btrfs_root *root, 3127 struct btrfs_inode *dir, struct btrfs_inode *inode, 3128 const char *name, int name_len); 3129 int btrfs_add_link(struct btrfs_trans_handle *trans, 3130 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3131 const char *name, int name_len, int add_backref, u64 index); 3132 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3133 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3134 int front); 3135 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3136 struct btrfs_root *root, 3137 struct btrfs_inode *inode, u64 new_size, 3138 u32 min_type, u64 *extents_found); 3139 3140 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3141 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3142 bool in_reclaim_context); 3143 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3144 unsigned int extra_bits, 3145 struct extent_state **cached_state); 3146 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3147 struct btrfs_root *new_root, 3148 struct btrfs_root *parent_root); 3149 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3150 unsigned *bits); 3151 void btrfs_clear_delalloc_extent(struct inode *inode, 3152 struct extent_state *state, unsigned *bits); 3153 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3154 struct extent_state *other); 3155 void btrfs_split_delalloc_extent(struct inode *inode, 3156 struct extent_state *orig, u64 split); 3157 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 3158 unsigned long bio_flags); 3159 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3160 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3161 int btrfs_readpage(struct file *file, struct page *page); 3162 void btrfs_evict_inode(struct inode *inode); 3163 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3164 struct inode *btrfs_alloc_inode(struct super_block *sb); 3165 void btrfs_destroy_inode(struct inode *inode); 3166 void btrfs_free_inode(struct inode *inode); 3167 int btrfs_drop_inode(struct inode *inode); 3168 int __init btrfs_init_cachep(void); 3169 void __cold btrfs_destroy_cachep(void); 3170 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3171 struct btrfs_root *root, struct btrfs_path *path); 3172 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3173 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3174 struct page *page, size_t pg_offset, 3175 u64 start, u64 end); 3176 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3177 struct btrfs_root *root, struct btrfs_inode *inode); 3178 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3179 struct btrfs_root *root, struct btrfs_inode *inode); 3180 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3181 struct btrfs_inode *inode); 3182 int btrfs_orphan_cleanup(struct btrfs_root *root); 3183 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3184 void btrfs_add_delayed_iput(struct inode *inode); 3185 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3186 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3187 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3188 u64 start, u64 num_bytes, u64 min_size, 3189 loff_t actual_len, u64 *alloc_hint); 3190 int btrfs_prealloc_file_range_trans(struct inode *inode, 3191 struct btrfs_trans_handle *trans, int mode, 3192 u64 start, u64 num_bytes, u64 min_size, 3193 loff_t actual_len, u64 *alloc_hint); 3194 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3195 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3196 struct writeback_control *wbc); 3197 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end); 3198 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3199 struct page *page, u64 start, 3200 u64 end, int uptodate); 3201 extern const struct dentry_operations btrfs_dentry_operations; 3202 extern const struct iomap_ops btrfs_dio_iomap_ops; 3203 extern const struct iomap_dio_ops btrfs_dio_ops; 3204 3205 /* Inode locking type flags, by default the exclusive lock is taken */ 3206 #define BTRFS_ILOCK_SHARED (1U << 0) 3207 #define BTRFS_ILOCK_TRY (1U << 1) 3208 #define BTRFS_ILOCK_MMAP (1U << 2) 3209 3210 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3211 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3212 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3213 const u64 add_bytes, 3214 const u64 del_bytes); 3215 3216 /* ioctl.c */ 3217 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3218 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3219 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3220 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3221 struct dentry *dentry, struct fileattr *fa); 3222 int btrfs_ioctl_get_supported_features(void __user *arg); 3223 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3224 int __pure btrfs_is_empty_uuid(u8 *uuid); 3225 int btrfs_defrag_file(struct inode *inode, struct file *file, 3226 struct btrfs_ioctl_defrag_range_args *range, 3227 u64 newer_than, unsigned long max_pages); 3228 void btrfs_get_block_group_info(struct list_head *groups_list, 3229 struct btrfs_ioctl_space_info *space); 3230 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3231 struct btrfs_ioctl_balance_args *bargs); 3232 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3233 enum btrfs_exclusive_operation type); 3234 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3235 enum btrfs_exclusive_operation type); 3236 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3237 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3238 3239 /* file.c */ 3240 int __init btrfs_auto_defrag_init(void); 3241 void __cold btrfs_auto_defrag_exit(void); 3242 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3243 struct btrfs_inode *inode); 3244 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3245 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3246 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3247 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3248 int skip_pinned); 3249 extern const struct file_operations btrfs_file_operations; 3250 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3251 struct btrfs_root *root, struct btrfs_inode *inode, 3252 struct btrfs_drop_extents_args *args); 3253 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3254 struct btrfs_path *path, const u64 start, 3255 const u64 end, 3256 struct btrfs_replace_extent_info *extent_info, 3257 struct btrfs_trans_handle **trans_out); 3258 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3259 struct btrfs_inode *inode, u64 start, u64 end); 3260 int btrfs_release_file(struct inode *inode, struct file *file); 3261 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3262 size_t num_pages, loff_t pos, size_t write_bytes, 3263 struct extent_state **cached, bool noreserve); 3264 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3265 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3266 size_t *write_bytes); 3267 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3268 3269 /* tree-defrag.c */ 3270 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3271 struct btrfs_root *root); 3272 3273 /* super.c */ 3274 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3275 unsigned long new_flags); 3276 int btrfs_sync_fs(struct super_block *sb, int wait); 3277 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3278 u64 subvol_objectid); 3279 3280 static inline __printf(2, 3) __cold 3281 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3282 { 3283 } 3284 3285 #ifdef CONFIG_PRINTK 3286 __printf(2, 3) 3287 __cold 3288 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3289 #else 3290 #define btrfs_printk(fs_info, fmt, args...) \ 3291 btrfs_no_printk(fs_info, fmt, ##args) 3292 #endif 3293 3294 #define btrfs_emerg(fs_info, fmt, args...) \ 3295 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3296 #define btrfs_alert(fs_info, fmt, args...) \ 3297 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3298 #define btrfs_crit(fs_info, fmt, args...) \ 3299 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3300 #define btrfs_err(fs_info, fmt, args...) \ 3301 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3302 #define btrfs_warn(fs_info, fmt, args...) \ 3303 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3304 #define btrfs_notice(fs_info, fmt, args...) \ 3305 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3306 #define btrfs_info(fs_info, fmt, args...) \ 3307 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3308 3309 /* 3310 * Wrappers that use printk_in_rcu 3311 */ 3312 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3313 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3314 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3315 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3316 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3317 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3318 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3319 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3320 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3321 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3322 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3323 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3324 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3325 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3326 3327 /* 3328 * Wrappers that use a ratelimited printk_in_rcu 3329 */ 3330 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3331 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3332 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3333 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3334 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3335 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3336 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3337 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3338 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3339 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3340 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3341 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3342 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3343 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3344 3345 /* 3346 * Wrappers that use a ratelimited printk 3347 */ 3348 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3349 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3350 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3351 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3352 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3353 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3354 #define btrfs_err_rl(fs_info, fmt, args...) \ 3355 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3356 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3357 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3358 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3359 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3360 #define btrfs_info_rl(fs_info, fmt, args...) \ 3361 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3362 3363 #if defined(CONFIG_DYNAMIC_DEBUG) 3364 #define btrfs_debug(fs_info, fmt, args...) \ 3365 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3366 fs_info, KERN_DEBUG fmt, ##args) 3367 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3368 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3369 fs_info, KERN_DEBUG fmt, ##args) 3370 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3371 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3372 fs_info, KERN_DEBUG fmt, ##args) 3373 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3374 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3375 fs_info, KERN_DEBUG fmt, ##args) 3376 #elif defined(DEBUG) 3377 #define btrfs_debug(fs_info, fmt, args...) \ 3378 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3379 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3380 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3381 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3382 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3383 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3384 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3385 #else 3386 #define btrfs_debug(fs_info, fmt, args...) \ 3387 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3388 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3389 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3390 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3391 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3392 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3393 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3394 #endif 3395 3396 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3397 do { \ 3398 rcu_read_lock(); \ 3399 btrfs_printk(fs_info, fmt, ##args); \ 3400 rcu_read_unlock(); \ 3401 } while (0) 3402 3403 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3404 do { \ 3405 rcu_read_lock(); \ 3406 btrfs_no_printk(fs_info, fmt, ##args); \ 3407 rcu_read_unlock(); \ 3408 } while (0) 3409 3410 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3411 do { \ 3412 static DEFINE_RATELIMIT_STATE(_rs, \ 3413 DEFAULT_RATELIMIT_INTERVAL, \ 3414 DEFAULT_RATELIMIT_BURST); \ 3415 if (__ratelimit(&_rs)) \ 3416 btrfs_printk(fs_info, fmt, ##args); \ 3417 } while (0) 3418 3419 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3420 do { \ 3421 rcu_read_lock(); \ 3422 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3423 rcu_read_unlock(); \ 3424 } while (0) 3425 3426 #ifdef CONFIG_BTRFS_ASSERT 3427 __cold __noreturn 3428 static inline void assertfail(const char *expr, const char *file, int line) 3429 { 3430 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3431 BUG(); 3432 } 3433 3434 #define ASSERT(expr) \ 3435 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3436 3437 #else 3438 static inline void assertfail(const char *expr, const char* file, int line) { } 3439 #define ASSERT(expr) (void)(expr) 3440 #endif 3441 3442 #if BITS_PER_LONG == 32 3443 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3444 /* 3445 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3446 * addresses of extents. 3447 * 3448 * For 4K page size it's about 10T, for 64K it's 160T. 3449 */ 3450 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3451 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3452 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3453 #endif 3454 3455 /* 3456 * Get the correct offset inside the page of extent buffer. 3457 * 3458 * @eb: target extent buffer 3459 * @start: offset inside the extent buffer 3460 * 3461 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3462 */ 3463 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3464 unsigned long offset) 3465 { 3466 /* 3467 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3468 * to PAGE_SIZE, thus adding it won't cause any difference. 3469 * 3470 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3471 * to the eb, thus we have to take the eb->start into consideration. 3472 */ 3473 return offset_in_page(offset + eb->start); 3474 } 3475 3476 static inline unsigned long get_eb_page_index(unsigned long offset) 3477 { 3478 /* 3479 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3480 * 3481 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3482 * and have ensured that all tree blocks are contained in one page, 3483 * thus we always get index == 0. 3484 */ 3485 return offset >> PAGE_SHIFT; 3486 } 3487 3488 /* 3489 * Use that for functions that are conditionally exported for sanity tests but 3490 * otherwise static 3491 */ 3492 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3493 #define EXPORT_FOR_TESTS static 3494 #else 3495 #define EXPORT_FOR_TESTS 3496 #endif 3497 3498 __cold 3499 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3500 { 3501 btrfs_err(fs_info, 3502 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3503 } 3504 3505 __printf(5, 6) 3506 __cold 3507 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3508 unsigned int line, int errno, const char *fmt, ...); 3509 3510 const char * __attribute_const__ btrfs_decode_error(int errno); 3511 3512 __cold 3513 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3514 const char *function, 3515 unsigned int line, int errno); 3516 3517 /* 3518 * Call btrfs_abort_transaction as early as possible when an error condition is 3519 * detected, that way the exact line number is reported. 3520 */ 3521 #define btrfs_abort_transaction(trans, errno) \ 3522 do { \ 3523 /* Report first abort since mount */ \ 3524 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3525 &((trans)->fs_info->fs_state))) { \ 3526 if ((errno) != -EIO && (errno) != -EROFS) { \ 3527 WARN(1, KERN_DEBUG \ 3528 "BTRFS: Transaction aborted (error %d)\n", \ 3529 (errno)); \ 3530 } else { \ 3531 btrfs_debug((trans)->fs_info, \ 3532 "Transaction aborted (error %d)", \ 3533 (errno)); \ 3534 } \ 3535 } \ 3536 __btrfs_abort_transaction((trans), __func__, \ 3537 __LINE__, (errno)); \ 3538 } while (0) 3539 3540 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3541 do { \ 3542 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3543 (errno), fmt, ##args); \ 3544 } while (0) 3545 3546 __printf(5, 6) 3547 __cold 3548 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3549 unsigned int line, int errno, const char *fmt, ...); 3550 /* 3551 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3552 * will panic(). Otherwise we BUG() here. 3553 */ 3554 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3555 do { \ 3556 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3557 BUG(); \ 3558 } while (0) 3559 3560 3561 /* compatibility and incompatibility defines */ 3562 3563 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3564 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3565 #opt) 3566 3567 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3568 u64 flag, const char* name) 3569 { 3570 struct btrfs_super_block *disk_super; 3571 u64 features; 3572 3573 disk_super = fs_info->super_copy; 3574 features = btrfs_super_incompat_flags(disk_super); 3575 if (!(features & flag)) { 3576 spin_lock(&fs_info->super_lock); 3577 features = btrfs_super_incompat_flags(disk_super); 3578 if (!(features & flag)) { 3579 features |= flag; 3580 btrfs_set_super_incompat_flags(disk_super, features); 3581 btrfs_info(fs_info, 3582 "setting incompat feature flag for %s (0x%llx)", 3583 name, flag); 3584 } 3585 spin_unlock(&fs_info->super_lock); 3586 } 3587 } 3588 3589 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3590 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3591 #opt) 3592 3593 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3594 u64 flag, const char* name) 3595 { 3596 struct btrfs_super_block *disk_super; 3597 u64 features; 3598 3599 disk_super = fs_info->super_copy; 3600 features = btrfs_super_incompat_flags(disk_super); 3601 if (features & flag) { 3602 spin_lock(&fs_info->super_lock); 3603 features = btrfs_super_incompat_flags(disk_super); 3604 if (features & flag) { 3605 features &= ~flag; 3606 btrfs_set_super_incompat_flags(disk_super, features); 3607 btrfs_info(fs_info, 3608 "clearing incompat feature flag for %s (0x%llx)", 3609 name, flag); 3610 } 3611 spin_unlock(&fs_info->super_lock); 3612 } 3613 } 3614 3615 #define btrfs_fs_incompat(fs_info, opt) \ 3616 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3617 3618 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3619 { 3620 struct btrfs_super_block *disk_super; 3621 disk_super = fs_info->super_copy; 3622 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3623 } 3624 3625 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3626 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3627 #opt) 3628 3629 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3630 u64 flag, const char *name) 3631 { 3632 struct btrfs_super_block *disk_super; 3633 u64 features; 3634 3635 disk_super = fs_info->super_copy; 3636 features = btrfs_super_compat_ro_flags(disk_super); 3637 if (!(features & flag)) { 3638 spin_lock(&fs_info->super_lock); 3639 features = btrfs_super_compat_ro_flags(disk_super); 3640 if (!(features & flag)) { 3641 features |= flag; 3642 btrfs_set_super_compat_ro_flags(disk_super, features); 3643 btrfs_info(fs_info, 3644 "setting compat-ro feature flag for %s (0x%llx)", 3645 name, flag); 3646 } 3647 spin_unlock(&fs_info->super_lock); 3648 } 3649 } 3650 3651 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3652 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3653 #opt) 3654 3655 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3656 u64 flag, const char *name) 3657 { 3658 struct btrfs_super_block *disk_super; 3659 u64 features; 3660 3661 disk_super = fs_info->super_copy; 3662 features = btrfs_super_compat_ro_flags(disk_super); 3663 if (features & flag) { 3664 spin_lock(&fs_info->super_lock); 3665 features = btrfs_super_compat_ro_flags(disk_super); 3666 if (features & flag) { 3667 features &= ~flag; 3668 btrfs_set_super_compat_ro_flags(disk_super, features); 3669 btrfs_info(fs_info, 3670 "clearing compat-ro feature flag for %s (0x%llx)", 3671 name, flag); 3672 } 3673 spin_unlock(&fs_info->super_lock); 3674 } 3675 } 3676 3677 #define btrfs_fs_compat_ro(fs_info, opt) \ 3678 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3679 3680 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3681 { 3682 struct btrfs_super_block *disk_super; 3683 disk_super = fs_info->super_copy; 3684 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3685 } 3686 3687 /* acl.c */ 3688 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3689 struct posix_acl *btrfs_get_acl(struct inode *inode, int type); 3690 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3691 struct posix_acl *acl, int type); 3692 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3693 struct inode *inode, struct inode *dir); 3694 #else 3695 #define btrfs_get_acl NULL 3696 #define btrfs_set_acl NULL 3697 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3698 struct inode *inode, struct inode *dir) 3699 { 3700 return 0; 3701 } 3702 #endif 3703 3704 /* relocation.c */ 3705 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3706 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3707 struct btrfs_root *root); 3708 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3709 struct btrfs_root *root); 3710 int btrfs_recover_relocation(struct btrfs_root *root); 3711 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3712 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3713 struct btrfs_root *root, struct extent_buffer *buf, 3714 struct extent_buffer *cow); 3715 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3716 u64 *bytes_to_reserve); 3717 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3718 struct btrfs_pending_snapshot *pending); 3719 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3720 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3721 u64 bytenr); 3722 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3723 3724 /* scrub.c */ 3725 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3726 u64 end, struct btrfs_scrub_progress *progress, 3727 int readonly, int is_dev_replace); 3728 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3729 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3730 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3731 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3732 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3733 struct btrfs_scrub_progress *progress); 3734 static inline void btrfs_init_full_stripe_locks_tree( 3735 struct btrfs_full_stripe_locks_tree *locks_root) 3736 { 3737 locks_root->root = RB_ROOT; 3738 mutex_init(&locks_root->lock); 3739 } 3740 3741 /* dev-replace.c */ 3742 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3743 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3744 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3745 3746 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3747 { 3748 btrfs_bio_counter_sub(fs_info, 1); 3749 } 3750 3751 /* reada.c */ 3752 struct reada_control { 3753 struct btrfs_fs_info *fs_info; /* tree to prefetch */ 3754 struct btrfs_key key_start; 3755 struct btrfs_key key_end; /* exclusive */ 3756 atomic_t elems; 3757 struct kref refcnt; 3758 wait_queue_head_t wait; 3759 }; 3760 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 3761 struct btrfs_key *start, struct btrfs_key *end); 3762 int btrfs_reada_wait(void *handle); 3763 void btrfs_reada_detach(void *handle); 3764 int btree_readahead_hook(struct extent_buffer *eb, int err); 3765 void btrfs_reada_remove_dev(struct btrfs_device *dev); 3766 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev); 3767 3768 static inline int is_fstree(u64 rootid) 3769 { 3770 if (rootid == BTRFS_FS_TREE_OBJECTID || 3771 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3772 !btrfs_qgroup_level(rootid))) 3773 return 1; 3774 return 0; 3775 } 3776 3777 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3778 { 3779 return signal_pending(current); 3780 } 3781 3782 /* Sanity test specific functions */ 3783 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3784 void btrfs_test_destroy_inode(struct inode *inode); 3785 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3786 { 3787 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3788 } 3789 #else 3790 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3791 { 3792 return 0; 3793 } 3794 #endif 3795 3796 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3797 { 3798 return fs_info->zoned != 0; 3799 } 3800 3801 /* 3802 * We use page status Private2 to indicate there is an ordered extent with 3803 * unfinished IO. 3804 * 3805 * Rename the Private2 accessors to Ordered, to improve readability. 3806 */ 3807 #define PageOrdered(page) PagePrivate2(page) 3808 #define SetPageOrdered(page) SetPagePrivate2(page) 3809 #define ClearPageOrdered(page) ClearPagePrivate2(page) 3810 3811 #endif 3812