xref: /linux/fs/btrfs/ctree.h (revision ae64438be1923e3c1102d90fd41db7afcfaf54cc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_path_cachep;
46 extern struct kmem_cache *btrfs_free_space_cachep;
47 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
48 struct btrfs_ordered_sum;
49 struct btrfs_ref;
50 struct btrfs_bio;
51 struct btrfs_ioctl_encoded_io_args;
52 struct btrfs_device;
53 struct btrfs_fs_devices;
54 struct btrfs_balance_control;
55 struct btrfs_delayed_root;
56 struct reloc_control;
57 
58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
59 
60 /*
61  * Maximum number of mirrors that can be available for all profiles counting
62  * the target device of dev-replace as one. During an active device replace
63  * procedure, the target device of the copy operation is a mirror for the
64  * filesystem data as well that can be used to read data in order to repair
65  * read errors on other disks.
66  *
67  * Current value is derived from RAID1C4 with 4 copies.
68  */
69 #define BTRFS_MAX_MIRRORS (4 + 1)
70 
71 #define BTRFS_MAX_LEVEL 8
72 
73 #define BTRFS_OLDEST_GENERATION	0ULL
74 
75 /*
76  * we can actually store much bigger names, but lets not confuse the rest
77  * of linux
78  */
79 #define BTRFS_NAME_LEN 255
80 
81 /*
82  * Theoretical limit is larger, but we keep this down to a sane
83  * value. That should limit greatly the possibility of collisions on
84  * inode ref items.
85  */
86 #define BTRFS_LINK_MAX 65535U
87 
88 #define BTRFS_EMPTY_DIR_SIZE 0
89 
90 /* ioprio of readahead is set to idle */
91 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
92 
93 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
94 
95 /*
96  * Use large batch size to reduce overhead of metadata updates.  On the reader
97  * side, we only read it when we are close to ENOSPC and the read overhead is
98  * mostly related to the number of CPUs, so it is OK to use arbitrary large
99  * value here.
100  */
101 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
102 
103 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
104 
105 /*
106  * Deltas are an effective way to populate global statistics.  Give macro names
107  * to make it clear what we're doing.  An example is discard_extents in
108  * btrfs_free_space_ctl.
109  */
110 #define BTRFS_STAT_NR_ENTRIES	2
111 #define BTRFS_STAT_CURR		0
112 #define BTRFS_STAT_PREV		1
113 
114 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
115 {
116 	BUG_ON(num_stripes == 0);
117 	return sizeof(struct btrfs_chunk) +
118 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
119 }
120 
121 /*
122  * Runtime (in-memory) states of filesystem
123  */
124 enum {
125 	/* Global indicator of serious filesystem errors */
126 	BTRFS_FS_STATE_ERROR,
127 	/*
128 	 * Filesystem is being remounted, allow to skip some operations, like
129 	 * defrag
130 	 */
131 	BTRFS_FS_STATE_REMOUNTING,
132 	/* Filesystem in RO mode */
133 	BTRFS_FS_STATE_RO,
134 	/* Track if a transaction abort has been reported on this filesystem */
135 	BTRFS_FS_STATE_TRANS_ABORTED,
136 	/*
137 	 * Bio operations should be blocked on this filesystem because a source
138 	 * or target device is being destroyed as part of a device replace
139 	 */
140 	BTRFS_FS_STATE_DEV_REPLACING,
141 	/* The btrfs_fs_info created for self-tests */
142 	BTRFS_FS_STATE_DUMMY_FS_INFO,
143 
144 	BTRFS_FS_STATE_NO_CSUMS,
145 
146 	/* Indicates there was an error cleaning up a log tree. */
147 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
148 
149 	BTRFS_FS_STATE_COUNT
150 };
151 
152 #define BTRFS_BACKREF_REV_MAX		256
153 #define BTRFS_BACKREF_REV_SHIFT		56
154 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
155 					 BTRFS_BACKREF_REV_SHIFT)
156 
157 #define BTRFS_OLD_BACKREF_REV		0
158 #define BTRFS_MIXED_BACKREF_REV		1
159 
160 /*
161  * every tree block (leaf or node) starts with this header.
162  */
163 struct btrfs_header {
164 	/* these first four must match the super block */
165 	u8 csum[BTRFS_CSUM_SIZE];
166 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
167 	__le64 bytenr; /* which block this node is supposed to live in */
168 	__le64 flags;
169 
170 	/* allowed to be different from the super from here on down */
171 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
172 	__le64 generation;
173 	__le64 owner;
174 	__le32 nritems;
175 	u8 level;
176 } __attribute__ ((__packed__));
177 
178 /*
179  * this is a very generous portion of the super block, giving us
180  * room to translate 14 chunks with 3 stripes each.
181  */
182 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
183 
184 /*
185  * just in case we somehow lose the roots and are not able to mount,
186  * we store an array of the roots from previous transactions
187  * in the super.
188  */
189 #define BTRFS_NUM_BACKUP_ROOTS 4
190 struct btrfs_root_backup {
191 	__le64 tree_root;
192 	__le64 tree_root_gen;
193 
194 	__le64 chunk_root;
195 	__le64 chunk_root_gen;
196 
197 	__le64 extent_root;
198 	__le64 extent_root_gen;
199 
200 	__le64 fs_root;
201 	__le64 fs_root_gen;
202 
203 	__le64 dev_root;
204 	__le64 dev_root_gen;
205 
206 	__le64 csum_root;
207 	__le64 csum_root_gen;
208 
209 	__le64 total_bytes;
210 	__le64 bytes_used;
211 	__le64 num_devices;
212 	/* future */
213 	__le64 unused_64[4];
214 
215 	u8 tree_root_level;
216 	u8 chunk_root_level;
217 	u8 extent_root_level;
218 	u8 fs_root_level;
219 	u8 dev_root_level;
220 	u8 csum_root_level;
221 	/* future and to align */
222 	u8 unused_8[10];
223 } __attribute__ ((__packed__));
224 
225 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
226 #define BTRFS_SUPER_INFO_SIZE			4096
227 
228 /*
229  * The reserved space at the beginning of each device.
230  * It covers the primary super block and leaves space for potential use by other
231  * tools like bootloaders or to lower potential damage of accidental overwrite.
232  */
233 #define BTRFS_DEVICE_RANGE_RESERVED			(SZ_1M)
234 
235 /*
236  * the super block basically lists the main trees of the FS
237  * it currently lacks any block count etc etc
238  */
239 struct btrfs_super_block {
240 	/* the first 4 fields must match struct btrfs_header */
241 	u8 csum[BTRFS_CSUM_SIZE];
242 	/* FS specific UUID, visible to user */
243 	u8 fsid[BTRFS_FSID_SIZE];
244 	__le64 bytenr; /* this block number */
245 	__le64 flags;
246 
247 	/* allowed to be different from the btrfs_header from here own down */
248 	__le64 magic;
249 	__le64 generation;
250 	__le64 root;
251 	__le64 chunk_root;
252 	__le64 log_root;
253 
254 	/*
255 	 * This member has never been utilized since the very beginning, thus
256 	 * it's always 0 regardless of kernel version.  We always use
257 	 * generation + 1 to read log tree root.  So here we mark it deprecated.
258 	 */
259 	__le64 __unused_log_root_transid;
260 	__le64 total_bytes;
261 	__le64 bytes_used;
262 	__le64 root_dir_objectid;
263 	__le64 num_devices;
264 	__le32 sectorsize;
265 	__le32 nodesize;
266 	__le32 __unused_leafsize;
267 	__le32 stripesize;
268 	__le32 sys_chunk_array_size;
269 	__le64 chunk_root_generation;
270 	__le64 compat_flags;
271 	__le64 compat_ro_flags;
272 	__le64 incompat_flags;
273 	__le16 csum_type;
274 	u8 root_level;
275 	u8 chunk_root_level;
276 	u8 log_root_level;
277 	struct btrfs_dev_item dev_item;
278 
279 	char label[BTRFS_LABEL_SIZE];
280 
281 	__le64 cache_generation;
282 	__le64 uuid_tree_generation;
283 
284 	/* the UUID written into btree blocks */
285 	u8 metadata_uuid[BTRFS_FSID_SIZE];
286 
287 	/* future expansion */
288 	u8 reserved8[8];
289 	__le64 reserved[27];
290 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
291 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
292 
293 	/* Padded to 4096 bytes */
294 	u8 padding[565];
295 } __attribute__ ((__packed__));
296 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
297 
298 /*
299  * Compat flags that we support.  If any incompat flags are set other than the
300  * ones specified below then we will fail to mount
301  */
302 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
303 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
304 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
305 
306 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
307 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
308 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
309 	 BTRFS_FEATURE_COMPAT_RO_VERITY |		\
310 	 BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE)
311 
312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
314 
315 #ifdef CONFIG_BTRFS_DEBUG
316 /*
317  * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
318  */
319 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
320 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
321 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
322 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
323 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
324 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
325 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
326 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
327 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
328 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
329 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
330 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
331 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
332 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
333 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
334 #else
335 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
336 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
337 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
338 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
339 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
340 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
341 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
342 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
343 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
344 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
345 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
346 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
347 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
348 	 BTRFS_FEATURE_INCOMPAT_ZONED)
349 #endif
350 
351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
352 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
354 
355 /*
356  * A leaf is full of items. offset and size tell us where to find
357  * the item in the leaf (relative to the start of the data area)
358  */
359 struct btrfs_item {
360 	struct btrfs_disk_key key;
361 	__le32 offset;
362 	__le32 size;
363 } __attribute__ ((__packed__));
364 
365 /*
366  * leaves have an item area and a data area:
367  * [item0, item1....itemN] [free space] [dataN...data1, data0]
368  *
369  * The data is separate from the items to get the keys closer together
370  * during searches.
371  */
372 struct btrfs_leaf {
373 	struct btrfs_header header;
374 	struct btrfs_item items[];
375 } __attribute__ ((__packed__));
376 
377 /*
378  * all non-leaf blocks are nodes, they hold only keys and pointers to
379  * other blocks
380  */
381 struct btrfs_key_ptr {
382 	struct btrfs_disk_key key;
383 	__le64 blockptr;
384 	__le64 generation;
385 } __attribute__ ((__packed__));
386 
387 struct btrfs_node {
388 	struct btrfs_header header;
389 	struct btrfs_key_ptr ptrs[];
390 } __attribute__ ((__packed__));
391 
392 /* Read ahead values for struct btrfs_path.reada */
393 enum {
394 	READA_NONE,
395 	READA_BACK,
396 	READA_FORWARD,
397 	/*
398 	 * Similar to READA_FORWARD but unlike it:
399 	 *
400 	 * 1) It will trigger readahead even for leaves that are not close to
401 	 *    each other on disk;
402 	 * 2) It also triggers readahead for nodes;
403 	 * 3) During a search, even when a node or leaf is already in memory, it
404 	 *    will still trigger readahead for other nodes and leaves that follow
405 	 *    it.
406 	 *
407 	 * This is meant to be used only when we know we are iterating over the
408 	 * entire tree or a very large part of it.
409 	 */
410 	READA_FORWARD_ALWAYS,
411 };
412 
413 /*
414  * btrfs_paths remember the path taken from the root down to the leaf.
415  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
416  * to any other levels that are present.
417  *
418  * The slots array records the index of the item or block pointer
419  * used while walking the tree.
420  */
421 struct btrfs_path {
422 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
423 	int slots[BTRFS_MAX_LEVEL];
424 	/* if there is real range locking, this locks field will change */
425 	u8 locks[BTRFS_MAX_LEVEL];
426 	u8 reada;
427 	/* keep some upper locks as we walk down */
428 	u8 lowest_level;
429 
430 	/*
431 	 * set by btrfs_split_item, tells search_slot to keep all locks
432 	 * and to force calls to keep space in the nodes
433 	 */
434 	unsigned int search_for_split:1;
435 	unsigned int keep_locks:1;
436 	unsigned int skip_locking:1;
437 	unsigned int search_commit_root:1;
438 	unsigned int need_commit_sem:1;
439 	unsigned int skip_release_on_error:1;
440 	/*
441 	 * Indicate that new item (btrfs_search_slot) is extending already
442 	 * existing item and ins_len contains only the data size and not item
443 	 * header (ie. sizeof(struct btrfs_item) is not included).
444 	 */
445 	unsigned int search_for_extension:1;
446 	/* Stop search if any locks need to be taken (for read) */
447 	unsigned int nowait:1;
448 };
449 
450 struct btrfs_dev_replace {
451 	u64 replace_state;	/* see #define above */
452 	time64_t time_started;	/* seconds since 1-Jan-1970 */
453 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
454 	atomic64_t num_write_errors;
455 	atomic64_t num_uncorrectable_read_errors;
456 
457 	u64 cursor_left;
458 	u64 committed_cursor_left;
459 	u64 cursor_left_last_write_of_item;
460 	u64 cursor_right;
461 
462 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
463 
464 	int is_valid;
465 	int item_needs_writeback;
466 	struct btrfs_device *srcdev;
467 	struct btrfs_device *tgtdev;
468 
469 	struct mutex lock_finishing_cancel_unmount;
470 	struct rw_semaphore rwsem;
471 
472 	struct btrfs_scrub_progress scrub_progress;
473 
474 	struct percpu_counter bio_counter;
475 	wait_queue_head_t replace_wait;
476 };
477 
478 /*
479  * free clusters are used to claim free space in relatively large chunks,
480  * allowing us to do less seeky writes. They are used for all metadata
481  * allocations. In ssd_spread mode they are also used for data allocations.
482  */
483 struct btrfs_free_cluster {
484 	spinlock_t lock;
485 	spinlock_t refill_lock;
486 	struct rb_root root;
487 
488 	/* largest extent in this cluster */
489 	u64 max_size;
490 
491 	/* first extent starting offset */
492 	u64 window_start;
493 
494 	/* We did a full search and couldn't create a cluster */
495 	bool fragmented;
496 
497 	struct btrfs_block_group *block_group;
498 	/*
499 	 * when a cluster is allocated from a block group, we put the
500 	 * cluster onto a list in the block group so that it can
501 	 * be freed before the block group is freed.
502 	 */
503 	struct list_head block_group_list;
504 };
505 
506 /* Discard control. */
507 /*
508  * Async discard uses multiple lists to differentiate the discard filter
509  * parameters.  Index 0 is for completely free block groups where we need to
510  * ensure the entire block group is trimmed without being lossy.  Indices
511  * afterwards represent monotonically decreasing discard filter sizes to
512  * prioritize what should be discarded next.
513  */
514 #define BTRFS_NR_DISCARD_LISTS		3
515 #define BTRFS_DISCARD_INDEX_UNUSED	0
516 #define BTRFS_DISCARD_INDEX_START	1
517 
518 struct btrfs_discard_ctl {
519 	struct workqueue_struct *discard_workers;
520 	struct delayed_work work;
521 	spinlock_t lock;
522 	struct btrfs_block_group *block_group;
523 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
524 	u64 prev_discard;
525 	u64 prev_discard_time;
526 	atomic_t discardable_extents;
527 	atomic64_t discardable_bytes;
528 	u64 max_discard_size;
529 	u64 delay_ms;
530 	u32 iops_limit;
531 	u32 kbps_limit;
532 	u64 discard_extent_bytes;
533 	u64 discard_bitmap_bytes;
534 	atomic64_t discard_bytes_saved;
535 };
536 
537 enum {
538 	BTRFS_FS_CLOSING_START,
539 	BTRFS_FS_CLOSING_DONE,
540 	BTRFS_FS_LOG_RECOVERING,
541 	BTRFS_FS_OPEN,
542 	BTRFS_FS_QUOTA_ENABLED,
543 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
544 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
545 	BTRFS_FS_BTREE_ERR,
546 	BTRFS_FS_LOG1_ERR,
547 	BTRFS_FS_LOG2_ERR,
548 	BTRFS_FS_QUOTA_OVERRIDE,
549 	/* Used to record internally whether fs has been frozen */
550 	BTRFS_FS_FROZEN,
551 	/*
552 	 * Indicate that balance has been set up from the ioctl and is in the
553 	 * main phase. The fs_info::balance_ctl is initialized.
554 	 */
555 	BTRFS_FS_BALANCE_RUNNING,
556 
557 	/*
558 	 * Indicate that relocation of a chunk has started, it's set per chunk
559 	 * and is toggled between chunks.
560 	 */
561 	BTRFS_FS_RELOC_RUNNING,
562 
563 	/* Indicate that the cleaner thread is awake and doing something. */
564 	BTRFS_FS_CLEANER_RUNNING,
565 
566 	/*
567 	 * The checksumming has an optimized version and is considered fast,
568 	 * so we don't need to offload checksums to workqueues.
569 	 */
570 	BTRFS_FS_CSUM_IMPL_FAST,
571 
572 	/* Indicate that the discard workqueue can service discards. */
573 	BTRFS_FS_DISCARD_RUNNING,
574 
575 	/* Indicate that we need to cleanup space cache v1 */
576 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
577 
578 	/* Indicate that we can't trust the free space tree for caching yet */
579 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
580 
581 	/* Indicate whether there are any tree modification log users */
582 	BTRFS_FS_TREE_MOD_LOG_USERS,
583 
584 	/* Indicate that we want the transaction kthread to commit right now. */
585 	BTRFS_FS_COMMIT_TRANS,
586 
587 	/* Indicate we have half completed snapshot deletions pending. */
588 	BTRFS_FS_UNFINISHED_DROPS,
589 
590 	/* Indicate we have to finish a zone to do next allocation. */
591 	BTRFS_FS_NEED_ZONE_FINISH,
592 
593 #if BITS_PER_LONG == 32
594 	/* Indicate if we have error/warn message printed on 32bit systems */
595 	BTRFS_FS_32BIT_ERROR,
596 	BTRFS_FS_32BIT_WARN,
597 #endif
598 };
599 
600 /*
601  * Exclusive operations (device replace, resize, device add/remove, balance)
602  */
603 enum btrfs_exclusive_operation {
604 	BTRFS_EXCLOP_NONE,
605 	BTRFS_EXCLOP_BALANCE_PAUSED,
606 	BTRFS_EXCLOP_BALANCE,
607 	BTRFS_EXCLOP_DEV_ADD,
608 	BTRFS_EXCLOP_DEV_REMOVE,
609 	BTRFS_EXCLOP_DEV_REPLACE,
610 	BTRFS_EXCLOP_RESIZE,
611 	BTRFS_EXCLOP_SWAP_ACTIVATE,
612 };
613 
614 /* Store data about transaction commits, exported via sysfs. */
615 struct btrfs_commit_stats {
616 	/* Total number of commits */
617 	u64 commit_count;
618 	/* The maximum commit duration so far in ns */
619 	u64 max_commit_dur;
620 	/* The last commit duration in ns */
621 	u64 last_commit_dur;
622 	/* The total commit duration in ns */
623 	u64 total_commit_dur;
624 };
625 
626 struct btrfs_fs_info {
627 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
628 	unsigned long flags;
629 	struct btrfs_root *tree_root;
630 	struct btrfs_root *chunk_root;
631 	struct btrfs_root *dev_root;
632 	struct btrfs_root *fs_root;
633 	struct btrfs_root *quota_root;
634 	struct btrfs_root *uuid_root;
635 	struct btrfs_root *data_reloc_root;
636 	struct btrfs_root *block_group_root;
637 
638 	/* the log root tree is a directory of all the other log roots */
639 	struct btrfs_root *log_root_tree;
640 
641 	/* The tree that holds the global roots (csum, extent, etc) */
642 	rwlock_t global_root_lock;
643 	struct rb_root global_root_tree;
644 
645 	spinlock_t fs_roots_radix_lock;
646 	struct radix_tree_root fs_roots_radix;
647 
648 	/* block group cache stuff */
649 	rwlock_t block_group_cache_lock;
650 	struct rb_root_cached block_group_cache_tree;
651 
652 	/* keep track of unallocated space */
653 	atomic64_t free_chunk_space;
654 
655 	/* Track ranges which are used by log trees blocks/logged data extents */
656 	struct extent_io_tree excluded_extents;
657 
658 	/* logical->physical extent mapping */
659 	struct extent_map_tree mapping_tree;
660 
661 	/*
662 	 * block reservation for extent, checksum, root tree and
663 	 * delayed dir index item
664 	 */
665 	struct btrfs_block_rsv global_block_rsv;
666 	/* block reservation for metadata operations */
667 	struct btrfs_block_rsv trans_block_rsv;
668 	/* block reservation for chunk tree */
669 	struct btrfs_block_rsv chunk_block_rsv;
670 	/* block reservation for delayed operations */
671 	struct btrfs_block_rsv delayed_block_rsv;
672 	/* block reservation for delayed refs */
673 	struct btrfs_block_rsv delayed_refs_rsv;
674 
675 	struct btrfs_block_rsv empty_block_rsv;
676 
677 	u64 generation;
678 	u64 last_trans_committed;
679 	/*
680 	 * Generation of the last transaction used for block group relocation
681 	 * since the filesystem was last mounted (or 0 if none happened yet).
682 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
683 	 */
684 	u64 last_reloc_trans;
685 	u64 avg_delayed_ref_runtime;
686 
687 	/*
688 	 * this is updated to the current trans every time a full commit
689 	 * is required instead of the faster short fsync log commits
690 	 */
691 	u64 last_trans_log_full_commit;
692 	unsigned long mount_opt;
693 	/*
694 	 * Track requests for actions that need to be done during transaction
695 	 * commit (like for some mount options).
696 	 */
697 	unsigned long pending_changes;
698 	unsigned long compress_type:4;
699 	unsigned int compress_level;
700 	u32 commit_interval;
701 	/*
702 	 * It is a suggestive number, the read side is safe even it gets a
703 	 * wrong number because we will write out the data into a regular
704 	 * extent. The write side(mount/remount) is under ->s_umount lock,
705 	 * so it is also safe.
706 	 */
707 	u64 max_inline;
708 
709 	struct btrfs_transaction *running_transaction;
710 	wait_queue_head_t transaction_throttle;
711 	wait_queue_head_t transaction_wait;
712 	wait_queue_head_t transaction_blocked_wait;
713 	wait_queue_head_t async_submit_wait;
714 
715 	/*
716 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
717 	 * when they are updated.
718 	 *
719 	 * Because we do not clear the flags for ever, so we needn't use
720 	 * the lock on the read side.
721 	 *
722 	 * We also needn't use the lock when we mount the fs, because
723 	 * there is no other task which will update the flag.
724 	 */
725 	spinlock_t super_lock;
726 	struct btrfs_super_block *super_copy;
727 	struct btrfs_super_block *super_for_commit;
728 	struct super_block *sb;
729 	struct inode *btree_inode;
730 	struct mutex tree_log_mutex;
731 	struct mutex transaction_kthread_mutex;
732 	struct mutex cleaner_mutex;
733 	struct mutex chunk_mutex;
734 
735 	/*
736 	 * this is taken to make sure we don't set block groups ro after
737 	 * the free space cache has been allocated on them
738 	 */
739 	struct mutex ro_block_group_mutex;
740 
741 	/* this is used during read/modify/write to make sure
742 	 * no two ios are trying to mod the same stripe at the same
743 	 * time
744 	 */
745 	struct btrfs_stripe_hash_table *stripe_hash_table;
746 
747 	/*
748 	 * this protects the ordered operations list only while we are
749 	 * processing all of the entries on it.  This way we make
750 	 * sure the commit code doesn't find the list temporarily empty
751 	 * because another function happens to be doing non-waiting preflush
752 	 * before jumping into the main commit.
753 	 */
754 	struct mutex ordered_operations_mutex;
755 
756 	struct rw_semaphore commit_root_sem;
757 
758 	struct rw_semaphore cleanup_work_sem;
759 
760 	struct rw_semaphore subvol_sem;
761 
762 	spinlock_t trans_lock;
763 	/*
764 	 * the reloc mutex goes with the trans lock, it is taken
765 	 * during commit to protect us from the relocation code
766 	 */
767 	struct mutex reloc_mutex;
768 
769 	struct list_head trans_list;
770 	struct list_head dead_roots;
771 	struct list_head caching_block_groups;
772 
773 	spinlock_t delayed_iput_lock;
774 	struct list_head delayed_iputs;
775 	atomic_t nr_delayed_iputs;
776 	wait_queue_head_t delayed_iputs_wait;
777 
778 	atomic64_t tree_mod_seq;
779 
780 	/* this protects tree_mod_log and tree_mod_seq_list */
781 	rwlock_t tree_mod_log_lock;
782 	struct rb_root tree_mod_log;
783 	struct list_head tree_mod_seq_list;
784 
785 	atomic_t async_delalloc_pages;
786 
787 	/*
788 	 * this is used to protect the following list -- ordered_roots.
789 	 */
790 	spinlock_t ordered_root_lock;
791 
792 	/*
793 	 * all fs/file tree roots in which there are data=ordered extents
794 	 * pending writeback are added into this list.
795 	 *
796 	 * these can span multiple transactions and basically include
797 	 * every dirty data page that isn't from nodatacow
798 	 */
799 	struct list_head ordered_roots;
800 
801 	struct mutex delalloc_root_mutex;
802 	spinlock_t delalloc_root_lock;
803 	/* all fs/file tree roots that have delalloc inodes. */
804 	struct list_head delalloc_roots;
805 
806 	/*
807 	 * there is a pool of worker threads for checksumming during writes
808 	 * and a pool for checksumming after reads.  This is because readers
809 	 * can run with FS locks held, and the writers may be waiting for
810 	 * those locks.  We don't want ordering in the pending list to cause
811 	 * deadlocks, and so the two are serviced separately.
812 	 *
813 	 * A third pool does submit_bio to avoid deadlocking with the other
814 	 * two
815 	 */
816 	struct btrfs_workqueue *workers;
817 	struct btrfs_workqueue *hipri_workers;
818 	struct btrfs_workqueue *delalloc_workers;
819 	struct btrfs_workqueue *flush_workers;
820 	struct workqueue_struct *endio_workers;
821 	struct workqueue_struct *endio_meta_workers;
822 	struct workqueue_struct *endio_raid56_workers;
823 	struct workqueue_struct *rmw_workers;
824 	struct workqueue_struct *compressed_write_workers;
825 	struct btrfs_workqueue *endio_write_workers;
826 	struct btrfs_workqueue *endio_freespace_worker;
827 	struct btrfs_workqueue *caching_workers;
828 
829 	/*
830 	 * fixup workers take dirty pages that didn't properly go through
831 	 * the cow mechanism and make them safe to write.  It happens
832 	 * for the sys_munmap function call path
833 	 */
834 	struct btrfs_workqueue *fixup_workers;
835 	struct btrfs_workqueue *delayed_workers;
836 
837 	struct task_struct *transaction_kthread;
838 	struct task_struct *cleaner_kthread;
839 	u32 thread_pool_size;
840 
841 	struct kobject *space_info_kobj;
842 	struct kobject *qgroups_kobj;
843 	struct kobject *discard_kobj;
844 
845 	/* used to keep from writing metadata until there is a nice batch */
846 	struct percpu_counter dirty_metadata_bytes;
847 	struct percpu_counter delalloc_bytes;
848 	struct percpu_counter ordered_bytes;
849 	s32 dirty_metadata_batch;
850 	s32 delalloc_batch;
851 
852 	struct list_head dirty_cowonly_roots;
853 
854 	struct btrfs_fs_devices *fs_devices;
855 
856 	/*
857 	 * The space_info list is effectively read only after initial
858 	 * setup.  It is populated at mount time and cleaned up after
859 	 * all block groups are removed.  RCU is used to protect it.
860 	 */
861 	struct list_head space_info;
862 
863 	struct btrfs_space_info *data_sinfo;
864 
865 	struct reloc_control *reloc_ctl;
866 
867 	/* data_alloc_cluster is only used in ssd_spread mode */
868 	struct btrfs_free_cluster data_alloc_cluster;
869 
870 	/* all metadata allocations go through this cluster */
871 	struct btrfs_free_cluster meta_alloc_cluster;
872 
873 	/* auto defrag inodes go here */
874 	spinlock_t defrag_inodes_lock;
875 	struct rb_root defrag_inodes;
876 	atomic_t defrag_running;
877 
878 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
879 	seqlock_t profiles_lock;
880 	/*
881 	 * these three are in extended format (availability of single
882 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
883 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
884 	 */
885 	u64 avail_data_alloc_bits;
886 	u64 avail_metadata_alloc_bits;
887 	u64 avail_system_alloc_bits;
888 
889 	/* restriper state */
890 	spinlock_t balance_lock;
891 	struct mutex balance_mutex;
892 	atomic_t balance_pause_req;
893 	atomic_t balance_cancel_req;
894 	struct btrfs_balance_control *balance_ctl;
895 	wait_queue_head_t balance_wait_q;
896 
897 	/* Cancellation requests for chunk relocation */
898 	atomic_t reloc_cancel_req;
899 
900 	u32 data_chunk_allocations;
901 	u32 metadata_ratio;
902 
903 	void *bdev_holder;
904 
905 	/* private scrub information */
906 	struct mutex scrub_lock;
907 	atomic_t scrubs_running;
908 	atomic_t scrub_pause_req;
909 	atomic_t scrubs_paused;
910 	atomic_t scrub_cancel_req;
911 	wait_queue_head_t scrub_pause_wait;
912 	/*
913 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
914 	 * running.
915 	 */
916 	refcount_t scrub_workers_refcnt;
917 	struct workqueue_struct *scrub_workers;
918 	struct workqueue_struct *scrub_wr_completion_workers;
919 	struct workqueue_struct *scrub_parity_workers;
920 	struct btrfs_subpage_info *subpage_info;
921 
922 	struct btrfs_discard_ctl discard_ctl;
923 
924 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
925 	u32 check_integrity_print_mask;
926 #endif
927 	/* is qgroup tracking in a consistent state? */
928 	u64 qgroup_flags;
929 
930 	/* holds configuration and tracking. Protected by qgroup_lock */
931 	struct rb_root qgroup_tree;
932 	spinlock_t qgroup_lock;
933 
934 	/*
935 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
936 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
937 	 */
938 	struct ulist *qgroup_ulist;
939 
940 	/*
941 	 * Protect user change for quota operations. If a transaction is needed,
942 	 * it must be started before locking this lock.
943 	 */
944 	struct mutex qgroup_ioctl_lock;
945 
946 	/* list of dirty qgroups to be written at next commit */
947 	struct list_head dirty_qgroups;
948 
949 	/* used by qgroup for an efficient tree traversal */
950 	u64 qgroup_seq;
951 
952 	/* qgroup rescan items */
953 	struct mutex qgroup_rescan_lock; /* protects the progress item */
954 	struct btrfs_key qgroup_rescan_progress;
955 	struct btrfs_workqueue *qgroup_rescan_workers;
956 	struct completion qgroup_rescan_completion;
957 	struct btrfs_work qgroup_rescan_work;
958 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
959 	u8 qgroup_drop_subtree_thres;
960 
961 	/* filesystem state */
962 	unsigned long fs_state;
963 
964 	struct btrfs_delayed_root *delayed_root;
965 
966 	/* Extent buffer radix tree */
967 	spinlock_t buffer_lock;
968 	/* Entries are eb->start / sectorsize */
969 	struct radix_tree_root buffer_radix;
970 
971 	/* next backup root to be overwritten */
972 	int backup_root_index;
973 
974 	/* device replace state */
975 	struct btrfs_dev_replace dev_replace;
976 
977 	struct semaphore uuid_tree_rescan_sem;
978 
979 	/* Used to reclaim the metadata space in the background. */
980 	struct work_struct async_reclaim_work;
981 	struct work_struct async_data_reclaim_work;
982 	struct work_struct preempt_reclaim_work;
983 
984 	/* Reclaim partially filled block groups in the background */
985 	struct work_struct reclaim_bgs_work;
986 	struct list_head reclaim_bgs;
987 	int bg_reclaim_threshold;
988 
989 	spinlock_t unused_bgs_lock;
990 	struct list_head unused_bgs;
991 	struct mutex unused_bg_unpin_mutex;
992 	/* Protect block groups that are going to be deleted */
993 	struct mutex reclaim_bgs_lock;
994 
995 	/* Cached block sizes */
996 	u32 nodesize;
997 	u32 sectorsize;
998 	/* ilog2 of sectorsize, use to avoid 64bit division */
999 	u32 sectorsize_bits;
1000 	u32 csum_size;
1001 	u32 csums_per_leaf;
1002 	u32 stripesize;
1003 
1004 	/*
1005 	 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1006 	 * filesystem, on zoned it depends on the device constraints.
1007 	 */
1008 	u64 max_extent_size;
1009 
1010 	/* Block groups and devices containing active swapfiles. */
1011 	spinlock_t swapfile_pins_lock;
1012 	struct rb_root swapfile_pins;
1013 
1014 	struct crypto_shash *csum_shash;
1015 
1016 	/* Type of exclusive operation running, protected by super_lock */
1017 	enum btrfs_exclusive_operation exclusive_operation;
1018 
1019 	/*
1020 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1021 	 * if the mode is enabled
1022 	 */
1023 	u64 zone_size;
1024 
1025 	/* Max size to emit ZONE_APPEND write command */
1026 	u64 max_zone_append_size;
1027 	struct mutex zoned_meta_io_lock;
1028 	spinlock_t treelog_bg_lock;
1029 	u64 treelog_bg;
1030 
1031 	/*
1032 	 * Start of the dedicated data relocation block group, protected by
1033 	 * relocation_bg_lock.
1034 	 */
1035 	spinlock_t relocation_bg_lock;
1036 	u64 data_reloc_bg;
1037 	struct mutex zoned_data_reloc_io_lock;
1038 
1039 	u64 nr_global_roots;
1040 
1041 	spinlock_t zone_active_bgs_lock;
1042 	struct list_head zone_active_bgs;
1043 
1044 	/* Updates are not protected by any lock */
1045 	struct btrfs_commit_stats commit_stats;
1046 
1047 	/*
1048 	 * Last generation where we dropped a non-relocation root.
1049 	 * Use btrfs_set_last_root_drop_gen() and btrfs_get_last_root_drop_gen()
1050 	 * to change it and to read it, respectively.
1051 	 */
1052 	u64 last_root_drop_gen;
1053 
1054 	/*
1055 	 * Annotations for transaction events (structures are empty when
1056 	 * compiled without lockdep).
1057 	 */
1058 	struct lockdep_map btrfs_trans_num_writers_map;
1059 	struct lockdep_map btrfs_trans_num_extwriters_map;
1060 	struct lockdep_map btrfs_state_change_map[4];
1061 	struct lockdep_map btrfs_trans_pending_ordered_map;
1062 	struct lockdep_map btrfs_ordered_extent_map;
1063 
1064 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1065 	spinlock_t ref_verify_lock;
1066 	struct rb_root block_tree;
1067 #endif
1068 
1069 #ifdef CONFIG_BTRFS_DEBUG
1070 	struct kobject *debug_kobj;
1071 	struct list_head allocated_roots;
1072 
1073 	spinlock_t eb_leak_lock;
1074 	struct list_head allocated_ebs;
1075 #endif
1076 };
1077 
1078 static inline void btrfs_set_last_root_drop_gen(struct btrfs_fs_info *fs_info,
1079 						u64 gen)
1080 {
1081 	WRITE_ONCE(fs_info->last_root_drop_gen, gen);
1082 }
1083 
1084 static inline u64 btrfs_get_last_root_drop_gen(const struct btrfs_fs_info *fs_info)
1085 {
1086 	return READ_ONCE(fs_info->last_root_drop_gen);
1087 }
1088 
1089 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1090 {
1091 	return sb->s_fs_info;
1092 }
1093 
1094 /*
1095  * Take the number of bytes to be checksummed and figure out how many leaves
1096  * it would require to store the csums for that many bytes.
1097  */
1098 static inline u64 btrfs_csum_bytes_to_leaves(
1099 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
1100 {
1101 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
1102 
1103 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
1104 }
1105 
1106 /*
1107  * Use this if we would be adding new items, as we could split nodes as we cow
1108  * down the tree.
1109  */
1110 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
1111 						  unsigned num_items)
1112 {
1113 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
1114 }
1115 
1116 /*
1117  * Doing a truncate or a modification won't result in new nodes or leaves, just
1118  * what we need for COW.
1119  */
1120 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
1121 						 unsigned num_items)
1122 {
1123 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
1124 }
1125 
1126 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
1127 					sizeof(struct btrfs_item))
1128 
1129 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
1130 {
1131 	return fs_info->zone_size > 0;
1132 }
1133 
1134 /*
1135  * Count how many fs_info->max_extent_size cover the @size
1136  */
1137 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
1138 {
1139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1140 	if (!fs_info)
1141 		return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
1142 #endif
1143 
1144 	return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
1145 }
1146 
1147 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
1148 			enum btrfs_exclusive_operation type);
1149 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
1150 				 enum btrfs_exclusive_operation type);
1151 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
1152 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
1153 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
1154 			  enum btrfs_exclusive_operation op);
1155 
1156 /*
1157  * The state of btrfs root
1158  */
1159 enum {
1160 	/*
1161 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1162 	 * with the balancing code.   But the race is very small, and only the
1163 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1164 	 * is used to tell us when more checks are required
1165 	 */
1166 	BTRFS_ROOT_IN_TRANS_SETUP,
1167 
1168 	/*
1169 	 * Set if tree blocks of this root can be shared by other roots.
1170 	 * Only subvolume trees and their reloc trees have this bit set.
1171 	 * Conflicts with TRACK_DIRTY bit.
1172 	 *
1173 	 * This affects two things:
1174 	 *
1175 	 * - How balance works
1176 	 *   For shareable roots, we need to use reloc tree and do path
1177 	 *   replacement for balance, and need various pre/post hooks for
1178 	 *   snapshot creation to handle them.
1179 	 *
1180 	 *   While for non-shareable trees, we just simply do a tree search
1181 	 *   with COW.
1182 	 *
1183 	 * - How dirty roots are tracked
1184 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1185 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1186 	 *   don't need to set this manually.
1187 	 */
1188 	BTRFS_ROOT_SHAREABLE,
1189 	BTRFS_ROOT_TRACK_DIRTY,
1190 	BTRFS_ROOT_IN_RADIX,
1191 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1192 	BTRFS_ROOT_DEFRAG_RUNNING,
1193 	BTRFS_ROOT_FORCE_COW,
1194 	BTRFS_ROOT_MULTI_LOG_TASKS,
1195 	BTRFS_ROOT_DIRTY,
1196 	BTRFS_ROOT_DELETING,
1197 
1198 	/*
1199 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1200 	 *
1201 	 * Set for the subvolume tree owning the reloc tree.
1202 	 */
1203 	BTRFS_ROOT_DEAD_RELOC_TREE,
1204 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1205 	BTRFS_ROOT_DEAD_TREE,
1206 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1207 	BTRFS_ROOT_HAS_LOG_TREE,
1208 	/* Qgroup flushing is in progress */
1209 	BTRFS_ROOT_QGROUP_FLUSHING,
1210 	/* We started the orphan cleanup for this root. */
1211 	BTRFS_ROOT_ORPHAN_CLEANUP,
1212 	/* This root has a drop operation that was started previously. */
1213 	BTRFS_ROOT_UNFINISHED_DROP,
1214 	/* This reloc root needs to have its buffers lockdep class reset. */
1215 	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
1216 };
1217 
1218 enum btrfs_lockdep_trans_states {
1219 	BTRFS_LOCKDEP_TRANS_COMMIT_START,
1220 	BTRFS_LOCKDEP_TRANS_UNBLOCKED,
1221 	BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED,
1222 	BTRFS_LOCKDEP_TRANS_COMPLETED,
1223 };
1224 
1225 /*
1226  * Lockdep annotation for wait events.
1227  *
1228  * @owner:  The struct where the lockdep map is defined
1229  * @lock:   The lockdep map corresponding to a wait event
1230  *
1231  * This macro is used to annotate a wait event. In this case a thread acquires
1232  * the lockdep map as writer (exclusive lock) because it has to block until all
1233  * the threads that hold the lock as readers signal the condition for the wait
1234  * event and release their locks.
1235  */
1236 #define btrfs_might_wait_for_event(owner, lock)					\
1237 	do {									\
1238 		rwsem_acquire(&owner->lock##_map, 0, 0, _THIS_IP_);		\
1239 		rwsem_release(&owner->lock##_map, _THIS_IP_);			\
1240 	} while (0)
1241 
1242 /*
1243  * Protection for the resource/condition of a wait event.
1244  *
1245  * @owner:  The struct where the lockdep map is defined
1246  * @lock:   The lockdep map corresponding to a wait event
1247  *
1248  * Many threads can modify the condition for the wait event at the same time
1249  * and signal the threads that block on the wait event. The threads that modify
1250  * the condition and do the signaling acquire the lock as readers (shared
1251  * lock).
1252  */
1253 #define btrfs_lockdep_acquire(owner, lock)					\
1254 	rwsem_acquire_read(&owner->lock##_map, 0, 0, _THIS_IP_)
1255 
1256 /*
1257  * Used after signaling the condition for a wait event to release the lockdep
1258  * map held by a reader thread.
1259  */
1260 #define btrfs_lockdep_release(owner, lock)					\
1261 	rwsem_release(&owner->lock##_map, _THIS_IP_)
1262 
1263 /*
1264  * Macros for the transaction states wait events, similar to the generic wait
1265  * event macros.
1266  */
1267 #define btrfs_might_wait_for_state(owner, i)					\
1268 	do {									\
1269 		rwsem_acquire(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_); \
1270 		rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_);	\
1271 	} while (0)
1272 
1273 #define btrfs_trans_state_lockdep_acquire(owner, i)				\
1274 	rwsem_acquire_read(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_)
1275 
1276 #define btrfs_trans_state_lockdep_release(owner, i)				\
1277 	rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_)
1278 
1279 /* Initialization of the lockdep map */
1280 #define btrfs_lockdep_init_map(owner, lock)					\
1281 	do {									\
1282 		static struct lock_class_key lock##_key;			\
1283 		lockdep_init_map(&owner->lock##_map, #lock, &lock##_key, 0);	\
1284 	} while (0)
1285 
1286 /* Initialization of the transaction states lockdep maps. */
1287 #define btrfs_state_lockdep_init_map(owner, lock, state)			\
1288 	do {									\
1289 		static struct lock_class_key lock##_key;			\
1290 		lockdep_init_map(&owner->btrfs_state_change_map[state], #lock,	\
1291 				 &lock##_key, 0);				\
1292 	} while (0)
1293 
1294 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1295 {
1296 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1297 }
1298 
1299 /*
1300  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1301  * code. For detail check comment in fs/btrfs/qgroup.c.
1302  */
1303 struct btrfs_qgroup_swapped_blocks {
1304 	spinlock_t lock;
1305 	/* RM_EMPTY_ROOT() of above blocks[] */
1306 	bool swapped;
1307 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1308 };
1309 
1310 /*
1311  * in ram representation of the tree.  extent_root is used for all allocations
1312  * and for the extent tree extent_root root.
1313  */
1314 struct btrfs_root {
1315 	struct rb_node rb_node;
1316 
1317 	struct extent_buffer *node;
1318 
1319 	struct extent_buffer *commit_root;
1320 	struct btrfs_root *log_root;
1321 	struct btrfs_root *reloc_root;
1322 
1323 	unsigned long state;
1324 	struct btrfs_root_item root_item;
1325 	struct btrfs_key root_key;
1326 	struct btrfs_fs_info *fs_info;
1327 	struct extent_io_tree dirty_log_pages;
1328 
1329 	struct mutex objectid_mutex;
1330 
1331 	spinlock_t accounting_lock;
1332 	struct btrfs_block_rsv *block_rsv;
1333 
1334 	struct mutex log_mutex;
1335 	wait_queue_head_t log_writer_wait;
1336 	wait_queue_head_t log_commit_wait[2];
1337 	struct list_head log_ctxs[2];
1338 	/* Used only for log trees of subvolumes, not for the log root tree */
1339 	atomic_t log_writers;
1340 	atomic_t log_commit[2];
1341 	/* Used only for log trees of subvolumes, not for the log root tree */
1342 	atomic_t log_batch;
1343 	int log_transid;
1344 	/* No matter the commit succeeds or not*/
1345 	int log_transid_committed;
1346 	/* Just be updated when the commit succeeds. */
1347 	int last_log_commit;
1348 	pid_t log_start_pid;
1349 
1350 	u64 last_trans;
1351 
1352 	u32 type;
1353 
1354 	u64 free_objectid;
1355 
1356 	struct btrfs_key defrag_progress;
1357 	struct btrfs_key defrag_max;
1358 
1359 	/* The dirty list is only used by non-shareable roots */
1360 	struct list_head dirty_list;
1361 
1362 	struct list_head root_list;
1363 
1364 	spinlock_t log_extents_lock[2];
1365 	struct list_head logged_list[2];
1366 
1367 	spinlock_t inode_lock;
1368 	/* red-black tree that keeps track of in-memory inodes */
1369 	struct rb_root inode_tree;
1370 
1371 	/*
1372 	 * radix tree that keeps track of delayed nodes of every inode,
1373 	 * protected by inode_lock
1374 	 */
1375 	struct radix_tree_root delayed_nodes_tree;
1376 	/*
1377 	 * right now this just gets used so that a root has its own devid
1378 	 * for stat.  It may be used for more later
1379 	 */
1380 	dev_t anon_dev;
1381 
1382 	spinlock_t root_item_lock;
1383 	refcount_t refs;
1384 
1385 	struct mutex delalloc_mutex;
1386 	spinlock_t delalloc_lock;
1387 	/*
1388 	 * all of the inodes that have delalloc bytes.  It is possible for
1389 	 * this list to be empty even when there is still dirty data=ordered
1390 	 * extents waiting to finish IO.
1391 	 */
1392 	struct list_head delalloc_inodes;
1393 	struct list_head delalloc_root;
1394 	u64 nr_delalloc_inodes;
1395 
1396 	struct mutex ordered_extent_mutex;
1397 	/*
1398 	 * this is used by the balancing code to wait for all the pending
1399 	 * ordered extents
1400 	 */
1401 	spinlock_t ordered_extent_lock;
1402 
1403 	/*
1404 	 * all of the data=ordered extents pending writeback
1405 	 * these can span multiple transactions and basically include
1406 	 * every dirty data page that isn't from nodatacow
1407 	 */
1408 	struct list_head ordered_extents;
1409 	struct list_head ordered_root;
1410 	u64 nr_ordered_extents;
1411 
1412 	/*
1413 	 * Not empty if this subvolume root has gone through tree block swap
1414 	 * (relocation)
1415 	 *
1416 	 * Will be used by reloc_control::dirty_subvol_roots.
1417 	 */
1418 	struct list_head reloc_dirty_list;
1419 
1420 	/*
1421 	 * Number of currently running SEND ioctls to prevent
1422 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1423 	 */
1424 	int send_in_progress;
1425 	/*
1426 	 * Number of currently running deduplication operations that have a
1427 	 * destination inode belonging to this root. Protected by the lock
1428 	 * root_item_lock.
1429 	 */
1430 	int dedupe_in_progress;
1431 	/* For exclusion of snapshot creation and nocow writes */
1432 	struct btrfs_drew_lock snapshot_lock;
1433 
1434 	atomic_t snapshot_force_cow;
1435 
1436 	/* For qgroup metadata reserved space */
1437 	spinlock_t qgroup_meta_rsv_lock;
1438 	u64 qgroup_meta_rsv_pertrans;
1439 	u64 qgroup_meta_rsv_prealloc;
1440 	wait_queue_head_t qgroup_flush_wait;
1441 
1442 	/* Number of active swapfiles */
1443 	atomic_t nr_swapfiles;
1444 
1445 	/* Record pairs of swapped blocks for qgroup */
1446 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1447 
1448 	/* Used only by log trees, when logging csum items */
1449 	struct extent_io_tree log_csum_range;
1450 
1451 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1452 	u64 alloc_bytenr;
1453 #endif
1454 
1455 #ifdef CONFIG_BTRFS_DEBUG
1456 	struct list_head leak_list;
1457 #endif
1458 };
1459 
1460 /*
1461  * Structure that conveys information about an extent that is going to replace
1462  * all the extents in a file range.
1463  */
1464 struct btrfs_replace_extent_info {
1465 	u64 disk_offset;
1466 	u64 disk_len;
1467 	u64 data_offset;
1468 	u64 data_len;
1469 	u64 file_offset;
1470 	/* Pointer to a file extent item of type regular or prealloc. */
1471 	char *extent_buf;
1472 	/*
1473 	 * Set to true when attempting to replace a file range with a new extent
1474 	 * described by this structure, set to false when attempting to clone an
1475 	 * existing extent into a file range.
1476 	 */
1477 	bool is_new_extent;
1478 	/* Indicate if we should update the inode's mtime and ctime. */
1479 	bool update_times;
1480 	/* Meaningful only if is_new_extent is true. */
1481 	int qgroup_reserved;
1482 	/*
1483 	 * Meaningful only if is_new_extent is true.
1484 	 * Used to track how many extent items we have already inserted in a
1485 	 * subvolume tree that refer to the extent described by this structure,
1486 	 * so that we know when to create a new delayed ref or update an existing
1487 	 * one.
1488 	 */
1489 	int insertions;
1490 };
1491 
1492 /* Arguments for btrfs_drop_extents() */
1493 struct btrfs_drop_extents_args {
1494 	/* Input parameters */
1495 
1496 	/*
1497 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1498 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1499 	 * is always released except if 'replace_extent' is true and
1500 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1501 	 * the path is kept locked.
1502 	 */
1503 	struct btrfs_path *path;
1504 	/* Start offset of the range to drop extents from */
1505 	u64 start;
1506 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1507 	u64 end;
1508 	/* If true drop all the extent maps in the range */
1509 	bool drop_cache;
1510 	/*
1511 	 * If true it means we want to insert a new extent after dropping all
1512 	 * the extents in the range. If this is true, the 'extent_item_size'
1513 	 * parameter must be set as well and the 'extent_inserted' field will
1514 	 * be set to true by btrfs_drop_extents() if it could insert the new
1515 	 * extent.
1516 	 * Note: when this is set to true the path must not be NULL.
1517 	 */
1518 	bool replace_extent;
1519 	/*
1520 	 * Used if 'replace_extent' is true. Size of the file extent item to
1521 	 * insert after dropping all existing extents in the range
1522 	 */
1523 	u32 extent_item_size;
1524 
1525 	/* Output parameters */
1526 
1527 	/*
1528 	 * Set to the minimum between the input parameter 'end' and the end
1529 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1530 	 * set even if btrfs_drop_extents() returns an error.
1531 	 */
1532 	u64 drop_end;
1533 	/*
1534 	 * The number of allocated bytes found in the range. This can be smaller
1535 	 * than the range's length when there are holes in the range.
1536 	 */
1537 	u64 bytes_found;
1538 	/*
1539 	 * Only set if 'replace_extent' is true. Set to true if we were able
1540 	 * to insert a replacement extent after dropping all extents in the
1541 	 * range, otherwise set to false by btrfs_drop_extents().
1542 	 * Also, if btrfs_drop_extents() has set this to true it means it
1543 	 * returned with the path locked, otherwise if it has set this to
1544 	 * false it has returned with the path released.
1545 	 */
1546 	bool extent_inserted;
1547 };
1548 
1549 struct btrfs_file_private {
1550 	void *filldir_buf;
1551 };
1552 
1553 
1554 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1555 {
1556 
1557 	return info->nodesize - sizeof(struct btrfs_header);
1558 }
1559 
1560 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1561 
1562 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1563 {
1564 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1565 }
1566 
1567 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1568 {
1569 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1570 }
1571 
1572 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1573 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1574 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1575 {
1576 	return BTRFS_MAX_ITEM_SIZE(info) -
1577 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1578 }
1579 
1580 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1581 {
1582 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1583 }
1584 
1585 /*
1586  * Flags for mount options.
1587  *
1588  * Note: don't forget to add new options to btrfs_show_options()
1589  */
1590 enum {
1591 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1592 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1593 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1594 	BTRFS_MOUNT_SSD				= (1UL << 3),
1595 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1596 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1597 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1598 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1599 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1600 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1601 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1602 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1603 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1604 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1605 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1606 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1607 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1608 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1609 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1610 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1611 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1612 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1613 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1614 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1615 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1616 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1617 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1618 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1619 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1620 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1621 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1622 };
1623 
1624 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1625 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1626 
1627 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1628 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1629 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1630 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1631 					 BTRFS_MOUNT_##opt)
1632 
1633 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1634 do {									\
1635 	if (!btrfs_test_opt(fs_info, opt))				\
1636 		btrfs_info(fs_info, fmt, ##args);			\
1637 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1638 } while (0)
1639 
1640 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1641 do {									\
1642 	if (btrfs_test_opt(fs_info, opt))				\
1643 		btrfs_info(fs_info, fmt, ##args);			\
1644 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1645 } while (0)
1646 
1647 /*
1648  * Requests for changes that need to be done during transaction commit.
1649  *
1650  * Internal mount options that are used for special handling of the real
1651  * mount options (eg. cannot be set during remount and have to be set during
1652  * transaction commit)
1653  */
1654 
1655 #define BTRFS_PENDING_COMMIT			(0)
1656 
1657 #define btrfs_test_pending(info, opt)	\
1658 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1659 #define btrfs_set_pending(info, opt)	\
1660 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1661 #define btrfs_clear_pending(info, opt)	\
1662 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1663 
1664 /*
1665  * Helpers for setting pending mount option changes.
1666  *
1667  * Expects corresponding macros
1668  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1669  */
1670 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1671 do {                                                                   \
1672        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1673                btrfs_info((info), fmt, ##args);                        \
1674                btrfs_set_pending((info), SET_##opt);                   \
1675                btrfs_clear_pending((info), CLEAR_##opt);               \
1676        }                                                               \
1677 } while(0)
1678 
1679 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1680 do {                                                                   \
1681        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1682                btrfs_info((info), fmt, ##args);                        \
1683                btrfs_set_pending((info), CLEAR_##opt);                 \
1684                btrfs_clear_pending((info), SET_##opt);                 \
1685        }                                                               \
1686 } while(0)
1687 
1688 /*
1689  * Inode flags
1690  */
1691 #define BTRFS_INODE_NODATASUM		(1U << 0)
1692 #define BTRFS_INODE_NODATACOW		(1U << 1)
1693 #define BTRFS_INODE_READONLY		(1U << 2)
1694 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1695 #define BTRFS_INODE_PREALLOC		(1U << 4)
1696 #define BTRFS_INODE_SYNC		(1U << 5)
1697 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1698 #define BTRFS_INODE_APPEND		(1U << 7)
1699 #define BTRFS_INODE_NODUMP		(1U << 8)
1700 #define BTRFS_INODE_NOATIME		(1U << 9)
1701 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1702 #define BTRFS_INODE_COMPRESS		(1U << 11)
1703 
1704 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1705 
1706 #define BTRFS_INODE_FLAG_MASK						\
1707 	(BTRFS_INODE_NODATASUM |					\
1708 	 BTRFS_INODE_NODATACOW |					\
1709 	 BTRFS_INODE_READONLY |						\
1710 	 BTRFS_INODE_NOCOMPRESS |					\
1711 	 BTRFS_INODE_PREALLOC |						\
1712 	 BTRFS_INODE_SYNC |						\
1713 	 BTRFS_INODE_IMMUTABLE |					\
1714 	 BTRFS_INODE_APPEND |						\
1715 	 BTRFS_INODE_NODUMP |						\
1716 	 BTRFS_INODE_NOATIME |						\
1717 	 BTRFS_INODE_DIRSYNC |						\
1718 	 BTRFS_INODE_COMPRESS |						\
1719 	 BTRFS_INODE_ROOT_ITEM_INIT)
1720 
1721 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1722 
1723 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1724 
1725 struct btrfs_map_token {
1726 	struct extent_buffer *eb;
1727 	char *kaddr;
1728 	unsigned long offset;
1729 };
1730 
1731 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1732 				((bytes) >> (fs_info)->sectorsize_bits)
1733 
1734 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1735 					struct extent_buffer *eb)
1736 {
1737 	token->eb = eb;
1738 	token->kaddr = page_address(eb->pages[0]);
1739 	token->offset = 0;
1740 }
1741 
1742 /* some macros to generate set/get functions for the struct fields.  This
1743  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1744  * one for u8:
1745  */
1746 #define le8_to_cpu(v) (v)
1747 #define cpu_to_le8(v) (v)
1748 #define __le8 u8
1749 
1750 static inline u8 get_unaligned_le8(const void *p)
1751 {
1752        return *(u8 *)p;
1753 }
1754 
1755 static inline void put_unaligned_le8(u8 val, void *p)
1756 {
1757        *(u8 *)p = val;
1758 }
1759 
1760 #define read_eb_member(eb, ptr, type, member, result) (\
1761 	read_extent_buffer(eb, (char *)(result),			\
1762 			   ((unsigned long)(ptr)) +			\
1763 			    offsetof(type, member),			\
1764 			   sizeof(((type *)0)->member)))
1765 
1766 #define write_eb_member(eb, ptr, type, member, result) (\
1767 	write_extent_buffer(eb, (char *)(result),			\
1768 			   ((unsigned long)(ptr)) +			\
1769 			    offsetof(type, member),			\
1770 			   sizeof(((type *)0)->member)))
1771 
1772 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1773 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1774 			       const void *ptr, unsigned long off);	\
1775 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1776 			    const void *ptr, unsigned long off,		\
1777 			    u##bits val);				\
1778 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1779 			 const void *ptr, unsigned long off);		\
1780 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1781 		      unsigned long off, u##bits val);
1782 
1783 DECLARE_BTRFS_SETGET_BITS(8)
1784 DECLARE_BTRFS_SETGET_BITS(16)
1785 DECLARE_BTRFS_SETGET_BITS(32)
1786 DECLARE_BTRFS_SETGET_BITS(64)
1787 
1788 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1789 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1790 				   const type *s)			\
1791 {									\
1792 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1793 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1794 }									\
1795 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1796 				    u##bits val)			\
1797 {									\
1798 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1799 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1800 }									\
1801 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1802 					 const type *s)			\
1803 {									\
1804 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1805 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1806 }									\
1807 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1808 					  type *s, u##bits val)		\
1809 {									\
1810 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1811 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1812 }
1813 
1814 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1815 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1816 {									\
1817 	const type *p = page_address(eb->pages[0]) +			\
1818 			offset_in_page(eb->start);			\
1819 	return get_unaligned_le##bits(&p->member);			\
1820 }									\
1821 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1822 				    u##bits val)			\
1823 {									\
1824 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1825 	put_unaligned_le##bits(val, &p->member);			\
1826 }
1827 
1828 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1829 static inline u##bits btrfs_##name(const type *s)			\
1830 {									\
1831 	return get_unaligned_le##bits(&s->member);			\
1832 }									\
1833 static inline void btrfs_set_##name(type *s, u##bits val)		\
1834 {									\
1835 	put_unaligned_le##bits(val, &s->member);			\
1836 }
1837 
1838 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1839 					   struct btrfs_dev_item *s)
1840 {
1841 	static_assert(sizeof(u64) ==
1842 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1843 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1844 					    total_bytes));
1845 }
1846 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1847 						struct btrfs_dev_item *s,
1848 						u64 val)
1849 {
1850 	static_assert(sizeof(u64) ==
1851 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1852 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1853 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1854 }
1855 
1856 
1857 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1858 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1859 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1860 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1861 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1862 		   start_offset, 64);
1863 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1864 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1865 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1866 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1867 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1868 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1869 
1870 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1871 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1872 			 total_bytes, 64);
1873 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1874 			 bytes_used, 64);
1875 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1876 			 io_align, 32);
1877 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1878 			 io_width, 32);
1879 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1880 			 sector_size, 32);
1881 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1882 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1883 			 dev_group, 32);
1884 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1885 			 seek_speed, 8);
1886 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1887 			 bandwidth, 8);
1888 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1889 			 generation, 64);
1890 
1891 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1892 {
1893 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1894 }
1895 
1896 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1897 {
1898 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1899 }
1900 
1901 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1902 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1903 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1904 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1905 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1906 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1907 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1908 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1909 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1910 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1911 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1912 
1913 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1914 {
1915 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1916 }
1917 
1918 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1919 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1920 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1921 			 stripe_len, 64);
1922 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1923 			 io_align, 32);
1924 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1925 			 io_width, 32);
1926 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1927 			 sector_size, 32);
1928 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1929 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1930 			 num_stripes, 16);
1931 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1932 			 sub_stripes, 16);
1933 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1934 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1935 
1936 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1937 						   int nr)
1938 {
1939 	unsigned long offset = (unsigned long)c;
1940 	offset += offsetof(struct btrfs_chunk, stripe);
1941 	offset += nr * sizeof(struct btrfs_stripe);
1942 	return (struct btrfs_stripe *)offset;
1943 }
1944 
1945 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1946 {
1947 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1948 }
1949 
1950 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1951 					 struct btrfs_chunk *c, int nr)
1952 {
1953 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1954 }
1955 
1956 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1957 					 struct btrfs_chunk *c, int nr)
1958 {
1959 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1960 }
1961 
1962 /* struct btrfs_block_group_item */
1963 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1964 			 used, 64);
1965 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1966 			 used, 64);
1967 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1968 			struct btrfs_block_group_item, chunk_objectid, 64);
1969 
1970 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1971 		   struct btrfs_block_group_item, chunk_objectid, 64);
1972 BTRFS_SETGET_FUNCS(block_group_flags,
1973 		   struct btrfs_block_group_item, flags, 64);
1974 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1975 			struct btrfs_block_group_item, flags, 64);
1976 
1977 /* struct btrfs_free_space_info */
1978 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1979 		   extent_count, 32);
1980 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1981 
1982 /* struct btrfs_inode_ref */
1983 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1984 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1985 
1986 /* struct btrfs_inode_extref */
1987 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1988 		   parent_objectid, 64);
1989 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1990 		   name_len, 16);
1991 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1992 
1993 /* struct btrfs_inode_item */
1994 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1995 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1996 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1997 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1998 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1999 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2000 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2001 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2002 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2003 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2004 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2005 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2006 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2007 			 generation, 64);
2008 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2009 			 sequence, 64);
2010 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2011 			 transid, 64);
2012 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2013 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2014 			 nbytes, 64);
2015 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2016 			 block_group, 64);
2017 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2018 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2019 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2020 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2021 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2022 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2023 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2024 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2025 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2026 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2027 
2028 /* struct btrfs_dev_extent */
2029 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2030 		   chunk_tree, 64);
2031 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2032 		   chunk_objectid, 64);
2033 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2034 		   chunk_offset, 64);
2035 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2036 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2037 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2038 		   generation, 64);
2039 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2040 
2041 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2042 
2043 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
2044 					struct btrfs_tree_block_info *item,
2045 					struct btrfs_disk_key *key)
2046 {
2047 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2048 }
2049 
2050 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
2051 					    struct btrfs_tree_block_info *item,
2052 					    struct btrfs_disk_key *key)
2053 {
2054 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2055 }
2056 
2057 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2058 		   root, 64);
2059 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2060 		   objectid, 64);
2061 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2062 		   offset, 64);
2063 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2064 		   count, 32);
2065 
2066 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2067 		   count, 32);
2068 
2069 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2070 		   type, 8);
2071 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2072 		   offset, 64);
2073 
2074 static inline u32 btrfs_extent_inline_ref_size(int type)
2075 {
2076 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2077 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
2078 		return sizeof(struct btrfs_extent_inline_ref);
2079 	if (type == BTRFS_SHARED_DATA_REF_KEY)
2080 		return sizeof(struct btrfs_shared_data_ref) +
2081 		       sizeof(struct btrfs_extent_inline_ref);
2082 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
2083 		return sizeof(struct btrfs_extent_data_ref) +
2084 		       offsetof(struct btrfs_extent_inline_ref, offset);
2085 	return 0;
2086 }
2087 
2088 /* struct btrfs_node */
2089 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2090 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2091 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2092 			 blockptr, 64);
2093 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2094 			 generation, 64);
2095 
2096 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
2097 {
2098 	unsigned long ptr;
2099 	ptr = offsetof(struct btrfs_node, ptrs) +
2100 		sizeof(struct btrfs_key_ptr) * nr;
2101 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2102 }
2103 
2104 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
2105 					   int nr, u64 val)
2106 {
2107 	unsigned long ptr;
2108 	ptr = offsetof(struct btrfs_node, ptrs) +
2109 		sizeof(struct btrfs_key_ptr) * nr;
2110 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2111 }
2112 
2113 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
2114 {
2115 	unsigned long ptr;
2116 	ptr = offsetof(struct btrfs_node, ptrs) +
2117 		sizeof(struct btrfs_key_ptr) * nr;
2118 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2119 }
2120 
2121 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
2122 						 int nr, u64 val)
2123 {
2124 	unsigned long ptr;
2125 	ptr = offsetof(struct btrfs_node, ptrs) +
2126 		sizeof(struct btrfs_key_ptr) * nr;
2127 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2128 }
2129 
2130 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2131 {
2132 	return offsetof(struct btrfs_node, ptrs) +
2133 		sizeof(struct btrfs_key_ptr) * nr;
2134 }
2135 
2136 void btrfs_node_key(const struct extent_buffer *eb,
2137 		    struct btrfs_disk_key *disk_key, int nr);
2138 
2139 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
2140 				      struct btrfs_disk_key *disk_key, int nr)
2141 {
2142 	unsigned long ptr;
2143 	ptr = btrfs_node_key_ptr_offset(nr);
2144 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2145 		       struct btrfs_key_ptr, key, disk_key);
2146 }
2147 
2148 /* struct btrfs_item */
2149 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2150 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2151 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2152 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2153 
2154 static inline unsigned long btrfs_item_nr_offset(int nr)
2155 {
2156 	return offsetof(struct btrfs_leaf, items) +
2157 		sizeof(struct btrfs_item) * nr;
2158 }
2159 
2160 static inline struct btrfs_item *btrfs_item_nr(int nr)
2161 {
2162 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2163 }
2164 
2165 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
2166 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
2167 				      int slot)					\
2168 {										\
2169 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
2170 }										\
2171 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
2172 					   int slot, u32 val)			\
2173 {										\
2174 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
2175 }										\
2176 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
2177 					    int slot)				\
2178 {										\
2179 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2180 	return btrfs_token_raw_item_##member(token, item);			\
2181 }										\
2182 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2183 						 int slot, u32 val)		\
2184 {										\
2185 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2186 	btrfs_set_token_raw_item_##member(token, item, val);			\
2187 }
2188 
2189 BTRFS_ITEM_SETGET_FUNCS(offset)
2190 BTRFS_ITEM_SETGET_FUNCS(size);
2191 
2192 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2193 {
2194 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2195 }
2196 
2197 static inline void btrfs_item_key(const struct extent_buffer *eb,
2198 			   struct btrfs_disk_key *disk_key, int nr)
2199 {
2200 	struct btrfs_item *item = btrfs_item_nr(nr);
2201 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2202 }
2203 
2204 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2205 			       struct btrfs_disk_key *disk_key, int nr)
2206 {
2207 	struct btrfs_item *item = btrfs_item_nr(nr);
2208 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2209 }
2210 
2211 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2212 
2213 /*
2214  * struct btrfs_root_ref
2215  */
2216 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2217 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2218 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2219 
2220 /* struct btrfs_dir_item */
2221 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2222 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2223 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2224 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2225 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2226 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2227 			 data_len, 16);
2228 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2229 			 name_len, 16);
2230 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2231 			 transid, 64);
2232 
2233 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2234 				      const struct btrfs_dir_item *item,
2235 				      struct btrfs_disk_key *key)
2236 {
2237 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2238 }
2239 
2240 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2241 					  struct btrfs_dir_item *item,
2242 					  const struct btrfs_disk_key *key)
2243 {
2244 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2245 }
2246 
2247 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2248 		   num_entries, 64);
2249 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2250 		   num_bitmaps, 64);
2251 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2252 		   generation, 64);
2253 
2254 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2255 					const struct btrfs_free_space_header *h,
2256 					struct btrfs_disk_key *key)
2257 {
2258 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2259 }
2260 
2261 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2262 					    struct btrfs_free_space_header *h,
2263 					    const struct btrfs_disk_key *key)
2264 {
2265 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2266 }
2267 
2268 /* struct btrfs_disk_key */
2269 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2270 			 objectid, 64);
2271 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2272 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2273 
2274 #ifdef __LITTLE_ENDIAN
2275 
2276 /*
2277  * Optimized helpers for little-endian architectures where CPU and on-disk
2278  * structures have the same endianness and we can skip conversions.
2279  */
2280 
2281 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2282 					 const struct btrfs_disk_key *disk_key)
2283 {
2284 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2285 }
2286 
2287 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2288 					 const struct btrfs_key *cpu_key)
2289 {
2290 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2291 }
2292 
2293 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2294 					 struct btrfs_key *cpu_key, int nr)
2295 {
2296 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2297 
2298 	btrfs_node_key(eb, disk_key, nr);
2299 }
2300 
2301 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2302 					 struct btrfs_key *cpu_key, int nr)
2303 {
2304 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2305 
2306 	btrfs_item_key(eb, disk_key, nr);
2307 }
2308 
2309 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2310 					     const struct btrfs_dir_item *item,
2311 					     struct btrfs_key *cpu_key)
2312 {
2313 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2314 
2315 	btrfs_dir_item_key(eb, item, disk_key);
2316 }
2317 
2318 #else
2319 
2320 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2321 					 const struct btrfs_disk_key *disk)
2322 {
2323 	cpu->offset = le64_to_cpu(disk->offset);
2324 	cpu->type = disk->type;
2325 	cpu->objectid = le64_to_cpu(disk->objectid);
2326 }
2327 
2328 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2329 					 const struct btrfs_key *cpu)
2330 {
2331 	disk->offset = cpu_to_le64(cpu->offset);
2332 	disk->type = cpu->type;
2333 	disk->objectid = cpu_to_le64(cpu->objectid);
2334 }
2335 
2336 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2337 					 struct btrfs_key *key, int nr)
2338 {
2339 	struct btrfs_disk_key disk_key;
2340 	btrfs_node_key(eb, &disk_key, nr);
2341 	btrfs_disk_key_to_cpu(key, &disk_key);
2342 }
2343 
2344 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2345 					 struct btrfs_key *key, int nr)
2346 {
2347 	struct btrfs_disk_key disk_key;
2348 	btrfs_item_key(eb, &disk_key, nr);
2349 	btrfs_disk_key_to_cpu(key, &disk_key);
2350 }
2351 
2352 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2353 					     const struct btrfs_dir_item *item,
2354 					     struct btrfs_key *key)
2355 {
2356 	struct btrfs_disk_key disk_key;
2357 	btrfs_dir_item_key(eb, item, &disk_key);
2358 	btrfs_disk_key_to_cpu(key, &disk_key);
2359 }
2360 
2361 #endif
2362 
2363 /* struct btrfs_header */
2364 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2365 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2366 			  generation, 64);
2367 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2368 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2369 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2370 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2371 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2372 			 generation, 64);
2373 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2374 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2375 			 nritems, 32);
2376 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2377 
2378 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2379 {
2380 	return (btrfs_header_flags(eb) & flag) == flag;
2381 }
2382 
2383 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2384 {
2385 	u64 flags = btrfs_header_flags(eb);
2386 	btrfs_set_header_flags(eb, flags | flag);
2387 }
2388 
2389 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2390 {
2391 	u64 flags = btrfs_header_flags(eb);
2392 	btrfs_set_header_flags(eb, flags & ~flag);
2393 }
2394 
2395 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2396 {
2397 	u64 flags = btrfs_header_flags(eb);
2398 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2399 }
2400 
2401 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2402 						int rev)
2403 {
2404 	u64 flags = btrfs_header_flags(eb);
2405 	flags &= ~BTRFS_BACKREF_REV_MASK;
2406 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2407 	btrfs_set_header_flags(eb, flags);
2408 }
2409 
2410 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2411 {
2412 	return btrfs_header_level(eb) == 0;
2413 }
2414 
2415 /* struct btrfs_root_item */
2416 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2417 		   generation, 64);
2418 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2419 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2420 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2421 
2422 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2423 			 generation, 64);
2424 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2425 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2426 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2427 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2428 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2429 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2430 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2431 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2432 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2433 			 last_snapshot, 64);
2434 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2435 			 generation_v2, 64);
2436 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2437 			 ctransid, 64);
2438 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2439 			 otransid, 64);
2440 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2441 			 stransid, 64);
2442 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2443 			 rtransid, 64);
2444 
2445 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2446 {
2447 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2448 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2449 }
2450 
2451 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2452 {
2453 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2454 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2455 }
2456 
2457 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2458 {
2459 	return root->root_key.objectid;
2460 }
2461 
2462 /* struct btrfs_root_backup */
2463 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2464 		   tree_root, 64);
2465 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2466 		   tree_root_gen, 64);
2467 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2468 		   tree_root_level, 8);
2469 
2470 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2471 		   chunk_root, 64);
2472 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2473 		   chunk_root_gen, 64);
2474 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2475 		   chunk_root_level, 8);
2476 
2477 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2478 		   extent_root, 64);
2479 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2480 		   extent_root_gen, 64);
2481 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2482 		   extent_root_level, 8);
2483 
2484 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2485 		   fs_root, 64);
2486 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2487 		   fs_root_gen, 64);
2488 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2489 		   fs_root_level, 8);
2490 
2491 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2492 		   dev_root, 64);
2493 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2494 		   dev_root_gen, 64);
2495 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2496 		   dev_root_level, 8);
2497 
2498 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2499 		   csum_root, 64);
2500 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2501 		   csum_root_gen, 64);
2502 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2503 		   csum_root_level, 8);
2504 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2505 		   total_bytes, 64);
2506 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2507 		   bytes_used, 64);
2508 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2509 		   num_devices, 64);
2510 
2511 /* struct btrfs_balance_item */
2512 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2513 
2514 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2515 				      const struct btrfs_balance_item *bi,
2516 				      struct btrfs_disk_balance_args *ba)
2517 {
2518 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2519 }
2520 
2521 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2522 				  struct btrfs_balance_item *bi,
2523 				  const struct btrfs_disk_balance_args *ba)
2524 {
2525 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2526 }
2527 
2528 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2529 				      const struct btrfs_balance_item *bi,
2530 				      struct btrfs_disk_balance_args *ba)
2531 {
2532 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2533 }
2534 
2535 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2536 				  struct btrfs_balance_item *bi,
2537 				  const struct btrfs_disk_balance_args *ba)
2538 {
2539 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2540 }
2541 
2542 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2543 				     const struct btrfs_balance_item *bi,
2544 				     struct btrfs_disk_balance_args *ba)
2545 {
2546 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2547 }
2548 
2549 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2550 				 struct btrfs_balance_item *bi,
2551 				 const struct btrfs_disk_balance_args *ba)
2552 {
2553 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2554 }
2555 
2556 static inline void
2557 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2558 			       const struct btrfs_disk_balance_args *disk)
2559 {
2560 	memset(cpu, 0, sizeof(*cpu));
2561 
2562 	cpu->profiles = le64_to_cpu(disk->profiles);
2563 	cpu->usage = le64_to_cpu(disk->usage);
2564 	cpu->devid = le64_to_cpu(disk->devid);
2565 	cpu->pstart = le64_to_cpu(disk->pstart);
2566 	cpu->pend = le64_to_cpu(disk->pend);
2567 	cpu->vstart = le64_to_cpu(disk->vstart);
2568 	cpu->vend = le64_to_cpu(disk->vend);
2569 	cpu->target = le64_to_cpu(disk->target);
2570 	cpu->flags = le64_to_cpu(disk->flags);
2571 	cpu->limit = le64_to_cpu(disk->limit);
2572 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2573 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2574 }
2575 
2576 static inline void
2577 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2578 			       const struct btrfs_balance_args *cpu)
2579 {
2580 	memset(disk, 0, sizeof(*disk));
2581 
2582 	disk->profiles = cpu_to_le64(cpu->profiles);
2583 	disk->usage = cpu_to_le64(cpu->usage);
2584 	disk->devid = cpu_to_le64(cpu->devid);
2585 	disk->pstart = cpu_to_le64(cpu->pstart);
2586 	disk->pend = cpu_to_le64(cpu->pend);
2587 	disk->vstart = cpu_to_le64(cpu->vstart);
2588 	disk->vend = cpu_to_le64(cpu->vend);
2589 	disk->target = cpu_to_le64(cpu->target);
2590 	disk->flags = cpu_to_le64(cpu->flags);
2591 	disk->limit = cpu_to_le64(cpu->limit);
2592 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2593 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2594 }
2595 
2596 /* struct btrfs_super_block */
2597 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2598 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2599 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2600 			 generation, 64);
2601 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2602 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2603 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2604 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2605 			 struct btrfs_super_block, chunk_root_generation, 64);
2606 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2607 			 root_level, 8);
2608 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2609 			 chunk_root, 64);
2610 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2611 			 chunk_root_level, 8);
2612 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2613 			 log_root, 64);
2614 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2615 			 log_root_level, 8);
2616 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2617 			 total_bytes, 64);
2618 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2619 			 bytes_used, 64);
2620 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2621 			 sectorsize, 32);
2622 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2623 			 nodesize, 32);
2624 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2625 			 stripesize, 32);
2626 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2627 			 root_dir_objectid, 64);
2628 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2629 			 num_devices, 64);
2630 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2631 			 compat_flags, 64);
2632 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2633 			 compat_ro_flags, 64);
2634 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2635 			 incompat_flags, 64);
2636 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2637 			 csum_type, 16);
2638 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2639 			 cache_generation, 64);
2640 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2641 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2642 			 uuid_tree_generation, 64);
2643 
2644 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2645 const char *btrfs_super_csum_name(u16 csum_type);
2646 const char *btrfs_super_csum_driver(u16 csum_type);
2647 size_t __attribute_const__ btrfs_get_num_csums(void);
2648 
2649 
2650 /*
2651  * The leaf data grows from end-to-front in the node.
2652  * this returns the address of the start of the last item,
2653  * which is the stop of the leaf data stack
2654  */
2655 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2656 {
2657 	u32 nr = btrfs_header_nritems(leaf);
2658 
2659 	if (nr == 0)
2660 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2661 	return btrfs_item_offset(leaf, nr - 1);
2662 }
2663 
2664 /* struct btrfs_file_extent_item */
2665 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2666 			 type, 8);
2667 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2668 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2669 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2670 			 struct btrfs_file_extent_item, offset, 64);
2671 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2672 			 struct btrfs_file_extent_item, generation, 64);
2673 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2674 			 struct btrfs_file_extent_item, num_bytes, 64);
2675 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2676 			 struct btrfs_file_extent_item, ram_bytes, 64);
2677 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2678 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2679 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2680 			 struct btrfs_file_extent_item, compression, 8);
2681 
2682 static inline unsigned long
2683 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2684 {
2685 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2686 }
2687 
2688 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2689 {
2690 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2691 }
2692 
2693 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2694 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2695 		   disk_bytenr, 64);
2696 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2697 		   generation, 64);
2698 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2699 		   disk_num_bytes, 64);
2700 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2701 		  offset, 64);
2702 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2703 		   num_bytes, 64);
2704 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2705 		   ram_bytes, 64);
2706 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2707 		   compression, 8);
2708 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2709 		   encryption, 8);
2710 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2711 		   other_encoding, 16);
2712 
2713 /*
2714  * this returns the number of bytes used by the item on disk, minus the
2715  * size of any extent headers.  If a file is compressed on disk, this is
2716  * the compressed size
2717  */
2718 static inline u32 btrfs_file_extent_inline_item_len(
2719 						const struct extent_buffer *eb,
2720 						int nr)
2721 {
2722 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2723 }
2724 
2725 /* btrfs_qgroup_status_item */
2726 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2727 		   generation, 64);
2728 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2729 		   version, 64);
2730 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2731 		   flags, 64);
2732 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2733 		   rescan, 64);
2734 
2735 /* btrfs_qgroup_info_item */
2736 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2737 		   generation, 64);
2738 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2739 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2740 		   rfer_cmpr, 64);
2741 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2742 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2743 		   excl_cmpr, 64);
2744 
2745 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2746 			 struct btrfs_qgroup_info_item, generation, 64);
2747 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2748 			 rfer, 64);
2749 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2750 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2751 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2752 			 excl, 64);
2753 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2754 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2755 
2756 /* btrfs_qgroup_limit_item */
2757 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2758 		   flags, 64);
2759 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2760 		   max_rfer, 64);
2761 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2762 		   max_excl, 64);
2763 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2764 		   rsv_rfer, 64);
2765 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2766 		   rsv_excl, 64);
2767 
2768 /* btrfs_dev_replace_item */
2769 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2770 		   struct btrfs_dev_replace_item, src_devid, 64);
2771 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2772 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2773 		   64);
2774 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2775 		   replace_state, 64);
2776 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2777 		   time_started, 64);
2778 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2779 		   time_stopped, 64);
2780 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2781 		   num_write_errors, 64);
2782 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2783 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2784 		   64);
2785 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2786 		   cursor_left, 64);
2787 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2788 		   cursor_right, 64);
2789 
2790 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2791 			 struct btrfs_dev_replace_item, src_devid, 64);
2792 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2793 			 struct btrfs_dev_replace_item,
2794 			 cont_reading_from_srcdev_mode, 64);
2795 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2796 			 struct btrfs_dev_replace_item, replace_state, 64);
2797 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2798 			 struct btrfs_dev_replace_item, time_started, 64);
2799 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2800 			 struct btrfs_dev_replace_item, time_stopped, 64);
2801 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2802 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2803 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2804 			 struct btrfs_dev_replace_item,
2805 			 num_uncorrectable_read_errors, 64);
2806 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2807 			 struct btrfs_dev_replace_item, cursor_left, 64);
2808 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2809 			 struct btrfs_dev_replace_item, cursor_right, 64);
2810 
2811 /* helper function to cast into the data area of the leaf. */
2812 #define btrfs_item_ptr(leaf, slot, type) \
2813 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2814 	btrfs_item_offset(leaf, slot)))
2815 
2816 #define btrfs_item_ptr_offset(leaf, slot) \
2817 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2818 	btrfs_item_offset(leaf, slot)))
2819 
2820 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2821 {
2822 	return crc32c(crc, address, length);
2823 }
2824 
2825 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2826 {
2827 	put_unaligned_le32(~crc, result);
2828 }
2829 
2830 static inline u64 btrfs_name_hash(const char *name, int len)
2831 {
2832        return crc32c((u32)~1, name, len);
2833 }
2834 
2835 /*
2836  * Figure the key offset of an extended inode ref
2837  */
2838 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2839                                    int len)
2840 {
2841        return (u64) crc32c(parent_objectid, name, len);
2842 }
2843 
2844 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2845 {
2846 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2847 }
2848 
2849 /* extent-tree.c */
2850 
2851 enum btrfs_inline_ref_type {
2852 	BTRFS_REF_TYPE_INVALID,
2853 	BTRFS_REF_TYPE_BLOCK,
2854 	BTRFS_REF_TYPE_DATA,
2855 	BTRFS_REF_TYPE_ANY,
2856 };
2857 
2858 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2859 				     struct btrfs_extent_inline_ref *iref,
2860 				     enum btrfs_inline_ref_type is_data);
2861 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2862 
2863 
2864 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2865 			      u64 start, u64 num_bytes);
2866 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2867 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2868 			   unsigned long count);
2869 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2870 				  struct btrfs_delayed_ref_root *delayed_refs,
2871 				  struct btrfs_delayed_ref_head *head);
2872 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2873 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2874 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2875 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2876 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2877 		     int reserved);
2878 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2879 				    u64 bytenr, u64 num_bytes);
2880 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2881 int btrfs_cross_ref_exist(struct btrfs_root *root,
2882 			  u64 objectid, u64 offset, u64 bytenr, bool strict,
2883 			  struct btrfs_path *path);
2884 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2885 					     struct btrfs_root *root,
2886 					     u64 parent, u64 root_objectid,
2887 					     const struct btrfs_disk_key *key,
2888 					     int level, u64 hint,
2889 					     u64 empty_size,
2890 					     enum btrfs_lock_nesting nest);
2891 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2892 			   u64 root_id,
2893 			   struct extent_buffer *buf,
2894 			   u64 parent, int last_ref);
2895 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2896 				     struct btrfs_root *root, u64 owner,
2897 				     u64 offset, u64 ram_bytes,
2898 				     struct btrfs_key *ins);
2899 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2900 				   u64 root_objectid, u64 owner, u64 offset,
2901 				   struct btrfs_key *ins);
2902 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2903 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2904 			 struct btrfs_key *ins, int is_data, int delalloc);
2905 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2906 		  struct extent_buffer *buf, int full_backref);
2907 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2908 		  struct extent_buffer *buf, int full_backref);
2909 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2910 				struct extent_buffer *eb, u64 flags, int level);
2911 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2912 
2913 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2914 			       u64 start, u64 len, int delalloc);
2915 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2916 			      u64 len);
2917 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2918 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2919 			 struct btrfs_ref *generic_ref);
2920 
2921 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2922 
2923 /*
2924  * Different levels for to flush space when doing space reservations.
2925  *
2926  * The higher the level, the more methods we try to reclaim space.
2927  */
2928 enum btrfs_reserve_flush_enum {
2929 	/* If we are in the transaction, we can't flush anything.*/
2930 	BTRFS_RESERVE_NO_FLUSH,
2931 
2932 	/*
2933 	 * Flush space by:
2934 	 * - Running delayed inode items
2935 	 * - Allocating a new chunk
2936 	 */
2937 	BTRFS_RESERVE_FLUSH_LIMIT,
2938 
2939 	/*
2940 	 * Flush space by:
2941 	 * - Running delayed inode items
2942 	 * - Running delayed refs
2943 	 * - Running delalloc and waiting for ordered extents
2944 	 * - Allocating a new chunk
2945 	 */
2946 	BTRFS_RESERVE_FLUSH_EVICT,
2947 
2948 	/*
2949 	 * Flush space by above mentioned methods and by:
2950 	 * - Running delayed iputs
2951 	 * - Committing transaction
2952 	 *
2953 	 * Can be interrupted by a fatal signal.
2954 	 */
2955 	BTRFS_RESERVE_FLUSH_DATA,
2956 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2957 	BTRFS_RESERVE_FLUSH_ALL,
2958 
2959 	/*
2960 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2961 	 * global rsv.
2962 	 *
2963 	 * Can be interrupted by a fatal signal.
2964 	 */
2965 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2966 };
2967 
2968 enum btrfs_flush_state {
2969 	FLUSH_DELAYED_ITEMS_NR	=	1,
2970 	FLUSH_DELAYED_ITEMS	=	2,
2971 	FLUSH_DELAYED_REFS_NR	=	3,
2972 	FLUSH_DELAYED_REFS	=	4,
2973 	FLUSH_DELALLOC		=	5,
2974 	FLUSH_DELALLOC_WAIT	=	6,
2975 	FLUSH_DELALLOC_FULL	=	7,
2976 	ALLOC_CHUNK		=	8,
2977 	ALLOC_CHUNK_FORCE	=	9,
2978 	RUN_DELAYED_IPUTS	=	10,
2979 	COMMIT_TRANS		=	11,
2980 };
2981 
2982 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2983 				     struct btrfs_block_rsv *rsv,
2984 				     int nitems, bool use_global_rsv);
2985 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2986 				      struct btrfs_block_rsv *rsv);
2987 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2988 
2989 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2990 				    u64 disk_num_bytes, bool noflush);
2991 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2992 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2993 				   u64 start, u64 end);
2994 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2995 			 u64 num_bytes, u64 *actual_bytes);
2996 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2997 
2998 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2999 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3000 					 struct btrfs_fs_info *fs_info);
3001 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
3002 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
3003 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
3004 
3005 /* ctree.c */
3006 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
3007 		     int *slot);
3008 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
3009 int btrfs_previous_item(struct btrfs_root *root,
3010 			struct btrfs_path *path, u64 min_objectid,
3011 			int type);
3012 int btrfs_previous_extent_item(struct btrfs_root *root,
3013 			struct btrfs_path *path, u64 min_objectid);
3014 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3015 			     struct btrfs_path *path,
3016 			     const struct btrfs_key *new_key);
3017 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3018 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3019 			struct btrfs_key *key, int lowest_level,
3020 			u64 min_trans);
3021 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3022 			 struct btrfs_path *path,
3023 			 u64 min_trans);
3024 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
3025 					   int slot);
3026 
3027 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3028 		    struct btrfs_root *root, struct extent_buffer *buf,
3029 		    struct extent_buffer *parent, int parent_slot,
3030 		    struct extent_buffer **cow_ret,
3031 		    enum btrfs_lock_nesting nest);
3032 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3033 		      struct btrfs_root *root,
3034 		      struct extent_buffer *buf,
3035 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
3036 int btrfs_block_can_be_shared(struct btrfs_root *root,
3037 			      struct extent_buffer *buf);
3038 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
3039 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
3040 int btrfs_split_item(struct btrfs_trans_handle *trans,
3041 		     struct btrfs_root *root,
3042 		     struct btrfs_path *path,
3043 		     const struct btrfs_key *new_key,
3044 		     unsigned long split_offset);
3045 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3046 			 struct btrfs_root *root,
3047 			 struct btrfs_path *path,
3048 			 const struct btrfs_key *new_key);
3049 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3050 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3051 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3052 		      const struct btrfs_key *key, struct btrfs_path *p,
3053 		      int ins_len, int cow);
3054 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
3055 			  struct btrfs_path *p, u64 time_seq);
3056 int btrfs_search_slot_for_read(struct btrfs_root *root,
3057 			       const struct btrfs_key *key,
3058 			       struct btrfs_path *p, int find_higher,
3059 			       int return_any);
3060 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3061 		       struct btrfs_root *root, struct extent_buffer *parent,
3062 		       int start_slot, u64 *last_ret,
3063 		       struct btrfs_key *progress);
3064 void btrfs_release_path(struct btrfs_path *p);
3065 struct btrfs_path *btrfs_alloc_path(void);
3066 void btrfs_free_path(struct btrfs_path *p);
3067 
3068 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3069 		   struct btrfs_path *path, int slot, int nr);
3070 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3071 				 struct btrfs_root *root,
3072 				 struct btrfs_path *path)
3073 {
3074 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
3075 }
3076 
3077 /*
3078  * Describes a batch of items to insert in a btree. This is used by
3079  * btrfs_insert_empty_items().
3080  */
3081 struct btrfs_item_batch {
3082 	/*
3083 	 * Pointer to an array containing the keys of the items to insert (in
3084 	 * sorted order).
3085 	 */
3086 	const struct btrfs_key *keys;
3087 	/* Pointer to an array containing the data size for each item to insert. */
3088 	const u32 *data_sizes;
3089 	/*
3090 	 * The sum of data sizes for all items. The caller can compute this while
3091 	 * setting up the data_sizes array, so it ends up being more efficient
3092 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3093 	 * doing it, as it would avoid an extra loop over a potentially large
3094 	 * array, and in the case of setup_item_for_insert(), we would be doing
3095 	 * it while holding a write lock on a leaf and often on upper level nodes
3096 	 * too, unnecessarily increasing the size of a critical section.
3097 	 */
3098 	u32 total_data_size;
3099 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
3100 	int nr;
3101 };
3102 
3103 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3104 				 struct btrfs_path *path,
3105 				 const struct btrfs_key *key,
3106 				 u32 data_size);
3107 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3108 		      const struct btrfs_key *key, void *data, u32 data_size);
3109 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3110 			     struct btrfs_root *root,
3111 			     struct btrfs_path *path,
3112 			     const struct btrfs_item_batch *batch);
3113 
3114 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3115 					  struct btrfs_root *root,
3116 					  struct btrfs_path *path,
3117 					  const struct btrfs_key *key,
3118 					  u32 data_size)
3119 {
3120 	struct btrfs_item_batch batch;
3121 
3122 	batch.keys = key;
3123 	batch.data_sizes = &data_size;
3124 	batch.total_data_size = data_size;
3125 	batch.nr = 1;
3126 
3127 	return btrfs_insert_empty_items(trans, root, path, &batch);
3128 }
3129 
3130 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3131 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3132 			u64 time_seq);
3133 
3134 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3135 			   struct btrfs_path *path);
3136 
3137 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3138 			      struct btrfs_path *path);
3139 
3140 /*
3141  * Search in @root for a given @key, and store the slot found in @found_key.
3142  *
3143  * @root:	The root node of the tree.
3144  * @key:	The key we are looking for.
3145  * @found_key:	Will hold the found item.
3146  * @path:	Holds the current slot/leaf.
3147  * @iter_ret:	Contains the value returned from btrfs_search_slot or
3148  * 		btrfs_get_next_valid_item, whichever was executed last.
3149  *
3150  * The @iter_ret is an output variable that will contain the return value of
3151  * btrfs_search_slot, if it encountered an error, or the value returned from
3152  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3153  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3154  *
3155  * It's recommended to use a separate variable for iter_ret and then use it to
3156  * set the function return value so there's no confusion of the 0/1/errno
3157  * values stemming from btrfs_search_slot.
3158  */
3159 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
3160 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
3161 		(iter_ret) >= 0 &&						\
3162 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3163 		(path)->slots[0]++						\
3164 	)
3165 
3166 static inline int btrfs_next_old_item(struct btrfs_root *root,
3167 				      struct btrfs_path *p, u64 time_seq)
3168 {
3169 	++p->slots[0];
3170 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3171 		return btrfs_next_old_leaf(root, p, time_seq);
3172 	return 0;
3173 }
3174 
3175 /*
3176  * Search the tree again to find a leaf with greater keys.
3177  *
3178  * Returns 0 if it found something or 1 if there are no greater leaves.
3179  * Returns < 0 on error.
3180  */
3181 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3182 {
3183 	return btrfs_next_old_leaf(root, path, 0);
3184 }
3185 
3186 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3187 {
3188 	return btrfs_next_old_item(root, p, 0);
3189 }
3190 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3191 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3192 				     int for_reloc);
3193 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3194 			struct btrfs_root *root,
3195 			struct extent_buffer *node,
3196 			struct extent_buffer *parent);
3197 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3198 {
3199 	/*
3200 	 * Do it this way so we only ever do one test_bit in the normal case.
3201 	 */
3202 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3203 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3204 			return 2;
3205 		return 1;
3206 	}
3207 	return 0;
3208 }
3209 
3210 /*
3211  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3212  * anything except sleeping. This function is used to check the status of
3213  * the fs.
3214  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3215  * since setting and checking for SB_RDONLY in the superblock's flags is not
3216  * atomic.
3217  */
3218 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3219 {
3220 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3221 		btrfs_fs_closing(fs_info);
3222 }
3223 
3224 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3225 {
3226 	sb->s_flags |= SB_RDONLY;
3227 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3228 }
3229 
3230 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3231 {
3232 	sb->s_flags &= ~SB_RDONLY;
3233 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3234 }
3235 
3236 /* root-item.c */
3237 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3238 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3239 		       int name_len);
3240 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3241 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3242 		       int name_len);
3243 int btrfs_del_root(struct btrfs_trans_handle *trans,
3244 		   const struct btrfs_key *key);
3245 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3246 		      const struct btrfs_key *key,
3247 		      struct btrfs_root_item *item);
3248 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3249 				   struct btrfs_root *root,
3250 				   struct btrfs_key *key,
3251 				   struct btrfs_root_item *item);
3252 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3253 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3254 		    struct btrfs_key *root_key);
3255 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3256 void btrfs_set_root_node(struct btrfs_root_item *item,
3257 			 struct extent_buffer *node);
3258 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3259 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3260 			     struct btrfs_root *root);
3261 
3262 /* uuid-tree.c */
3263 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3264 			u64 subid);
3265 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3266 			u64 subid);
3267 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3268 
3269 /* dir-item.c */
3270 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3271 			  const char *name, int name_len);
3272 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3273 			  int name_len, struct btrfs_inode *dir,
3274 			  struct btrfs_key *location, u8 type, u64 index);
3275 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3276 					     struct btrfs_root *root,
3277 					     struct btrfs_path *path, u64 dir,
3278 					     const char *name, int name_len,
3279 					     int mod);
3280 struct btrfs_dir_item *
3281 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3282 			    struct btrfs_root *root,
3283 			    struct btrfs_path *path, u64 dir,
3284 			    u64 index, const char *name, int name_len,
3285 			    int mod);
3286 struct btrfs_dir_item *
3287 btrfs_search_dir_index_item(struct btrfs_root *root,
3288 			    struct btrfs_path *path, u64 dirid,
3289 			    const char *name, int name_len);
3290 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3291 			      struct btrfs_root *root,
3292 			      struct btrfs_path *path,
3293 			      struct btrfs_dir_item *di);
3294 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3295 			    struct btrfs_root *root,
3296 			    struct btrfs_path *path, u64 objectid,
3297 			    const char *name, u16 name_len,
3298 			    const void *data, u16 data_len);
3299 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3300 					  struct btrfs_root *root,
3301 					  struct btrfs_path *path, u64 dir,
3302 					  const char *name, u16 name_len,
3303 					  int mod);
3304 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3305 						 struct btrfs_path *path,
3306 						 const char *name,
3307 						 int name_len);
3308 
3309 /* orphan.c */
3310 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3311 			     struct btrfs_root *root, u64 offset);
3312 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3313 			  struct btrfs_root *root, u64 offset);
3314 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3315 
3316 /* file-item.c */
3317 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3318 		    struct btrfs_root *root, u64 bytenr, u64 len);
3319 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3320 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
3321 			     struct btrfs_root *root, u64 objectid, u64 pos,
3322 			     u64 num_bytes);
3323 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3324 			     struct btrfs_root *root,
3325 			     struct btrfs_path *path, u64 objectid,
3326 			     u64 bytenr, int mod);
3327 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3328 			   struct btrfs_root *root,
3329 			   struct btrfs_ordered_sum *sums);
3330 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3331 				u64 offset, bool one_ordered);
3332 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3333 			     struct list_head *list, int search_commit,
3334 			     bool nowait);
3335 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3336 				     const struct btrfs_path *path,
3337 				     struct btrfs_file_extent_item *fi,
3338 				     const bool new_inline,
3339 				     struct extent_map *em);
3340 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3341 					u64 len);
3342 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3343 				      u64 len);
3344 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3345 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3346 
3347 /* inode.c */
3348 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num);
3349 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
3350 			int mirror_num, enum btrfs_compression_type compress_type);
3351 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3352 			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
3353 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3354 			  u32 bio_offset, struct page *page, u32 pgoff);
3355 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3356 				    u32 bio_offset, struct page *page,
3357 				    u64 start, u64 end);
3358 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3359 			  u32 bio_offset, struct page *page, u32 pgoff);
3360 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3361 			      u64 *orig_start, u64 *orig_block_len,
3362 			      u64 *ram_bytes, bool nowait, bool strict);
3363 
3364 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3365 				struct btrfs_inode *inode);
3366 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3367 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3368 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3369 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3370 		       const char *name, int name_len);
3371 int btrfs_add_link(struct btrfs_trans_handle *trans,
3372 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3373 		   const char *name, int name_len, int add_backref, u64 index);
3374 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3375 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3376 			 int front);
3377 
3378 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3379 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3380 			       bool in_reclaim_context);
3381 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3382 			      unsigned int extra_bits,
3383 			      struct extent_state **cached_state);
3384 struct btrfs_new_inode_args {
3385 	/* Input */
3386 	struct inode *dir;
3387 	struct dentry *dentry;
3388 	struct inode *inode;
3389 	bool orphan;
3390 	bool subvol;
3391 
3392 	/*
3393 	 * Output from btrfs_new_inode_prepare(), input to
3394 	 * btrfs_create_new_inode().
3395 	 */
3396 	struct posix_acl *default_acl;
3397 	struct posix_acl *acl;
3398 };
3399 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3400 			    unsigned int *trans_num_items);
3401 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3402 			   struct btrfs_new_inode_args *args);
3403 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3404 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3405 				     struct inode *dir);
3406  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3407 			        u32 bits);
3408 void btrfs_clear_delalloc_extent(struct inode *inode,
3409 				 struct extent_state *state, u32 bits);
3410 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3411 				 struct extent_state *other);
3412 void btrfs_split_delalloc_extent(struct inode *inode,
3413 				 struct extent_state *orig, u64 split);
3414 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3415 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3416 void btrfs_evict_inode(struct inode *inode);
3417 struct inode *btrfs_alloc_inode(struct super_block *sb);
3418 void btrfs_destroy_inode(struct inode *inode);
3419 void btrfs_free_inode(struct inode *inode);
3420 int btrfs_drop_inode(struct inode *inode);
3421 int __init btrfs_init_cachep(void);
3422 void __cold btrfs_destroy_cachep(void);
3423 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3424 			      struct btrfs_root *root, struct btrfs_path *path);
3425 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3426 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3427 				    struct page *page, size_t pg_offset,
3428 				    u64 start, u64 end);
3429 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3430 		       struct btrfs_root *root, struct btrfs_inode *inode);
3431 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3432 				struct btrfs_root *root, struct btrfs_inode *inode);
3433 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3434 		struct btrfs_inode *inode);
3435 int btrfs_orphan_cleanup(struct btrfs_root *root);
3436 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3437 void btrfs_add_delayed_iput(struct inode *inode);
3438 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3439 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3440 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3441 			      u64 start, u64 num_bytes, u64 min_size,
3442 			      loff_t actual_len, u64 *alloc_hint);
3443 int btrfs_prealloc_file_range_trans(struct inode *inode,
3444 				    struct btrfs_trans_handle *trans, int mode,
3445 				    u64 start, u64 num_bytes, u64 min_size,
3446 				    loff_t actual_len, u64 *alloc_hint);
3447 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3448 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3449 		struct writeback_control *wbc);
3450 int btrfs_writepage_cow_fixup(struct page *page);
3451 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3452 					  struct page *page, u64 start,
3453 					  u64 end, bool uptodate);
3454 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
3455 					     int compress_type);
3456 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
3457 					  u64 file_offset, u64 disk_bytenr,
3458 					  u64 disk_io_size,
3459 					  struct page **pages);
3460 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3461 			   struct btrfs_ioctl_encoded_io_args *encoded);
3462 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3463 			     const struct btrfs_ioctl_encoded_io_args *encoded);
3464 
3465 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before);
3466 
3467 extern const struct dentry_operations btrfs_dentry_operations;
3468 
3469 /* Inode locking type flags, by default the exclusive lock is taken */
3470 #define BTRFS_ILOCK_SHARED	(1U << 0)
3471 #define BTRFS_ILOCK_TRY 	(1U << 1)
3472 #define BTRFS_ILOCK_MMAP	(1U << 2)
3473 
3474 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3475 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3476 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3477 			      const u64 add_bytes,
3478 			      const u64 del_bytes);
3479 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3480 
3481 /* ioctl.c */
3482 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3483 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3484 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3485 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3486 		       struct dentry *dentry, struct fileattr *fa);
3487 int btrfs_ioctl_get_supported_features(void __user *arg);
3488 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3489 int __pure btrfs_is_empty_uuid(u8 *uuid);
3490 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3491 		      struct btrfs_ioctl_defrag_range_args *range,
3492 		      u64 newer_than, unsigned long max_to_defrag);
3493 void btrfs_get_block_group_info(struct list_head *groups_list,
3494 				struct btrfs_ioctl_space_info *space);
3495 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3496 			       struct btrfs_ioctl_balance_args *bargs);
3497 
3498 /* file.c */
3499 int __init btrfs_auto_defrag_init(void);
3500 void __cold btrfs_auto_defrag_exit(void);
3501 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3502 			   struct btrfs_inode *inode, u32 extent_thresh);
3503 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3504 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3505 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3506 extern const struct file_operations btrfs_file_operations;
3507 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3508 		       struct btrfs_root *root, struct btrfs_inode *inode,
3509 		       struct btrfs_drop_extents_args *args);
3510 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3511 			   struct btrfs_path *path, const u64 start,
3512 			   const u64 end,
3513 			   struct btrfs_replace_extent_info *extent_info,
3514 			   struct btrfs_trans_handle **trans_out);
3515 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3516 			      struct btrfs_inode *inode, u64 start, u64 end);
3517 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3518 			    const struct btrfs_ioctl_encoded_io_args *encoded);
3519 int btrfs_release_file(struct inode *inode, struct file *file);
3520 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3521 		      size_t num_pages, loff_t pos, size_t write_bytes,
3522 		      struct extent_state **cached, bool noreserve);
3523 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3524 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3525 			   size_t *write_bytes, bool nowait);
3526 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3527 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3528 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret);
3529 
3530 /* tree-defrag.c */
3531 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3532 			struct btrfs_root *root);
3533 
3534 /* super.c */
3535 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3536 			unsigned long new_flags);
3537 int btrfs_sync_fs(struct super_block *sb, int wait);
3538 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3539 					  u64 subvol_objectid);
3540 
3541 static inline __printf(2, 3) __cold
3542 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3543 {
3544 }
3545 
3546 #ifdef CONFIG_PRINTK_INDEX
3547 
3548 #define btrfs_printk(fs_info, fmt, args...)					\
3549 do {										\
3550 	printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);	\
3551 	_btrfs_printk(fs_info, fmt, ##args);					\
3552 } while (0)
3553 
3554 __printf(2, 3)
3555 __cold
3556 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3557 
3558 #elif defined(CONFIG_PRINTK)
3559 
3560 #define btrfs_printk(fs_info, fmt, args...)				\
3561 	_btrfs_printk(fs_info, fmt, ##args)
3562 
3563 __printf(2, 3)
3564 __cold
3565 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3566 
3567 #else
3568 
3569 #define btrfs_printk(fs_info, fmt, args...) \
3570 	btrfs_no_printk(fs_info, fmt, ##args)
3571 #endif
3572 
3573 #define btrfs_emerg(fs_info, fmt, args...) \
3574 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3575 #define btrfs_alert(fs_info, fmt, args...) \
3576 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3577 #define btrfs_crit(fs_info, fmt, args...) \
3578 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3579 #define btrfs_err(fs_info, fmt, args...) \
3580 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3581 #define btrfs_warn(fs_info, fmt, args...) \
3582 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3583 #define btrfs_notice(fs_info, fmt, args...) \
3584 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3585 #define btrfs_info(fs_info, fmt, args...) \
3586 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3587 
3588 /*
3589  * Wrappers that use printk_in_rcu
3590  */
3591 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3592 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3593 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3594 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3595 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3596 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3597 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3598 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3599 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3600 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3601 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3602 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3603 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3604 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3605 
3606 /*
3607  * Wrappers that use a ratelimited printk_in_rcu
3608  */
3609 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3610 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3611 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3612 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3613 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3614 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3615 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3616 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3617 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3618 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3619 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3620 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3621 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3622 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3623 
3624 /*
3625  * Wrappers that use a ratelimited printk
3626  */
3627 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3628 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3629 #define btrfs_alert_rl(fs_info, fmt, args...) \
3630 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3631 #define btrfs_crit_rl(fs_info, fmt, args...) \
3632 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3633 #define btrfs_err_rl(fs_info, fmt, args...) \
3634 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3635 #define btrfs_warn_rl(fs_info, fmt, args...) \
3636 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3637 #define btrfs_notice_rl(fs_info, fmt, args...) \
3638 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3639 #define btrfs_info_rl(fs_info, fmt, args...) \
3640 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3641 
3642 #if defined(CONFIG_DYNAMIC_DEBUG)
3643 #define btrfs_debug(fs_info, fmt, args...)				\
3644 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3645 				   fs_info, KERN_DEBUG fmt, ##args)
3646 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3647 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3648 				   fs_info, KERN_DEBUG fmt, ##args)
3649 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3650 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3651 				   fs_info, KERN_DEBUG fmt, ##args)
3652 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3653 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3654 				   fs_info, KERN_DEBUG fmt, ##args)
3655 #elif defined(DEBUG)
3656 #define btrfs_debug(fs_info, fmt, args...) \
3657 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3658 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3659 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3660 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3661 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3662 #define btrfs_debug_rl(fs_info, fmt, args...) \
3663 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3664 #else
3665 #define btrfs_debug(fs_info, fmt, args...) \
3666 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3667 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3668 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3669 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3670 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3671 #define btrfs_debug_rl(fs_info, fmt, args...) \
3672 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3673 #endif
3674 
3675 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3676 do {							\
3677 	rcu_read_lock();				\
3678 	btrfs_printk(fs_info, fmt, ##args);		\
3679 	rcu_read_unlock();				\
3680 } while (0)
3681 
3682 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3683 do {							\
3684 	rcu_read_lock();				\
3685 	btrfs_no_printk(fs_info, fmt, ##args);		\
3686 	rcu_read_unlock();				\
3687 } while (0)
3688 
3689 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3690 do {								\
3691 	static DEFINE_RATELIMIT_STATE(_rs,			\
3692 		DEFAULT_RATELIMIT_INTERVAL,			\
3693 		DEFAULT_RATELIMIT_BURST);       		\
3694 	if (__ratelimit(&_rs))					\
3695 		btrfs_printk(fs_info, fmt, ##args);		\
3696 } while (0)
3697 
3698 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3699 do {								\
3700 	rcu_read_lock();					\
3701 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3702 	rcu_read_unlock();					\
3703 } while (0)
3704 
3705 #ifdef CONFIG_BTRFS_ASSERT
3706 __cold __noreturn
3707 static inline void assertfail(const char *expr, const char *file, int line)
3708 {
3709 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3710 	BUG();
3711 }
3712 
3713 #define ASSERT(expr)						\
3714 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3715 
3716 #else
3717 static inline void assertfail(const char *expr, const char* file, int line) { }
3718 #define ASSERT(expr)	(void)(expr)
3719 #endif
3720 
3721 #if BITS_PER_LONG == 32
3722 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3723 /*
3724  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3725  * addresses of extents.
3726  *
3727  * For 4K page size it's about 10T, for 64K it's 160T.
3728  */
3729 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3730 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3731 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3732 #endif
3733 
3734 /*
3735  * Get the correct offset inside the page of extent buffer.
3736  *
3737  * @eb:		target extent buffer
3738  * @start:	offset inside the extent buffer
3739  *
3740  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3741  */
3742 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3743 					   unsigned long offset)
3744 {
3745 	/*
3746 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3747 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3748 	 *
3749 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3750 	 * to the eb, thus we have to take the eb->start into consideration.
3751 	 */
3752 	return offset_in_page(offset + eb->start);
3753 }
3754 
3755 static inline unsigned long get_eb_page_index(unsigned long offset)
3756 {
3757 	/*
3758 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3759 	 *
3760 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3761 	 * and have ensured that all tree blocks are contained in one page,
3762 	 * thus we always get index == 0.
3763 	 */
3764 	return offset >> PAGE_SHIFT;
3765 }
3766 
3767 /*
3768  * Use that for functions that are conditionally exported for sanity tests but
3769  * otherwise static
3770  */
3771 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3772 #define EXPORT_FOR_TESTS static
3773 #else
3774 #define EXPORT_FOR_TESTS
3775 #endif
3776 
3777 __cold
3778 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3779 {
3780 	btrfs_err(fs_info,
3781 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3782 }
3783 
3784 __printf(5, 6)
3785 __cold
3786 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3787 		     unsigned int line, int errno, const char *fmt, ...);
3788 
3789 const char * __attribute_const__ btrfs_decode_error(int errno);
3790 
3791 __cold
3792 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3793 			       const char *function,
3794 			       unsigned int line, int errno, bool first_hit);
3795 
3796 /*
3797  * Call btrfs_abort_transaction as early as possible when an error condition is
3798  * detected, that way the exact line number is reported.
3799  */
3800 #define btrfs_abort_transaction(trans, errno)		\
3801 do {								\
3802 	bool first = false;					\
3803 	/* Report first abort since mount */			\
3804 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3805 			&((trans)->fs_info->fs_state))) {	\
3806 		first = true;					\
3807 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3808 			WARN(1, KERN_DEBUG				\
3809 			"BTRFS: Transaction aborted (error %d)\n",	\
3810 			(errno));					\
3811 		} else {						\
3812 			btrfs_debug((trans)->fs_info,			\
3813 				    "Transaction aborted (error %d)", \
3814 				  (errno));			\
3815 		}						\
3816 	}							\
3817 	__btrfs_abort_transaction((trans), __func__,		\
3818 				  __LINE__, (errno), first);	\
3819 } while (0)
3820 
3821 #ifdef CONFIG_PRINTK_INDEX
3822 
3823 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3824 do {									\
3825 	printk_index_subsys_emit(					\
3826 		"BTRFS: error (device %s%s) in %s:%d: errno=%d %s",	\
3827 		KERN_CRIT, fmt);					\
3828 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3829 				(errno), fmt, ##args);			\
3830 } while (0)
3831 
3832 #else
3833 
3834 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3835 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3836 				(errno), fmt, ##args)
3837 
3838 #endif
3839 
3840 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3841 						   &(fs_info)->fs_state)))
3842 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3843 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3844 			   &(fs_info)->fs_state)))
3845 
3846 __printf(5, 6)
3847 __cold
3848 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3849 		   unsigned int line, int errno, const char *fmt, ...);
3850 /*
3851  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3852  * will panic().  Otherwise we BUG() here.
3853  */
3854 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3855 do {									\
3856 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3857 	BUG();								\
3858 } while (0)
3859 
3860 
3861 /* compatibility and incompatibility defines */
3862 
3863 #define btrfs_set_fs_incompat(__fs_info, opt) \
3864 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3865 				#opt)
3866 
3867 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3868 					   u64 flag, const char* name)
3869 {
3870 	struct btrfs_super_block *disk_super;
3871 	u64 features;
3872 
3873 	disk_super = fs_info->super_copy;
3874 	features = btrfs_super_incompat_flags(disk_super);
3875 	if (!(features & flag)) {
3876 		spin_lock(&fs_info->super_lock);
3877 		features = btrfs_super_incompat_flags(disk_super);
3878 		if (!(features & flag)) {
3879 			features |= flag;
3880 			btrfs_set_super_incompat_flags(disk_super, features);
3881 			btrfs_info(fs_info,
3882 				"setting incompat feature flag for %s (0x%llx)",
3883 				name, flag);
3884 		}
3885 		spin_unlock(&fs_info->super_lock);
3886 	}
3887 }
3888 
3889 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3890 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3891 				  #opt)
3892 
3893 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3894 					     u64 flag, const char* name)
3895 {
3896 	struct btrfs_super_block *disk_super;
3897 	u64 features;
3898 
3899 	disk_super = fs_info->super_copy;
3900 	features = btrfs_super_incompat_flags(disk_super);
3901 	if (features & flag) {
3902 		spin_lock(&fs_info->super_lock);
3903 		features = btrfs_super_incompat_flags(disk_super);
3904 		if (features & flag) {
3905 			features &= ~flag;
3906 			btrfs_set_super_incompat_flags(disk_super, features);
3907 			btrfs_info(fs_info,
3908 				"clearing incompat feature flag for %s (0x%llx)",
3909 				name, flag);
3910 		}
3911 		spin_unlock(&fs_info->super_lock);
3912 	}
3913 }
3914 
3915 #define btrfs_fs_incompat(fs_info, opt) \
3916 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3917 
3918 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3919 {
3920 	struct btrfs_super_block *disk_super;
3921 	disk_super = fs_info->super_copy;
3922 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3923 }
3924 
3925 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3926 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3927 				 #opt)
3928 
3929 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3930 					    u64 flag, const char *name)
3931 {
3932 	struct btrfs_super_block *disk_super;
3933 	u64 features;
3934 
3935 	disk_super = fs_info->super_copy;
3936 	features = btrfs_super_compat_ro_flags(disk_super);
3937 	if (!(features & flag)) {
3938 		spin_lock(&fs_info->super_lock);
3939 		features = btrfs_super_compat_ro_flags(disk_super);
3940 		if (!(features & flag)) {
3941 			features |= flag;
3942 			btrfs_set_super_compat_ro_flags(disk_super, features);
3943 			btrfs_info(fs_info,
3944 				"setting compat-ro feature flag for %s (0x%llx)",
3945 				name, flag);
3946 		}
3947 		spin_unlock(&fs_info->super_lock);
3948 	}
3949 }
3950 
3951 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3952 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3953 				   #opt)
3954 
3955 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3956 					      u64 flag, const char *name)
3957 {
3958 	struct btrfs_super_block *disk_super;
3959 	u64 features;
3960 
3961 	disk_super = fs_info->super_copy;
3962 	features = btrfs_super_compat_ro_flags(disk_super);
3963 	if (features & flag) {
3964 		spin_lock(&fs_info->super_lock);
3965 		features = btrfs_super_compat_ro_flags(disk_super);
3966 		if (features & flag) {
3967 			features &= ~flag;
3968 			btrfs_set_super_compat_ro_flags(disk_super, features);
3969 			btrfs_info(fs_info,
3970 				"clearing compat-ro feature flag for %s (0x%llx)",
3971 				name, flag);
3972 		}
3973 		spin_unlock(&fs_info->super_lock);
3974 	}
3975 }
3976 
3977 #define btrfs_fs_compat_ro(fs_info, opt) \
3978 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3979 
3980 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3981 {
3982 	struct btrfs_super_block *disk_super;
3983 	disk_super = fs_info->super_copy;
3984 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3985 }
3986 
3987 /* acl.c */
3988 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3989 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3990 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3991 		  struct posix_acl *acl, int type);
3992 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
3993 		    struct posix_acl *acl, int type);
3994 #else
3995 #define btrfs_get_acl NULL
3996 #define btrfs_set_acl NULL
3997 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
3998 				  struct inode *inode, struct posix_acl *acl,
3999 				  int type)
4000 {
4001 	return -EOPNOTSUPP;
4002 }
4003 #endif
4004 
4005 /* relocation.c */
4006 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
4007 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4008 			  struct btrfs_root *root);
4009 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4010 			    struct btrfs_root *root);
4011 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
4012 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
4013 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4014 			  struct btrfs_root *root, struct extent_buffer *buf,
4015 			  struct extent_buffer *cow);
4016 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4017 			      u64 *bytes_to_reserve);
4018 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4019 			      struct btrfs_pending_snapshot *pending);
4020 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
4021 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
4022 				   u64 bytenr);
4023 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
4024 
4025 /* scrub.c */
4026 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4027 		    u64 end, struct btrfs_scrub_progress *progress,
4028 		    int readonly, int is_dev_replace);
4029 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
4030 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
4031 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4032 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
4033 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4034 			 struct btrfs_scrub_progress *progress);
4035 
4036 /* dev-replace.c */
4037 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4038 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4039 
4040 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4041 {
4042 	btrfs_bio_counter_sub(fs_info, 1);
4043 }
4044 
4045 static inline int is_fstree(u64 rootid)
4046 {
4047 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
4048 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4049 	      !btrfs_qgroup_level(rootid)))
4050 		return 1;
4051 	return 0;
4052 }
4053 
4054 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4055 {
4056 	return signal_pending(current);
4057 }
4058 
4059 /* verity.c */
4060 #ifdef CONFIG_FS_VERITY
4061 
4062 extern const struct fsverity_operations btrfs_verityops;
4063 int btrfs_drop_verity_items(struct btrfs_inode *inode);
4064 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size);
4065 
4066 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
4067 		   encryption, 8);
4068 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
4069 		   size, 64);
4070 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
4071 			 struct btrfs_verity_descriptor_item, encryption, 8);
4072 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
4073 			 struct btrfs_verity_descriptor_item, size, 64);
4074 
4075 #else
4076 
4077 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
4078 {
4079 	return 0;
4080 }
4081 
4082 static inline int btrfs_get_verity_descriptor(struct inode *inode, void *buf,
4083 					      size_t buf_size)
4084 {
4085 	return -EPERM;
4086 }
4087 
4088 #endif
4089 
4090 /* Sanity test specific functions */
4091 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4092 void btrfs_test_destroy_inode(struct inode *inode);
4093 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4094 {
4095 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4096 }
4097 #else
4098 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4099 {
4100 	return 0;
4101 }
4102 #endif
4103 
4104 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4105 {
4106 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4107 }
4108 
4109 /*
4110  * We use page status Private2 to indicate there is an ordered extent with
4111  * unfinished IO.
4112  *
4113  * Rename the Private2 accessors to Ordered, to improve readability.
4114  */
4115 #define PageOrdered(page)		PagePrivate2(page)
4116 #define SetPageOrdered(page)		SetPagePrivate2(page)
4117 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
4118 #define folio_test_ordered(folio)	folio_test_private_2(folio)
4119 #define folio_set_ordered(folio)	folio_set_private_2(folio)
4120 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
4121 
4122 #endif
4123